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Asymptotics and lower bound for the lifespan of solutions to

the Primitive Equations

Frédéric Charve∗

Abstract

This article generalizes a previous work in which the author obtained a large
lower bound for the lifespan of the solutions to the Primitive Equations, and proved
convergence to the 3D quasi-geostrophic system for general and ill-prepared (possi-
bly blowing-up) initial data that are regularization of vortex patches related to the
potential velocity. These results were obtained for a very particular case when the
kinematic viscosity ν is equal to the heat diffusivity ν′, turning the diffusion operator
into the classical Laplacian. Obtaining the same results without this assumption is
much more difficult as it involves a non-local diffusion operator. The key to the main
result is a family of a priori estimates for the 3D-QG system that we obtained in a
companion paper.

1 Introduction

1.1 Presentation of the physical models

The Primitive Equations describe geophysical flows located in a large scale at the surface
of the Earth (typically the atmosphere or an ocean) under the assumption that the
vertical motion is much smaller than the horizontal one. Two important phenomena
have to be considered in this case: the rotation of the Earth around its axis and the
vertical stratification of the density induced by gravity.

When the motion is observed in a frame which is located at the surface, the rotation
induces two additional terms in the equations: the Coriolis force and the centrifugal force.
The latter is included in the pressure term and forms the geopotential Φε. The former
induces a vertical rigidity in the fluid as described by the Taylor-Proudman theorem:
under a fast rotation the velocity of all particles located on the same vertical is horizontal
and constant. The influence of the rotation on a fluid motion depends on the fluid time-
space scale and is measured by the Rossby number Ro which basically compares the
frequency of the rotation to the characteristic time of the motion.

Gravity induces a horizontal rigidity to the fluid density: heavier masses lay under
lighter ones. Internal motions in the fluid tend to alter this layered structure but gravity
tends to restore it, and the importance of this rigidity is measured by the Froude number
Fr, directly related to the Brunt-Väisälä frequency and the buoyancy.
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The smaller are these numbers, the more important are these phenomena and in the
present paper, we will consider the Primitive Equations in the whole space and for small
Ro and Fr numbers under the same scale: Ro = ε and Fr = εF with F ∈ [0, 1]. In what
follows we will call ε the Rossby number and F the Froude number. The system then
writes as follows:





∂tUε + vε · ∇Uε − LUε +
1
εAUε = 1

ε (−∇Φε, 0),

div vε = 0,

Uε|t=0 = U0,ε.

(PEε)

The unknows are Uε = (vε, θε) = (v1ε , v
2
ε , v

3
ε , θε) (vε denotes the velocity of the fluid and

θε the scalar potential temperature, strongly related to the density fluctuation) and Φε
the geopotential. The diffusion operator L is defined by

LUε
def
= (ν∆vε, ν

′∆θε),

where ν, ν ′ > 0 are the cinematic viscosity and the thermal diffusivity. The matrix A is
defined by

A def
=




0 −1 0 0
1 0 0 0
0 0 0 F−1

0 0 −F−1 0




We also assume that the sequence of initial data is convergent as ε goes to zero:

U0,ε −→
ε→0

U0 = (v0, θ0).

This system generalises the following rotating fluid system, which adds to the classical
incompressible Navier-Stokes system the Coriolis force and the centrifugal force (ε is the
Rossby number): 




∂tvε + vε · ∇vε − ν∆vε +
vε×e3
ε = −∇pε,

div vε = 0,

vε|t=0 = v0

(RFε)

We refer to [3, 24, 31, 32, 12, 37, 7, 53, 47, 48] for a more precise presentation of the
physical models, to [1, 2, 19, 21, 30, 34] concerning the rotating fluids system. We also
mention [28, 43, 20, 50, 51, 52, 49, 12] for results with anisotropic (and possibly evanes-
cent) viscosities and [45] for the stationnary rotating fluid system.

Dividing AUε or vε×e3 by ε imposes conditions for the limit as ε goes to 0, these terms
are said to be penalized. Compared to the classical Navier-Stokes system (NS), (PEε)
and (RFε) introduce a penalized additional term involving a skew-symmetric matrix, so
that for the cannonical scalar product we have AUε · Uε = (vε × e3) · vε = 0. Therefore
any energy method (relying on energy estimates in L2 or in Hs/Ḣs) will not see these
penalized terms and will work as for (NS). Then the Leray and Fujita-Kato theorems
are very easily adapted and provide global (unique in 2D) weak solutions if U0,ε ∈ L2

and local unique strong solutions if U0,ε ∈ Ḣ
1
2 (global for small initial data). In the
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present paper we will consider ill-prepared initial data (with large and blowing up norms
as ε goes to zero) for which these fundamental results cannot give us anymore information.

As mentionned before, we are interested in the asymptotics, as the small parameter
ε goes to zero (implying a competition between the vertical structure induced by the
rotation and the horizontal structure induced by gravity). As explained in [9, 8], filtering
the fast oscillations helps stabilizing the system: if the rotation and stratification are
strong enough (that is when ε is small), then (PEε) has global solutions and all that
remains is the slow motion satisfying the following limit system which is called the 3D
quasi-geostrophic system (it was used in the first half of 20th century for modeling and
forecasting at mid-latitude the atmospheric and oceanic circulation, it is now less used
except for slow motion climate systems) and can be written as the coupling of a transport-
diffusion equation with a Biot-Savart-type law as follows:





∂tΩ+ v.∇Ω− ΓΩ = 0

U = (v, θ) = (−∂2, ∂1, 0,−F∂3)∆−1
F Ω,

Ω|t=0 = Ω0,

(QG)

where the operator Γ is defined by:

Γ
def
= ∆∆−1

F (ν∂21 + ν∂22 + ν ′F 2∂23),

with ∆F = ∂21 + ∂22 + F 2∂23 and where we also have Ω = ∂1U
2 − ∂2U

1 − F∂3U
4 =

∂1v
2 − ∂2v

1 − F∂3θ and Ω0 = ∂1v
2
0 − ∂2v

1
0 − F∂3θ0 where U0 = (v0, θ0) is the limit as ε

goes to zero of the initial data U0,ε.

Remark 1 Except in the particular cases ν = ν ′ (where Γ = ν∆, see [10] and [30] for
example) or F = 1 (where Γ = ν∂21 + ν∂22 + ν ′∂23 , see [18]) the operator Γ is a non-local
diffusion operator of order 2 and we refer to [16] for a detailed study.

We emphasize that two cases have to be considered with respect to F : the non-dispersive
case F = 1, and the dispersive case F 6= 1 (this denomination is explained after Propo-
sition 2). In these settings is proved the convergence of the solutions of (PEε) to the
solution of (QG) as the small parameter ε goes to zero. If F = 1, in [18] the result
for regular well-prepared initial data is proved provided that ν and ν ′ are very close,
in [44] the convergence is proved in the inviscid case. In the case F 6= 1 another ap-
proach initiated by [19] consists in using dispersive and Strichartz estimates in order
to filter fast oscillations which leads to a stabilization of the system and make it tend
to the 2D Navier-Stokes system (in the case of the rotating fluid system, this is the
Taylor-Proudman theorem) or to the slow 3D quasi-geostrophic system (in the case of
the Primitive Equations). We obtained this convergence for various ill-prepared initial
data (possibly blowing up) or anisotropic viscosities in [9, 8, 10, 11, 12]. As expected
by physicists, we obtained that the difference of the solutions of the Primitive Equations
and the quasi-geostrophic system is of the size of the Rossby number. We also refer to
[30] for the inviscid case. We adress the reader to Remark 3 for the notion of well or
ill-prepared initial data.
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In [9] (F 6= 1) we first obtain formally the quasi-geostrophic system, and then, guided
by its form we introduce the following decomposition: we first define the potential vor-
ticity of any 4-dimensional vector field U = (v, θ) denoted by Ω(U):

Ω(U)
def
= ∂1v

2 − ∂2v
1 − F∂3θ.

From this we define the quasi-geostrophic and oscillating parts of U :

UQG = Q(U)
def
=




−∂2
∂1
0

−F∂3


∆−1

F Ω(U), and Uosc = P(U)
def
= U − UQG. (1.1)

As emphasized in [9, 12] this is an orthogonal decomposition of 4-dimensional vectorfields
(similar to the Leray orthogonal decomposition of any 3-dimensional vectorfield into
its divergence-free and its gradient parts) and Q and P are the associated orthogonal
projectors on the quasi-geostrophic or oscillating fields and satisfy (see [18, 9, 8]):

Proposition 1 With the same notations, for any function U = (v, θ) we have the fol-
lowing properties:

1. P and Q are pseudo-differential operators of order 0,

2. For any s ∈ R, (P(U)|Q(U))Ḣs = (AU |P(U))Ḣs = 0,

3. The same is true for nonhomogeneous Sobolev spaces,

4. P(U) = U ⇐⇒ Q(U) = 0 ⇐⇒ Ω(U) = 0,

5. Q(U) = U ⇐⇒ P(U) = 0 ⇐⇒ there exists a scalar function Φ such that U =
(−∂2, ∂1, 0,−F∂3)Φ. Such a vectorfield is said to be quasi-geostrophic and is
divergence-free.

6. If U = (v, θ) is a quasi-geostrophic vectorfield, then v · ∇Ω(U) = Ω(v · ∇U).

7. If U is a quasi-geostrophic vectorfield, then ΓU = QLU .

Thanks to this, we can rewrite the QG system into the following form:




∂tU +Q(v.∇U) − ΓU = 0,

U = QU,
U|t=0 = U0.

(QG)

Going back to the Primitive Equations, if we denote by Ωε = Ω(Uε), Uε,QG = Q(Uε) and
Uε,osc = P(Uε), they satisfy the following systems (see [9] for details):

∂tΩε + vε · ∇Ωε − ΓΩε = (ν − ν ′)F∆∂3θε,osc + qε, (1.2)

where qε is defined by

qε = q(Uε,osc, Uε) = ∂3v
3
ε,osc(∂1v

2
ε − ∂2v

1
ε)− ∂1v

3
ε,osc∂3v

2
ε + ∂2v

3
ε,osc∂3v

1
ε

+ F∂3vε,QG · ∇θε,osc + F∂3vε,osc · ∇θε, (1.3)
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and

∂tUε,osc−(L− 1

ε
PA)Uε,osc = −P(vε ·∇Uε)−




−∂2
∂1
0

−F∂3


∆−1

F

(
−vε ·∇Ωε+q(Uε,osc, Uε)

)

+ (ν − ν ′)F∆∆−1
F ∂3




∂2θε
−∂1θε

0
∂1v

2
ε − ∂2v

1
ε




def
= F1 + F2 + F3 + F4. (1.4)

Remark 2 For more simplicity and without any loss of generality, we will write in what
follows

qε = ∇Uε,osc · ∇Uε.

Remark 3 It is a natural question to know, when the initial data U0,ε has a zero oscil-
lating part (in other words, it is a purely quasi-geostrophic initial data), if the solution
has the same property. From System (1.4) we can see that it may not be the case, but we
can prove that the oscillating part is small in appropriate norms (see for example [8]). We
refer to [18, 44] where the results are given for initial data with small initial oscillating
part (and vanishing as ε goes to zero). Such initial data are said to be well-prepared, in
contrast to the ill-prepared case where the initial oscillating part can not only be large
but also even blow-up as ε goes to zero as studied in the present paper. In this case it
is essential to take advantage of the dispersive aspects of the system in order to control
the oscillating part of the solution.

1.2 Statement of the main results

The aim of the present article is to use the estimates from the companion paper [16] and
generalize the work from [10] in the case ν 6= ν ′. We refer to the appendix for general
definitions about the Littlewood-Paley dyadic decomposition and the vortex patches
formalism.

