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Université de Lorraine, Centre de Recherche en Automatique de Nancy, France

Abstract. This paper proposes a unified framework to achieve chaos
synchronization of both classes of chaotic discrete-time systems, namely
maps involving polynomial nonlinearities and piecewise linear maps. It
is shown that all of those chaotic systems can be rewritten as a poly-
topic Linear Parameter Varying (LPV) system. A unified approach to
tackle chaos synchronization problems encountered in communication
is derived.

1 Introduction

Most of chaos-based cryptosystems proposed since the 90’s require synchronization
of complex sequences. Indeed, following the principle of symmetric ciphers [1], they
consist in scrambling an information with a chaotic digital sequence. The most pop-
ular techniques proposed so far are additive masking, parameter modulation, chaotic
switching, two-channel transmission, message-embedding. An overview of the differ-
ent methods can be found in the survey papers [2–5] or in the book [6]. In the year
1997, it has been shown that chaos synchronization can be formulated as a state re-
construction problem (see the pioneering works [7][8][9][10]). Since then, many classes
of observers have been proposed to tackle the synchronization problem. The point lies
in that the structure and the design of the observers depend on the nonlinearities in-
volved in the chaotic model. A case-by-case study must be carried out.
The aim of this paper is to show that a unified and efficient framework can be proposed
to achieve chaos synchronization for a large class of discrete-time chaotic systems. In
particular, the classes of chaotic systems involving polynomial nonlinearities (Duff-
ing map, Henon map, Burger map,. . . ) and piecewise linear maps (Lozi map, Zigzag
map, Tent map, Baker map, Cat map, . . . ) can be addressed within a same frame-
work, called LPV framework. Linear Parameter Varying (LPV) systems are linear
models whose state representation depends on a parameter vector which can vary
in time. A special attention has been paid on LPV systems for years because they
are very handy for control purposes [11] [12] [13] [14] [15] [16] and observation or
filtering purposes [17] [18] [19] [20]. In the special context of chaos synchronization,
the problem of observers synthesis is particularly important. Indeed, the observers
play the role of the receivers. It will be shown that, under some specific conditions,
a chaotic system can be rewritten in the form of a polytopic LPV model. A poly-
topic LPV system is an LPV system such that the time-varying parameter admits
a convex description. It turns out that, in such a case, the corresponding observer

a gilles.millerioux@univ-lorraine.fr



2 Will be inserted by the editor

admits a simple Luenberger-like description called polytopic observer. The gains of
the polytopic observer are simply derived from the solution of a convex optimization
problem which is expressed in terms of Linear Matrix Inequalities (LMI) [21]. And
yet, very efficient numerical tools are available to solve LMI (see [22] or the Yalmip
Matlab toolbox). Besides, if we are not only concerned with stability but also with
performances like robustness with respect to mismatched parameters or with respect
to noise, the structure of the observer is kept unchanged. The gains are still derived
from LMI but they are adapted to meet the required performances (see [23] for de-
tails). Thus, the simplicity of the observers design, that is of the receiver, is preserved.
All those considerations highlight the interest of the LPV framework.
The outline of the paper is the following. In Section 2, background on LPV systems
and state reconstruction related problems are recalled. Then, the LPV framework is
particularized to chaotic systems and it is shown how the issue of chaos synchroniza-
tion can be addressed with such a framework. Section 3 is devoted to applications of
the LPV framework. Several examples, from basic to advanced ones, are proposed in
a tutorial-like form to clarify the main points. An example involving a chaos-based
cryptosystem illustrates the use of the LPV framework in communication.

2 Chaotic systems and LPV framework

2.1 Background on polytopic LPV systems

LPV systems are classes of systems obeying the following state space equations

{

xk+1 = A(ρk)xk +Buk

yk = Cxk +Duk

(1)

where xk ∈ R
n is the state vector, uk ∈ R

m is the control input, yk ∈ R
p is the output

vector, A ∈ R
n×n is the dynamical matrix depending on the possibly time varying

parameter vector ρk =
[

ρ
(1)
k , ρ

(2)
k , ..., ρ

(Lρ)
k

]

∈ R
Lρ , B ∈ R

n×m is the input matrix,

C ∈ R
p×n is the output matrix and D ∈ R

p×m is the direct transfer matrix. The
parameter ρk is assumed to be available at every times k.

