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Active Structure from Motion:

Application to Point, Sphere and Cylinder

Riccardo Spica, Paolo Robuffo Giordano, and François Chaumette

Abstract—In this paper, we illustrate the application of a
nonlinear active structure estimation from motion (SfM) strategy
to three problems, namely, 3D structure estimation for (i) a point,
(ii) a sphere and, (iii) a cylinder. In all three cases, an appropriate
parametrization reduces the problem to the estimation of a
single quantity. Knowledge of this estimated quantity and of
the available measurements allows for then retrieving the full
3D structure of the observed objects. Furthermore, in the point
feature case, two different parametrizations based on either a
planar or a spherical projection model are critically compared:
indeed, the two models yield, somehow unexpectedly, to different
convergence properties for the SfM estimation task. The reported
simulative and experimental results fully support the theoretical
analysis and clearly show the benefits of the proposed active
estimation strategy, which is in particular able to impose a desired
transient response to the estimation error equivalent to that of a
reference linear second-order system with assigned poles.

I. INTRODUCTION

THE problem of Structure from Motion (SfM), i.e., how

to recover the missing structure of the observed scene

from images taken by a moving camera, is a very classical

and well-studied topic in computer and robot vision. One

solution is to rely on prior knowledge of the scene as, e.g.,

known size of a tracked object. Alternatively, one can exploit

the possibility of observing the same scene from different

points of view, and fuse together the acquired images with the

known camera displacement among them. When processing

consecutive images over time, a possibility is to treat SfM as

a recursive/filtering task: images and camera motion can be

elaborated online for obtaining an incremental estimation of

the scene structure. Other approaches (e.g., bundle adjustment)

rely, instead, on global optimization methods meant to solve

SfM problems by processing altogether information acquired

over an extended time period. A recent discussion about the

pros/cons of both approaches in the context of Visual SLAM

can be found in [1].

Within the first class of (recursive) methods, a vast literature

exists for addressing SfM: for instance, as a non-exhaustive

list, Extended Kalman Filter (EKF)-based solutions have been

proposed in [2]–[5], and, along similar lines, an Unscented

Kalman Filter was exploited in [6]. All these strategies have

the considerable advantage of being ‘aware’, to some extent,

of the measurement and process noise (when modeled as

Gaussian distributions). On the other hand, they require a
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certain level of approximation of the system dynamics which

may affect the estimation performance. Other approaches

exploiting tools from (deterministic) nonlinear observation can

instead be found in [7]–[14] and references therein, while [15]

has tackled the more challenging problem of structure and

motion estimation, i.e., how to simultaneously recover the

missing structure along with the (partially) unknown camera

velocity. This class of methods does not typically involve any

linearization of the system dynamics and allows for some

formal characterization of the estimation error convergence.

However, presence of noise is not explicitly taken into account,

with the filter design being developed in a fully deterministic

setting. A recent experimental comparison of a EKF solution

versus a deterministic nonlinear filter in the context of SfM

for a quadrotor UAV can also be found in [16].

While all these works study the general issue of structure

estimation from motion in different contexts, much less atten-

tion has been devoted to the problem of actively imposing

a desired (e.g., optimized) convergence behavior to a SfM

estimation task by acting on the motion imposed to the camera

and on the employed estimation gains. For instance, in [17] an

active strategy for minimizing the effects of image noise and

discretization errors was proposed and experimentally tested,

but without the aim of also imposing a desired estimation

transient response. In [18], the problem of actively selecting

which features to track for improving the indoor localization

of a wheeled mobile robot is successfully addressed; however,

no attempt is made to actively shape the robot motion so as

to optimize the SfM convergence (the robot navigates in an

‘uninformed’ way w.r.t. the estimation task). In [19] an EKF-

based SfM estimation scheme for a UAV is integrated with a

path planning strategy aiming at minimizing the covariance

matrix of the estimated states at the end of the motion.

Nevertheless, one needs to assume full pre-knowledge of the

surrounding environment (e.g., obstacles) so as to numerically

propagate the EKF filter along all the edges of a randomly

constructed roadmap (the method is, thus, only amenable for

an off-line/planning use).

With respect to this state-of-the-art, this paper then tackles

the problem of designing an online and active algorithm for

structure from known and controlled motion, i.e., assuming

that the camera velocity can be measured and actively modified

by the robot actuators (as it is often the case in robotic applica-

tions). The active component of the scheme makes it possible

to impose an estimation error transient response equivalent

to that of a reference linear second-order system with desired

poles. The developments build upon the theoretical framework

presented in [20]: in a nonlinear context, the observability

properties of the states under consideration are not (in general)

time-invariant but may depend on the current state and on the
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current inputs applied to the system. It is then possible to

simultaneously act on the estimation gains and system inputs

(i.e., the camera velocity for SfM) in order to optimize the

observation process.