Theorem 1 Assume that U0,QG ∈ L2(R3) is a quasi-geostrophic vectorfield whose po-
tential vorticity Ω(U0,QG) = Ω0 ∈ L2(R3) ∩ L∞(R3) is also a Cs-vortex patch with
s ∈]0, 1[. Define U0,ε,QG as the following regularization of U0,QG:

U0,ε,QG = χ(εβ |D|)U0,QG = ε−3βh(ε−β .) ∗ U0,QG,

where β > 0, χ is a smooth cut-off function (see Section 6.1) and h = F−1 (χ(|.|)).
Let (U0,ε,osc)ε>0 be a family of regular oscillating vectorfields (i.-e. with zero potential
vorticity). Assume there exists C0 > 0 such that for all ε > 0 the family of initial data
U0,ε = U0,ε,QG + U0,ε,osc satisfies:

{
‖U0,ε‖Ḣ1 ≤ C0,

‖U0,ε‖H6 ≤ C0ε
−5β .

(1.5)
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Then there exists constants C,ω, γ, ε0 > 0 (ω = ω(F, s, ν, ν ′)) such that if

β + Cγ ≤ ω,

then for all ε ≤ ε0, the lifespan T ∗
ε of the solution Uε satisfies: T

∗
ε ≥ T γε

def
= γ ln(ln | ln ε|)

and for all t ≤ T γε we have:



∀k ≤ 3, ‖∇kUε,osc‖L4

tL
∞ ≤ ε15ω,

Vε(t)
def
=

∫ t

0
‖∇Uε(t′)‖L∞dt′ ≤ 2γ| ln ε|.

Moreover we have local convergence: for all T > 0, Uε,QG converges in L∞([0, T ], L2)
to the unique global (lipschitz) solution of the 3D-quasi-geostrophic system with initial
data U0,QG (which is in H1(R3)).

Remark 4 We refer to [8] for the fact that System (QG) has a unique global solution if
the initial data belongs to H1.

Remark 5 More precisely, to give an idea, we can choose ω = 10−4.

Remark 6 We point out that the assumptions on the initial data imply that



‖U0,ε,QG − U0,QG‖Ḣσ ≤ Cεβ(1−σ)‖U0,QG‖Ḣ1 if σ ∈ [0, 1],

‖U0,ε,QG‖Ḣσ ≤ C

εβ(σ−1)
‖U0,QG‖Ḣ1 if σ > 1.

And concerning the initial oscillating part, it covers for example the case of the regular-
ization of an oscillating function U0,osc ∈ Ḣ1 which is not in L2:

U0,ε,osc = ψ(εβ |D|)U0,osc,

where the function ψ is supported in an annulus centered at 0 and equal to 1 in a smaller
annulus.

Remark 7 In [10] we made a technical (and physically irrelevant) assumption: ν = ν ′.
In reality, and as suggested by the Prandtl number (which can be defined as ν/ν ′ and
can take values far from 1) there is no reason for the kinematic viscosity and the thermal
diffusivity to be equal or even close (see also [18]). We want, in the present article, to
cover this general case ν 6= ν ′, for which every step from [10] will be much more tedious:

• First, the operator Γ is now a non-local operator. Dealing with products, com-
mutators (and also commutator with a Lagrangian change of variable in [16]) will
be much more difficult compared to the case of the classical Laplacian. A refined
study of this operator is done in [16] in order to obtain the analogous of the a priori
estimates used in [10].

• When studying the persistence of the tangential (or stratified) regularity, as in
[39, 10] we will have to cope with the commutator [Xε

t,λ(x,D),Γ]Ωε whose study
(when Γ is non-local) is much more difficult than in the case Γ = ν∆, and will
require for example more flexible estimates for the term Γ(fg) − fΓg − gΓf than
what we needed in [16].
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• Compared to [10], System (1.2), satisfied by the potential vorticity Ωε, shows an
additional external force term, involving derivatives of order 3, (ν − ν ′)F∆∂3θε,osc
(which vanished thanks to the assumptions in [10]). Because of this the general L∞-
estimates for System (QG) from [16] need to be modified, and we need a completely
different approach for the L2-estimates (we recall that the Leray estimates are
useless as the L2-norm of the initial data blows-up when ε goes to zero). This
approach will strongly rely on the particular structure of the quasi-geostrophic
decomposition (i.-e. the properties of operators P and Q).

• Compared to [10], to treat the general case ν 6= ν ′, we need an additionnal assump-
tion: ‖U0,ε,osc‖Ḣ1 ≤ C0. This is once more due to the first term in the right-hand
side of system (1.2). Moreover, we emphasize that from the assumptions of the

main result, the best we can hope for L2 or Ḣ
1
2 estimates are negative powers of ε.

• The L∞ estimates of the potentiel vorticity will introduce in the computations a
multiplicative exponential factor Dt that will degrade the size of the lower bound
for the lifespan: in [10] we obtained T ∗

ε = γ ln | ln ε|. The consequence is that the
frequency truncations of size (− ln ε)δ from [10] (when obtaining dispersive and
Strichartz estimates) are useless in the present case and will have to be improved
to the size ε−δ.

2 Scheme of the proof and structure of the article

As explained before, thanks to the skew-symmetry of matrix A, any computation in-
volving L2 or Sobolev inner-products will be the same as for the Navier-Stokes system
(AU · U = 0). So given the regularity of the initial data (even if some norms can blow
up in ε), we can adapt the Leray and Fujita-Kato theorems as well as the classical weak-

strong uniqueness results: as U0,ε ∈ Ḣ
1
2 (R3), Uε is the unique strong solution of System

(PEε) defined on [0, T ] for all 0 < T < T ∗
ε . In addition, if the lifespan T ∗

ε is finite then
we have: ∫ T ∗

ε

0
‖∇Uε(τ)‖2

Ḣ
1
2 (R3)

dτ = ∞.

Moreover, as U0,ε ∈ L2, Uε coincides on [0, T ∗
ε [ with any global weak solution of System

(PEε) and we have the Leray estimates: for all t ≥ 0,

‖Uε(t)‖2L2 + 2ν0

∫ t

0
‖∇Uε(τ)‖2L2dτ ≤ ‖U0,ε‖2L2 . (2.6)

From (1.5), the only assumption on the initial regularity of Uε provides that ‖U0,ε‖
Ḣ

1
2 (R3)

≤
Cε−5β which is useless if we want a lower bound for the Fujita-Kato lifespan without any
other information. In this paper we will use the quasi-geostrophic structure to prove that
the lifespan is bounded from below by some large time T γε = γ ln(ln | ln ε|). Moreover we
will extensively use the following a priori estimates (we refer to [29, 10]):

Lemma 1 Let s > 1. There exists a constant Cs such that for all t ∈ [0, T ∗
ε [ we have:

‖Uε(t)‖Hs ≤ ‖Uε(0)‖HseCs

∫ t
0 ‖∇Uε(τ)‖L∞dτ , (2.7)
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which requires us to be able to estimate ‖∇Uε‖L1
tL

∞ . We will easily show in the following
that ‖∇Uε,osc‖L1

tL
∞ is bounded and small. Showing that ‖∇Uε,QG‖L1

tL
∞ is bounded will

require much more work, and as in [39, 29, 10] we will need the following logarithmic
estimates, involving striated regularity from the vortex patches formalism (we refer to
[29] for the proof) :

Lemma 2 There exists a constant C > 0 only depending on s ∈]0, 1[ such that, for
any quasi-geostrophic vector field U ∈ L2(R3) whose potential vorticity Ω = Ω(U) ∈
L2(R3)∩Cs(X) for a fixed admissible family X of Cs-vectorfields, U is Lipschitzian and
we have :

‖U‖Lip = ‖∇U‖L∞ ≤ C
(
‖Ω‖L2 + ‖Ω‖L∞ log

(
e+

‖Ω‖Cs(X)

‖Ω‖L∞

))
. (2.8)

The bootstrap argument is pretty simple: let us defineKε
def
= 2γ| ln ε|, T γε def

= γ ln(ln | ln ε|)
and the times Tε > T ′

ε > 0 by




Tε = sup{t ∈ [0, T ∗

ε [, Vε(t) =

∫ t

0
‖∇Uε(τ)‖L∞dτ ≤ Kε},

T ′
ε = sup{t ∈ [0, T ∗

ε [, Vε(t) ≤ Kε/2}.
(2.9)

We will show in this article that for a well chosen γ and if ε > 0 is small enough, for all
t ≤ min(Tε, T

γ
ε ),

Vε(t) ≤ Kε/2, (2.10)

then, due to the previous definitions, t ≤ T ′
ε, which immediately implies that min(Tε, T

γ
ε ) ≤

T ′
ε < Tε and therefore T γε < Tε < T ∗

ε which proves the theorem.

Remark 8 Either T ∗
ε < ∞ and the integral goes to infinity when t → T ∗

ε and we have
0 < T ′

ε < Tε, or T
∗
ε = ∞ and then T γε < T ∗

ε is also true (in this case we may be have
T ′
ε = Tε).

All the difficulty then lies in proving (2.10) and the article is structured as follows, we
will first show in Section 3 that the oscillating part is small and goes to zero. As explained
before, we will need to use logarithmic estimates (2.8) related to the striated regularity
which requires us to bound the L2, L∞ and Cs norms of the potential vorticity. The first
one is obtained using the quasigeostrophic structure : in Section 4 we get estimates in Ḣ1

for Uε. The rest is dealt in Section 5. As in [16] the major difficulty in this paper comes
from the non-local operator Γ (we recall that in [10] we only adressed the particular case
ν = ν ′ where Γ reduces to ν∆). In this paper we will extensively use the apriori and
smoothing estimates obtained in [16]. The last section is an appendix devoted to the
Littlewood-Paley decomposition, followed by a quick presentation of the vortex patches
formalism, and additional properties for the non-local operator Γ.

3 Estimates for the oscillating part

This section is devoted to a careful study of the oscillating part. As in [9] to [12] the fact
that it goes to zero is essential in the study of the asymptotics of the quasi-geostrophic
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part and the convergence rates. The aim of this section is to prove that there exists δ > 0
such that if ε is small enough, for all k ≤ 3,

‖|D|kUε,osc‖L4
T
L∞ ≤ CF ε

δ .

Remark 9 In this article we will only need three derivatives, but it is true for any k.

We refer to Proposition 5 for the precise statement of the result. As Uε,osc satisfies (1.4),
we will consider the following system:

{
∂tf − (L− 1

εPA)f = F e,

f|t=0 = f0.
(3.11)

If we apply the Fourier transform, the equation becomes (see [9] for precisions):

∂tf̂ − B(ξ, ε)f̂ = F̂ e,

where

B(ξ, ε) =
̂

L− 1

ε
PA =




−ν|ξ|2 + ξ1ξ2
ε|ξ|2

ξ22 + ξ23
ε|ξ|2 0

ξ1ξ3
εF |ξ|2

−ξ
2
1 + ξ23
ε|ξ|2 −ν|ξ|2 − ξ1ξ2

ε|ξ|2 0
ξ2ξ3
εF |ξ|2

ξ2ξ3
ε|ξ|2 − ξ1ξ3

ε|ξ|2 −ν|ξ|2 −ξ
2
1 + ξ22
εF |ξ|2

0 0
1

εF
−ν ′|ξ|2




.

For 0 < r < R we will denote by Cr,R the following set:

Cr,R = {ξ ∈ R
3, |ξ| ≤ R and |ξ3| ≥ r}.

We also introduce the following frequency truncation operator on Cr,R:

Pr,R = χ(
|D|
R

)
(
1− χ(

|D3|
r

)
)
,

where χ is the smooth cut-off function introduced before and (F−1 is the inverse Fourier
transform):

χ(
|D|
R

)f = F−1
(
χ(

|ξ|
R

)f̂(ξ)
)

and χ(
|D3|
r

)f = F−1
(
χ(

|ξ3|
r

)f̂(ξ)
)
,

and the following derivation operator:

|D|sf = F−1(|ξ|sf̂(ξ)).

In what follows we will use it for particular radii rε = εm and Rε = ε−M , where m
and M will be precised later. Let us end this section with the following anisotropic
Bernstein-type result (we refer to [9], and to [43] for more general anisotropic estimates):

9



Lemma 3 There exists a constant C > 0 such that for all function f , α > 0, 1 ≤ q ≤
p ≤ ∞ and all 0 < r < R, we have





‖χ( |D|
R

)χ(
|D3|
r

)f‖Lp ≤ C‖f‖Lp ,

‖χ( |D|
R

)χ(
|D3|
r

)f‖Lp ≤ C(R2r)
1
q
− 1

p ‖χ( |D|
R

)χ(
|D3|
r

)f‖Lq .