Remark 1 Let us note that (1) can be extended to affine systems and the time-
varying parameter can be involved in all the state space matrices. In such a case, the
following state space equations must be considered

{

xk+1 = A(ρk)xk +B(ρk)uk + E(ρk)

yk = C(ρk)xk +D(ρk)uk

(2)

In the sequel, we will focus on (1) for simplicity but the results can be extended in a
straightforward way to (2).
The dependence of A(ρk) with respect to ρk can take many forms, in particular,
polytopic. The polytopic decomposition refers to a dependence on ρk of A(ρk) which
reads

A(ρk) =

N
∑

i=1

ξ
(i)
k (ρk)Ai (3)

where ξk belongs to the compact set Φ

Φ =

{

µk ∈ R
N , µk =

[

µ
(1)
k , . . . , µ

(N)
k

]

, µ
(i)
k ≥ 0 ∀ i and

N
∑

i=1

µ
(i)
k = 1

}
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Owing to the convexity of Φ, the set of matrices {A1, . . . , AN} defines a polytope
denoted DA and the matrices Ai correspond to the vertices of DA. Hereafter, for the

sake of simplicity and whenever possible, the parameter dependency on ρk of ξ
(i)
k will

be omitted, that is the notation ξ
(i)
k will be used instead of ξ

(i)
k (ρk).

The conditions under which a polytopic decomposition can apply are now explained.

If the components ρ
(i)
k (i = 1, . . . , Lρ) of ρk belong to a bounded range [ρ

(i)
min, ρ

(i)
max],

thus ρk belongs to a bounded set Ωρ ⊂ R
Lρ . And then, Ωρ can always be embedded

in a polytope Dρ with vertices {ρoi , . . . , ρoN } ∈ R
Lρ . It holds that

ρk =
N
∑

i=1

ξ
(i)
k ρoi , ξk ∈ Φ (4)

Furthermore, we can notice that A(ρk) in (1) can always be written as

A(ρk) = Ā(0) +

Lρ
∑

j=1

ρ
(j)
k Ā(j) (5)

where Ā(0) and Ā(j) are constant matrices obtained from A(ρk). Ā
(0) is the matrix

derived from A(ρk) by keeping its constant entries and setting to zero its time varying
entries. Ā(j) is the matrix derived from A(ρk) by setting to zero its constant entries

and to unity the one corresponding to the location of ρ
(j)
k in A(ρk). Finally, after

substituting (4) into (5), the vertices Ai of (3) can be expressed as

Ai = Ā(0) +

Lρ
∑

j=1

ρ(j)oi
Ā(j) (6)

2.2 Polytopic LPV description of chaotic systems

Let us consider the general nonlinear dynamical system assumed to exhibit a chaotic
dynamics

{

xk+1 = g(xk, uk)

yk = Cxk +Duk

(7)

where xk ∈ X ⊆ R
n is the state vector, uk ∈ R

m is the input, yk ∈ R
p is the measured

signal. The aim is to give some conditions under which (7) can be rewritten as (1).

The following proposition applies

Proposition 1 If the following conditions are fulfilled

– i) there exists a function ρ : Rn → R
Lρ such that A(ρ(xk))xk +Buk = g(xk, uk)

– ii) ρ(xk) depends only on measured signals
– iii) ρ(xk) lies in a bounded set Ωρ when xk lies in the admissible set X ⊆ R

n

then the nonlinear system (7) admits an LPV form (1) with ρk = ρ(xk) and with
polytopic description (3).

Proof 1 The key point is that, for a chaotic system, xk belongs to a chaotic attractor
Ω and thus X = Ω. If Condition iii) is satisfied, Ωρ is bounded and thus can always be
embedded in a polytope Dρ. Furthermore, if Condition ii) is satisfied, ρk is available
at every times k. Finally, Condition i) is explicit for obtaining an LPV form.
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Two problems must be handled. First, it is worth pointing out that, most often, the
LPV description is not unique and multiple functions ρ can be candidates. Such a
consideration will be clarified and illustrated in Example 1 of Section 3. Example 1
will also highlight the fact that chaotic systems involving polynomial nonlinearities
admit a polytopic LPV description. Secondly, it may happen that obtaining analyt-
ically the polytope Dρ is either a hard task or is not possible at all. Moreover, we
should be concerned, for the sake of conservatism, to get a minimal polytope. Let
us assume that we can get, by simulation or experimentally, a sufficient number of
vectors ρk, collected in a finite set Γρ of cardinality Nρ, to describe the set Ωρ with
proper accuracy. The minimal polytope D∗

ρ wherein Ωρ is embedded can thereby be
considered as the convex hull of the set of points Γρ. We recall that an element of a
finite set of points is an extreme point if it is not a convex combination of other points
in this set. Hence, finding D∗

ρ amounts to finding the extreme points of Γρ. It turns
out that the computation can be performed by standard methods. For instance, the
built-in function convhull of Matlab can be used to that purpose. Such a point will
be illustrated in Example 2 of Section 3.

