
HAL Id: hal-01087072
https://hal.science/hal-01087072v1

Submitted on 25 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Typical Depth of a Digital Search Tree built on a
general source

Kanal Hun, Brigitte Vallée

To cite this version:
Kanal Hun, Brigitte Vallée. Typical Depth of a Digital Search Tree built on a general source. Pro-
ceedings of ANALCO’2014, SIAM Meeting on Analytic Algorithmics and Combinatoric, Jan 2014,
Portland, United States. pp.1 - 15, �10.1137/1.9781611973204.1�. �hal-01087072�

https://hal.science/hal-01087072v1
https://hal.archives-ouvertes.fr


Typical Depth of a Digital Search Tree built on a general source∗

Kanal Hun† Brigitte Vallée‡

Abstract

The digital search tree (dst) plays a central role in compres-

sion algorithms, of Lempel-Ziv type. This important struc-

ture can be viewed as a mixing of a digital structure (the

trie) with a binary search tree. Its probabilistic analysis is

thus involved, even in the case when the text is produced by

a simple source (a memoryless source, or a Markov chain).

After the seminal paper of Flajolet and Sedgewick (1986)

[11] which deals with the memoryless unbiased case, many

papers, due to Drmota, Jacquet, Louchard, Prodinger, Sz-

pankowski, Tang, published between 1990 and 2005, dealt

with general memoryless sources or Markov chains, and per-

form the analysis of the main parameters of dst’s–namely,

internal path length, profile, typical depth– (see for instance

[7, 15, 14]). Here, we are interested in a more realistic anal-

ysis, when the words are emitted by a general source, where

the emission of symbols may depend on the whole previous

history. There exist previous analyses of text algorithms

or digital structures that have been performed for general

sources, for instance for tries ([3, 2]), or for basic sorting

and searching algorithms ([22, 4]). However, the case of dig-

ital search trees has not yet been considered, and this is the

main subject of the paper. The idea of this study is due to

Philippe Flajolet and the first steps of the work were per-

formed with him, during the end of 2010.

1 Introduction

The trie and the digital search tree are two tree struc-
tures which contain words (namely, strings or keys) and
are used as dictionaries, in compression algorithms for
instance. They are important data structures in Com-
puter Science. They are built in a recursive way, and the
words are directed towards the various subtrees accord-
ing to their first symbol. However, in a trie, the words
are only placed in the external nodes, and the trie does
not depend on the arrival time of the words, whereas the
words are placed in the internal nodes of the dst, in a
way which depends on their arrival time (See Figure 1).
Then, the dst is a more compact structure than the trie;

∗Thanks to the Agence Universitaire de la Francophonie
(AUF) for the scholarship of K.H, and also to the Agence
Nationale de la Recherche for the two projects: ANR Magnum
(ANR 2010 BLAN 0204) and ANR Boole (ANR 2009 BLAN 0011)
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as it can be viewed as an hybrid between the trie and the
binary search tree, its analysis is more involved than the
trie analysis. The complexity of many algorithms that
use these trees as the main underlying data structures
can be expressed with various tree parameters, namely,
the profile, or the typical depth... A main question is:
Is the dst actually more efficient than the trie? One as-
sumes that there is a processus, called a source, which
emits infinite words built on a (finite) alphabet. The
sequence of words contained in the tree (trie or dst) is
formed with n independently chosen words produced by
this source, and the analysis aims describing the asymp-
totic probabilistic behavior of the main tree parameters
when the number n of words becomes large. The proba-
bilistic behaviour of these parameters strongly depends
on the probabilistic properties of the source which emits
the words.
For simple sources, namely memoryless sources (where
the symbols are independently drawn) or Markov chains
(where the dependency between symbols is bounded),
the probabilistic behaviour of the main tree parameters
(for tries and dst’s) has already been deeply analyzed,
even if the analyses are more difficult for the dst. The
book of Szpankowski [20] provides a complete review of
these results, which are due to a large number of people
(already cited in the abstract). They involve various
types of simple sources –periodic, aperiodic, diophan-
tine sources– which are defined in Section 3.4 and are
summarized as follows:

Theorem 1.1. [Classical results] Consider a simple
source. The following holds for the depth of the trie
or the dst built on a random sequence of n words
independently drawn from the source:

(a) The mean and the variance satisfy
E[Dn] = µ log n + µ1 + R1(n)
Var[Dn] = ν log n + ν1 + R2(n)

The constants µ, ν depend on the source, but not on
the type of tree. The only case where ν = 0 arises for
an unbiased memoryless source. The constants µ1, ν1
depend both on the source and on the type of tree, and

the inequality µ
(D)
1 < µ

(T )
1 holds.

(b) The functions Ri(n) are of the same type for both
tries and dst’s, and this type depends on the source:

(b1) If the source is periodic, then



Ri(n) = δi(n) +O(n−α), for some α > 0;
Here, δi(n) are periodic functions of log n.

(b2) If the source is aperiodic diophantine, then
Ri(n) = O

(
exp[−(log n)β ]

)
for some β > 0.

(c) If the source is not an unbiased memoryless source,
the depth Dn asymptotically follows a Gaussian law.

Of course, such simple sources are not realistic, and
it is interesting to extend results of this type to more
general sources, where the emission of symbols may
depend on the whole previous history. Our main result
provides an extension of Theorem 1.1 (which only holds
for simple sources) to two large classes of sources, the
UNI Class and the DIOP Class, defined in Sections 4.3,
and 4.4. We then study two types of sources, and two
types of trees (tries and dst’s), then we obtain four types
of results. The result for tries built on UNI sources is
already known [2], but the other three types of results
are new.

Theorem 1.2. Consider a stationary1 source UNI or
DIOP. The following holds for the depth of the trie or the
dst built on a random sequence of n words independently
drawn from the source:

(a) The mean and the variance satisfy

E[Dn] = µ log n + µ1 + R1(n)
Var[Dn] = ν log n + ν1 + R2(n)

The constants µ, ν does not depend on the type of tree.
They only depend on the source, and can be expressed
with the dominant eigenvalue λ(s) of the source (see
Section 4.2 and (8.32)). Here, the inequality ν > 0
holds. The constants µ1, ν1 depend both on the source

and on the type of tree, and the inequality µ
(D)
1 < µ

(T )
1

holds.

(b) The functions Ri(n) are of the same type for both
tries and dst’s, and this type depends on the source

(b1) If the source is UNI, then
Ri(n) = O(n−α), for some α > 0

(b2) if the source is DIOP, then
Ri(n) = O

(
exp[−(log n)β ]

)
for some β > 0

(c) The depth Dn asymptotically follows a Gaussian law.
The speed of convergence is O((log n)−1/2) in the case
of a UNI source.

Our methods may be also of independent interest,
as we provide in Section 2 a new point of view for a
general source, where it is possible to study both tries
and dst’s. Even if Section 3 focusses here on the dst
analyses, the methods can be applied for trie analyses,

1The results for the trie hold even if the source is non
stationary.

and we also obtain new results for tries, when they are
built on a DIOP source. We explain the similarities of
the behaviors of the two structures –tries and dst’s–, by
the similarities of their Dirichlet series, related to a plain
quasi-inverse for the trie, and to an infinite product of
quasi-inverses for the dst (see Remark in Section 4.1).
We also mention an explicit formula for the mean dst

depth in Proposition 3.2 which seems to be new, and
only known in the memoryless unbiased case, where it
is obtained via q-calculus.

Plan of the paper. Section 2 presents the trees and
the source, and Section 3 describes the main steps of our
method. Then Section 4 focuses on particular sources,
where the analytic part of our method can be performed,
and leads in Section 5 to the asymptotic gaussian law.
Sections 6, 7, 8 are devoted to proofs.

2 Digital Search Trees and Sources

Here we introduce the main actors of the study: first
the tree structures (digital search tree and tries), their
parameters of interest, together with the main generat-
ing functions; second, the mechanism which produces
the words, called the source.

2.1 Tree structures. Consider an alphabet Σ,
here assumed to be finite and of the form Σ :=
{a1, a2, . . . ar}. Let Y be a sequence of infinite words
of ΣN. Denote by Y(aj) the subsequence of Y formed
with the words of Y which begin with aj , from which
the symbol aj is removed.