The methodology proposed in [20] can be applied to all

those systems in which an invertible function of the unknown

states can appear linearly in the system dynamics, as it is

indeed the case for SfM problems. We then exploit this

fact and propose three concrete active SfM applications: 3D

structure estimation for (i) a point feature, (ii) a spherical

target and, (iii) a cylindrical target. The estimation of the depth

of a point feature has already been well studied in the past

literature (see, e.g., [2], [7], [9], [11], [21], [22]) although by

never considering the active perspective taken in this work.

On the other hand, the machinery proposed for the spherical

and cylindrical objects represents a novel contribution also in

terms of the chosen parameterization. Indeed, we show that

a suitable transformation of the observed features allows to

express the 3D sphere/cylinder structures in terms of image

measurements and of only one unknown constant parameter

(the sphere/cylinder radius) rather than the classical (and time-

varying) scaled orientation of the limb surface in the camera

frame. This, of course, significantly simplifies the SfM task.

We conclude by highlighting that the ability of both charac-

terizing and optimizing the transient response of the estimation

error brings several added values compared to more classical

inactive estimation strategies: for instance, it allows obtaining

the ‘best’ estimation error convergence when subject to real-

world constraints such as limited camera velocity or upper

bounds on the estimation gains due to noise, discretization,

or other typical non-idealities. Furthermore, from a more

theoretical perspective, the proposed methodology can also

be used to get insights into the optimal camera trajectories

needed to estimate the scene structure for particular classes

of SfM problems (e.g., when dealing with point features

or specific 3D geometrical primitives). Finally, we note the

many similarities between the SfM approach adopted in this

work and the notion of “sensor-based” or “ego-centric” Visual

SLAM, see, e.g., [23] for a recent overview. In both cases,

a robot/camera builds a 3D model of the environment in

its own body/sensor frame via a filtering technique: an EKF

in [23] and similar works, and the deterministic filter (but

with a fully characterized and actively optimizable transient

response) derived from [20] in this paper.

The rest of the paper is organized as follows: Sect. II reviews

the SfM problem in the context of nonlinear state observation

and briefly summarizes the methodology developed in [20] for

actively imposing a desired transient behavior to the estimation

error. Section III then focuses on the three SfM problems

considered in this work. Subsequently, Sect. IV reports the

corresponding simulative and experimental results obtained

with a manipulator equipped with an eye-in-hand camera.

Finally, Sect. V concludes the paper and discusses some future

directions.

II. PRELIMINARIES

In this section, we briefly summarize the active estimation

framework originally proposed in [20]. This is then applied to

SfM case studies discussed in the next Sect. III.

A. A nonlinear observation scheme

Let (s ,χ) ∈ R
m+p be the state of a dynamical system in

the form
{

ṡ = fm(s, u, t) +Ω
T (t)χ

χ̇ = fu(s, χ, u, t)
(1)

where s ∈ R
m and χ ∈ R

p represent, respectively, a

measurable and unmeasurable component of x, and u ∈ R
v is

the system input vector. In formulation (1) vector χ is required

to appear linearly in the dynamics of s (first equation).

Furthermore, matrix Ω(t) ∈ R
p×m and vectors fm(·) ∈ R

m

and fu(·) ∈ R
p are assumed to be generic but known and

sufficiently smooth functions w.r.t. their arguments which are

all available apart from the unknown value of χ in fu(·).
SfM problems can be recast to formulation (1) by taking

s as a set of visual features measured in the image, u =
(v, ω) as the camera linear/angular velocity in camera frame,

and χ as a suitable (and locally invertible) function of the

unknown structure of the scene to be estimated. For instance,

in the point feature case, χ can be taken as the inverse of the

feature depth [9], and, for image moments of planar scenes,

χ can be taken as the normal vector of the observed plane

scaled by its distance from the camera optical center [10].

Furthermore, in SfM one has Ω(t) = Ω(s(t), v(t)) with, in

particular, Ω(s, 0) ≡ 0: the camera linear velocity v(t) plays

a key role for the resolution of SfM problems1.