Finally, it is clear that switched linear and switched affine systems also admit a
description as (1) (or (2)) with a polytopic dependence (3) of the parameter. The
only distinction lies in that the set Ωρ is not a continuum but a finite set. Hence,

the set Φ still holds with µ
(i)
k taking only extreme values 0 or 1. Such a point will be

clarified and illustrated in Example 3 of Section 3.

2.3 Chaos synchronization with polytopic observers

Recalling that chaos synchronization can be formulated as a state reconstruction is-
sue and so as an observer synthesis, we propose below an observer, called polytopic
observer. The interest of such an observer is that it is suited for polytopic LPV mod-
els and so, for all the chaotic maps admitting such models. The synthesis principle is
detailed in the simplest situation but enhancements can be proposed to handle the
problems related to mismatch parameters, noisy context, performances guarantees
(speed of convergence, . . . ) [23].
Let us assume that Proposition 1 holds. Hence, the matrix A(ρk) in (1) can be rewrit-
ten in the polytopic form (3). A polytopic observer for (1) obeys the following state
space description

{

x̂k+1 = A(ρk)x̂k +Buk + L(ρk)(yk − ŷk)

ŷk = Cx̂k +Duk

(8)

where x̂k ∈ R
n, ŷk ∈ R

p and L is a time-varying gain matrix depending on ρk which
reads

L(ρk) =
N
∑

i=1

ξ
(i)
k (ρk)Li, ξk ∈ Φ (9)

and where the ξ
(i)
k (ρk) in (9) coincide, for every discrete times k, with the ones involved

in the polytopic decomposition (3) of A(ρk). Let us point out that, such a requirement
can always be satisfied whenever Condition ii) of Proposition 1 holds. Indeed, if ρk is
available, the vertices of the polytope Dρ being known, the polytopic decomposition
(4) can be performed on-line. Then, it’s a simple matter to see that, from (1) and (8),
the reconstruction error ek = xk − x̂k is governed by the dynamics

ek+1 = (A(ρk)− L(ρk)C) ek (10)
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The dynamics of the state reconstruction is nonlinear since A and L depend on
ρk. However, (10) can be viewed as an autonomous LPV polytopic system with state
vector ek ∈ R

n. Indeed, from (3), (9) and (10), and taking into account the coincidence

between the ξ
(i)
k involved in (3) and (9), we get that

ek+1 =

N
∑

i=1

ξ
(i)
k (ρk)(Ai − LiC)ek, ξk ∈ Φ (11)

Global Asymptotical Stability (GAS) around the equilibrium point e∗ = 0 can be
ensured by a suitable choice of the gains Li (i = 1, . . . , N). To this end, the following
standard theorem involving Linear Matrix Inequalities [21] is recalled.

Theorem 1 [23] If there exist symmetric matrices Pi, matrices Gi and matrices Fi

fulfilling, ∀ (i, j) ∈ {1...N} × {1...N}, the Linear Matrix Inequalities
[

Pi (•)
T

GiAi − FiC GT
i +Gi − Pj

]

> 0 (12)

then the polytopic observer (8) with gain L(ρk) =
N
∑

i=1

ξ
(i)
k (ρk)Li and Li = G−1

i Fi

ensures that the system (10) is GAS.

Actually, (12) ensures the existence of a Lyapunov function V : Rn × R
L → R+

defined by V (ek, ρk) = eTk P (ρk)ek with P (ρk) =
N
∑

i=1

ξ
(i)
k (ρk)Pi and ξk ∈ Φ, called

poly-quadratic Lyapunov function, fulfilling for all ek ∈ R
n, for all ξk ∈ Φ

V (ek+1, ρk+1)− V (ek, ρk) < 0 (13)

which is sufficient for Global Asymptotical Stability.
Such an observer can be useful for chaos-based communication purposes as it will be
illustrated in Example 4 of Section 3.

3 Applications

3.1 Example 1

This example aims at clarifying the problem of the selection of good candidate func-
tions ρ which fulfill conditions of Proposition 1.