The tree dst(Y) is defined as follows: If Y is empty,
then dst(Y) is empty. Otherwise:
– The root of dst(Y) contains the first word First (Y).
– There are r subtrees built with the sequence Y :=
Y \ {First(Y)}, and the j–th subtree is dst (Y(aj)

)

The tree trie(Y) is defined as follows: If Y is empty,
then trie(Y) is empty; if Y contains only one word,
the tree trie(Y) is an external node which contains
this word. Otherwise:
– The root of trie(Y) is an internal node.
– There are r subtrees and the j-th subtree is
trie(Y(aj)).
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Figure 1: A dst (left) and a trie (right) built from the
sequence s1 = bbabb . . . ; s2 = abbaa . . . ; s3 = babba . . . , s4 =
ababb . . . ; s5 = babab . . . ; s6 = aaaab . . . ;



A node which contains a word is said to be full. In
a dst, all the nodes are full, whereas, in a trie, only
the external nodes are full. When the sequence Y is
composed with n words, the dst(Y) and the trie(Y)
have exactly n full nodes, and the size equals n. The
level of any node is the number of nodes from the root
to this node (the level of the root equals 0) and dn,i is
the level of the node which contains the i-th word.

The sequence bn,k, defined as the number of full
nodes at level k in a tree of size n, satisfies

bn,k =

n∑

i=1

[[dn,i = k]],

where [[.]] denotes the Iverson bracket. This sequence
is called the profile and Bn,k := E[bn,k] is the average
profile. The depth, denoted by Dn, is defined as the
level of a random full node, via the equalities

Pr[Dn = k] :=
1

n

n∑

i=1

Pr[dn,i = k] =
1

n
Bn,k.

This is the main object of the present study.

We mainly use two generating functions of the
profile, first the probability generating function Bn(u),

(2.1) Bn(u) :=
∑

k≥0

Bn,k u
k,

second, the Poisson bivariate generating function
B(z, u), together with its normalized version
(2.2)

B(z, u) = e−z
∑

n≥0

Bn(u)
zn

n!
, B(z, u) :=

B(z, u)− z

u− 1
.

These generating functions are closely related to the
probability generating function Gn of the depth Dn,
(2.3)

Gn(u) := E[uDn ] =
∑

k≥0

Pr[Dn = k]uk =
1

n
Bn(u).

2.2 General sources. The probabilistic properties
of a digital search tree depend on the probabilistic
features of the mechanism which produces the words
it contains.

A general source S built on the alphabet Σ produces
at each discrete time t = 0, t = 1, . . . a symbol from
Σ. If Xn is the symbol emitted at time t = n, a source
produces the infinite word (X0, X1, . . . Xn, . . .). For any
finite prefix w ∈ Σ⋆, the probability pw that a word
produced by the source S begins with the finite prefix
w is called the fundamental probability of prefix w. The
set {pw, w ∈ Σ⋆} completely defines the source S.
Such a source S defines a sequence of “shifted” sources
S(u) (for u ∈ Σ⋆), as it is now described: the source S(u)

gathers all the words of S which begin with u ∈ Σ⋆,
from which the prefix u is removed or “hidden”. The
source S(u) exists as soon as the probability pu is non
zero and is completely defined by all the fundamental
(conditional) probabilities pw/pu, when w is any finite
prefix which begins with u (we denote this situation
by the inequality u ≤ w). In this case, w can be
written as w = u · v and the conditional probability
pw/pu = pu·v/pu is just the fundamental probability
relative to prefix v in the source S(u). It is also denoted
as qv|u, and we prefer this notation since it shows
the dependence with respect to the “visible” prefixes
v emitted by the source S(u).

We associate to the source S an infinite matrix
P, whose rows and columns are indexed by Σ⋆: The
coefficients at the row w which are possibly non-zero
are located at the columns w.i (for i ∈ Σ) and equal
pw.i/pw = qi|w. The related graph admits, as vertices,
all the sources S(u) associated to prefixes u for which
pu 6= 0, and there is an edge from S(u) to S(v) if and
only if (v = u · i for i ∈ Σ) and (qi|u = pu·i/pu is non-
zero). An example of the graph associated to the source
S is shown in Figure 2.
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Figure 2: The graph of matrix P for Σ = {0, 1}.

For any s ∈ C, the matrix Ps is obtained from the
matrix P by raising each coefficient to the power s.
We denote by B(Σ⋆) the Banach space of the bounded
functions X : Σ⋆ → C endowed with the sup-norm.
The operator Ps operates on B(Σ⋆) in a natural way,
and transforms a function X ∈ B(Σ⋆) into a function
Y ∈ B(Σ⋆) as follows:

(2.4) Y (w) := Ps[X](w) :=
∑

i∈Σ

qsi|w X(w · i).

2.3 Pruning the transition matrix. This repre-
sentation is quite redundant for simple sources, where
the correlations between emitted symbols are “weak”.
All the sources S(u) are not needed for the describing
the source S, and we define an equivalence relation on
sources as[

S(u) ≡ S(v) ⇐⇒ ∀w ∈ Σ⋆, qw|u = qw|v

]
.

The pruned graph is obtained by keeping only one
representant in each equivalence class. We describe two
instances (See Figure 3.)



For a memoryless source, there is only one equiva-
lence class, and Ps is a matrix of order 1, with a coeffi-
cient ps1+. . .+psr, where pi is the probability of emitting
the symbol ai.

In a Markov chain of order k, there are two types
of sources:

– first, the “initial” sources S(u) related to a prefix
u of length strictly less than k;

– then, all the sources S(u) related to prefixes u with
the same suffix of length k are all equivalent.
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Figure 3: The graph for a memoryless source (left top) –
the graph of a Markov chain of order 1, 2.

3 Main principles of our method.

We wish to obtain an alternative expression of the gen-
erating function B(z, u) of the profile. We first derive in
Proposition 3.1 a system of equations. Next, we perform
an algebraic study, which first provides in Proposition
3.2 an exact expression for the probability generating
function of the depth and introduces a central object
in our study, the dst Dirichlet series ∆(s, u), for which
we obtain an alternative expression in Proposition 3.3.
Finally we explain the main principles for the analytic
study, centered on the Rice Formula, which will lead
to an asymptotic estimate of the probability generat-
ing function of the depth, and finally to the asymptotic
gaussian law.

3.1 The basic recurrence and the system of

functional equations. We deal with the sequence of
all the sources S(w) associated to the initial source S.
We focus here on the case of Σ = {0, 1}.

The variable b
(w)
n,k is the dst profile for the source

S(w), defined as in Section 2.1. It satisfies the basic
recurrence,

b
(w)
n,k = b

(w.0)
Kn,k−1 + b

(w.1)
n−1−Kn,k−1, (for n, k ≥ 1)

where Kn = K
(w)
n is the number of nodes in the left

subtree. As the variable K
(w)
n follows a binomial law

of parameters n− 1 and q0|w, the expectations B
(w)
n,k :=

E[b
(w)
n,k ] satisfy the recurrence, for n, k ≥ 1,

B
(w)
n+1,k =

n∑

j=0

(
n

j

)
qj0|w qn−j

1|w

(
B

(w·0)
j,k−1 +B

(w·1)
n−j,k−1

)
,

with B
(w)
n,0 = 1, B

(w)
0,k = 0 for any w ∈ Σ⋆, n ≥ 1, k ≥ 0.

Dealing with the associated generating functions,
we obtain the following result.

Proposition 3.1. Consider a source S and its shifted
sources S(w). Then, the modified Poisson generating

functions B(w)(z, u) of the dst profiles relative to the
sources S(w) and defined as in (2.2) are solutions of the
system of functional equations

d

dz
B(w)(z, u) +B(w)(z, u) = z + u

∑

i∈Σ

B(w·i)(qi|wz, u).

3.2 General strategy for the algebraic study.

This system of functional equations involves three op-
erations: (i) the differentiation d/dz with respect to z;
(ii) the change of variables z 7→ qz; (iii) the shift on
words w 7→ w.i.
In comparison, the derivation does not occur in the case
of tries, (see Section 6.4) and it creates one of the main
difficulties in the dst analysis. There are two main
transforms with which the derivation “disappears”: the
Laplace transform and the Mellin transforms. This is
why we mainly deal with these transforms, together
with a third main tool, the Rice formula.

Our method is composed with three main steps,
each dedicated to the use of one of the three main tools.
We limit ourselves to a smooth source.

Definition 3.1. A source is smooth if all the funda-
mental probabilities pw are strictly positive and if there
exists p < 1 for which qi|w ≤ p for any (i, w) ∈ Σ× Σ⋆.

(a) We first use the Laplace transform, as in [9],
which provides, in the case when the source is smooth,
an exact expression, first for all the bivariate series

B(w)(z, u), then for the series B
(w)
n (u) (See Sections 6.1

and 6.2 for the proofs).