For a system in form (1), a possible estimation scheme can

be devised as follows [9], [20]: let (ŝ , χ̂) ∈ R
m+p be the

estimated state, ξ = s− ŝ, z = χ− χ̂, e = (ξ, z) be the total

error vector, and consider the following observer

{

˙̂s = fm(s, u, t) +Ω
T (t)χ̂+Hξ

˙̂χ = fu(s, χ̂, u, t) +ΛΩ(t)Qξ
(2)

where H > 0, Λ = Λ
T > 0 and Q = QT > 0

are positive definite gain matrices. Note that observer (2) is

function of only measured/known quantities, with in particular

a feedback action on the measurable error component ξ. The

corresponding estimation error dynamics is then given by







ξ̇ = −Hξ +Ω
T (t) z

ż = −ΛΩ (t)Qξ + (fu(s, χ, u)− fu(s, χ̂, u))
= −ΛΩ (t)Qξ + g(e, t)

(3)

with g(e, t) being a ‘perturbation term’ vanishing w.r.t. the

error vector e, i.e., such that g(0, t) = 0, ∀t. The origin of (3)

can be proven to be locally exponentially stable if and only

if (iff) the following Persistency of Excitation (PE) condition

holds

∫ t+T

t

Ω (τ)ΩT (τ) dτ ≥ γIp > 0, ∀t ≥ t0, (4)

1This is due to the well-known fact that, under perspective and spherical
projection, the motion in the image induced by pure rotations of the camera
(i.e., when v = 0) does not depend on the structure of the scene.
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for some T > 0 and γ > 0, with In representing the n × n
identity matrix2.

Remark II.1. We note that the local stability properties of the

error dynamics (3) are due to the perturbation term g(e, t)
which affects an otherwise globally exponentially stable error

system. Indeed, in the special case χ̇ = 0 (unknown but

constant parameters), one has g(e, t) ≡ 0 and global ex-

ponential convergence for the error system (3). This is, for

instance, the case of the structure estimation problems for

spherical and cylindrical objects considered in Sects. III-B

and III-C. We stress, however, that the estimation scheme (2)

is not restricted to this particular situation but can be applied

(with, in this case, only local convergence guarantees) to the

more general case of state observation problems in which

the unknown χ is subject to a non-negligible dynamics as

in (1). The depth estimation for a point feature discussed in

the following Sect. III-A falls in this class.

The PE condition (4) plays the role of an observability

criterium: convergence of the estimation error e(t) → 0 is

possible iff the square matrix Ω (t)ΩT (t) ∈ R
p×p remains

full rank in the integral sense of (4). We note that if m ≥ p,

that is, if the number of independent measurements s is larger

or equal to the number of estimated quantities χ, then it is

possible to instantaneously satisfy (4) by enforcing

Ω (t)ΩT (t) ≥ γ

T
Ip, ∀t. (5)

In the rest of this work we will only consider this (more

restrictive) observability condition.

B. An active estimation strategy

As clear from (4) and (5) (some measure of) the norm

of matrix ΩΩ
T determines the convergence properties of

the error system (3). Furthermore, since in the SfM case it

is Ω(t) = Ω(s(t), v(t)), it is meaningful to study how to

optimize the camera linear velocity v in order to affect matrix

ΩΩ
T and, as a consequence, to shape the transient response

of the error vector e(t). The active strategy developed in [20]

and summarized hereafter shows how to achieve this goal.

Let UΣV T = Ω be the singular value decomposition of

matrix Ω, where Σ = [S 0], S = diag(σi) ∈ R
p×p, and

0 ≤ σ1 ≤ . . . ≤ σp are the p singular values of Ω. Let also

Q = αIm and Λ = βIp, with α > 0, β > 0 (scalar gain

matrices). By designing the gain matrix H in (2) as

H = V

[

D1 0

0 D2

]

V T (6)

with D1 ∈ R
p×p > 0, D2 ∈ R

(m−p)×(m−p) > 0, it is

possible to show that, under the change of coordinates

η =
1√
αβ

S−1UTz (7)

2The stability proof requires some additional technical assumptions on the
regularity of the vanishing disturbance g (locally Lipschitz in a neighbourhood
of the origin), on its growth bound w.r.t. ‖e‖ (which, since g(·) → 0 if
(v, ω) → 0, can always be made small enough by limiting (v, ω)), and on
the norm of the initial error ‖e(t0)‖. The interested reader can find in [9] a
detailed derivation of the proof.

and in the approximation S−1UT ≈ const, the behavior of

vector η (and hence of the estimation error z = χ − χ̂)

is governed by the following linear (and almost diagonal)

dynamics

η̈ = (Π−D1)η̇ − αβS2η. (8)

System (8) can be interpreted as a (unit-)mass-spring-damper

system with diagonal stiffness matrix αβS2 and damping

matrix D1, together with an additional ‘perturbing’ term Π

whose full expression can be found in [20].

The convergence rate of (8) is then related to its slowest

mode dictated by the ‘stiffness value’ αβσ2
1 , with σ2

1 being

the smallest eigenvalue of the square matrix ΩΩ
T . Therefore,

for the sake of imposing a desired transient response to vector

η(t) (i.e., to the estimation error z(t) = χ(t) − χ̂(t)), one

can ‘place the poles’ of (8) by (i) shaping the damping

factor D1 in (6) (a free parameter), (ii) regulating the value

of the smallest eigenvalue σ2
1 by acting upon vector v, and

(iii) suitably choosing the gain αβ (a free parameter).

