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Analysis of Intrinsic Mode Functions:
A PDE Approach

El Hadji S. Diop, R. Alexandre, and A. O. Boudraa

Abstract—The empirical mode decomposition is a powerful tool
for signal processing. Because of its original algorithmic, recent
works have contributed to its theoretical framework. Following
these works, some mathematical contributions on its comprehen-
sion and formalism are provided. In this paper, the so called local
mean is computed in such a way that it allows the use of differen-
tial calculus on envelopes. This new formulation makes us prove
that iterations of the sifting process are well approximated by the
resolution of partial differential equations (PDE). Intrinsic mode
functions are originally defined in a intuitive way. Herein, a mathe-
matical characterization of modes is given with the proposed PDE-
based approach.

Index Terms—Empirical mode decomposition, intrinsic mode
function, partial differential equations.

I. INTRODUCTION

T HE empirical mode decomposition (EMD) was intro-
duced by Huang et al. [1] for analyzing non-stationary

time series derived from linear and nonlinear systems. It con-
sists in decomposing signals into several basic components
called intrinsic mode functions (IMFs) or modes, and a residual
understood as the signal trend. Any given signal is then decom-
posed by the EMD into a sum of IMFs, which are generated at
each scale going from fine to coarse by an iterative procedure,
the sifting process (SP). Many numerical simulations have been
performed for a better understanding of the behavior of the
EMD [2], [3]. However, a lack of a strong theoretical frame-
work remains its main criticism. Recent works [4]–[8] were
performed for a better understanding, though. The study of SP
is difficult particularly because of the loose definition of the
so-called local mean [1]. Indeed, it involves notions of upper
and lower envelopes of the signal, which are not easy to handle
for further calculus, whatever the interpolations one could use.
Following Huang et al. [1], for a given signal denoted by ,
the EMD algorithm can be summarized as follows.

1) Find all the extrema of .
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2) Interpolate the maxima of (resp. the minima of ),
(resp. ).

3) Compute the local mean:
.

4) Extract and sift the detail .
5) Iterate on the residual (up to the absence of extrema).

Then, any signal will be decomposed by the EMD as
, where denotes the so-called

IMF, and is the residual.
In this work, we slightly change the definition of the local

mean by computing differently the local upper and lower en-
velopes as in [8]. The local mean is then calculated in a better
way so that we can use differential calculus. In [8], we proposed
a PDE formulation of the SP, but limited to a class of signals.
Here, a more general framework is presented.

II. A PDE FORMULATION OF THE SIFTING PROCESS

Let , , be a continuous signal. is
an open bounded set of , and its boundary is denoted by .
The SP is fully determined by the sequence defined by
[8]:

(1)

where (resp. ) denotes a fixed continuous interpolation
of the maxima (resp. minima) of . Let be the operator
defined on suitable functions (for example ) by

. Let be the identity ap-
plication. Then, , we have , and
therefore, by letting , , we get .

Let be a small parameter.
Definition 1: For all , we define the operator ,

mapped from into , by:

(2)
The main idea of the paper is to replace the local mean by the
operator .

Let’s now define the following subsets of , and depending
on :

(3)

(4)

(5)



As usual, we shall use the norm for any
.

Theorem 1: Let such that is bounded on .
For small, one has

(6)

(7)

(8)

Proof: See the Appendix.
We recall the sequence which holds for approximate

and virtual IMFs . Then, we define the se-
quence as:

(9)

Thanks to Theorem 1, (9) is developed as follows.
• If , then: .
• If and , then

.
• If and , then

.
• If and , then:

.
Let us next fix , is chosen small enough. Let given by

(10)

Let’s consider a smoothed enough interpolation of ,
also denoted, with some notation abuse, by . Using a
Taylor expansion, one has

. Thus, choosing ,
yields the following.

• If , then:
.

• If and ,
then

.
• If and ,

then:

.
• If and ,

then

.
In view of the above computations, it is therefore natural to in-
troduce for any smooth and fixed function ,

, the following subsets:

(11)

(12)

(13)

Definition 2: A is a function defined as:

,
(14)

for some , where is solution of the free-boundary PDE:

on
on

on

(15)

Certainly, we need to add a boundary condition on , which
will depend on the input signal . For instance, if on

, we shall take a Dirichlet boundary condition. On the other
hand, if on , a Neumann boundary condition or more
generally, a mixed Robbin type boundary condition is consid-
ered. Next, we derive from the PDE (15), a particular model by
only considering the second equation assumed to be well posed
everywhere.

Definition 3: A is a
function defined as

(16)

for some , where is solution of the PDE:

(17)

We need of course to specify boundary conditions: we shall con-
sider mainly Dirichlet or Neumann type conditions. The PDE
(17) could be rewritten as a backward Heat equation, and is
shown to be well posed in [8]. Concepts of -IMF are intro-
duced as follows.