(3.12)

Moreover if f has its frequencies located in Cr,R, then

‖|D|αf‖Lp ≤ CRα‖f‖Lp .

3.1 Eigenvalues, projectors

We begin with the eigenvalues and eigenvectors of matrix B(ξ, ε). The main result of this
section is the following proposition. We will only state the results and skip details as the
proof is an adaptation of Proposition 3.1 from [12] (there in the anisotropic case).

Proposition 2 There exists ε0 > 0 such that for all ε < ε0, for all rε = εm and
Rε = ε−M , with M < 1/4 and 3M +m < 1, and for all ξ ∈ Crε,Rε , the matrix B(ξ, ε) =
̂L− 1

εPA is diagonalizable and its eigenvalues have the following asymptotic expansions
with respect to ε:





µ0 = −ν|ξ|2,

µ = −(νξ21 + νξ22 + ν ′F 2ξ23)
|ξ|2

|ξ|2
F

+ ε2D(ξ, ε),

λ = −τ(ξ)|ξ|2 + i |ξ|F
εF |ξ| + εE(ξ, ε),

λ = −τ(ξ)|ξ|2 − i |ξ|F
εF |ξ| + εĒ(ξ, ε),

(3.13)

where |ξ|2F = ξ21+ξ
2
2+F

2ξ33 , andD,E denote remainder terms satisfying for all ξ ∈ Crε,Rε :





ε2|D(ξ, ε)| ≤ CF |ν − ν ′|3ε2|ξ|6 ≤ CF |ν − ν ′|3ε2−6M ≪ 1,

ε|E(ξ, ε)| ≤ CF |ν − ν ′|2ε|ξ|4 ≤ CF |ν − ν ′|2ε1−4M ≪ 1,

ε|∇ξE(ξ, ε)| ≤ CF |ν − ν ′|2ε|ξ|3 ≤ CF |ν − ν ′|2ε1−3M ≪ 1,

and

τ(ξ) =
ν

2

(
1 +

F 2ξ23
|ξ|2F

)
+
ν ′

2

(
1− F 2ξ23

|ξ|2F

)
≥ min(ν, ν ′) > 0.

Moreover, if we denote by Pi(ξ, ε), the projectors onto the eigenspaces corresponding to
µ, λ and λ (i ∈ {2, 3, 4}), and set

Pi(u) = F−1

(
Pi
(
ξ, ε)(û(ξ)

))
, (3.14)
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then for any divergence-free vector field f whose Fourier transform is supported in Crε,Rε ,
we have the following estimates:

‖P2f‖Hs ≤
{
CF‖f‖Hs if Ω(f) 6= 0,

CF |ν − ν ′|ε1−(3M+m)‖f‖Hs if Ω(f) = 0,
(3.15)

and for i = 3, 4,
‖Pif‖Hs ≤ CF ε

−(m+M)‖f‖Hs . (3.16)

Remark 10 We emphasize that the leading part of µ is the Fourier symbol of the quasi-
geostrophic operator Γ. Moreover, as we will see in what follows, the dispersion is related
to the term i |ξ|F

εF |ξ|, and when F = 1 this term reduces to the constant i
ε . This is why

dispersion does not occur in the case F = 1.

3.2 Dispersion, Strichartz estimates

The following result provides the Strichartz estimates satisfied by some projections of
the solution of System(3.11):

Proposition 3 Assume that f satisfies (3.11) on [0, T [ where div f0 = 0 and the fre-
quencies of f0 and F are localized in Crε,Rε . Then there exists a constant CF > 0 such
that for i ∈ {3, 4} and p ≥ 4, we have

‖Pif‖Lp
T
L∞ ≤ CF ε

1
p
−
(
( 5
2
+ 4

p
)M+(2+ 4

p
)m)

) (
‖f0‖L2 +

∫ T

0
‖F e(τ)‖L2dτ

)
.

Proof: We will only give a sketch of the proof and refer to [9, 10, 12] for details. First
in the homogeneous case (F = 0), the classical TT∗ method allows us to write that:

‖Pif‖Lp
T
L∞ = sup

ψ∈B

∫ T

0

∫

R3

Pif(t, x)ψ(t, x)dxdt,

where B = {ψ ∈ D(R+ × R3), ‖ψ‖Lp̄
tL

1 ≤ 1}. Next, as f has its frequencies localized

in Crε,Rε we obtain that:

‖Pif‖Lp
T
L∞ = sup

ψ∈B

∫ T

0

∫

R3

χ(
|ξ|
2Rε

)(1−χ(2|ξ3|
rε

))e
−tτ(ξ)|ξ|2+it

|ξ|F
εF |ξ|

+εtE(ξ,ε)
P̂if0(ξ)ψ̂(t, ξ)dξdt.

≤ ‖Pif0‖L2 sup
ψ∈B

(∫ T

0

∫ T

0
‖ψ(t)‖L1‖ψ(s)‖L1‖K(s, t, ε, .)‖L∞

) 1
2

, (3.17)

with

K(s, t, ε, x) =

∫

R3

eix·ξe
−(t+s)τ(ξ)|ξ|2+i(t−s)

|ξ|F
εF |ξ|

+εtE(ξ,ε)+εĒ(ξ,ε)
χ(

|ξ|
2Rε

)2(1− χ(
2|ξ3|
rε

))2dx.

Adapting Section 4 from [12], we obtain that:

‖K(s, t, ε, .)‖L∞ ≤ CF
R2
ε

r2ε
min

(
Rε,

R4
ε

r2ε

(
ε

|t− s|

) 1
2 )
.
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Remark 11 We emphasize that the results from [12] (Lemma 4.2) are given for anisotropic
viscosities and in the anisotropic space L∞,2

xh,x3 , this is why the powers of rε, Rε are different
in the present case. We also dropped the exponentials as we are in the finite time-case.

We then deduce that for all θ ∈ [0, 1],

‖K(s, t, ε, .)‖L∞ ≤ CF
R

3(1+θ)
ε

r
2(1+θ)
ε

(
ε

|t− s|

) θ
2

.

Using this for θ = 4/p in (3.17) (this is the reason why we need p ≥ 4), we obtain
the conclusion thanks to the Hardy-Littlewood theorem and the choice rε = εm and
Rε = ε−M and using the projector estimate (3.16). The non-homogeneous case easily
follows. �

From the previous property for p = 4 we deduce the following result:

Proposition 4 Under the same assumptions, there exists a constant CF > 0 such that
for i ∈ {3, 4} and any s ≥ 0, we have

‖Pif‖L4
T
Bs

∞,∞
+ ‖Pi|D|sf‖L4

T
L∞ ≤ CF ε

1
4
−
(
M( 7

2
+s)+3m

) (
‖f0‖L2 +

∫ T

0
‖F e(τ)‖L2dτ

)
.

Proof : Thanks to the assumptions on the frequencies of f0 and F , f also has its
frequencies in Crε,Rε so that using Lemma 3, we get

‖Pi|D|sf‖L4
T
L∞ ≤ CRsε‖Pif‖L4

T
L∞ ,

which immediately gives the second result thanks to Proposition 3. For any q ≥ −1
applying the Strichartz estimates to ∆qf leads to:

‖Pi∆qf‖L4
T
L∞ ≤ CF ε

1
4
−
(
M( 7

2
+s)+3m

) (
‖∆qf0‖L2 +

∫ T

0
‖∆qF

e(τ)‖L2dτ

)

≤ CF ε
1
4
−
(
M( 7

2
+s)+3m

) (
‖f0‖L2 +

∫ T

0
‖F e(τ)‖L2dτ

)
. (3.18)

Then for all q ≥ 0, as ∆qf is frequency localized on the ring 2qC(0, 34 , 83) and in Crε,Rε ,
we have:

2qs‖Pi∆qf‖L4
T
L∞ ≤ C‖Pi|D|s∆qf‖L8

T
L∞ ≤ CRsε‖Pi∆qf‖L8

T
L∞

≤ CF ε
1
4
−
(
M( 7

2
+s)+3m

) (
‖f0‖L2 +

∫ T

0
‖F e(τ)‖L2dτ

)
. (3.19)

and for q = −1, we use that 2−s ≤ 1. �
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3.3 Final estimates

The object of this section is to obtain the following estimates:

Proposition 5 Assume that Uε solves (PEε) on [0, T ] with the same divergence-free
initial data as in Theorem 1. There exist ε0 > 0 and a positive constatnt C such that for
all 0 < ε < ε0 and all m,M > 0 with M < 1/4 and 3M +m < 1, and all k ≥ 0 we have:

‖|D|kUε,osc‖L4
T
L∞ ≤ CF

(
εM + ε

m
2
−M + ε1−(3M+m)

)
T

1
4 ‖U0,ε‖H3+keCVε(T )

+ CF ε
1
4
−
(
M(5+k)+4m

)
T

1
2 ‖U0,ε‖2H3+k , (3.20)

where Vε(t) =
∫ t
0 ‖∇Uε(τ)‖L∞dτ .

Remark 12 In what follows, we will use this result in the case k ≤ 3, T ≤ T γε =
γ ln(ln | ln ε|) and with Vε(T ) ≤ −2γ ln ε and ‖U0,ε‖H6 ≤ C0ε

−5β. The previous estimates
then turns into:

‖|D|kUε,osc‖L4
T
L∞ ≤ CF

(
εM−(5β+2Cγ) + ε

m
2
−(M+5β+2Cγ)

+ ε1−(3M+m+5β+2Cγ) + ε
1
4
−
(
8M+4m+2(5β+2Cγ)

))
(T γε )

1
2 . (3.21)

Moreover, under the following conditions:




5β + 2Cγ ≤ M
2 ,

M + (5β + 2Cγ) ≤ m
4 ,

3M +m+ (5β + 2Cγ) ≤ 1
2 ,

8M + 4m+ 2(5β + 2Cγ) ≤ 1
8 ,

(3.22)

which are satisfied for example if we have:

{
5β + 2Cγ ≤ M

2 ,

M ≤ m
4 and m ≤ 1

44 ,
(3.23)

then we simply get, if ε is small enough,

‖|D|kUε,osc‖L4
T
L∞ ≤ CF ε

M
2 (T γε )

1
2 ≤ CF ε

M
4 . (3.24)

Note that these conditions on m,M imply those in Proposition 5 (which are required to
use Proposition 2).

Proof: Let us cut the oscillating part into four parts as in [9]:

|D|kUε,osc =
(
1− χ(

|D|
Rε

)
)
|D|kUε,osc + χ(

|D|
Rε

)χ(
|D3|
rε

)|D|kUε,osc

+ Prε,Rε |D|kP2Uε,osc + Prε,Rε |D|kP3+4Uε,osc
def
= Iε + IIε + IIIε + IVε. (3.25)
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Thanks to the injection Hs(R3) →֒ L∞(R3) (s > 3/2) and the apriori estimates from
(2.7) we roughly estimate the first term:

‖Iε‖L4
T
L∞ ≤ CT

1
4 ‖Iε‖L∞

T
H2 ≤ C

Rε
T

1
4 ‖Uε,osc‖L∞

T
H3+k ≤ CT

1
4 εM‖Uε‖L∞

T
H3+k . (3.26)

The second term is estimated thanks to Lemma 3 (with p = ∞, q = 2) and the Leray
estimates:

‖IIε‖L4
T
L∞ ≤ CT

1
4 (R2

εrε)
1
2 ‖|D|kUε,osc‖L∞

T
L2 ≤ CT

1
4 ε

m
2
−M‖Uε‖L∞

T
Hk . (3.27)

As Ω(Uε,osc) = 0, we can use (3.15) to get:

‖IIIε‖L4
T
L∞ ≤ CT

1
4 ‖IIIε‖L∞

T
H2 ≤ CFT

1
4 |ν − ν ′|ε1−(3M+m)‖Prε,Rε |D|kUε,osc‖L∞

T
H2

≤ CFT
1
4 |ν − ν ′|ε1−(3M+m)‖Uε‖L∞

T
H2+k . (3.28)

The last term is estimated thanks to the Strichartz estimates from Proposition 4:

‖IVε‖L4
T
L∞ ≤ CF ε

1
4
−
(
M( 7

2
+k)+3m

) (
‖Prε,RεU0,ε,osc‖L2 +

∫ T

0
‖Prε,RεF

e(τ)‖L2dτ

)
,

where the external force term F e is the right-hand side of (1.4). As in [9] we roughly
estimate each term from F e (we refer to (1.4) for the decomposition) and obtain that
(thanks to the Leray estimates and Lemma 3):





‖Prε,RεF1‖L1
T
L2 + ‖Prε,RεF2‖L1

T
L2 ≤ CR

3
2
ε

∫ T

0
‖vε · ∇Uε‖L1dτ ≤ CR

3
2
ε T

1
2 ν

− 1
2

0 ‖U0,ε‖2L2 ,

‖Prε,RεF3‖L1
T
L2 ≤ CF r

−1
ε R

3
2
ε

∫ T

0
‖∇Uε,osc · ∇Uε‖L1dτ ≤ CF r

−1
ε R

3
2
ε ν

−1
0 ‖U0,ε‖2L2 ,

‖Prε,RεF4‖L1
T
L2 ≤ CF |ν − ν ′|RεT

1
2 ν

− 1
2

0 ‖U0,ε‖L2 .