For what concerns the design of matrix D1, we first note

that, as explained in [20], matrix Π in (8) can be regarded as a

second-order perturbation term affecting the dissipative action

induced by D1. Therefore, neglecting the effects of matrix

Π and choosing D1 = diag(ci), ci > 0, allows obtaining a

completely decoupled transient behavior for (8)

η̈i + ciη̇i + αβσ2
i ηi = 0, i = 1 . . . p. (9)

One can then take, for instance, ci = c∗i = 2
√
αβσi in order

to impose a critically damped evolution to the estimation error

(coincident eigenvalues for (9)).

As for the regulation of σ1(t), being Ω = Ω(s, v), it is

˙(σ2
i ) = Jv,iv̇ + Js,iṡ (10)

where the Jacobian matrices Jv,i ∈ R
1×v and Js,i ∈ R

1×n

can be computed in closed form, see [20] for all the details. By

inverting the differential mapping (10), vector v̇ can then be

exploited so as to, e.g., asymptotically enforce σ2
1(t) → σ2

1,des

for some desired value σ2
1,des > 0. We note that ensuring

σ2
1(t) → σ2

1,des > 0 also automatically satisfies the observ-

ability condition (5).

Finally, the following considerations hold for the choice of

gain αβ in (8). In the SfM context, the norm of matrix ΩΩ
T

is strongly related to the norm of the camera linear velocity

v. Roughly speaking, the ‘faster’ the motion (∼ larger ‖v‖),

the ‘larger’ the value of σ2
1 (∼ larger ‖ΩΩ

T ‖). Therefore, in

order to maximize the estimation convergence speed of (8)

(dictated by αβσ2
1), one can equivalently (i) travel at a larger

speed ‖v‖ for a given gain αβ, or (ii) increase the gain αβ for

a given ‖v‖. While increasing the gain αβ may always appear

more convenient in terms of reduced control effort, practical

issues such as noise, discretization or quantization errors, may

impose an upper limit on the possible value of αβ, thus

necessarily requiring a larger ‖v‖ for obtaining the desired

convergence speed. Furthermore, as in all SfM problems, a

‖v‖ 6= 0 is also mandatorily required for guaranteeing σ2
1 > 0

(a non-translating camera cannot estimate the scene structure).

Remark II.2. We note that the proposed strategy is an active

one since, in the general case, inversion of (10) will result
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in a camera linear velocity v optimized as a function of the

system measured state s in order to attain a desired σ2
1,des

over time. We also highlight the role played by the gain matrix

H weighting the feedback term in observer (2): the proposed

machinery in fact relies on a suitable state-dependent design

of the damping matrix H via the choice of D1 = diag(c∗i )
with c∗i = 2

√
αβσi. For the interested reader, this state-

dependent design is conceptually equivalent to the shaping

of the damping factor adopted in the context of impedance

control for robot manipulator arms, see, e.g., [24].

Remark II.3. We also note that, in general, it is not possible

to fully compensate for the term Js,iṡ when inverting (10).

Indeed, the expression in (1) implies a direct dependence of ṡ

from the unmeasurable χ, so that an exact evaluation of ṡ is

not obtainable in practice. A possible solution could be to use

an approximation ˆ̇s of ṡ obtained by evaluating fu(·) on the

current estimate χ̂. Another simple workaround is, however,

to just enforce ṡ ≃ 0 by imposing a constraint on the camera

motion. A combination of both strategies is, of course, also

possible. The next sections will present some examples in this

sense.

Remark II.4. It can be finally shown that, in the special

situation p = 1 (only one quantity to be estimated), if

σ1(t) ≡ const then S−1UT ≡ const in (7) and matrix Π

has no disturbing effects on (8). Therefore, in this case it is

always possible to exactly enforce the ideal estimation error

dynamics (9) by just keeping ‖Ω(t)‖2 = σ2
1(t) = const during

the camera motion. This situation will apply to all the case

studies discussed in the rest of the paper.

III. APPLICATIONS TO STRUCTURE FROM

MOTION

In this section we illustrate the application of the proposed

active estimation framework to three concrete SfM problems:

(i) estimation of the 3D coordinates of a point feature, (ii) esti-

mation of the 3D position and radius of a spherical target, and

(iii) estimation of the 3D position and radius of a cylindrical

target.

In the point feature case, the effects of the adopted projec-

tion model on the estimation convergence are also explicitly

considered by discussing the differences between the two

popular choices of planar and spherical projection models.