Definition 4: We say that a function is a -IMF if and only
if

1) is a solution of the PDE (17);
2) is a null mean function for some .

In practice, a -IMF is extracted when its mean is almost zero.
Once the first -IMF, , is extracted by resolving (17),
we resolve again (17) to get , but the initial condition
is now equal to the residual between the signal and ;
and so on for other -IMFs.



Definition 6: -EMD is the decomposition for which -IMFs
are extracted with (17).

III. NUMERICAL RESULTS

PDEs are implemented with an explicit scheme. We first con-
sider the following signal:

(18)

The two first modes are displayed in Figs. 1(a) and (b), respec-
tively. A first remark is that the -EMD behaves like the clas-
sical EMD, in the sense that it separates the signal’s components
from the highest frequency to the lowest one. One could notice
the small attenuation of the -IMFs as regards to the exact values
of the signal and the IMFs. -IMFs are obtained with Neumann
boundary conditions, and . The second
simulated signal is given by

(19)

Figs. 2(a) and (b) show the first two modes, which should nor-
mally equal to and respectively. The signal’s components
are very well separated by our approach. and
fit exactly and respectively. On the other hand, is
almost the same as , except at boundaries where we notice
some little differences (Fig. 2(a)). On the contrary, totally
differs from (Fig. 2(b)). Probable reasons for that are the well
known boundary problems that occur during the SP, and are ob-
viously due to the mean envelopes computed by interpolations
(splines for examples). The last signal is

(20)

Despite a little attenuation of the amplitude of (Fig.
3(b)), this example clearly illustrates again the relevance and
efficiency of the proposed -EMD. For the last two examples,
-IMFs are obtained with Dirichlet boundary conditions,

and , and and ,
respectively.

Fig. 4 shows comparisons between -IMFs and modes ob-
tained by implementing (15), for the first (cf. (20)) and third
signal [cf. (20)] considered before [Figs. 4(a)–(d)]. We assume
that is a null mean function for some , with as solu-
tion of (15). There is no attenuation and modes fit exactely the
first signal’s components [Fig. 1(a)–(b) versus Fig. 4(a)–(b)]. In
fact, PDE (15) takes into account critical points of the signal and
points that have a null second derivative. Also, it accounts the
concavity and the convexity of the signal, and handles points for
which the signal’s first derivative is above or beneath the second
derivative.

Fig. 1. Comparisons between classical IMFs and �-IMFs for the first signal
given by (18).

Fig. 2. Comparisons between classical IMFs and �-IMFs for the second signal
given by (19).

Fig. 3. Comparisons between classical IMFs and �-IMFs for the last signal
given by (20).

IV. CONCLUSION

Some theoretical contributions on the comprehension and the
formalism of the EMD are provided here. In fact, we propose to
perform the SP by the resolution of PDEs, and analytical char-
acterizations of modes are then proposed. Moreover, a suitable
way for getting rid of interpolation’s issues is also provided.
Further investigations of the PDE based approach should be
done. Indeed, the parameter is actually chosen empirically, and
we make the assumption that . The stopping
criterion needs also some refinements, because if the signal has
a null mean, then the algorithm stops at the first iteration, which
means that any function that has a null mean is then a -IMF.
An alternative to that is to consider the free-boundary PDE (15).

APPENDIX

Before giving the proof of Theorem 1, we first introduce op-
erators and , respectively defined for all by

and ,



Fig. 4. Comparisons between �-IMFs and obtained modes with (15). (a), (b):
first signal (cf. (19)). (c), (d): third signal (cf. (19)). In green: signal’s compo-
nents, in blue: � � ���� and in red: modes obtained with (15).

[8]. Then, (cf. Definition 2) is simply written as
.

Theorem 2: Let so that is bounded on .
Then for small, one has

(21)

where . Furthermore

if
and

otherwise.
(22)

Proof: For any , for any such
that and , since ,
we can write, using Taylor’s formula:

. By taking
the supremum in , in view of the Definition of , one gets
the result, with the definition of . In order to prove the
explicit formula for for any fixed ,
we first note that: and

.
• case 1: If . Then and thus

(23)

• case 2: If .
If denotes the derivative of w.r.t and so on,
then: , .
Note that in particular of course is either convex
or concave w.r.t. . Therefore

, and then
.

— If , that is , then:

(24)
— If , that is , then

• If . This implies that is convex; and
thus again

(25)

• If , is then concave. Thus

(26)

A similar result for is of course true.
Theorem 3: Let so that is bounded on . For

small, one has

(27)

where again . Furthermore

if and

otherwise.

(28)

Proof of Theorem 1: Just consider results obtained for
and in Theorems 2 and 3, respectively.
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