Proposition 3.2. Let S be a p–smooth source with
fundamental probabilities pw. The dst bivariate Dirich-
let series, defined as

(3.5) ∆(s, u) :=
∑

v∈Σ⋆

δ(v, u)psv,

with δ(v, u) :=
1

pv

∑

w≥v

u|w|pw
∏

α∈[ǫ,w]
α 6=v

1

1− pvp
−1
α

,



exists for ℜs > 1 and |u| ≤ 1. Moreover, the probability
generating functions of the profile and typical depth
admit the following expression

(3.6)
Bn(u)− n

u− 1
=

n∑

ℓ=2

(−1)ℓ
(
n

ℓ

)
∆(ℓ, u),

E[uDn ]− 1

u− 1
=

1

n

n∑

ℓ=2

(−1)ℓ
(
n

ℓ

)
∆(ℓ, u),

(b) As these exact expressions are binomial sums,
we use the Rice formula, described in Section 3.3,
which transforms a binomial expression into an integral
on a vertical line of the complex plane. If we know
the “tameness” of the series s 7→ ∆(s, u), namely, its
behaviour when (ℜs, u) is close to (1, 1), it is possible
to shift the contour of the integral to the left, and obtain
asymptotic estimates for Bn(u) and E[uDn ].

(c) Via the Mellin transform of the series z 7→
B(z, u), we obtain, as in [15], an alternative expression
for ∆(s, u), that will be central in the study of its
tameness (See Section 6.3 for a proof).

Proposition 3.3. Consider a p–smooth source S and
its generalized matrix Ps. Then, the infinite product

Q(s, u) := (I − uPs)
−1 · . . . · . . . (I − uPs+k)

−1 . . . ,

exists for ℜs > 1 and |u| ≤ 1. Moreover, the
dst Dirichlet series admits the following alternative
expression which involves these infinite products,

(3.7) ∆(s, u) = tEQ(s, u) ·Q(2, u)−1 1,

where 1 is the vector whose all the components equal 1
and tE equals (1, 0, . . .).

3.3 General strategy for the analytic study.

The Rice Formula [16, 17] transforms a binomial sum
into an integral in the complex plane. One has

(3.8) n ·
E[uDn ]− 1

u− 1
=

n∑

ℓ=2

(−1)ℓ
(
n

ℓ

)
∆(ℓ, u)

=
(−1)n+1

2iπ

∫

ℜs=σ1

Ln(s, u) ds,

for any real σ1 ∈]1, 2[,

with Ln(s, u) =
n! ∆(s, u)

s(s− 1) . . . (s− n)
.

Then, along general principles in analytic combinatorics
described in[12, 13], the integration line can be pushed

to the left, as soon as Ln(s, u) –closely related to
∆(s, u)– has good analytic properties: we need a region
R on the left of ℜs = 1, where ∆(s, u) is meromorphic,
with polynomial growth (for |ℑs| → ∞). We finally
obtain a residue formula

(3.9) (−1)n+1n ·
E[udn ]− 1

u− 1

=
∑

s

Res [Ln(s, u)] +
1

2iπ

∫

C2

Ln(s, u) ds,

where C2 is a curve of class C
1 enclosed inR and the sum

is extended to all poles s of Ln(s, u) inside the domain
delimited by the vertical line ℜs = σ1 and the curve C2.

The first term in (3.9) provides the asymptotic
behaviour, and the remainder integral is estimated using
the polynomial growth of s 7→ ∆(s, u) for |ℑ(s)| → ∞.
As Proposition 3.3 shows that ∆(s, u) involves quasi-
inverses (I − uPs)

−1, its behaviour is dictated by the
spectral properties of the operator Ps.

3.4 Case of simple sources. Here, the operator Ps

is a matrix of finite order. When s is real, and the source
p-smooth, the matrix Ps has all its coefficients strictly
positive, and it has a unique dominant eigenvalue,
denoted by λ(s). (In the memoryless case, the equality
λ(s) = ps1 + . . . + psr holds and involves the probability
pi of emitting the symbol ai). We consider the set Z
of complex numbers s for which the spectrum SpPs

contains 1. This set always contains s = 1 and there are
two main situations for the intersection Z ∩ {ℜs = 1}:

(P ) The intersection Z ∩ {ℜs = 1} contains another
point, distinct from s = 1. This happens iff, for
any pair of cycles C,K, of respective probabilities
p(C), p(K), all the ratios log p(C)/ log p(K) are ra-
tional numbers. Then, the intersection Z ∩ {ℜs =
1} is a set of the form {sk = 1 + kit0, k ∈ Z},
for some t0 > 0, and the mapping s 7→ SpPs is
periodic of period it0. In this case, the source itself
is said to be periodic.

(A) The intersection Z ∩ {ℜs = 1} is reduced to
s = 1, and the source is said to be aperiodic.
The position of Z with respect to the line ℜs = 1
depends on the arithmetic properties of the ratios
log p(C)/ log p(K), as we now explain.

An irrational number x is diophantine if its irrationality
exponent2 is finite. A simple aperiodic source is dio-
phantine if there exists a ratio log p(C)/ log p(K) which

2We recall that the irrationality exponent of a irrational
number x is defined by ω(x) :=

sup
{

α,

∣

∣

∣
x−

p

q

∣

∣

∣
≤ 1

q2+α for an infinite number of pairs (p, q)
}

.



is diophantine. In this case, the distance between
Zt := Z ∩ {0 < t0 ≤ |ℑs| ≤ t} and the vertical line
ℜs = 1 is Ω(|t|−β) (where β is related with the irra-
tionality exponent, see [10]) and there exists an hyper-
bolic region, of the form R = R1 ∪R2, with

(3.10) R1 :=

{
s = σ + it; |t| ≥ B, σ > 1−

A

|t|β

}

R2 :=

{
s = σ + it; |t| ≤ B, σ > 1−

A

Bβ

}
,

where (I −Ps)
−1 is meromorphic, admits s = 1 as the

only pole, and ||(I −Ps)
−1|| is O(|t|β) when |ℑs| → ∞.

3.5 Tameness. For general sources, the notion of
tameness is introduced to “copy” the behaviour of
simple aperiodic sources. However, the functional space
on which Ps acts has to be made precise. In an informal
way, a source is said to be tame if there exist
(a) a space F on which the operator Ps acts,
(b) a region R located on the left of the line ℜs = 1,

such that the quasi-inverse (I −Ps)
−1 fulfills two main

properties :
(i) it is meromorphic onR with a unique pole at s = 1,
(ii) it is of polynomial growth on R (when |ℑs| → ∞).

For distributional studies, we need a reinforcement
of this notion, in fact a “uniform perturbation” of it, as
we deal with quasi-inverses (I−uPs)

−1, with u close to
1. This will lead to the notion of uniform tameness.

We will see that, for general sources, the region R
is not always hyperbolic, but may be a vertical strip for
sources that are “quite different” from simple sources.

4 Extension of regular sources, operators, and

tameness

We introduce a general framework where sources can be
proven tame. We first explain how a smooth stationary
source can be extended into a dynamical system. Then,
the secant transfer operator Hs provides a convenient
extension of the transition operator Ps, and Proposition
4.1 provides an extension of Proposition 3.3, where
the dst Dirichlet series is now expressed in terms of
the quasi-inverse (I − uHs)

−1. Next, we consider two
classes of dynamical sources, the UNI Class, and the
DIOP Class for which the quasi-inverses are tame. It will
be then possible to apply the Rice formula to obtain the
asymptotic gaussian law in Section 5.

4.1 Extension of sources and operators. There
are three main steps:

Step 1. First, we consider the mirror operation which
reverses the finite prefixes and then the (finite) past.

This transforms the operator Ps into the operator P̂s

Step 2. Second, if the source is regular enough, it can be
extended into a source which possesses an infinite past.
Moreover, there exists a unique invariant distribution
under the shift “towards the past”.
Step 3. With a convenient parameterization, the reverse
past of a stationary source leads to a dynamical system,
with surjective branches [see Section 7.3]. When it is of
class C2, its secant transfer operator Hs provides a good
extension of P̂s.

Finally, we obtain the following result, proven in
Section 7.

Proposition 4.1. Consider a smooth stationary
source, whose reverse past leads to a complete dynam-
ical system (I, T ) of the unit interval, of class C2.
Denote by H the set of the inverse branches of T .
Consider the infinite product

(4.11) K(s, u) := (I−uHs)
−1 ◦ · · · ◦ (I−uHs+2)

−1 ◦ . . .

defined with the secant operator Hs of the dynamical
system,

(4.12) Hs[F ](x, y) :=
∑

h∈H

Ss[h](x, y)F (h(x), h(y)),

which involves the secants

(4.13) S[h](x, y) :=

∣∣∣∣
h(x)− h(y)

x− y

∣∣∣∣

of the inverse branches h ∈ H. Then, the dst Dirichlet
series ∆(s, u) admits an alternative expression, as an
infinite product,

(4.14) ∆(s, u) = (I − uHs)
−1 ◦ R(s, u)[1](0, 1)

with R(s, u) = K(s+ 1, u) ◦K(2, u)−1.