For the spherical and cylindrical targets, we instead propose

two novel minimal parameterizations that allow to express the

sphere/cylinder 3D structures in terms of measured visual fea-

tures and of a single unknown parameter (the sphere/cylinder

radius). This allows, in all three cases, to reduce the SfM task

to the estimation of a single unknown quantity (point feature

depth or sphere/cylinder radius), thus satisfying the require-

ments of Remark II.4 for exactly imposing the ideal dynam-

ics (9) to the estimation error.

A. Depth estimation for a point feature

1) Planar projection model: Let p = (x, y, 1) =
(X/Z, Y/Z, 1) ∈ R

3 be the perspective projection of a 3D

point P = (X, Y, Z) onto the image plane of a calibrated

pinhole camera. As it is well know [25], the differential

relationship between the image motion of a point feature and

the camera linear/angular velocity u = (v, ω) ∈ R
6 expressed

in camera frame is

[

ẋ
ẏ

]

=







− 1

Z
0

x

Z
xy −

(

1 + x2
)

y

0 − 1

Z

y

Z
1 + y2 −xy −x






u

(11)

where Z is the depth of the feature point. The dynamics of Z
is

Ż =
[

0 0 −1 −yZ xZ 0
]

u.

The expression in (11) is not linear in Z but it is linear in

1/Z. Therefore, by defining s = (x, y) ∈ R
2 and χ = 1/Z,

with then m = 2 and p = 1, we obtain for (1)


















fm (s, u, t) =

[

xy −
(

1 + x2
)

y
1 + y2 −xy −x

]

ω

Ω (s, v) =
[

xvz − vx yvz − vy
]

fu (s, χ, u, t) = vzχ
2 + (yωx − xωy)χ

, (12)

with the perturbation term g(e, t) in (3) taking the expression

g(e, t) = vz
(

χ2 − χ̂2
)

+ (yωx − xωy) z, (13)

so that g(0, t) = 0 as expected. Note that, once χ has been

estimated, one can obviously retrieve the 3D position of the

point feature as P = p/χ.

In the point feature case matrix ΩΩ
T reduces to its single

eigenvalue which, for a planar projection model, takes the

expression

σ2
1 = ‖Ω‖2 = (xvz − vx)

2 + (yvz − vy)
2. (14)

Furthermore, using (14), the Jacobian Jv,1 in (10) is given by

Jv,1 = 2





vx − xvz
vy − yvz

(xvz − vx)x+ (yvz − vy) y





T

. (15)

Since σ2
1 does not depend on ω, it is then possible to freely

exploit the camera angular velocity for fulfilling additional

goals of interest without interfering with the regulation of

σ2
1(t) (only affected by v). For instance, as in [17], one can

use ω for keeping s ≃ const so as to make the effects of ṡ

negligible when inverting (10) w.r.t. v̇, see Remark II.3.

We now note that σ2
1 in (14) depends on both the camera

linear velocity v and on the location p of the feature point

on the image plane. Since the value of σ2
1 directly affects the

convergence speed of the estimation error, it is interesting to

study what conditions on p and v result in the largest possible

σ2
1 (i.e., the fastest possible convergence for a given gain αβ).

Letting e3 = (0, 0, 1) being the camera optical axis, it is (by

inspection)
[

Ω
T

0

]

= [e3]× [p]× v

where [v1]× is the skew-symmetric matrix representing the

cross product operator for 3D vectors (i.e., [v1]× v2 = v1 ×
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v2). Therefore,

σ2
1 =

[

Ω 0
]

[

Ω
T

0

]

= ‖ [e3]× [p]× v‖2

= ‖p‖2‖v‖2 sin2 (θp,v) sin2
(

θe3,[p]×v

)

where θp,v and θe3,[p]×v represent the angles between vectors

(p, v) and vectors (e3, [p]× v), respectively. The maximum

attainable value for σ2
1 is then

σ2
max = max

p, v
σ2
1 = ‖p‖2‖v‖2. (16)

This maximum is obtained when the camera linear velocity v

is such that p ⊥ v and e3 ⊥ [p]× v, i.e., rearranging in matrix

form
[

pT

eT3 [p]×

]

v =

[

x y 1
−y x 0

]

v = 0. (17)

If p 6= e3 (point feature not at the center of the image

plane), system (17) has (full) rank 2 and admits the unique

solution (up to a scalar factor)

v = δ [p]
2
× e3, δ ∈ R.

This requires the linear velocity v to be orthogonal to p and

to lie on the plane defined by vectors p and e3 (i.e., v must

belong to a straight line as shown in Fig. 1a).

If p = e3 (point feature at the center of the image plane),

system (17) loses rank and any v ⊥ e3 is a valid solution,

see Fig. 1b.