As ‖Prε,RεU0,ε,osc‖L2 ≤ Cr−1
ε ‖U0,ε,osc‖Ḣ1 we finally obtain that the last term satisfies (to

simplify we did not trace the viscosities and roughly estimated each norm by ‖U0,ε‖H3+k .):

‖IVε‖L4
T
L∞ ≤ CF ε

1
4
−
(
M(5+k)+4m

)
T

1
2‖U0,ε‖2H3+k . (3.29)

Gathering (3.26) to (3.29) we end up with the desired result. �

4 L
2-estimates for the potential vorticity Ωε

As emphasized in the second section when explaining the bootstrap argument, we need
to obtain estimates for the potential vorticity in L2, L∞ and Cs(X). At first sight, the
most natural way to do it seems, as in [39, 10], to use transport-diffusion estimates on
system (1.2). We will be able to do this for the L∞-estimates, adaptating Proposition 1
from [16] which deals with the non-local operator Γ.

Unfortunately, due to the first term from the right-hand side (ν − ν ′)F∆∂3θε,osc, this
method is useless for p = 2 as we can only estimate this term by |ν − ν ′|F‖∇3Uε‖L2
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that we do not control (the best we can hope for is to estimate this by a negative power
of ε). In order to overcome this problem we need to bound ‖Uε,QG‖Ḣ1 . Thanks to
Proposition 1 and the fact that Uε,osc is small, we will simply study ‖Uε‖Ḣ1 and then use
that ‖Ωε‖L2 ≤ C‖Uε,QG‖Ḣ1 ≤ C‖Uε‖Ḣ1 .

Another motivation to estimate directly ‖Uε‖Ḣ1 is that getting Lp-estimates (see
Proposition 13 in the appendix) requires a L∞

t L
6-bound for the transport term vε that

will be a simple consequence of the result on L∞
t Ḣ

1 thanks to the Sobolev injection.

4.1 Ḣ
1-estimates for the solution Uε

The aim of this section is to prove:

Proposition 6 Under the assumptions of Theorem 1, and with the notations from (2.9),
there exists CF ,M > 0 and ε0 such that if 5β +2Cγ ≤M/6, then for all 0 < ε ≤ ε0 and
all t ≤ min(Tε, T

γ
ε ), we have:

1

2
‖Uε(t)‖2Ḣ1 + ν0

∫ t

0
‖∇Uε(τ)‖2Ḣ1dτ ≤ CF (4.30)

Proof : we emphasize that the quasi-geostrophic/oscillating decomposition is an orthog-
onal decomposition of the solution so that we have:

‖Uε‖2Ḣ1 ∼ ‖Uε,QG‖2Ḣ1 + ‖Uε,osc‖2Ḣ1 ∼ ‖Ωε‖2L2 + ‖Uε,osc‖2Ḣ1 ,

and to obtain the desired estimates we could, as in [18] estimate separatedly the potential
vorticity and the oscillating part. But in our case, as F 6= 1, it will be easier to use
dispersion phenomena together with the quasi-geostrophic structure and estimate the
following (equivalent) norm:

‖Uε‖2Ḣ1
F

def
= −(∆FUε|Uε)L2 .

Taking the corresponding Ḣ1
F -inner product of (PEε) with Uε, we obtain that

1

2

d

dt
‖Uε‖2Ḣ1

F

− (LUε|Uε)Ḣ1
F
= −(vε · ∇Uε|Uε)Ḣ1

F
.

As usual −(LUε|Uε)Ḣ1
F
≥ ν0‖∇Uε‖2Ḣ1

F

and thanks to the fact that Uε = Uε,osc + Uε,QG

we develop the right-hand side as follows:

(vε ·∇Uε|Uε)Ḣ1
F
= (vε ·∇Uε|Uε,osc)Ḣ1

F
+(vε ·∇Uε,osc|Uε,QG)Ḣ1

F
+(vε,osc·∇Uε,QG|Uε,QG)Ḣ1

F

+ (vε,QG · ∇Uε,QG|Uε,QG)Ḣ1
F
= B1 +B2 +B3 +B4. (4.31)

What is more unusual is that the most dangerous term, namely B4 (i.-e. the only one
that may be large as it does not involve the oscillating part, we will show that the
three other terms are small), is equal to zero. We emphasize that if we had computed
the classical Ḣ1-innerproduct it was not true anymore (as for any Navier-Stokes type
system), and this term would have obstructed any use of the logarithmic (or Gronwall)
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estimates. To show this we simply use the following elementary computation related to
the quasi-geostrophic decomposition: for any function f , we have:

(f |Uε,QG)Ḣ1
F
= −(f |




−∂2
∂1
0

−F∂3


Ωε)L2 = (Ω(f)|Ωε)L2 .

Then, thanks to this, point 6 from Proposition 1 and the fact that div vε,QG = 0, we
obtain:

B4 = (vε,QG · ∇Uε,QG|Uε,QG)Ḣ1
F
= (Ω(vε,QG · ∇Uε,QG)|Ωε)L2 = (vε,QG · ∇Ωε|Ωε)L2 = 0.

Writing 



|B1| ≤ CF‖vε‖L2‖∇Uε‖L2‖∇2Uε,osc‖L∞ ,

|B2| ≤ CF‖vε‖L2‖∇2Uε‖L2‖∇Uε,osc‖L∞ ,

|B3| ≤ CF‖vε,osc‖L∞‖∇Uε,QG‖L2‖∇2Uε,QG‖L2 ,

thanks to the Leray estimates (2.6), the a priori estimates (2.7) and the fact that P,Q
are pseudo-differential operators of order zero, we get that for all t ≤ min(T ∗

ε , Tε) :

1

2
‖Uε(t)‖2Ḣ1

F

+ ν0

∫ t

0
‖∇Uε(τ)‖2Ḣ1

F

dτ

≤ 1

2
‖U0,ε‖2Ḣ1

F

+ CF

∫ t

0
‖Uε(τ)‖2H6

(
‖Uε,osc‖L∞ + ‖∇Uε,osc‖L∞ + ‖∇2Uε,osc‖L∞

)
dτ

≤ CF

(
‖U0,ε‖2Ḣ1+‖Uε,0‖2H6e

2CVε(t)t
3
4
(
‖Uε,osc‖L4

tL
∞+‖∇Uε,osc‖L4

tL
∞+‖∇2Uε,osc‖L4

tL
∞

))
.

(4.32)

Therefore, thanks to Proposition 5 and (3.21) (we roughly use it even if we do not have
derivatives of order three here) and as t ≤ min(Tε, γ ln(ln | ln ε|)), Vε(t) ≤ Kε = −2γ ln ε
and ‖U0,ε‖H6 ≤ C0ε

−5β we have:

1

2
‖Uε(t)‖2Ḣ1

F

+ ν0

∫ t

0
‖∇Uε(τ)‖2Ḣ1

F

dτ

≤ CF

(
‖U0,ε‖2Ḣ1 + (T γε )

5
4
(
εM−3(5β+2Cγ) + ε

m
2
−
(
M+3(5β+2Cγ)

)

+ ε1−
(
3M+m+3(5β+2Cγ)

)
+ ε

1
4
−
(
8M+4m+4(5β+2Cγ)

)))
. (4.33)

So, similarly, under the following conditions:





3(5β + 2Cγ) ≤ M
2 ,

M + 3(5β + 2Cγ) ≤ m
4 ,

3M +m+ 3(5β + 2Cγ) ≤ 1
2 ,

8M + 4m+ 4(5β + 2Cγ) ≤ 1
8 ,

(4.34)
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which are implied for example if we have:

{
5β + 2Cγ ≤ M

6 ,

M ≤ m
6 and m ≤ 1

49 ,
(4.35)

then as min(M2 ,
m
4 ,

1
2 ,

1
8) =

M
2 , if ε is small enough we can write that:

1

2
‖Uε(t)‖2Ḣ1

F

+ ν0

∫ t

0
‖∇Uε(τ)‖2Ḣ1

F

dτ ≤ CF
(
‖U0,ε‖2Ḣ1 + (T γε )

5
4 ε

M
2
)

≤ CF
(
C0 + ε

M
4 ) ≤ CF . (4.36)

This concludes the proof. �

4.2 L
2-estimate for the potential vorticity

As a direct consequence of (4.30) we obtain the following result:

Proposition 7 Under the assumptions of Theorem 1, and with the notations from (2.9),
there exists CF ,M > 0 (with M < 1/294) and ε0 such that if 5β +2Cγ ≤M/6, then for
all 0 < ε ≤ ε0 and all t ≤ min(Tε, T

γ
ε ), we have:

1

2
‖Ωε(t)‖2L2 + ν0

∫ t

0
‖∇Ωε(τ)‖2L2dτ ≤ CF (4.37)

5 Proof of the main result

5.1 L
∞-estimates for the potential vorticity

The object of this section is to obtain L∞-estimates for the potential vorticity. This
result is very close to Proposition 1 from [16].

Proposition 8 Under the assumptions of Proposition 6, and with the notations from
(2.9), there exists CF ,DF , C

′
0,M > 0 and ε0 (DF depending on F, ν and ν ′, C ′

0 depending
on ‖Ω0‖L∞) such that if 5β+2Cγ ≤M/6, then for all 0 < ε ≤ ε0 and all t ≤ min(Tε, T

γ
ε ),

we have: 



1

2
‖Uε(t)‖2Ḣ1 + ν0

∫ t

0
‖∇Uε(τ)‖2Ḣ1dτ ≤ CF ,

‖Ωε‖L∞
t L∞ ≤ C ′

0e
tDF .

(5.38)

Proof : the Ḣ1-estimates were obtained in the previous section and the ideas to get the
L∞-estimates are the same as in [16] so we will skip details and only focus on what is
different. Let us define for all ξ 6= 0, q0(ξ) by

Γ̂u(ξ) = − |ξ|2
|ξ|2F

(νξ21 + νξ22 + ν ′F 2ξ23)û(ξ)
def
= −q0(

√
ν0ξ)û(ξ).
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If we denote M = ν
ν0

and M ′ = ν′

ν0
, (recall that ν0 = min(ν, ν ′) > 0) then

{
min(M,M ′) = 1,

max(M,M ′) =Mvisc =
max(ν,ν′)
min(ν,ν′) ,

so that

q0(ξ) =
|ξ|2
|ξ|2F

(Mξ21 +Mξ22 +M ′F 2ξ23) ≥ |ξ|2.

And, as explained in [16], we can write that etΓu = Kt ∗ u, where the kernel Kt(x) is
defined for all t, x by:

Kt(x) =
1

√
ν0t

3K1(
x√
ν0t

), with K1(x) =
1

(2π)3

∫

R3

eix·ξe−q0(ξ)dξ.

We recall that in [16] we obtained there exists a constant C ′
F > 0 depending on F,Mvisc

such that
‖K1‖L1 + ‖∇K1‖

L
6
5
≤ C ′

F . (5.39)

Thanks to the Duhamel form, we obtain that for all t ≤ min(Tε, T
γ
ε ),

Ωε(t) = etΓΩ0,ε +

∫ t

0
e(t−τ)Γ

(
− div (vε ⊗ Ωε)(τ) + (ν − ν ′)F∂3∆θε,osc(τ) + qε(τ)

)
dτ.