Remark. For s = 1, the factor R(1, u) “disap-
pears”. As the trie Dirichlet series Λ(s, u) is s(I −
uHs)

−1[1](0, 1) (see Section 6.4), this explains the sim-
ilarity between the betaviour of the two trees.

4.2 The Good Class. Since the source is both of class
C2 and smooth, the shift T is expansive, and the source
belongs to the so–called Good Class, introduced in [21].
Then, the secant operator Hs acts on the functional
space C1([0, 1]2)), with dominant spectral properties
when s is close to the real axis, namely a dominant
eigenvalue λ(s), together with a spectral gap. Moreover,
as Dolgoyat explains it in [5, 6], it is convenient to deal
with the operator Hs via a norm || · ||(1,t) which depends
on t := ℑs, defined as ||F ||(1,t) = ||F ||0+(1/|t|)||DF ||0,
where ||F ||0 is the sup-norm.



Then, for (ℜs, u) close to (1, 1), the following holds
for the operators of (4.14):

(a) For (s, u) close to (1, 1) the operator s 7→
(I−uHs)

−1 is meromorphic and admits a simple pôle at
s = 1+σ(u), defined by the relation λ(1+σ(u)) = 1/u.

(b) For (ℜs, u) close to (1, 1), the norm (1, t) of
the infinite product R(s, u) is uniformly bounded.

(c) It remains to deal with the norm of the quasi-
inverse (I − uHs)

−1 when (ℜs, u) is close to (1, 1),
and when |ℑs| → ∞. We wish to obtain a polynomial
growth there.

We define two (large) subclasses of the Good Class
–the UNI Class, the DIOP Class– for which such a (uni-
form) polynomial growth of the norm ||(I−uHs)

−1||(1,t)
can be proven. This will entail (uniform) tameness prop-
erties for the function ∆(s, u).

4.3 The UNI Class. The UNI Condition is a
geometric condition, studied by Dolgopyat [5] which
expresses that the dynamical system is very different
from a system with affine branches. First, one defines
ρ(h, k) as a measure of the difference between the
“shape” of the two branches h, k of Hn,

ρ(h, k) = inf
x∈I

|Ψ′
h,k(x)| with Ψh,k(x) = log

∣∣∣∣
h′(x)

k′(x)

∣∣∣∣ .

Then, one considers the “natural” probability Prn de-
fined on each set Hn × Hn, by Prn{(h, k)} := |h(I)| ·
|k(I)|, where |J | denotes the length of the interval J .
The condition UNI expresses that the distance ρ is “not
too often too small”:

Definition 4.1. [Condition UNI]. A p-smooth dynami-
cal system (I, T ) of class C2 is of UNI type if there exists
K > 0 such that, for any q with p < q < 1, for any in-
teger n, one has Prn[ ρ ≤ qn] ≤ Kqn.

The “distance” ρ is always zero for a simple source,
and such a source never satisfies the Condition UNI. The
Condition UNI is sufficient to imply uniform tameness
in a vertical strip. This was proven by Dolgopyat [5], re-
written by Baladi-Vallée[1], and extended to the secant
operator by Cesaratto-Vallée [2].

Theorem 4.1. [Dolgopyat, Baladi-Vallée, Cesaratto-
Vallée] For a source of UNI type, there exists a complex
neighborhood U of u = 1 and a vertical strip R on the
left of the vertical line ℜs = 1, such that, for any u ∈ U ,

(a) The operator s 7→ (I − uHs)
−1 is meromorphic

in R, with a unique pole at s = 1 + σ(u)
(b) The norm ||(I − uHs)

−1||(1,t) is of polynomial
growth when |ℑs| → ∞, uniform with respect to u.

4.4 The DIOP classes. The DIOP Conditions are
arithmetic conditions which “copy” the definition of
simple diophantine sources, and extends it to a general
source. For an inverse branch h, one denotes by h⋆ its
unique fixed point (such a point exists and is unique for
a system of the Good Class), by p(h) its depth, and one
lets, for h, k, ℓ in H⋆,

c(h) =
log |h′(h⋆)|

p(h)
, c(h, k) =

c(h)

c(k)
, c(h, k, ℓ) =

c(h)− c(k)

c(h)− c(ℓ)
.

The definition of diophantine dynamical sources deals
with these ratios:

Definition 4.2. [DIOP2 and DIOP3]. A p-smooth dy-
namical system (I, T ) of class C2 is DIOP2 if there exist
two branches h et k of H⋆ for which the ratio c(h, k) is
diophantine. It is DIOP3 if there exist three branches h,
k and ℓ of H⋆ for which the ratio c(h, k, ℓ) is diophan-
tine.

These conditions are sufficient to entail hyperbolic
tameness of sources. This was proven by Dolgopyat [6],
and extended to the secant operator by Roux and Vallée
[18, 19].

Theorem 4.2. [Dolgopyat, Roux-Vallée] For a DIOP

source, there exists an hyperbolic region R on the left
of ℜs = 1 and a real neighborhood T of 0, such that,
for any u = eiθ with θ ∈ T ,

(a) the operator s 7→ (I − uHs)
−1 is meromorphic

in R, with a unique pole at s = 1 + σ(u),
(b3) For a DIOP3 source, the norm ||(I−uHs)

−1||(1,t)
is of polynomial growth for s ∈ R, |ℑs| → ∞, uniformly
with respect to θ.

(b2) For a DIOP2 source, and θ ∈ T ∩ Q, the
norm ||(I − uHs)

−1||(1,t) is of polynomial growth for
s ∈ R, |ℑs| → ∞. This polynomial growth depends on
the denominator of the rational θ, with an upper bound
of the type O(den(θ)) |t|α for some α > 0.

5 Gaussian laws for the depth of a digital

search tree.

It is now possible to obtain gaussian laws for the typical
depthDn, with (if possible) a speed of convergence. The
proof can be found in Section 8. There will be two cases:

(a) The first case occurs for UNI sources when Gn is
well-behaved in a complex neighborhood of u = 1, and
we will use the moment generating function Mn(w) :=
Gn(e

w) and the Quasi-Powers theorem, which also
provides a speed of convergence.

(b) The second case occurs, for DIOP sources, when
Gn is only well-behaved on (a part of) the circle |u| = 1.
We then use the characteristic function Mn(iθ) :=
Gn(e

iθ) and the Goncharov theorem. However, the
study is more involved in the DIOP2 case.



6 Proofs for Section 3.

We provide proofs for the main results of Section 3.

6.1 Proof of Proposition 3.2. The use of Laplace
transfer is not very usual in the digital trees analyses.
There are some instances, in particular in [9]. We
consider the Laplace transform L which transforms
B(w)(z, u) into C(w)(t, u), defined as

C(w)(t, u) :=

∫ ∞

0

e−txB(w)(x, u)dx.

With Proposition 3.1, the generating functions
Ĉ(w)(t, u) := t2C(w)(t, u) satisfy the system of func-
tional equations
(6.15)

(t+ 1)Ĉ(w)(t, u) = 1 + u
∑

i∈Σ

1

qi|w
Ĉ(w·i)

(
t

qi|w
, u

)
.

We first focus on Ĉ(t, u) relative to the source S := S(ǫ).
Iterating Relation (6.15), and using the formula of
conditional probabilities, one obtains

(6.16) Ĉ(t, u) =
∑

w∈Σ⋆

u|w|pw
∏

v≤w

1

1 + tp−1
v

Using decomposition into partial fractions

∏

v≤w

1

1 + tp−1
v

=
∑

v≤w

r(v, w)

1 + tp−1
v

,

with r(v, w) :=
∏

α∈[ǫ,w]\{v}

1

1− pvp
−1
α

,

we let

δ(v, u) :=
1

pv

∑

w≥v

r(v, w)u|w|pw

(6.17) =
1

pv

∑

w≥v

pw
∏

α∈[ǫ,w]\{v}

1

1− pvp
−1
α

.

We will see later in Lemma 6.1 that the series which
defines δ(v, u) is absolutely convergent. Then, it is
possible to change the order of summations, and this
leads to an alternative expression for

(6.18) C(t, u) =
1

t2
Ĉ(t, u) =

1

t2

∑

v∈Σ⋆

δ(v, u)
pv

1 + tp−1
v

.