It is then possible to draw the following conclusions: for

a given norm of the linear velocity ‖v‖ (i.e., the amount of

‘control effort’), system (17) determines the direction of v re-

sulting in σ2
1 = σ2

max (maximization of σ2
1). These conditions

are summarized in Figs. 1a and 1b. The value of σ2
max is,

however, also a function of the feature point location p which

can be arbitrarily positioned on the image plane. In particular,

σ2
max = ‖v‖2 for p = e3 and σ2

max = ‖p‖2‖v‖2 > ‖v‖2
∀p 6= e3, with lim‖p‖→∞ σ2

max(p) = ∞. The value of ‖p‖
(distance of the point feature from the image center) thus acts

as an amplification factor for σ2
max. Therefore,

1) the smallest σ2
max (i.e., the slowest ‘optimal’ convergence

for the depth estimation error) is obtained for the smallest

value of ‖p‖, i.e., when p = e3 =⇒ ‖p‖ = 1 (feature

point at the center of the image plane). It is worth noting

that in this case vz = 0 (from the condition v ⊥ p) and

σ2
max = ‖v‖2 = v2x+v2y: the camera moves on the surface

of a sphere with a constant radius (depth) pointing at the

feature point. Also, being in this case χ̇ = Ż/Z2 = 0, one

has g(e, t) ≡ 0 and global convergence for the estimation

error (see Remark II.1);

2) the largest σ2
max (i.e., the fastest ‘optimal’ convergence

for the depth estimation error) is obtained for the largest

possible value of ‖p‖. In the usual case of a rectangular

image plane centered at the origin, this translates into

keeping the feature point positioned at one of the four

image corners. However, compared with the previous

case, this results in a g(e, t) 6= 0 and only local

convergence for the estimation error.

e3

p

v

v

S

e1 e2

(a)

e3

p

v

v

v v

v

v

e1 e2

(b)

Fig. 1: Optimality conditions for the camera linear velocity v

as dictated by system (17). (a): when p 6= e3, vector v must

be orthogonal to p and lie on the plane S spanned by p and

e3 (that is, v must belong to a specific straight line). (b): when

p = e3, any v ⊥ e3 is a valid solution to (17).

2) Spherical projection model: We now develop the depth

estimation machinery for the spherical projection model. In

this case, the following quantity is taken as visual feature

measured on the image plane

s =
p

‖p‖ =
P

‖P ‖ ∈ S
2,

where S
2 represents the unit sphere and, as well-known [26],

ṡ =

[

1

‖P ‖
(

ssT − I3

)

[s]×

]

u,

and

d

dt

(

1

‖P ‖

)

= − 1

‖P ‖2
d‖P ‖
dt

= − sT Ṗ

‖P ‖2 =
sTv

‖P ‖2 .

Hence by taking χ = 1/‖P ‖ one obtains for (1)











fm (s, u) = [s]× ω

Ω (s, v) = −vT
(

I3 − ssT
)

fu (s, χ,u) = χ2sTv

(18)

with m = 3, p = 1, and g(e, t) = (χ2 − χ̂2)sTv for

the perturbation term in (3). We note that, although in this

case m = 3, vector s is subject to the constraint ‖s‖ = 1,

thus resulting in only two independent measurements (as in

the previous case of planar projection). Moreover, from the

estimated χ one can easily retrieve P = s/χ.

For the spherical projection model, the eigenvalue determin-

ing the convergence of the estimation error is

σ2
1 = ΩΩ

T = vTv − (sTv)2,

with thus

Jv,1 = 2vT (I3 − ssT ). (19)

As before, σ2
1 does not depend on ω which can then be

exploited to fulfil any additional task of interest (e.g., keeping

s ≃ const during motion).
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As for the conditions on s and v that yield maximization

of σ2
1 , one clearly has

σ2
1 = σ2

max = max
s, v

σ2
1 = ‖v‖2 (20)

iff sTv = 0 (linear velocity orthogonal to the projection ray

passing through P ). We also note that, in this case, one has

χ̇ = 0 and g(e, t) ≡ 0 (constant unknown state and global

convergence for the estimation error) regardless of the location

of s on the image plane.

3) Comparison between planar and spherical projection

models: for a spherical projection model, maximization of

the eigenvalue σ2
1 imposes only one condition for the linear

velocity v (sTv = 0). When this condition is met, one has

σ2
1 = σ2

max = ‖v‖2 and global convergence for the estimation

error whatever the location of the feature point s. This is

equivalent to what was obtained for the planar projection case

in the special situation p = e3 (indeed the two projection

models coincide for p = s = e3). However, with a spherical

projection model one also loses the possibility to increase the

estimation convergence rate by suitably positioning the point

feature s on the image plane (since in this case σ2
max does

not depend on s).