Let us consider the chaotic system derived from the Duffing map and involving
polynomial nonlinearities



















x
(1)
k+1 = x

(2)
k

x
(2)
k+1 = −2

(

x
(1)
k

)3

+ 2 x
(1)
k + 0.3 x

(1)
k x

(2)
k

yk = x
(1)
k

(14)

The corresponding attractor Ω is depicted in Figure 1 (a). Let ρk be the time-varying
parameter vector defined as

ρ
(1)
k = −2

(

x
(1)
k

)2

+ 2

ρ
(2)
k = 0.3 x

(1)
k
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Then, the map (14) can be rewritten as an LPV system (1) with

A(ρk) =

[

0 1

ρ
(1)
k ρ

(2)
k

]

, B = 0, C = [1 0] and D = 0

The parameter ρk is available from the output yk. Indeed, ρ
(1)
k = −2 (yk)

2
+ 2 and

ρ
(2)
k = 0.3 yk. Furthermore, ρk belongs to a set Ωρ as depicted in Figure 1 (b) which

clearly highlights the fact that Ωρ is bounded and can be embedded in a polytope Dρ.
As a conclusion, such a definition for ρk fulfills all the conditions of Proposition 1.

Fig. 1. (a) Chaotic attractor Ω (b) Set Ωρ

Another option is to define ρk as the one-dimensional vector (scalar) ρ
(1)
k = −2

(

x
(1)
k

)2

+

2 + 0.3 x
(2)
k . That gives

A(ρk) =

[

0 1

ρ
(1)
k 0

]

, B = 0, C = [1 0] and D = 0

However, such a definition does not meet the condition ii) of Proposition 1, insofar

as x
(2)
k is not available from measured signals.

3.2 Example 2

This example aims at illustrating the method to get the minimal polytope D∗

ρ. Let
us consider the following system derived from the "Tinkerbell map" given in [25] [24]















































x
(1)
k+1 =

(

x
(1)
k

)2

−
(

x
(2)
k

)2

+ ax
(1)
k + bx

(2)
k

x
(2)
k+1 = 2x

(1)
k x

(2)
k + cx

(1)
k + dx

(2)
k

x
(3)
k+1 = 0.1bx

(2)
k − 0.1

(

x
(2)
k

)2

+ 0.1x
(3)
k

x
(4)
k+1 = 0.5x

(1)
k + 0.1x

(2)
k + 0.3x

(4)
k

y
(1)
k = x

(1)
k

y
(2)
k = x

(2)
k

(15)

with a = 0.9, b = −0.6013, c = 2 and d = 0.5. For such a setting, the system exhibits a
chaotic behavior. The objective is to rewrite (15) in the LPV form (1) with polytopic
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dependence (3) and to find the minimal polytope D∗

ρ. To this end, let us define

θ
(1)
k = a+ x

(1)
k

θ
(2)
k = b− x

(2)
k

(16)

Then, (15) can be rewritten as (1) with the time-varying parameter vector ρk such as

A(ρk) =









ρ
(1)
k ρ

(2)
k 0 0

c ρ
(3)
k 0 0

0 ρ
(4)
k 0.1 0

0.5 0.1 0 0.3









where



















ρ
(1)
k = θ

(1)
k

ρ
(2)
k = θ

(2)
k

ρ
(3)
k = d+ 2(θ

(1)
k − a)

ρ
(4)
k = 0.1θ

(2)
k

and

C =

[

1 0 0 0
0 1 0 0

]

The matrices B and D are zero since the system (15) is autonomous. The parameter

ρk is available from the output yk and ρ(xk) is bounded. Indeed, θ
(1)
k = a + y

(1)
k

and θ
(2)
k = b − y

(2)
k . By iterating (15), 2000 vectors ρk are collected and gathered in

the set Γρ which is bounded. The function convhull of Matlab is used to find the
minimal polytope D∗

ρ of Dρ. It succeeds in giving 108 vertices ρoi . Both the set Ωρ

and the minimal polytope D∗

ρ in the (ρ
(1)
k , ρ

(2)
k ) subspace are depicted in Figure 2 (a).

Another polytope Dρ, that is non minimal in such a case, can be defined as depicted
in Figure 2 (b). The number of vertices reduces to 5 but the stability conditions (12)
would be more conservative. To conclude, such a choice for ρk fulfills the conditions
of Proposition 1.