We now apply the inverse Laplace transform on
both sides of (6.18) to recover first the Poisson gen-
erating function B(z, u) relative to the source S = Sǫ,

(6.19) B(z, u) =
∑

v∈Σ⋆

δ(v, u)[e−zpv − 1 + zpv],

then the expression of B(z, u) itself, via Relation (2.2),

ezB(z, u) = zez+(u−1)
∑

v∈Σ⋆

δ(v, u)[ez(1−pv)−ez+ezzpv].

Extracting coefficients in (2.2) leads to

Bn(u) := n![zn]ezB(z, u)

= n+ (u− 1)
∑

v∈Σ⋆

δ(v, u)[(1− pv)
n − 1 + npv],

and finally, with binomial expansion,

Bn(u) = n+ (u− 1)
n∑

ℓ=2

(−1)ℓ
(
n

ℓ

) ∑

v∈Σ⋆

δ(v, u)pℓv.

6.2 Study of the Dirichlet vector ∆(s, u). The
bivariate vectorial dst Dirichlet series ∆(s, u), whose
the component of index w is the bivariate Dirichlet series
∆(w)(s, u) relative to the source S(w) plays an important
role in the sequel. We then prove the following:

Lemma 6.1. If the source S is p-smooth, the bivariate
vectorial dst Dirichlet series ∆(s, u), whose component
of index w is the bivariate Dirichlet series of the source
S(w) belongs to the space B(Σ⋆) of the bounded functions
X : Σ⋆ → C endowed with the sup-norm, and is analytic
on the domain B :=< 1,+∞ > ×{u; |u| ≤ 1}.

Proof. First, the norm ||Ps|| satisfies, for σ := ℜs,

||Ps|| ≤ µ(σ) with µ(σ) = sup

{
∑

i∈Σ

qσi|w; w ∈ Σ⋆

}
.

The term δ(v, u) decomposes into two factors,
δ(v, u) = β(v) · γ(v, u), with

β(v) =
∏

α∈[ǫ,v[

1

1− pv|α
, and γ(v, u) = γ[S(v), u],

where γ[S, u] = 1+
∑

w∈Σ+

u|w|pw
∏

α∈]ǫ,w]

1

1− p−1
α

= 1 +
∑

w∈Σ+

(−u)|w|pw


 ∏

α∈]ǫ,w]

pα
1− pα


.

Using the two inequalities

β(v) ≤

k∏

i=1

1

1− pi
for v ∈ Σk,

∣∣∣∣∣∣

∑

v∈Σk

psv

∣∣∣∣∣∣
≤ µ(σ)k,

the series of general term β(v)psv satisfies
∣∣∣∣∣
∑

v∈Σ⋆

β(v)psv

∣∣∣∣∣ ≤
∑

v∈Σ⋆

β(v)pσv ≤
∑

k≥0

µ(σ)k
k∏

i=1

1

1− pi



and, with a classical equality (due to partitions),

∑

k≥0

µk
k∏

ℓ=1

1

1− pℓ
=
∏

ℓ≥0

1

1− µpℓ
,

which holds for µ, p < 1, we obtain, for ℜs > 1

∣∣∣∣∣
∑

v∈Σ⋆

β(v)psv

∣∣∣∣∣ ≤
∏

ℓ≥0

1

1− µ(σ)pℓ
.

We now study γ(S, u), which is expressed as a series,

γ(S, u) =
∑

k≥0

γk(S, u),

with γk(S, u) =
∑

w∈Σk

(−u)|w|pw
∏

v∈Pw

pv
1− pv

.

We compare |γk(S, u)| and |γk+1(S, u)|,

|γk+1(S, u)| ≤
∑

i∈Σ

∑

w∈Σk

|u||w·i|pw·i

∏

v∈Pw.i

pv
1− pv

=
∑

w∈Σk

|u||w|pw
∏

v∈Pw

pv
1− pv

∑

i∈Σ

|u|qi|w
pw.i

1− pw.i
.

Consider θ < 1. As soon as p satisfies
pk+1 ≤ θ/(1 + θ),

the quotient pw.i/(1 − pw.i) is less than θ, and
|γk+1(S, u)| ≤ θ|u|γk(S, u).

This ends the proof of Lemma 6.1 and Proposition 3.2.

6.3 Proof of Proposition 3.3. We extend here the
approach of [14] and use some well-known properties of
the Mellin transform (see [8]).
With (6.19), the function z 7→ B(z, u) is expressed
with an harmonic sum which involves the basis function
f(z) := e−z − 1 + z. The function f satisfies

f(z) = O(z2), (z → 0+), f(z) = O(z) (z → ∞) ,

and its Mellin transform f∗(s) exists in the fundamental
strip < −2,−1 > and coincides there with the function
Γ(s). Furthermore, the function ∆(s, u) defined in (3.5)
exists in the domain B defined in Lemma 6.1, and the
following factorization holds for

(6.20) Z(s, u) := M[z 7→ B(z, u); s] =

Γ(s)

(
∑

v∈Σ⋆

δ(v, u) p−s
v

)
= Γ(s)∆(−s, u),

when s belongs the fundamental strip < −2,−1 > and
|u| ≤ 1.

We consider more generally the sequence of the Mellin
transforms

Z(w)(s, u) = M[z 7→ B(w)(z, u); s]

that exists for s in the fundamental strip < −2,−1 >
and |u| ≤ 1 and satisfies the system of equations,
deduced from the initial system of Proposition 3.1,
(6.21)

−(s−1)Z(w)(s−1, u)+Z(w)(s, u) = u
∑

i∈Σ

q−s
i|w Z(w·i)(s, u).

With a factorization analog to (6.20), the functions
∆(w)(s, u) satisfy the system

∆(w)(s+ 1, u) = ∆(w)(s, u)− u
∑

i∈Σ

qsi|w∆(w·i)(s, u).

Introducing the matrix Ps and using the vectorial
Dirichlet series ∆(s, u) we finally obtain the matrix
equation

∆(s+ 1, u) = (I − uPs)∆(s, u)

i.e. ∆(s, u) = (I − uPs)
−1∆(s+ 1, u).

We now prove that the infinite product is conver-
gent.

Lemma 6.2. Denote by B(Σ⋆) the Banach space formed
with the bounded complex functions Σ⋆ → C, endowed
with the norm ||X|| := sup |X(w)|. For a smooth source,
the following holds:

(i) The infinite product

Q(s, u) := (I − uPs)
−1 · . . . · (I − uPs+k)

−1 . . .

is convergent on the subset {(s, u); |u|µ(σ) < 1},
and defines an operator which acts on B(Σ⋆) and
is invertible.

(ii) Consider the vector 1 whose all components equal
1. Then, the equality ∆(2, u) = 1 holds.

Proof. Proof of (i). One has: ‖uPs‖ ≤ |u|µ(σ) < 1,
and, for k ≥ 0, ‖uPs+k‖ ≤ |u|µ(σ)pk < 1. Thus, the
quasi-inverses (I − uPs+k)

−1 are well-defined for σ > 1
and any k ≥ 0, and their norms satisfy

‖(I − uPs+k)
−1‖ ≤

1

1− |u|µ(σ)pk
= 1+

|u|pkµ(σ)

1− |u|µ(σ)pk
,

We remark the inequality µ(σ)pk < 1/2 for k ≥ k0, so
that for k ≥ k0, one has

‖(I − uPs+k)
−1‖ ≤ 1 +

2

2− |u|
pk.



Since the series of general term pk is convergent, the infi-
nite product Q(s, u) is normally convergent and defines
an analytic function on the domain {(s, u); |u|µ(σ) < 1}.

Proof of (ii). The assertion ∆(2, u) = 1 is proven by
using the following result shown in [15] :

Proposition A. Consider a sequence {fn}
∞
n=0 whose

Poisson generating function F is an entire function,
whose Mellin transform F ∗(s) exists in the strip <
−2,−1 > and is factored as Γ(s) · γ(−s), where γ(s)
is analytical for s ∈< 1,∞ >. Then

γ(n) =
n∑

k=0

(
n

k

)
(−1)kfn, for n ≥ 2

We apply the result with n = 2 to each function
z 7→ B(w)(z, u), for w ∈ Σ⋆. With the equalities

B
(w)
0 (u) = 0, B

(w)
1 (u) = 1, B

(w)
2 (u) = 1 + u,

one then obtains:

2∑

k=0

(
2

k

)
(−1)kB

(w)
k (u) = u− 1,

and: ∆(w)(2, u) =

2∑

k=0

(
2

k

)
(−1)kB

(w)
k (u) = 1.

Now, the equality ∆(2, u) = 1 holds, and this ends the
proof of Lemma 6.2.