It is then worth noting the complementarity of the two

cases: for a given ‖v‖, and provided the optimal condition

pTv = 0 is satisfied, the planar projection allows obtaining a

faster error convergence at the price of local stability (increase

of the perturbation g) by suitably positioning s = (x, y)
(the larger ‖s‖ the faster the convergence). The spherical

projection guarantees global error convergence for any location

of the feature point but at the price of being always subject to

the same convergence rate only function of the control effort

‖v‖.

B. Structure estimation for a spherical target

We now detail the application of the proposed estimation

machinery to the case of a spherical target. Consider a sphere

Os of radius R and let P 0 = (X0, Y0, Z0) be the coordinates

of its center in the camera frame. Let also

L : nTX + d = 0

represent the planar limb surface associated to the sphere in

the camera frame, where X ∈ R
3 is any 3D point on the

plane, n ∈ S
2 is the plane unit normal vector and d ∈ R the

plane distance to the camera center [27]. Figure 2 shows the

quantities of interest.

The depth Z of any point X lying on L can be expressed

in terms of its normalized image coordinates p = (x, y, 1) as

1

Z
=

X0

K
x+

Y0

K
y +

Z0

K
= χTp, (21)

where K = P T
0 P 0−R2 and χ = P 0/K = −n/d ∈ R

3 rep-

resent unmeasurable quantities (analogously to Z for the point

feature case), see [28] for all the details. The interaction matrix

of a generic (i, j)-th order moment mij evaluated on the

image of Os depends linearly on χ, see [10], [27]. Therefore,

a first possibility to retrieve the sphere 3D parameters (P 0, R)
would be to implement the estimation scheme (2) with s

C

P 0

Os

L

dI n

R

Fig. 2: Spherical target Os and planar limb surface L.

being a suitable collection of image moments (e.g., area and

barycenter). It is in fact possible to show that (see Appendix A)

χ̇ = − v

K
− [ω]×χ+ 2χχTv

and that K can be expressed in terms of image moments

and of vector χ itself, so that, having estimated χ, one can

consequently retrieve P 0 = χK and R =
√

P T
0 P 0 −K.

Although conceptually valid, this solution requires the con-

current estimation of three time-varying quantities (vector

χ(t)). On the other hand, inspired by [29], we now describe

a novel representation of the sphere projection on the image

plane that allows to reformulate the structure estimation task in

terms of a single unknown constant parameter, i.e., the sphere

radius R.

To this end, define vector s = (sx, sy, sz) ∈ R
3 as



































sx =
xg

sza21

sy =
yg
sza21

sz =

√

1 + a21
a21

, (22)

where (xg, yg, n20, n11, n02) represent the barycenter and

normalized centered moments of order 2 measured from the

elliptical projection of the sphere Os on the image plane, and

a1 is the minor axis of the observed ellipse with [27]

a21 = 2

(

n20 + n02 −
√

(n20 − n02)
2
+ 4n11

)

. (23)

We thus note that vector s can be directly evaluated in terms

of measured image quantities.

From [27], [29] one also has

xg =
X0Z0

Z2
0 −R2

, yg =
Y0Z0

Z2
0 −R2

, a21 =
R2

Z2
0 −R2

(24)

which, when plugged in (22) and (23), result in the equivalent

expression s = P 0/R. Since vector s can be computed from

image measurements as in (22), estimation of the (unknown)

sphere radius R allows to recover the 3D sphere center as

P 0 = sR.

Exploiting now the results of [29], it is possible to show

that

ṡ =

[

− 1

R
I3 [s]×

]

u. (25)
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Since (25) is linear in 1/R, we can define χ = 1/R, with then

m = 3 and p = 1, and obtain for (1) and (3)






















fm (s, u) = [s]× ω

Ω (s, u) = −vT

fu (s, χ, u) = 0

g(e, t) = 0

. (26)

We note that in this case it is always possible to obtain

global convergence for the estimation error since χ̇ = 0 and

therefore g(e, t) = 0 by construction (see Remark II.1). Fur-

thermore, matrix ΩΩ
T reduces again to its single eigenvalue

σ2
1 = ‖v‖2 and, if σ2

1(t) ≡ const > 0, the ‘ideal’ estimation

error dynamics (9) can be exactly obtained. One also has

Ω = Ω(v) and Jv,1 = 2vT .

We finally note the following facts: first, contrarily to the

previous cases, here ṡ has no effect on the regulation of σ2
1

which is only function of the camera linear velocity v. It

is then of course still possible to freely exploit the camera

angular velocity ω for, e.g., keeping the sphere at the center of

the image by regulating (sx, sy) to zero. Second, we note the

strong similarities with the previous optimal results obtained

for a point feature under a spherical projection model (σ2
max

in (20)): in both cases the maximum estimation convergence

rate for a given ‖v‖ does not depend on the position of the

observed object on the image plane.