Then as in the cited paper, replacing qε by its value and thanks to (5.39) and convolution
estimates,

‖Ωε(t)‖L∞

≤ C ′
F

(
‖Ω0,ε‖L∞ +

∫ t

0

(
F |ν − ν ′|‖∂3∆θε,osc(τ)‖L∞ + ‖∇Uε(τ) · ∇Uε,osc(τ)‖L∞

)
dτ

)

+

∫ t

0

1
√
ν0(t− τ)

4

√
ν0(t− τ)

3· 5
6 ‖∇K1‖

L
6
5
‖vε(τ)‖L6‖Ωε(τ)‖L∞dτ. (5.40)

We recall that as assumed in Theorem 1, Ωε = ε−3βh(εβ .)∗Ω0. Then, using the injection
H2(R3) →֒ L∞(R3) we get:

‖Ωε(t)‖L∞ ≤ C ′
F

(
‖Ω0‖L∞ + (T γε )

3
4
(
‖∇3Uε,osc‖L4

tL
∞ + ‖U0,ε‖H6eCVε(t)‖∇Uε,osc‖L4

tL
∞

))

+ C ′
F ν

− 3
4

0

( ∫ t

0
(t− τ)−

3
4dτ
)
‖vε‖L∞Ḣ1‖Ωε‖L∞

t L∞ . (5.41)

and thanks to (3.21) and (4.30),

‖Ωε‖L∞
t L∞ ≤ C ′

F

(
‖Ω0‖L∞ + (T γε )

5
4
(
εM−2(5β+Cγ) + ε

m
2
−2(M+5β+2Cγ)

+ ε1−
(
3M+m+2(5β+2Cγ)

)
+ ε

1
4
−
(
8M+4m+3(5β+2Cγ)

)))
+ 4C ′

F ν
− 3

4
0 t

1
4C ′

F‖Ωε‖L∞
t L∞ .

(5.42)
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The conditions on M,m, β, γ under which the exponents of ε are positive are implied by
(4.35), then there exists ε0 > 0 (only depending on β, γ) such that if ε ≤ ε0 then

(T γε )
5
4

(
εM−2(5β+Cγ) + ε

m
2
−2(M+5β+2Cγ) + ε1−

(
3M+m+2(5β+2Cγ)

)

+ ε
1
4
−
(
8M+4m+3(5β+2Cγ)

))
≤ 1 (5.43)

and if t is so small that 4C ′
F ν

− 3
4

0 t
1
4C ′

F ≤ 1
2 , that is

t ≤ ν30
(8C ′

F )
4
, (5.44)

then we obtain that
‖Ωε‖L∞

t L∞ ≤ C ′
F (‖Ω0‖L∞ + 1).

As we want a result for large times t, we will globalize the estimates with the usual
method: if we subdivide the interval [0, t] into 0 = T0 < T1 < ... < TN = t such that for
any i ∈ {0, ..., N − 1},

Ti+1 − Ti ∼
ν30

(8C ′
F )

4
, (5.45)

then the previous arguments imply that if 0 < ε ≤ ε0 for any i ∈ {0, ..., N − 1},

‖Ωε‖L∞([Ti,Ti+1],L∞) ≤ C ′
F (‖Ωε(Ti)‖L∞ + 1) ≤ C ′

0(C
′
F )

i.

Next summing (5.45) for i ∈ {0, ..., N − 1}, we obtain that N ∼ (8C′
F )4

ν30
t so that finally if

we denote DF
def
=

(8C′
F )4

ν30
lnC ′

F we obtain the desired estimate for Ωε. �

5.2 Tangential regularity

5.2.1 Advected family of vector fields

We refer to the appendix for an introduction to the notations related to the vortex
patches. As mentionned before, a crucial ingredient in the proof of the main result of
this article is to use the logarithmic estimates (2.8). However we need to be careful that
if Ω0 is Cs(X0) where X0 = {X0,λ, λ = 1, ..., N} is a fixed admissible system of Cs-
vectorfields, we will not measure ‖Ωε‖Cs(X0) but ‖Ωε‖Cs(Xε

t,λ
) where X

ε
t,λ is the solution

of the following transport equation:
{
∂tX

ε
t,λ + vε.∇Xε

t,λ = Xε
t,λ · ∇vε

Xε
t,λ/t=0

= X0,λ.
(5.46)

The regularity is preserved by this transformation : we refer to [36] for the proof of the
fact that X0,λ ∈ Cs ⇒ Xε

t,λ ∈ Cs. We refer to [17, 36, 39, 29] for more details about the
persistence of the tangential (or stratified) regularity in the vortex patches theory and
we recall that we denote for any function w (using the same notation as in [29, 10]):

Xε
t,λ(x,D)w = div (w ⊗Xε

t,λ).
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Then in our case, (2.8) becomes

‖∇Uε,QG‖L∞ ≤ C
(
‖Ωε‖L2 + ‖Ωε‖L∞ log

(
e+

‖Ωε‖Cs(Xε
t,λ

)

‖Ωε‖L∞

))
, (5.47)

where

‖Ωε‖Cs(Xε
t,λ

) = ‖Ωε‖L∞ + ‖[Xε
t,λ]

−1‖L∞ +

N∑

λ=1

(
‖Xε

t,λ‖Cs + ‖Xε
t,λ(x,D)Ωε‖Cs−1

)
. (5.48)

and there remains for us to estimate the last three terms. Only the last one requires a
careful study as the other terms are strictly the same as in [10]. For now we will estimate
these other terms and state in the next section the smoothing effect provided by a priori
estimates on Ωε that will help us estimating Xε

t,λ(x,D)Ωε. In what follows we will first
obtain estimates in a small time interval [T1, T2] and then globalize the results at the end
of the article.

Remark 13 For more simplicity, in this section we will denote Xε(t) instead of Xε
t,λ.

System (5.46) has been extensively studied (see [17, 36, 39, 29, 10]) and we refer to [10]
for the following estimate: there exists a constant Cs > 0 such that for all t ∈ [T1, T2],

‖Xε(t)‖Cs ≤ ‖Xε(T1)‖Cs + Cs

∫ t

T1

‖Xε(t′)‖Cs‖Uε‖Lipdt′

+ Cs

∫ t

T1

‖Xε(x,D)Ωε(t
′)‖Cs−1dt′ + Cs

∫ t

T1

‖Xε(t′)‖L∞‖Uε,osc‖Cs+1dt′. (5.49)

Without any change, as in [10] we refer to [17, 36] for the fact that for all t ∈ [0, Tε[,

{
‖Xε(t)‖L∞ ≤ ‖X0‖L∞eCVε(t) ≤ C0ε

−2Cγ ,

‖[Xε
t,λ]

−1‖L∞ ≤ C0e
CVε(t) ≤ C0ε

−2Cγ .
(5.50)

Using this and estimates (3.21) and (3.24), we obtain that under condition (4.35) on
m,M,β and γ there exists ε0 > 0 such that if 0 < ε ≤ ε0 we have,

Cs

∫ t

T1

‖Xε(t′)‖L∞‖Uε,osc‖Cs+1dt′ ≤ CF,sε
M
2 (T γε )

1
2 ≤ 1.

and therefore:

‖Xε(t)‖Cs ≤ ‖Xε(T1)‖Cs + 1 + Cs

∫ t

T1

‖Xε(t′)‖Cs‖Uε‖Lipdt′

+ Cs

∫ t

T1

‖Xε(x,D)Ωε(t
′)‖Cs−1dt′. (5.51)
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5.2.2 Smoothing effect for Ωε

The aim of this section is to state the heat regularization occuring for the potential
vorticity Ωε in Besov and Hölder spaces. We recall that Ωε satisfies system (1.2). Thanks
to Proposition 6, under conditions (4.35) and if 0 < ε ≤ ε0, we have

‖vε‖L∞([T1,T2],L6) ≤ ‖Uε‖L∞([T1,T2],Ḣ1) ≤ CF . (5.52)

If in addition T1 ≤ T2 are such that:

{
2CF (T2 − T1)

1
4 ≤ ν30 ,

e
C

∫ T2
T1

‖∇Uε(τ)‖L∞ − 1 ≤ 1
CFMvisc

,
(5.53)

then from Theorem 3 (see Appendix, this result is proved in [16]), for all t ∈ [T1, T2]

‖Ωε‖L̃∞([T1,t],C0
∗)

+ ν0‖Ωε‖L̃1([T1,t],C2
∗)

≤ CF

[
‖Ωε(T1)‖L∞ +

∫ t

T1

(
F |ν − ν ′|‖∂3∆θε,osc(τ)‖L∞ + ‖qε(τ)‖L∞

)
dτ

]
. (5.54)

Thanks to (3.21) and (3.24), we estimate as usual the oscillating part and obtain:

‖Ωε‖L̃∞([T1,t],C0
∗)

+ ν0‖Ωε‖L̃1([T1,t],C2
∗)

≤ CF

(
‖Ωε(T1)‖L∞ + ε

M
2 (T γε )

1
2 (t− T1)

3
4

)
.

The last term is small so there exists ε0 > 0 such that for all 0 < ε ≤ ε0 it is bounded
by 1, then using (5.38), we end up with:

‖Ωε‖L̃∞([T1,t],C0
∗)

+ ν0‖Ωε‖L̃1([T1,t],C2
∗)

≤ CF (e
T1DF + 1) ≤ 2CF e

T1DF . (5.55)

5.2.3 Study of Xε
t,λ(x,D)Ωε

As explained before, we now turn to the most difficult term. We begin with the transport-
diffusion system satisfied by Xε

t,λ(x,D)Ωε: similarly to [10] (the differences are the non-
local operator and the additionnal term F (ν − ν ′)∂3∆θε) we easily obtain that:

(∂t + vε · ∇ − Γ)
(
Xε
t,λ(x,D)Ωε

)

= (ν − ν ′)FXε
t,λ(x,D)

(
∂3∆θε

)
+Xε

t,λ(x,D)qε + [Xε
t,λ(x,D),Γ]Ωε,

(5.56)

with the initial data
Xε
t,λ(x,D)Ωε/t=0

= X0,λ(x,D)Ω0,ε.

As in [39, 10] all the difficulty will lie in estimating the last term [Xε
t,λ(x,D),Γ]Ωε and

in our case, as in [16], everything will be far more tricky as we have to deal with the
non-local diffusion operator Γ instead of the Laplacian. As was first observed in [39]
this commutator is a sum of terms of different regularity. From (6.99) that provides the
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decomposition of Γ into its local and purely non-local parts (we refer to [16] for more
details) we can decompose the commutator into:

[Xε
t,λ(x,D),Γ]Ωε = A+ B

= [Xε
t,λ(x,D),ΓL]Ωε + (ν − ν ′)F 2(1− F 2)[Xε

t,λ(x,D),Λ2]Ωε. (5.57)

The first term will be decomposed exactly as in [39, 10] into:

A = FA +GA, (5.58)

with

FA = −
3∑

i=1

(
∂iR(Ωε,ΓLX

ε,i
t,λ) + 2∂iR(

t∇Xε,i
t,λ,Mν,ν′,F∇Ωε)

)
,

and

GA = −
3∑

i=1

(
∂iTΩεΓLX

ε,i
t,λ + ∂iTΓLX

ε,i
t,λ

Ωε

+ 2∂iTt∇Xε,i
t,λ

Mν,ν′,F∇Ωε + 2∂iTMν,ν′,F∇Ωε∇Xε,i
t,λ

)
, (5.59)

where Mν,ν′,F is the diagonal matrix defined by




ν 0 0
0 ν 0
0 0 (1− F 2)ν + F 2ν ′


 ,

and R and T correspond to the Bony decomposition and are defined in (6.97) (we refer
to [6, 17, 4] for precise studies of these operators). The second term first needs to be
rewritten into :

B = −(ν − ν ′)F 2(1− F 2)
(
Xε
t,λ(x,D)(Λ2Ωε)− Λ2

(
Xε
t,λ(x,D)Ωε

))

= −(ν − ν ′)F 2(1− F 2)
3∑

i=1

∂i

(
Xε,i
t,λΛ

2Ωε − Λ2(Xε,i
t,λΩε)

)

= −(ν−ν ′)F 2(1−F 2)
3∑

i=1

∂i

((
Xε,i
t,λΛ

(
ΛΩε

)
−Λ(Xε,i

t,λΛΩε)
)
+Λ
(
Xε,i
t,λΛΩε−Λ(Xε,i

t,λΩε)
))
.