We now end the proof of Proposition 3.3. The
equality ∆(2, u) = 1 = Q(2, u)∆(∞, u) implies the
equality ∆(∞, u) = Q(2, u)−11, and finally

(6.22) ∆(s, u) = Q(s, u) ·Q(2, u)−11.

We now focus on the first component ∆(s, u) :=
∆(ǫ)(s, u) of the vector ∆(s, u), and we derive an ex-
act expression for the Mellin transform of the Poisson
generating function B(z, u).

6.4 Comparison with the analysis for Tries. It is
interesting to compare the Poisson generating functions
relative to a digital search tree to their analogs for a
trie. The recurrences for tries are easier since there is
no word in internal nodes. One has for n ≥ 2 and k ≥ 1,

B
(w)
n,k =

n∑

j=0

(
n

j

)
qj0|w qn−j

1|w

(
B

(w·0)
j,k−1 +B

(w·1)
n−j,k−1

)
,

with, for any w ∈ Σ⋆, B
(w)
n,0 = 0 for n 6= 1; B

(w)
1,0 = 1,

B
(w)
0,k = 0 for k ≥ 0; B

(w)
1,k = 0 for k ≥ 1.

Then, the modified Poisson generating function of the
profile,

BT (z, u) :=
1

u− 1
[BT (z, u)− z]

satisfies B
(w)
T (z, u) = z(1−e−z)+u

∑

i∈Σ

B
(w·i)
T (qi|wz, u).

Then, a simple iteration provides the explicit expression

BT (z, u) =
∑

v∈Σ⋆

u|v|zpv(1− e−zpv ),

and the Mellin transform of z 7→ BT (z, u) involves

Λ(s, u) :=
∑

v∈Σ⋆

u|v|psv =tE (I − uPs)
−11

under the form −Γ(s+ 1)Λ(−s, u) = −sΓ(s) Λ(−s, u).

The analog∆T of∆ satisfies∆T (s, u) = s(I−uPs)
−11,

and finally ∆T (s, u) = sΛ(s, u).

7 Proof for Proposition 4.

7.1 Step 1. The mirror operation. The mirror
operation φ will play an important role in the sequel.
It is defined on the set Σ⋆ and transforms the finite
word w = w1w2 . . . wk−1wk into its mirror φ(w) =
wkwk−1 . . . w2w1. We also denote by φ the mirror
operation induced on B(Σ⋆) and defined by the equality
φ(X)(w) := X(φ(w)), and by p̂w the mirror probability
p̂w := pφ(w). We furthermore define the g-function on
Σ× Σ⋆ by the equalities

(7.23) g(i · w) := qi|φ(w) =
p̂i·w
p̂w

.

The mirror operation appears in a natural way, as
we now explain: when the symbol Xn has to be
emitted, it “looks at” (from its relative point of
view), its immediate neighbors, which form the word
Xn−1, Xn−2, . . . , X1, X0 (in this order), namely the mir-
ror of the prefix X0, X1, . . . , Xn−1. The prefix φ(w) de-
fines the reverse past history.

When the operator Ps transforms X into Y , the
conjugate P̂s of the operator Ps via the mirror oper-
ation φ, transforms, (by definition) φ(X) into φ(Y ).
Since the two vectors 1 and E are invariant under the
mirror φ, and the two words w and φ(w) have the same
length, the relation (3.7) can be re-written as

(7.24) ∆(s, u) = tEQ̂(s, u) · Q̂(2, u)−1 1,

where the operator Q̂(s, u) is defined as

(7.25) Q̂(s, u) := (I − uP̂s)
−1 · (I − uP̂s+1)

−1 · . . . .

When Y := Ps[X] is defined as in Eq. (2.4), its
transform φ(Y ) satisfies

φ(Y )(w) = Y (φ(w)) =
∑

i∈Σ

qsi|φ(w) X(φ(w) · i)



=
∑

i∈Σ

g(i · w)s φ(X)(i · w).

Then, if T denotes the shift on Σ×Σ⋆ which associates
to the finite word w = w1w2 . . . wk, the shifted word
T (w) = w2 . . . wk, the mapping P̂s which associates
φ(Y ) to φ(X) is defined as the mirror of (2.4),

(7.26) Y = P̂s[X] ⇐⇒ Y (w) =
∑

i∈Σ

g(i · w)X(i · w)

⇐⇒ Y (w) =
∑

v

T (v)=w

g(v)s X(v).

Under this form, the mapping P̂s resembles the transfer
operator of the dynamical system (Σ⋆, T ) relative to the
function gs. This system describes the past of the source
when reversing the time, which will be called in the
sequel the “reverse past” of the source. However, the
shift T is only defined on Σ×Σ⋆, (not on the whole Σ⋆)
and Σ⋆ is not compact.

In the following, we will extend the mapping P̂s

into a mapping which acts on functions defined on the
compact space ΣN. This space is a metric space, whose
definition is now recalled. First, the coincidence γ(u, v)
between two words u and v of ΣN, is defined as the
length of their longest common prefix,

γ(u, v) = max{k; ui = vi, ∀i ≤ k}.

With a real θ ∈]0, 1[, the coincidence defines a distance
dθ(u, v) = θγ(u,v) and the set ΣN endowed with this
distance is denoted by ΣN

θ .

7.2 Step 2. Extension towards the past. The
coincidence may also be defined between two words u
and v of Σ⋆, via the addition of a ending symbol which
does not belong to the initial alphabet. The g-functions
of Markov chains admit the following characterization:

S is a Markov chain of order k
⇐⇒ ( γ(u, v) ≥ k + 1 =⇒ g(u) = g(v) ) .

Then, it is natural to consider “good” sources, where the
g-functions are continuous or even Hölder with exponent
α. Namely, assume, that for some α > 0, one has

[Hölder] ∀u, v ∈ Σ⋆, |g(u)− g(v)| ≤ dθ(u, v)
α.

Since the space Σ⋆ is a dense subset of ΣN

θ , the function g
can be extended to ΣN

θ “by continuity” and its extension
g is also a Hölder function on ΣN

θ with the same
exponent as g. Via the extension g, the source S is
extended into a source S, and the extended source S has
given an “infinite” past, described by the family g(i · v)

for v ∈ ΣN. More precisely, g(i · v) is the probability of

emitting i when the reverse past history has just emitted
the infinite word v.

Consider the space Hα(Σ
N

θ ) formed with the Hölder
functions X : ΣN

θ → C with exponent α. Then, via the

extension g of g, the operator P̂s defined in (7.26) is

extended on Hα(Σ
N

θ ) into an operator P̂s defined as

P̂s[X] = Y

⇐⇒ Y (v) =
∑

i∈Σ

g(i·v)s X(i·v) =
∑

u

T (u)=v

g(u)s X(u)

Here, T is the shift towards the past, defined on the
reverse infinite past ΣN by

T (i · w) = w, for i ∈ Σ, w ∈ ΣN.

Now, the operator P̂s is the (true) transfer operator of
the system (ΣN, T ) relative to gs. Via classical results,

this operator P̂s admits on Hα(Σ
N

θ ) a unique invariant
measure, denoted by ν, which satisfies

g(v) dν(Tv) = dν(v), or g(i · v)dν(v) = dν(i · v).

We extend this expression to any pair (u, v) of
infinite words: we define the interval [u, v] as the set
of all the infinite words t which satisfy u ≤ t ≤ v
for the lexicographic order on ΣN, and we consider the
probability g(i · [u, v]) of emitting i knowing that the
infinite reverse past belongs to the interval [u, v], namely

g(i · [u, v]) :=

∫ v

u
g(i · t)dν(t)∫ v

u
dν(t)

,

so that g(i · [w−, w+]) = g(i · w).

Remark that it is not completely clear if g(i · [u, v])
is always well-defined: we need the source, and its g-
functions, to be more regular. In order to define in
an easier way these extra regularity assumptions, we
change our point of view and consider the problem on
the unit interval of the real line.

We first insist on a particularity of a stationary
source, related to the stationary measure ν.
For w = w0w1 . . . wk, denote by

π̂w = Prν [X0 = wk, . . . , Xk = w0],
so that, for any i ∈ Σ,

π̂w·i = Prν [X0 = i,X1 = wk, . . . , Xk+1 = w0].
This implies, for a stationary source, the equality

(7.27)
∑

i∈Σ

π̂w·i = Pr
ν
[X1 = wk, . . . , Xk+1 = w0]

= Pr
ν
[X0 = wk, X2 = wk1 . . . Xk = w0] = π̂w.

This will be central to define a parameterization of the
reverse past, in the case of a stationary source.