Fig. 2. (a) Set Ωρ and polytope D
∗

ρ (b) Polytope Dρ with 5 vertices

3.3 Example 3

This example aims at illustrating that a switched linear systems also admits an LPV
form like (1) with polytopic description (3). Let us consider the following map de-
rived from the "Lozi map" given in [26] after replacing the affine part "1" by a new



8 Will be inserted by the editor

variable x
(3)
k



























x
(1)
k+1 = −1.7

∣

∣

∣
x
(1)
k

∣

∣

∣
+ x

(2)
k + x

(3)
k

x
(2)
k+1 = 0.5 x

(1)
k

x
(3)
k+1 = x

(3)
k

yk = 2 x
(1)
k

(17)

Define ρk as the one-dimensional time-varying parameter such as ρk = ρ
(1)
k with

ρ
(1)
k =

{

−1.7 if x
(1)
k ≥ 0

1.7 if x
(1)
k < 0

Then, (17) can be rewritten in the form (1) with

A(ρk) =





ρ
(1)
k 1 1
0.5 0 0
0 0 1



 , B = 0, C = [2 0] and D = 0

The vector ρk only takes two specific values ρmin = − 1.7 and ρmax = 1.7. Hence,
Ωρ = {ρmin, ρmax} is not a continuum but reduces to a finite set of two elements. The
vertices of the polytope Dρ coincide with Ωρ. The vertices are ρo1 = ρmin = − 1.7
and ρo2 = ρmax = 1.7. Such a choice for ρk fulfills all the conditions of Proposition 1.
In particular, ρk is available from the output yk. Indeed,

ρ
(1)
k =

{

−1.7 if yk ≥ 0

1.7 if yk < 0

Besides, ρ(xk) is clearly bounded. To conclude, such a choice for ρk fulfills the condi-
tions of Proposition 1.

3.4 Example 4

This example aims at illustrating the use of polytopic observers to ensure chaos
synchronization for a chaos-based switching cryptosystem.

The general principle is recalled on Figure 3. The transmitters 1 and 2 are de-

Fig. 3. Secure communication setup
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scribed by Υ1 and Υ2 respectively. Let us denote with x
j
k the state vector of the system

Υj and with x
(i,j)
k the ith component of xj

k for the system Υj .

Υ1































x
(1,1)
k+1 = −1.4

(

x
(1,1)
k

)2

+ x
(2,1)
k + x

(3,1)
k

x
(2,1)
k+1 = 0.3 x

(1,1)
k

x
(3,1)
k+1 = x

(3,1)
k

y1k =0.4 x
(1,1)
k

(18)

and

Υ2



































x
(1,2)
k+1 = −0.825x

(1,2)
k − 0.296

(

x
(1,2)
k

)2

− x
(2,2)
k + 1.04

(

x
(1,2)
k

)2

x
(2,2)
k

− 1.04
(

x
(1,2)
k

)4

x
(2,2)
k

x
(2,2)
k+1 = 1.127 x

(1,2)
k

y2k = 0.5 x
(1,2)
k

(19)

The information mk is binary and then, only takes two values m1 = 0 or m2 = 1.
According to the current value of the information at time k, the output y1k of Υ1 or
y2k of Υ2 is conveyed through the channel, that is

yk =

{

y1k if mk = m1

y2k if mk = m2

(20)

The objective is to design the receivers assigned to each system in order to recover
mk. To this end, two polytopic observers are well suited. We detail below the off-line
step (design) and the on-line step (deciphering).

Off-line step
Υ1 and Υ2 admit an LPV polytopic description (1) as shown below.

– System Υ1 (18)

The time-varying parameter for System Υ1 (18) is denoted ρ1k. It is defined as a

one-dimensional vector such as ρ1k = ρ
(1,1)
k with

ρ
(1,1)
k = −1.4 x

(1,1)
k

(21)

Then, (18) can be rewritten in the LPV form (1) with polytopic dependence (3) where

A(ρ1k) =





ρ
(1,1)
k 1 1
0.3 0 0
0 0 1



 , C =
[

0.4 0 0
]

The matrices B and D are zero since (18) is autonomous. The parameter ρ1k is avail-

able from the output y1k since ρ
(1,1)
k = −3.5y1k. Furthermore, the vector ρ1k belongs

to the range
[

min(ρ
(1,1)
k ) max(ρ

(1,1)
k )

]

. As a result, the minimal polytope D∗

ρ1 is ob-

tained in a straightforward way. It involves 2 vertices ρ1o1 = min(−1.4 x
(1,1)
k ) and

ρ1o2 = max(−1.4 x
(1,1)
k ) (N = 2) and the vertices Ai of (3) can be directly derived

with (6). As a conclusion, the definition of ρ1k fulfills the conditions of Proposition 1.
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– System Υ2 (19)