(5.60)

And using the bilinear operator M defined in (6.102), we can decompose B into:

B = −(ν−ν ′)F 2(1−F 2)
3∑

i=1

∂i

[
ΛXε,i

t,λΛΩε+M(Xε,i
t,λ,ΛΩε)+Λ

(
ΛXε,i

t,λΩε+M(Xε,i
t,λ,Ωε)

)]

= FB +GB, (5.61)
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with

FB = −(ν − ν ′)F 2(1− F 2)
3∑

i=1

∂i

[
R
(
ΛXε,i

t,λ,ΛΩε
)
+Mp

(
R
(
Xε,i
t,λ,ΛΩε

))

+ ΛR
(
ΛXε,i

t,λ,Ωε
)
+ ΛMp

(
R
(
Xε,i
t,λ,Ωε

))]
, (5.62)

and

GB = −(ν−ν ′)F 2(1−F 2)

3∑

i=1

∂i

[
T
ΛXε,i

t,λ

ΛΩε+TΛΩεΛX
ε,i
t,λ+Mp(TXε,i

t,λ

ΛΩε)+Mp(TΛΩεX
ε,i
t,λ)

+ Λ

(
T
ΛXε,i

t,λ

Ωε + TΩεΛX
ε,i
t,λ +Mp

(
T
Xε,i

t,λ

Ωε
)
+Mp

(
TΩεX

ε,i
t,λ

))]
, (5.63)

where we denote for any smooth functions f, g:





Mp(Tfg) =
∑

q≥−1

M(Sq−1f,∆qg),

Mp

(
R(f, g)

)
=
∑

q≥−1

1∑

α=−1

M(∆qf,∆q+αg).

As in [39, 10] we decompose the commutators into the sum of two terms which have
different regularity. This is the object of the following result:

Proposition 9 If s ∈]0, 1[ there exists a constant C such that for all 0 ≤ T1 ≤ T2 ≤
min(Tε, T

γ
ε ) satisfying condition (5.53), we have for all t ∈ [T1, T2]:




‖FA‖L̃1([T1,t],Cs−1) + ‖FB‖L̃1([T1,t],Cs−1) ≤ CF,smax(ν, ν ′)‖Xε

τ,λ‖L∞([T1,t],Cs)‖Ωε‖L̃1([T1,t],C2
∗)
,

‖GA(t)‖Cs−3 + ‖GB(t)‖Cs−3 ≤ CF,smax(ν, ν ′)‖Ωε(t)‖L∞‖Xε
t,λ‖Cs .

(5.64)

This immediately implies, thanks to (5.38) and (5.55) that for all t ∈ [T1, T2]:





‖FA‖L̃1([T1,t],Cs−1) + ‖FB‖L̃1([T1,t],Cs−1) ≤ CFMvisce
T1DF ‖Xε

τ,λ‖L∞([T1,t],Cs),

1

ν0

(
‖GA(t)‖Cs−3 + ‖GB(t)‖Cs−3

)
≤ CFMvisce

T1DF ‖Xε
t,λ‖Cs .

(5.65)

Proof : even if the estimates of FA and GA are obtained exactly as in [39, 10] we will
give a quick proof of them as it helps understanding how to deal with FB and GB which
are more tricky. Let us begin with FA. In this proof, in order to simplify, we will drop
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the summation in i:

‖FA‖L̃1([T1,t],Cs−1)

= CF max(ν, ν ′) sup
q≥−1

2q(s−1)

∫ t

T1

‖∆q

(
∇R(Ωε,ΓLXε

τ,λ)+2∇R(t∇Xε
τ,λ,Mν,ν′,F∇Ωε)

)
‖L∞dτ

≤ CF max(ν, ν ′) sup
q≥−1

2qs
∫ t

T1

∑

l≥q−N0
l≥−1

1∑

α=−1

(
‖∆lΩε‖L∞‖∆l+αΓLX

ε
τ,λ‖L∞

+ ‖∆l+α∇Xε
t,λ‖L∞‖∆lMν,ν′,F∇Ωε‖L∞

)
dτ

≤ CF max(ν, ν ′) sup
q≥−1

2qs
∑

l≥q−N0
l≥−1

∫ t

T1

22l‖∆lΩε(τ)‖L∞2−ls‖Xε
τ,λ‖Csdτ

≤ CF max(ν, ν ′)


 ∑

l≥q−N0

2(q−l)s


 ‖Xε

τ,λ‖L∞([T1,t],Cs)‖Ωε‖L̃1([T1,t],C2
∗)
. (5.66)

Similarly, for FB, thanks to Proposition 11 (see Appendix) we can write that for all
functions f, g and all l, l′ ≥ −1:

‖M(∆lf,∆l′g)‖L∞ ≤ CF 2
l+l′

2 ‖∆lf‖L∞‖∆l′g‖L∞ ,

which implies that (recall that Λ is a pseudo-differential operator of order 1)

‖FB‖L̃1([T1,t],Cs−1)

≤ CF |ν − ν ′| sup
q≥−1

2qs
∑

l≥q−N0

1∑

α=−1

∫ t

T1

22l‖∆lX
ε
τ,λ‖L∞‖∆l+αΩε‖L∞dτ, (5.67)

wich gives the desired estimate. We now turn to the second term. Thanks to the the
fact that for any functions f, g, the product Sq−1f ·∆qg has its frequencies localized in
an annulus of size 2q (see (6.96)),

‖GA‖Cs−3 ≤ sup
q≥−1

2q(s−2)

(
‖Sq−1Ωε‖L∞‖∆lΓLX

ε
t,λ‖L∞ + ‖Sq−1ΓLX

ε
t,λ‖L∞‖∆qΩε‖L∞

+ 2‖Sq−1∇Xε
t,λ‖L∞‖Mν,ν′,F∇∆qΩε‖L∞ + 2‖Sq−1Mν,ν′,F∇Ωε‖L∞‖∇∆qX

ε
t,λ‖L∞

)

≤ CF max(ν, ν ′) sup
q≥−2

2q(s−2)‖Ωε‖L∞

(
2q‖Sq−1∇Xε

t,λ‖L∞ + 22q‖∆qX
ε
t,λ‖L∞

)
. (5.68)

The only difficulty is here that if we put all derivatives out of the norm ‖Sq−1X
ε
t,λ‖L∞

we cannot recover the Cs-norm of Xε
t,λ. To overcome this problem we simply use (6.95),

as s− 1 < 0:
‖∇Xε

t,λ‖Cs−1 ∼ sup
q≥−1

2q(s−1)‖∇SqXε
t,λ‖L∞ , (5.69)
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which implies

‖GA‖Cs−3 ≤ CF max(ν, ν ′) sup
q≥−2

2q(s−2)22q‖Ωε‖L∞2−qs‖Xε
t,λ‖Cs .

Proving the same for GB will be more tricky for the same reason. More precisely, with
the same method as before, some terms will involve Sq and not enough derivatives for
us to be able to use (5.69). To overcome this difficulty we will have to use Proposition
12 (see Appendix). These estimates for the bilinear operator M will enable us to move
some derivatives where they will be needed to apply (5.69). With the same simplification
as before we write,

GB = −(ν − ν ′)F 2(1− F 2)∇
∑

q≥−1

[
Sq−1ΛX

ε
t,λ ·∆qΛΩε + Sq−1ΛΩε ·∆qΛX

ε
t,λ

+M(Sq−1ΛΩε,∆qX
ε,i
t,λ) +M(Sq−1X

ε
t,λ,∆qΛΩε) + Λ

(
Sq−1ΛX

ε
t,λ ·∆qΩε

+ Sq−1Ωε ·∆qΛX
ε
t,λ +M

(
Sq−1X

ε
t,λ,∆qΩε

)
+M

(
Sq−1Ωε,∆qX

ε
t,λ

))]
. (5.70)

As for GA, using that for all f, g we have (thanks again to Proposition 11),

‖M(Slf,∆l′g)‖L∞ ≤ CF 2
l+l′

2 ‖Slf‖L∞‖∆l′g‖L∞ ,

allows us to get that:

‖GB‖Cs−3

≤ CF |ν − ν ′| sup
q≥−1

2q(s−2)

(
2q‖Sq−1ΛX

ε
t,λ‖L∞‖∆qΩε‖L∞ + 22q‖Sq−1Ωε‖L∞‖∆qX

ε
t,λ‖L∞

+ ‖M(Sq−1X
ε
t,λ,∆qΛΩε)‖L∞ + ‖ΛM

(
Sq−1X

ε
t,λ,∆qΩε

)
‖L∞

)
. (5.71)

In this expression, the first two terms will easily be estimated as explained before by

2−q(s−2)‖Xε
t,λ‖Cs‖Ωε‖L∞ , (5.72)

and we will estimate the other terms thanks to Proposition 12 as it will enable us to
make some derivatives pound on Sq−1X

ε
t,λ, and use (5.69). As s ∈]0, 1[ let σ > 0 such

that s+ σ ∈]0, 1[. Then thanks to (6.105), we can write that

‖M(Sq−1X
ε
t,λ,∆qΛΩε)‖L∞ + ‖ΛM

(
Sq−1X

ε
t,λ,∆qΩε

)
‖L∞

≤ CF 2
q‖Sq−1X

ε
t,λ‖Ḃs+σ

∞,∞
‖∆qΩε‖Ḃ1−(s+σ)

∞,1
. (5.73)

We emphasize that we deal here with homogeneous Besov norms and our results in-
volve inhomogeneous norms. Then, thanks to the frequency localization we will use the
following estimates: for any any function u, and any α > 0:




‖u‖Ḃα

∞,∞
= ‖|D|αu‖Ḃ0

∞,∞
≤ ‖|D|αu‖L∞ ,

‖u‖Ḃα
∞,1

≤ C
√

‖u‖L∞‖|D|2αu‖L∞ ,
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and deduce that

‖M(Sq−1X
ε
t,λ,∆qΛΩε)‖L∞ + ‖ΛM

(
Sq−1X

ε
t,λ,∆qΩε

)
‖L∞

≤ CF2
q‖Sq−1|D|s+σXε

t,λ‖L∞2q
(
1−(s+σ)

)
‖∆qΩε‖L∞ . (5.74)

Now we have enough derivatives pounding on Sq−1, indeed:

Xε
t,λ ∈ Cs ⇐⇒ |D|s+σXε

t,λ ∈ C−σ,

so that we have the estimate:

‖Sq−1|D|s+σXε
t,λ‖L∞ ≤ C2qσ‖|D|s+σXε

t,λ‖C−σ ≤ C2qσ‖Xε
t,λ‖Cs ,

which implies that:

‖M(Sq−1X
ε
t,λ,∆qΛΩε)‖L∞ + ‖ΛM

(
Sq−1X

ε
t,λ,∆qΩε

)
‖L∞

≤ CF 2
q(2−s)‖Xε

t,λ‖Cs‖Ωε‖L∞ . (5.75)

Plugging this estimates and (5.72) into (5.71) concludes the proof of the proposition. �

5.2.4 Study of Xε
t,λ(x,D)Ωε : estimates

In this section we will recollect the previous results in order to bound the Cs−1-norm
of Xε

t,λ(x,D)Ωε. For more simplicity, we will denote it Xε(x,D)Ωε. First as it satisfies
system (5.56), and as s ∈]0, 1[, we can use Theorem 4 from the appendix (see [16] for
more details): as we have (5.52) and div vε = 0, there exists constants CF > 0 and Cs > 0
such that if T2 − T1 > 0 is so small that:

1. CF (T2 − T1)
1
4 ≤ ν30 ,

2. e
C

∫ T2
T1

‖∇Uε(τ)‖L∞ − 1 ≤ 1
CFMvisc

,

3. T2 − T1 +
∫ T2
T1

‖∇Uε‖L∞dτ ≤ Cs,ν0

Remark 14 These conditions on T1, T2 are implied by what follows: there exists a
constant c = c(F, s, ν, ν ′) > 0 such that T1 < T2 satisfy:

T2 − T1 +

∫ T2

T1

‖∇Uε‖L∞dτ ≤ c. (5.76)

If this condition is satisfied, then from Theorem 4 there exists a constant Cν0,F > 0 such
that for all t ∈ [T1, T2] satisfying condition (5.76),

‖Xε(x,D)Ωε‖L̃∞([T1,t],Cs−1)

≤ Cν0,F

(
‖Xε(x,D)Ωε(T1)‖Cs−1 + ‖F e‖L̃1([T1,t],Cs−1) +

1

ν0
‖Ge‖L̃∞([T1,t],Cs−3)

)
, (5.77)
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where, from system (5.56), we have:

{
F e = (ν − ν ′)FXε

t,λ(x,D)
(
∂3∆θε

)
+Xε

t,λ(x,D)qε + FA + FB,

Ge = GA +GB.
(5.78)

Thanks to the previous section (see 5.65), we have:

‖FA‖L̃1([T1,t],Cs−1) + ‖FB‖L̃1([T1,t],Cs−1) +
1

ν0
‖Ge‖L̃∞([T1,t],Cs−3)

≤ CFMvisce
T1DF ‖Xε

τ,λ‖L∞([T1,t],Cs). (5.79)

Next, there is no change for the following term, as in [10] thanks to Besov product laws:

‖Xε(x,D)qε‖L̃1([T1,t],Cs−1)
≤
∫ t

T1

‖Xε ⊗ qε‖Csdτ ≤
∫ t

T1

(
‖Xε‖Cs‖∇Uε‖L∞‖∇Uε,osc‖L∞

+ ‖Xε‖L∞(‖∇Uε‖Cs‖∇Uε,osc‖L∞ + ‖∇Uε‖L∞‖∇Uε,osc‖Cs

)
dτ, (5.80)

then using (3.21), (2.7) and under condition (4.35), we easily obtain:

‖Xε(x,D)qε‖L̃1([T1,t],Cs−1)
≤ CF

(
1 + ‖Xε

τ,λ‖L∞([T1,t],Cs)

)
. (5.81)

The additional term is also estimated thanks to product laws:

|ν − ν ′|F‖Xε
t,λ(x,D)∂3∆θε,osc‖L̃1([T1,t],Cs−1)

≤ CF |ν − ν ′|
∫ t

T1

‖Xε.∂3∆θε,osc‖Csdτ

≤ CF
(
1 + ‖Xε

τ,λ‖L∞([T1,t],Cs)

)
. (5.82)

Substituting all these estimates in (5.77) gives that, under conditions (5.76) and (4.35),
if 0 < ε ≤ ε0, for all t ∈ [T1, T2],

‖Xε(x,D)Ωε‖L̃∞([T1,t],Cs−1)

≤ Cν0,F

(
‖Xε(x,D)Ωε(T1)‖Cs−1 + 1 + eT1DF sup

τ∈[T1,t]
‖Xε

τ,λ‖Cs

)
, (5.83)

In [10] after having obtained the analoguous of (5.51) and (5.83) we could easily obtain
a globalization for large times of the result. In our case, we have to be extremely careful:
due to (5.38), the L∞ estimates of the potential vorticity involves the coefficient eT1DF

that may be very large. For this reason the only way we can absorb the last term of
(5.83) is to consider:

Z(t)
def
= ‖Xε(x,D)Ωε‖L̃∞([T1,t],Cs−1) + 2Cν0,F e

T1DF ‖Xε
τ,λ‖L∞([T1,t],Cs).

Then combining (5.51) and (5.83) we get that for all t ∈ [T1, T2],

Z(t) ≤ Cν0,F

(
Z(T1) + 1 +

∫ t

T1

(
eT1DF + ‖∇Uε‖L∞

)
Z(t′)dt′

)
+

1

2
Z(t),
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Simplifying and thanks to the Gronwall estimate, we end up with (thanks to condition
(5.76)):

Z(t) ≤ Cν0,F
(
Z(T1) + 1

)
e
Cν0,F

∫ t

T1

(
eT1DF + ‖∇Uε‖L∞

)
dt′

≤ Cν0,F
(
Z(T1) + 1

)
e
Cν0,F (e

T1DF +

∫ t

T1

‖∇Uε‖L∞

)
dt′

. (5.84)

The globalisation argument is classical except that we have to be careful with eT1DF : for
all t ∈ [0,min(Tε, T

γ
ε ), we subdivide [0, t] into 0 = T0 < T1 < ... < TN = t such that for

every i ∈ {0, N − 1},

Ti+1 − Ti +

∫ Ti+1

Ti

‖∇Uε‖L∞dt′ ∼ c. (5.85)

The previous arguments give us that for all i ∈ {0, N − 1},

Yi+1
def
= ‖Xε(x,D)Ωε‖L̃∞([Ti,Ti+1],Cs−1)

+ 2Cν0,F e
TiDF ‖Xε

τ,λ‖L∞([Ti,Ti+1],Cs)

≤ Cν0,F
(
Yi + 1

)
e
Cν0,F (e

TiDF +

∫ Ti+1

Ti

‖∇Uε‖L∞

)
dt′

, (5.86)

and by induction (using that t = TN ) we get that:

Y (t)
def
= ‖Xε(x,D)Ωε‖L̃∞([0,t],Cs−1)

+ ‖Xε
τ,λ‖L∞([0,t],Cs)

≤ ‖Xε(x,D)Ωε‖L̃∞([0,t],Cs−1)
+ 2Cν0,F e

TN−1DF ‖Xε
τ,λ‖L∞([0,t],Cs)

≤ CNν0,F (1 + Y (0))eCν0,F
(
eT0DF + ...+ eTN−1DF

)
e

∫ t

0
‖∇Uε‖L∞dt′

≤ C0C
N
ν0,F e

Cν0,FNe
tDF

e

∫ t

0
‖∇Uε‖L∞dt′

. (5.87)

Finally, summing (5.85) for i ∈ {0, N − 1} we obtain that:

N ∼ 1

c

(
t+

∫ t

0
‖∇Uε‖L∞dt′

)
.

Substituting this in the previous result and estimating the oscillating part as before finally
gives that:

Y (t) ≤ C0e
N
(
lnCν0,F + Cν0,F e

tDF
)
e

∫ t

0
‖∇Uε‖L∞dt′

≤ C0e
2Cν0,F e

tDF

(
t+

∫ t

0
‖∇Uε‖L∞dt′

)

e

∫ t

0
‖∇Uε,QG‖L∞dt′

≤ C0e
3Cν0,F e

tDF

(
t+

∫ t

0
‖∇Uε‖L∞dt′

)

. (5.88)
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We can estimate the oscillating part: thanks to (3.24)

∫ t

0
‖∇Uε,osc‖L∞dt′ ≤ t

3
4 ‖∇Uε,osc‖L4

tL
∞ ≤ CF (T

γ
ε )

5
4 ε

M
2 ≤ 1,

if 0 < ε ≤ ε0, with ε0 small enough, we end up with:

Y (t)
def
= ‖Xε(x,D)Ωε‖L̃∞([0,t],Cs−1) + ‖Xε

τ,λ‖L∞([0,t],Cs)

≤ C0e
3Cν0,F e

tDF

(
t+ 1 +

∫ t

0
‖∇Uε,QG‖L∞dt′

)

. (5.89)

5.3 End of the proof

We are now able to conclude the argument started with (2.9). First, thanks to the
logarithmic estimate (5.47)

‖∇Uε,QG‖L∞ ≤ C

(
‖Ωε‖L2 + ‖Ωε‖L∞ log

(
e+ 1 +

‖[Xε
t,λ]

−1‖L∞ + Y (t)
)

‖Ωε‖L∞

)
)
. (5.90)

Using that for any A,B > 0 the function x 7→ x ln(A + B
x ) is increasing on ]0,∞[,

and substituting (4.37), (5.38), (5.50) and (5.89) into the previous estimate, there exists
ε0, CF > 0 and M such that if condition (4.35) is satisfied, then for all t ≤ min(Tε, T

γ
ε ),

‖∇Uε,QG‖L∞ ≤ CF

(
1+etDF log

(
e+1+C0e

3Cν0,F e
tDF
(
t+ 1 +

∫ t

0
‖∇Uε,QG‖L∞dt′

)
)
)

≤ CF

(
1 + etDF logC0 + 3Cν0,F e

2tDF
(
t+ 1 +

∫ t

0
‖∇Uε,QG‖L∞dt′

)
)

≤ Cν0,F te
2tDF + 3Cν0,F e

2tDF

∫ t

0
‖∇Uε,QG‖L∞dt′. (5.91)

The Gronwall estimates then implies that for all t ≤ min(Tε, T
γ
ε ),

‖∇Uε,QG‖L∞ ≤ Cν0,F te
2tDF e3Cν0,F te

2tDF ≤ e4Cν0,F te
2tDF

. (5.92)

Remark 15 We can afford such a rough estimates as x ≤ ex, because the precision is
forced by the term of size ee

t
.

Following (2.9), for all t ≤ min(Tε, T
γ
ε ), we have Vε(t) ≤ Kε = −2 ln ε and thanks to

(3.24):

Vε(t) =

∫ t

0
‖∇Uε(t′)‖L∞dt′ ≤ (T γε )

5
4 ε

M
2 +T γε e

4Cν0,FT
γ
ε e

2DF T
γ
ε ≤ 2T γε e

4Cν0,FT
γ
ε e

2DF T
γ
ε

≤ 2γ ln(ln | ln ε|)e4Cν0,Fγ ln(ln | ln ε|)(ln | ln ε|)
2DF γ

(5.93)
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If γ is so small that 2DF γ < 1 and 4Cν0,F γ <
1
2 , as there exists a constant C such that

for all x ≥ e,

ln(x)e4Cν0,Fγ ln(x)x
2DF γ ≤ Ce

x
2 ,

we end up with:

Vε(t) ≤ 2γC| ln ε| 12 ≤ Kε

2
, (5.94)

if ε is small enough, which is the bound announced in (2.10) that allows us to obtain
that T ∗

ε > T γε . The last part of the proof is done exactly as in [10]: indeed the non-local
operator is not a problem for L2-estimates. This concludes the proof of the theorem. �

6 Appendix

The first part is devoted to a quick presentation of the Littlewood-Paley theory. In the
second section we briefly recall general definitions for vortex patches and the last section
provides new properties for the operator Γ and recalls the a priori estimates from [16].

6.1 Littlewood-Paley theory

In this section, Cs is the usual Hölder space, which can also be defined through the
Littlewood-Paley theory if s /∈ N (we refer to [17, 4] for a complete presentation of the
theory) :

Cs = {u ∈ S ′(R3), ‖u‖Cs
def
= sup

q≥−1
2qs‖∆qu‖L∞ <∞},

where ∆q is the classical dyadic frequency localization operator defined as follows : con-
sider a smooth radial function χ supported in the ball B(0, 43 ), equal to 1 in a neigh-
borhood of B(0, 34 ) and such that r 7→ χ(r.e1) is nonincreasing over R+. If we define

ϕ(ξ) = χ( ξ2 )− χ(ξ), ϕ is supported respectively in the annulus C(0, 34 , 83) (equal to 1 in a
sub-annulus), and satisfiy that for all ξ ∈ R3,

χ(ξ) +
∑

q≥0

ϕ(2−qξ) = 1 and if ξ 6= 0,
∑

q∈Z

ϕ(2−qξ) = 1.

Then for all tempered ditribution we define :

• ∆−1 = F−1
(
χ(ξ)û(ξ)

)
and ∀q ≤ −2, ∆q = 0,

• ∀q ≥ 0, ∆q = F−1
(
ϕ(2−qξ)û(ξ)

)
and Squ =

∑

p<q−1

∆pu = χ(2−qD)u,

• ∀q ∈ Z, ∆̇q = F−1
(
ϕ(2−qξ)û(ξ)

)
and Ṡqu =

∑

p<q−1

∆̇pu = χ(2−qD)u.