7.3 Parameterization of the source – Dynami-

cal system D of the unit interval. Here, the finite
alphabet Σ := {a1, a2, . . . , ar} is listed in the increasing
order, and the reverse past history Σ⋆ is ordered with
the lexicographic order induced from the order on Σ.
As the source is p–smooth:

(i) For any w ∈ Σ⋆, the probability π̂w is strictly
positive. This means that all the words of ΣN are
emitted by the source.

(ii) The supremum sup{π̂w : w ∈ Σk} ≤ pk tends
to 0, as k → ∞.

For any prefix w ∈ Σ⋆ of the reverse past, we denote
by |w| the length of w (i.e., the number of the symbols
that it contains) and bw, cw, π̂w the probabilities that
a word of the reverse past begins with a prefix α of the
same length as w, which satisfies α < w, α ≤ w, or
α = w, meaning
(7.28)

bw :=
∑

α,|α|=|w|,
α<w

π̂α, cw :=
∑

α,|α|=|w|,
α≤w

π̂α, π̂w = cw − bw.

Then, the equality (7.27) entails the inclusions
[bw·i, cw·i] ⊂ [bw, cw] for any i ∈ Σ.

Given an infinite word of the reverse past v ∈ ΣN,
denote by vk its prefix of length k. The sequence
(bvk)k≥0 is increasing, the sequence (cvk)k≥0 is decreas-
ing, and cvk

− bvk
= π̂vk tends to 0 for k → ∞. Thus

a unique real N(v) ∈ [0, 1] is defined as the common
limit of (bvk

) and (cvk
), and N(v) can be viewed as the

probability that an infinite word u of the reverse past be
smaller than v. The mapping N : ΣN → [0, 1] is strictly
increasing outside the exceptional set formed with words
of ΣN which end with an infinite sequence of the small-
est symbol a1 or with an infinite sequence of the largest
symbol ar. More precisely, one has N(u) = N(v) with
u > v if and only if there exists w ∈ Σ⋆ and i ∈ [2..r]
for which u = w · ai · a

∞
1 with and v = w · ai−1 · a

∞
r .

Conversely, almost everywhere, except on the set
{bw, w ∈ Σ⋆}, there is a mappingM which associates, to
a number x of the interval I := [0, 1], a wordM(x) ∈ ΣN

of the reverse past, for which N(M(x)) = x. Hence, the
probability that an infinite word u of the reverse past
be smaller than M(x) equals x. The lexicographic order
on the reverse past is then compatible with the natural
order on the interval I. The interval Iw := [bw, cw],
of length π̂w, gathers (up to a denumerable set) all the
reals x for which the word M(x) of the reverse past
begins with the finite prefix w. This is the fundamental
interval of the prefix w.

Denote by T the shift on ΣN (here the shift towards
the past of the reverse past) and by Ť the shift induced

by T on [0, 1] via conjugation of mappingsN,M , namely

Ť (x) := N [T (M(x))],

As, by definition, one has T (i · v) = v, the equality
N(T (i · v)) = N(v) = Ť (N(i · v)) holds; Then, if we let
x := N(v), the real y = N(i · v) satisfies Ť (y) = x; this
is an antecedent of x by Ť , completely defined by the
pair (i, x) and is denoted by hi(x); For each map hi, the
image hi(]0, 1[) coincides with the set i · ΣN \ {i−, i+}.
More generally, if we let x := N(v), the real y = N(w·v),
for w = w1w2 . . . wk ∈ Σk satisfies Ť k(y) = x; this
is an antecedent of x by Ť k, equal to hw(x), where
hw = hw1

◦hw2
◦. . .◦hwk

. Finally, the pair ([0, 1], Ť ) gives
rise to a complete dynamical system D of the interval
[0, 1] on the alphabet Σ, as we now define it:

A complete dynamical system of interval I := [0, 1]
relative to an alphabet Σ is defined by a mapping Ť :
I → I (called the shift) for which

a) there exists a topological partition of I with disjoint
open intervals IJ for j ∈ Σ, i.e. I = ∪j∈ΣĪj.

b) the restriction Ť |Ij
is a continuous bijection from

Ij to ]0, 1[, whose inverse is denoted by hj.

As N(u) coincides with the probability that an in-
finite word be smaller than u, the following equalities
relate the g–functions relative to the stationary distribu-
tion, denoted by g, and the secants of inverse branches,
defined in (4.13),
(7.29)

g(i·w) =

∣∣∣∣
N(i · w+)−N(i · w−)

N(w+)−N(w−)

∣∣∣∣ = S[hi](hw(0), hw(1)).

The second equality comes from the definition of M ,
and the equalities (w− = M(hw(0)), w

+ = M(hw(1))).

7.4 More regular sources. An important subclass
of sources is formed by regular sources for which all the
branches hi are of class C2. In this case, the (secant)
transfer operator, introduced in [21] and defined as

Hs[F ](x, y) :=
∑

i∈Σ

∣∣∣∣
hi(x)− hi(y)

x− y

∣∣∣∣
s

F (hi(x), hi(y))

play an important role, as in many studies in dynamical
sources. It will provide the good extension for the
operator P̂s in the stationary case, as we now explain.
As the branches hi are of class C2, the secant (x, y) 7→
S[h](x, y) is of class C1([0, 1]2), and the secant operator
acts on C1([0, 1]2).

We consider the subset F of functions X ∈ B(Σ⋆)
which are associated to a function F of C1([0, 1]2), by
the relation X(w) = F (hw(0), hw(1)). Then, the subset



F is invariant under the action of P̂s. Indeed, if X ∈ F
is associated to F , then the function Y := P̂s[X] is
associated to the function G = Hs[F ] which also belongs
to C1([0, 1]2). This is due to the relation Y (w) =

∑

i∈Σ

g(i · w)s X(i · w) =
∑

i∈Σ

g(i · w)sF (hi·w(0), hi·w(1)).

The equality hi·w = hi ◦ hw, together with Relation
(7.29) entails the equality

Y (w) =
∑

i∈Σ

|S[hi ◦ hw](0, 1)|
s · F (hi ◦ hw(0), hi ◦ hw(1))

= Hs[F ](hw(0), hw(1).

Then, the two operators, the operator Hs, when acting
on C1([0, 1]2), and the operator P̂s, when acting on F
are conjugate, and the Dirichlet series satisfies

∆(s, u) = K(s, u)◦K(2, u)−1[1](0, 1)

= (I − uHs)
−1 ◦K(s+ 1, u) ◦K(2, u)−1[1](0, 1),

where K(s, u) denotes the infinite product

K(s, u) := (I−uHs)
−1◦(I−uHs+1)

−1◦(I−uHs+2)
−1◦. . .

The operator Hs, when acting on C1([0, 1]2) has nice
properties, and its quasi-inverse is deeply studied. It
will make possible to derive sufficient conditions on the
system D under which the dst Dirichlet series ∆(s, u)
will be tame.

8 Sketch of the proof for the main Theorem.

The Rice Formula provides an asymptotic estimate for
the probability generating function Gn(u) := E[uDn ]:
The pole s = 1+σ(u) of ∆(s, u) provides the main term
and the Rice integral provides the remainder term.

8.1 Main term. For (ℜs, u) close to (1, 1), there are
two poles for the function s 7→ Ln(s, u), with

(8.30) Ln(s, u) := ∆(s, u)
n!

s(s− 1)(s− 2) . . . (s− n)
,

a pole at s = 1 and a pole at s = 1 + σ(u), where σ(u)
is defined for u close to 1, by the equations σ(1) = 0
and λ(1 + σ(u)) = 1/u, which involve the dominant
eigenvalue λ(s) of the source. The contribution of these
two poles provides the main term of the asymptotic
estimate for the ratio n(Gn(u)− 1)/(u− 1). One has

Res (Ln(s, u); s = 1) = (−1)n−1 n

1− u

for |u| < 1 and by analytic continuation, the relation
holds for any u 6= 1, so that the main term of the

asymptotic estimate of Gn(u) for u close to 1 is due
to the pole s = 1 + σ(u), and this leading term is

(8.31) (u− 1)r(u)Γ(−1− σ(u))nσ(u),

where r(u) is the residue of the function s 7→ ∆(s, u) at
s = 1+ σ(u). In the following, we let U(w) = σ(ew), so
that the function U is analytic in a neighborhood W of
0, where it admits the following Taylor expansion,

(8.32) U(w) = µw + ν
w2

2
+O(w3), with

µ = U ′(0) = −
1

λ′(1)
, ν = U ′′(0) =

λ′(1)2 − λ′′(1)

λ′(1)3
.

We will see the constants µ, ν respectively appear in the
leading terms of the estimates of E[Dn],Var[Dn].