The time-varying parameter of System Υ2 (19) is denoted ρ2k and is two-dimensional.
It is defined as

ρ
(1,2)
k = −0.825− 0.296 x

(1,2)
k

ρ
(2,2)
k = −1 + 1.04

(

x
(1,2)
k

)2

− 1.04
(

x
(1,2)
k

)4 (22)

Then, (19) can be rewritten in the LPV form (1) with polytopic dependence (3) where

A(ρ2k) =

[

ρ
(1,2)
k ρ

(2,2)
k

1.127 0

]

, C =
[

0.5 0
]

The matrices B and D are zero since (19) is autonomous. The parameter ρ2k is available

from the output y2k since ρ
(1,2)
k = −0.825 − 0.592 y2k and ρ

(2,2)
k = −1 + 4.16

(

y2k
)2

−

16.64
(

y2k
)4

. After iterating (19), 500 vectors ρ2k are collected and gathered in Γρ2

which is bounded. The function convhull of Matlab is used to find the minimal poly-
tope D∗

ρ2 of Dρ2 . It succeeds in giving 121 vertices ρ2oi . The set Ωρ2 and the minimal

polytope D∗

ρ2 are depicted in Figure 4. The vertices Ai of (3) can be directly derived

with (6). As a conclusion, the definition of ρ2k fulfills the conditions of Proposition 1.

Fig. 4. Set Ωρ2 and polytope D
∗

ρ2 of Υ2

The receivers 1 and 2 are chosen to take the form of polytopic observers (8) for
the respective systems (18) and (19) following the principle as depicted in Figure 3.
To this end, the toolbox Y almip of Matlab is used to solve the LMI (12) from which
the gains L1 and L2 are derived for each system Υ1 and Υ2. It turns out that the LMI
(12) are feasible and the gains L1 and L2 can be performed from by G−1

i Fi according
to Theorem 1.

On-line step
a) state reconstruction
The on-line state reconstruction, and so the chaos synchronization, is performed on-
line by the polytopic observers (8) for each system Υ1 and Υ2. The results are depicted
in Figures 5 and 6. Figure 5 highlights the time evolution of the state reconstruction

errors x
(1,1)
k − x̂

(1,1)
k , x

(2,1)
k − x̂

(2,1)
k and x

(3,1)
k − x̂

(3,1)
k for Υ1 and Figure 6 highlights

the time evolution of the state reconstruction errors x
(1,2)
k − x̂

(1,2)
k and x

(2,2)
k − x̂

(2,2)
k
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Fig. 5. State reconstruction error for Υ1

Fig. 6. State reconstruction error for Υ2

for Υ2.

b) logical detection
A logical detection based on the state reconstruction error is required for the recovery
of mk. It is defined as follows.

m̂k =

{

0 if x
(1,1)
k − x̂

(1,1)
k = 0 and x

(2,1)
k − x̂

(2,1)
k = 0 and x

(3,1)
k − x̂

(3,1)
k = 0

1 if x
(1,2)
k − x̂

(1,2)
k = 0 and x

(2,2)
k − x̂

(2,2)
k = 0

(23)
Actually, in practice, we should replace 0 by a given tolerance ǫ. The information
recovery is illustrated on Figure 7.



12 Will be inserted by the editor

Fig. 7. Recovered information m̂k

4 Conclusion

This paper has presented a unified framework to achieve chaos synchronization of
both classes of chaotic discrete-time systems, namely maps involving polynomial non-
linearities and piecewise linear maps which encompass a very large class of chaotic
systems. It has been derived conditions under which those chaotic systems can be
rewritten as polytopic Linear Parameter Varying (LPV) models. The outcome of the
LPV framework lies in that, the observers, which play the role of the receivers, ad-
mit a simple Luenberger-like description for all those chaotic systems. Hence, such a
framework gives a systematic approach for the design of the receivers. The gains of
the polytopic observers are derived from the solution of a close set of Linear Matrix
Inequalities for which standard solvers exist. The use of the LPV framework has been
illustrated for the chaotic switching cryptosystem but the same methodology applies
for all the well-known chaotic cryptosystems, namely, the parameter modulation, the
two-channel transmission, the message embedding. Finally, the LPV framework is
flexible enough to cope with mismatched parameters or noisy contexts. Indeed, the
structure of the observer is kept unchanged. Only the gains must be adapted but it
turns out that they are still derived from LMI and so, the ease of design is preserved.
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