Hölder spaces are particular cases of inhomogeneous Besov spaces: Cs = Bs
∞,∞, where

Bs
p,r = {u ∈ S ′(R3), ‖u‖Bs

p,r

def
= ‖

(
2qs‖∆qu‖Lp

)
q≥−1

‖ℓr <∞}.
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The homogeneous Besov spaces are defined as follows:

Ḃs
p,r = {u ∈ S ′(R3), ‖u‖Ḃs

p,r

def
= ‖

(
2qs‖∆̇qu‖Lp

)
q∈Z

‖ℓr <∞}.

When the regularity index s is negative, another way to express the Besov norm involves
the operator Sq instead of ∆q (for more details we refer to [4] Proposition 2.76 and to
2.31 for the homogeneous case):

Proposition 10 There exists a constant C > 0 such that for all s < 0, p, r ∈ [1,∞] and
u, then u ∈ Bs

p,r if and only if

(
2qs‖Squ‖Lp

)
q≥−1

∈ ℓr.

Moreover, we have
‖
(
2qs‖Squ‖Lp

)
q
‖ℓr ∼ ‖u‖Bs

p,r
. (6.95)

Remark 16 Due to the supports, we easily obtain that

∆j∆l = ∆̇j∆̇l = 0 if |j − l| ≥ 2. (6.96)

• For any functions f, g, and any α ∈ {−1, 0, 1}, the product ∆qf.∆q+αg has its
frequencies in a ball of size 2q.

• For any functions f, g, the product Sq−1f.∆qg has its frequencies in an annulus of
size 2q.

We will end this section with the Bony decomposition, which comes from the fact that
for all distributions u, v, we can write the product as follows:

uv = (
∑

q≥−1

∆qu)(
∑

l≥−1

∆lv).

In fact, a more efficient way to write this product is the following Bony decomposition,
where we basically set three parts according to the fact that the frequency q of u is
smaller, comparable or bigger than the frequency l of v:

uv = Tuv + Tvu+R(u, v), (6.97)

where

• T is the paraproduct : Tuv =
∑

p≤q−2∆pu∆qv =
∑

q Sq−1u∆qv,

• R is the remainder : R(u, v) =
∑

|p−q|≤1∆pu∆qv.

A similar decomposition can be defined with the homogeneous Littlewood-Paley opera-
tors.
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6.2 Vortex patches

We refer to [17] for a full description of the persistence of the vortex patches structure
in the case of the Euler system, to [25] and [39] for the case of the Navier-Stokes system,
and to [29] for the case of the inviscid Primitive Equations (ν = ν ′ = 0). In the present
paper, we take here the same definitions of vortex patches and tangential regularity as
in [29] : a potential vortex patch will be defined with respect to the scalar potential
vorticity instead of the vorticity (rotational of the velocity). The potential vorticity is
called a vortex patch if it is the characteristic function of a regular open set :

Definition 1 We say that Ω0 is a vortex patch of class Cs if, for some s ∈]0, 1[,

Ω0 = Ω0,i1D +Ω0,e1R3−D,

where Ω0,i ∈ Cs(D), Ω0,e ∈ Cs(R3−D) and D is an open bounded domain of class Cs+1.

In our results we will use estimates involving the tangential regularity with respect to a
set X of vectorfields :

Definition 2 If X = (Xλ)λ=1,...,N is a finite family of vectorfields we will say that this
family is admissible if and only if (× is the usual vector product in R3) :

[X]−1 def
=
( 2

N(N − 1)

∑

λ<λ′

|Xλ ×Xλ′ |2
)− 1

4
<∞.

If s ∈]0, 1[ and X is an admissible family of vectorfields Cs we define the space :

Cs(X) = {w ∈ L∞ such that Xλ(x,D)w
def
= div(w ⊗Xλ) ∈ Cs−1}

and as corresponding norm we take :

‖w‖Cs(X)
def
= ‖w‖L∞ + ‖[X]−1‖L∞ +

N∑

λ=1

(
‖Xλ‖Cs + ‖Xλ(x,D)w‖Cs−1

)
. (6.98)

Remark 17 We took here the same definition as in [29] for Xλ(x,D)w which is a slightly
simplified formulation of the definitions from [17], or [39].

6.3 Definition and additional properties for the non-local operator Γ

6.3.1 Product estimates

We refer to [16] for a study of operator Γ where we give various formulations. This
operator is defined as

Γ = ∆∆−1
F (ν∂21 + ν∂22 + ν ′F 2∂23).

First we decompose Γ into its local and non-local parts:

Γ = ΓL + (ν − ν ′)F 2(1− F 2)Λ2,
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where we denote:
{
ΓL = ν∂21 + ν∂22 +

(
(1− F 2)ν + F 2ν ′

)
∂23 ,

Λ = ∂23(−∆F )
− 1

2 .
(6.99)

We also refer to [16] for the following expressions of Λ as singular or convergent integrals,
directly related to the alternative expression of homogeneous Besov norms involving finite
differences:

Λf(x) = lim
ε→0

∫

|y|≥ε
K(y)

(
f(x− y)− f(x)

)
dy

=
1

2

∫

R3

K(y)

(
f(x− y) + f(x+ y)− 2f(x)

)
dy, (6.100)

where the kernel K is defined for all y ∈ R3 by (C is a universal constant):

K(y) = −2C

F 3

y21 + y22 − 3
F 2 y

2
3(

y21 + y22 +
1
F 2 y

2
3

)3 . (6.101)

The main feature of [16] was an estimate of the commutator of Λ with a lagrangian
change of variable (crucial to obtain the apriori estimates), but we also obtained the
following result that allows to consider commutators like Γ(fg)− fΓg:

Proposition 11 ([16] Section 3.3.2) For any smooth functions f, g we can write:

Λ(fg) = fΛg + gΛf +M(f, g),

where the bilinear operator M is defined for all x ∈ R3 by:

M(f, g)(x) =

∫

R3

K(y)
(
f(x− y)− f(x)

)(
g(x− y)− g(x)

)
dy. (6.102)

Moreover there exists a constant CF such that for all f, g:

‖M(f, g)‖Lp ≤ CF
√

‖f‖Lp‖∇f‖Lp‖g‖L∞‖∇g‖L∞ , (6.103)

In this article we will need more precise estimates where we can in particular, even if
M(f, g) =M(g, f), make the derivatives pound differently on f or g, which is the object
of the following result:

Proposition 12 There exists a constant CF such that for all f, g and all p, p1, P2, r, r ∈
[1,∞] and η satisfying: 




1

p
=

1

p1
+

1

p2
, 1 =

1

r
+

1

r
,

2− η − 3

r
∈]0, 1[,

then we have
‖M(f, g)‖Lp ≤ CF ‖f‖

Ḃ
2−η− 3

r
p1,r

‖g‖
Ḃ

2+η− 3
r

p2,r

. (6.104)
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Remark 18 In the present article we will use the previous proposition in the case p =
p1 = p2 = ∞, r = ∞, r = 1 and for η = 2− (s+ γ) where s ∈]0, 1[ and σ > 0 is such that
s+ σ < 1. In this case we end up with:

‖M(f, g)‖L∞ ≤ CF ‖f‖Ḃs+σ
∞,∞

‖g‖
Ḃ

1−(s+σ)
∞,1

. (6.105)

Proof : let f, g be smooth functions. From the expression of the kernel, there exists a
constant CF > 0 such that, thanks to the relations between the parameters:

‖M(f, g)‖Lp
x
≤ CF

∫

R3

‖f(.− y)− f(.)‖Lp1
x

|y|2−η ·
‖g(. − y)− g(.)‖Lp2

x

|y|2+η dy

≤ CF

(∫

R3

‖f(.− y)− f(.)‖r
L
p1
x

|y|(2−η)r dy

) 1
r
(∫

R3

‖g(. − y)− g(.)‖r
L
p2
x

|y|(2+η)r dy

) 1
r

. (6.106)

If we denote s1 = 2−η− 3
r and s2 = 2+η− 3

r then (2−η)r = s1r+3 and (2+η)r = s2r+3.
Moreover s1 + s2 = 1 so if 1− 3

r < η < 2− 3
r both regularity exponents are in ]0, 1[ and

we can use the following result

Theorem 2 ([4], 2.36) Let s ∈]0, 1[ and p, r ∈ [1,∞]. There exists a constant C such
that for any u ∈ C′

h,

C−1‖u‖Ḃs
p,r

≤ ‖‖τ−yu− u‖Lp

|y|s ‖
Lr(Rd; dy

|y|d
)
≤ C‖u‖Ḃs

p,r
.

This concludes the proof. �

6.3.2 A priori estimates

For the confort of the reader we state here the a priori estimates obtained in [16]. We
consider the following transport diffusion system:

{
∂tu+ v.∇u− Γu = F e,

u|t=0 = u0
(6.107)

Let us introduce Mvisc =
max(ν,ν′)
min(ν,ν′) .

Proposition 13 (Lp-estimates) Assume that u solves (6.107) on [0, T ] with u0 ∈ Lp and
that ‖v‖L∞

T
L6 ≤ C ′ (for some constant C ′) with div v = 0. Then there exists a constant

D (depending on F , Mvisc and C
′) such that for all t ∈ [0, T ],

‖u‖L∞
t Lp ≤ Dt(‖u0‖Lp +

∫ t

0
‖F e(τ)‖Lpdτ). (6.108)

Theorem 3 (Smoothing effect) Assume that u solves (6.107) on [T1, T2] with v satisfying
div v = 0 and ‖v‖L∞([T1,T2],L6) ≤ C ′, u(T1) ∈ Lp, F e ∈ L1

locL
p (for p ∈ [1,∞]). There

exist two constants C and CF such that if T2 − T1 > 0 is so small that:
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1. 2CC ′(T2 − T1)
1
4 ≤ ν

3
4
0 ,

2. e
C

∫ T2
T1

‖∇v(τ)‖L∞ − 1 ≤ 1
CFMvisc

.

Then, for all r ∈ [1,∞], there exists a constant Cr,F > 0 such that for all t ∈ [T1, T2],

(ν0r)
1
r ‖u‖

L̃r([T1,t],B
2
r
p,∞)

≤ Cr,F

(
‖u(T1)‖Lp +

∫ t

T1

‖F e(τ)‖Lpdτ

)
. (6.109)

Remark 19 In the particular case r = 1, p = ∞ we obtain that:

ν0‖u‖L̃1([T1,t],C2
∗)

≤ CF

(
‖u(T1)‖L∞ +

∫ t

T1

‖F e(τ)‖L∞dτ

)
. (6.110)

Theorem 4 (a priori estimates) Let s ∈]−1, 1[. Assume that u solves (6.107) on [T1, T2]
with v satisfying div v = 0 and ‖v‖L∞([T1,T2],L6) ≤ C ′, u(T1) ∈ Bs

p,∞. Assume in addition

that the external force term can be decomposed into F e+Ge, with F e ∈ L̃1([T1, T2], B
s
p,∞)

(for p ∈ [1,∞]) and Ge ∈ L̃∞([T1, T2], B
s+ 2

r
−2

p,∞ ) for r ∈ [1,∞] with s+ 2
r ∈]− 1, 1[. There

exist two constants Cs and CF such that if T2 − T1 > 0 is so small that:

1. 2CC ′(T2 − T1)
1
4 ≤ ν

3
4
0 ,

2. e
C

∫ T2
T1

‖∇v(τ)‖L∞ − 1 ≤ 1
CFMvisc

,

3. T2 − T1 +
∫ T2
T1

‖∇v‖L∞dτ ≤ Cs,ν0

Then, there exists a constant Cν0,F > 0 such that for all r ∈ [1,∞] with s + 2
r ∈]− 1, 1[

and t ∈ [T1, T2],

(ν0r)
1
r ‖u‖

L̃r([T1,t],B
s+2

r
p,∞ )

≤ Cν0,F

(
‖u(T1)‖Bs

p,∞
+ ‖F e‖L̃1([T1,t],Bs

p,∞) +
1

ν0
‖Ge‖L̃∞([T1,t],B

s−2
p,∞)

)
.

(6.111)

The author wishes to thank R. Danchin, I. Gallagher, and T. Hmidi for useful dis-
cussions.
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