8.2 Estimates for the Rice integral. For the re-
mainder terms, the needed (and somewhat classical) es-
timates on the Rice integral are summarized in the fol-
lowing proposition which is proven for instance in [2].

Proposition R. For a function ∆(s, u) defined when
(ℜs, u) is close to (1, 1), the following estimates hold
for integrals which involve the function Ln(s, u) defined
in (8.30):

(i) Consider a vertical line ℜ(s) = α with α 6∈ N and
assume that there is a domain U such that, for any
u ∈ U , the function s 7→ ∆(s, u)(s) be continuous
on ℜ(s) = α and of uniform polynomial growth
there: ∆(s, u) = O(sr) as |s| → ∞ on ℜ(s) = α.
Then, the integral of Ln(s, u) on the vertical line
ℜs = α admits the uniform estimate, as n → ∞,

∫

ℜs=α

Ln(s, u)ds = O (nα) .

(ii) Consider a curve ρ of hyperbolic type, namely of
the form ρ := ρ0 ∪ ρ1, with

ρ0 := {s = σ + it; |t| ≥ B, σ = 1−
A

|t|β0
}

ρ1 = {s = σ + it; σ = 1−
A

Bβ0
, |t| ≤ B},

for some strictly positive constants (A,B, β0), and
assume that there is a domain U such that, for any
u ∈ U , the function s 7→ ∆(s, u) be continuous on
ρ and of uniform polynomial growth there.
Then, with β < (1 + β0)

−1, the integral of Ln(s, u)
on the curve ρ admits the uniform estimate
∫

ρ

Ln(s, u)ds = n ·O
(
exp[−(log n)β ]

)
, (n → ∞)



8.3 Case of the UNI class. In this case, the proba-
bility generating function Gn is well-behaved in a com-
plex neighborhood of u = 1, and we will use the mo-
ment generating function Mn(w) := Gn(e

w) and the
Quasi-Powers theorem, which also provides a speed of
convergence.

Theorem D. [Quasi-Powers Theorem (Hwang)] Con-
sider a sequence of variables Dn, defined on probabil-
ity space (Ωn,P) and their moment generating functions
Mn(w) := Gn(e

w) = E[ewDn ]. Suppose that the func-
tions Mn(w) are analytic in a complex neighborhood W
of zero, and satisfy

(8.33) Mn(w) = exp[βnU(w) + V (w)]
(
1 +O(κ−1

n )
)
,

where the O-term is uniform on W. Moreover, U(w)
and V (w) are analytic on W and the sequences βn, κn

tend to ∞ (for n → ∞).
Then, the mean and the variance satisfy

En[Dn] = U ′(0)βn + V ′(0) + O(κ−1
n ),

Varn[Dn] = U ′′(0)βn + V ′′(0) + O(κ−1
n )

Furthermore, if U ′′(0) 6= 0, the distribution of Dn on Ωn

is asymptotically Gaussian, with speed of convergence

O(κ−1
n + β

−1/2
n ).

We let βn = log n, κn := nα, U(w) := σ(ew),
V (w) = log [(ew − 1)r(ew)Γ(−1− σ(ew))] .

The functions U and V are analytic in a neighborhood
of w = 0 and the first two derivatives of U at w = 0
satisfy (8.32). Therefore, the mean and variance of the
depth Dn satisfy

En[Dn] = U ′(0) log n + V ′(0) + O(n−α),
Varn[Dn] = U ′′(0) log n + V ′′(0) + O(n−α),

for some α > 0. The constants c1 and c2 are expressed
with derivatives of functions σ and w 7→ r(ew) at w = 0.
If, moreover, the function s 7→ log λ(s) is strictly convex,
the depth Dn asymptotically follows a Gaussian law
with speed of convergence O((log n)−1/2).

8.4 Case of the DIOP Class. Here we deal with the
characteristic function and use the Goncharov theorem.

Theorem E. [Goncharov] Consider a sequence of ran-
dom variables Dn, and denote by Gn(u) := E[uDn ] the
probability generating function of Dn. Furthermore, let
µn := E[Dn] and νn := (Var[Dn])

1/2. If the character-

istic function M̃n(iθ) of the variable (Dn − µn)/νn,

(8.34) M̃n(iθ) := exp

[
−iθ

µn

νn

]
·Gn(e

iθ/νn),

tends to e−θ2/2 for any real θ, then, the variables Dn

asymptotically follow a Gaussian law.

For applying this Theorem, we first need to estimate
the expectation and the variance of Dn. Previously, in
the UNI case, this was directly given by Theorem D, but
this is no longer the case for DIOP sources.

Direct study for the mean and the variance. With
the same methods as these described in the paper, we
obtain the estimates provided in Assertion (a) of our
main Theorem. First, one has

E[Dn] = B′
n(1), E[D2

n] = B′′
n(1) +B′

n(1),

and, second, there exist analogs of (3.6), namely

B′
n(1) = −

1

n

n∑

ℓ=2

(−1)ℓ
(
n

ℓ

)
∆(ℓ),

B′′
n(1) = −

2

n

n∑

ℓ=2

(−1)ℓ
(
n

ℓ

)
∆̃(ℓ),

where the functions
∆(s) := ∆(s, 1), ∆̃(s) := ∂/∂u∆(s, u)|u=1

involve also infinite products, namely the product

(I −Hs)
−1 ◦ R(s, 1) for ∆(s),

and a sum of infinite products for ∆̃(s), of the form

(I −Hs)
−2 ◦Hs ◦R(s, 1) + (I −Hs)

−1 ◦
∂

∂u
R(s, u)|u=1,

where the last derivative is itself a sum of infinite
products. Then, there is a double pole at s = 1 for
∆(s)/(s−1) and thus a leading term for E[Dn] of order
log n. In the same vein, there is a triple pole at s = 1
for ∆̃(s)/(s − 1), and thus a leading term for E[D2

n] of
order log2 n, equal to the square of the leading term for
E[Dn]. Then, there is a telescoping, and Var[Dn] is of
order log n. With more precise computations, we obtain
the estimates of Assertion (a) of the main Theorem,

(8.35)
µn = µ log n (1 +O(1/ log n))

νn = ν log n (1 +O(1/ log n))

End of the study for the DIOP3 case. The expression
of the leading term of Gn(u) given in (8.31), together
with the estimate, for complex w close to 0,

(1− ew) r(ew) Γ(−1− U(w)) = 1 +O(w),

prove that the leading term of Gn(e
w) is

nU(w) [1 +O(|w|)] +O(|w|) .

Now, the Taylor expansion of U given in (8.32)
taken at iθ/νn, together with the expression of µn and
νn given in (8.35) prove the final expression for the

leading term of M̃n(iθ), for θ
3/νn → 0, namely

(8.36)

e−θ2/2

[
1 +O

(
θ

νn

)
+O

(
θ2

ν2n

)
+O

(
θ3

νn

)]
+O

(
θ

νn

)
.



In the DIOP3 case, we choose as the curve C the hy-
perbolic curve which “borders” the asymptotic region,
and we use Assertion (ii) of Proposition R. This ends
the proof of our main theorem in the DIOP3 case.

Particularities of the DIOP2 case. The proof is
more involved because the norm of the quasi-inverse
||(I − eiθ/νnHs)

−1||(1,t) is proven to be of polynomial
growth in the hyperbolic region R when |ℑs| → ∞, only
when θ/νn is a rational number of the form pn/qn, and,
in this case, the upper bound on the norm is O(qn)|t|

α,
for some α > 0.

The idea is to replace θ/νn by a rational of the form
pn/qn = θ′/νn for which the following holds:

∣∣∣∣
θ

νn
−

θ′

νn

∣∣∣∣ ≤
1

qn
; |Gn(iθ/νn)−Gn(iθ

′/νn)| ≤
µn

qn
,

∣∣∣e−θ2/2 − e−θ′2/2
∣∣∣ ≤ K

νn
qn

.

We then choose qn = (log n)γ with γ > 1 such that the
last two differences tend to zero.

We apply the Rice Formula and obtain for M̃n(iθ
′)

a good estimate since θ′/νn is a rational number. The
leading term is of the same form as in (8.36) (with θ′

instead of θ) and the remainder term is, with β′ < β.

(log n)γO
(
exp

[
−(log n)β

])
= O

(
exp

[
−(log n)β

′
])

.

This ends the sketch of the proof of our main Theorem.

Conclusion. We have provided a new point of view
for a general source, where it is possible to study both
tries and dst’s. We have explained the similarities of the
behaviors of the two structures, tries and dst’s, by the
similarities of their Dirichlet series. We have exhibited
two particular classes of sources, the class UNI and the
class DIOP where the typical depth of tries and dst’s
asymptotically follows a gaussian law.
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