C. Structure estimation for a cylindrical target

We now finally consider the case of SfM for a 3D cylindrical

object. A cylinder Oc can be described by its radius R > 0
and by its main axis a ∈ S

2 passing through a 3D point P 0 =
(X0, Y0, Z0), with ‖a‖ = 1 and, w.l.o.g., aTP 0 = 0 (P 0 can

be chosen as the closest point on a to the origin of the camera

frame [17]). Moreover, analogously to the sphere, a cylinder

is also associated with a planar limb surface L such that (21)

holds for any point on L with projection p = (x, y, 1).
Therefore, a possibility is to estimate the three unknown

parameters of the limb plane L (vector χ) by exploiting (at

least) three image measurements, see [17] and Appendix B for

some details in this sense. However, following the previous

developments, we now propose a novel representation of the

cylinder projection on the image plane which, again, allows

to obtain the cylinder parameters (P 0, a, R) in terms of

image measurements and of the unknown but constant cylinder

radius R which, therefore, represents the only quantity to be

estimated.

Let (ρ1, θ1) and (ρ2, θ2) be the (measured) distance/angle

parameters of the two straight lines resulting from the projec-

tion of the cylinder on the image plane, and

n1 = (cos θ1, sin θ1, −ρ1), n2 = (cos θ2, sin θ2, −ρ2)
(27)

be the normal vectors to the two planes passing through the

origin of the camera frame and the two above-mentioned

projected lines3. Figure 3 gives a graphical representation

of the quantities of interest. Note that vectors n1 and n2

3The two planes are therefore tangent to the surface of the cylinder.

C

I

P 0

a

Oc

n1

n2

L P1

P2

n

R

Fig. 3: Camera C and cylindrical target Oc with the planar

limb surface L and the other planes of interest P1 and P2

can be directly evaluated from image measurements (the line

parameters). We then define vector s ∈ R
3 as

s =
∆

‖∆‖2
(28)

with

∆ =
1

2

(

n1

‖n1‖
+

n2

‖n2‖

)

. (29)

Vector s is, thus, also directly obtainable in terms of image

quantities.

We now note that, from [30], an equivalent expression for

vectors n1, n2 in terms of the cylinder 3D geometry can be

obtained as

n1 =
1

N1



















R
X0√
K

− α

R
Y0√
K

− β

R
Z0√
K

− γ



















, n2 =
1

N2















R X0√
K

+ α

R
Y0√
K

+ β

R
Z0√
K

+ γ















(30)

with










































K =
√

P T
0 P 0 −R2

(α, β, γ) = [P 0]×a

N1 =

√

(

R X0√
K

− α
)2

+
(

R Y0√
K

− β
)2

N2 =

√

(

R X0√
K

+ α
)2

+
(

R Y0√
K

− β
)2

,

(31)

thus yielding



































n1

‖n1‖
=

1

P T
0 P 0





RX0 − α
√
K

RY0 − β
√
K

RZ0 − γ
√
K





n2

‖n2‖
=

1

P T
0 P 0





RX0 + α
√
K

RY0 + β
√
K

RZ0 + γ
√
K





. (32)
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Plugging (32) in (29) results in the equivalent expression

∆ =
R2

P T
0 P 0

s

which, using (28), finally yields the following relationship

between image quantities and cylinder 3D structure

s =
∆

‖∆‖2
=

P 0

R
. (33)

As for the cylinder axis a, exploiting (30) one has

[n2]×n1 =
2R

N1N2

√
K





Z0β − Y0γ
X0γ − Z0α
Y0α−X0β



 =
2R

N1N2

√
K





α
β
γ





×

P 0

=
2R

N1N2

√
K

[

[P 0]× a
]

× P 0 =
2RP T

0 P 0

N1N2

√
K

a

(34)

where in the last step the property aTP 0 = 0 was used. Since

‖a‖ = 1, from (34) it is

a =
[n2]×n1

∥

∥[n2]× n1

∥

∥

. (35)

The cylinder axis a can then be directly obtained in terms of

only measured quantities.

We now note that, as in the sphere case, the only unknown

left is the cylinder radius R: once known, the cylinder 3D

structure can be fully recovered from image measurements as

P 0 = Rs from (33) and a from (35).

An estimation scheme for R can be obtained exploiting the

following differential relationship whose derivation is given

in Appendix C

ṡ =

[

− 1

R

(

I3 − aaT
)

[s]×

]

u. (36)

Note the similarity of (36) with (25) for the sphere case.

Being (36) linear in 1/R, one can then apply observer (2)

by choosing χ = 1/R with m = 3 and p = 1, and obtaining






















fm (s, u) = [s]× ω

Ω (s, u) = −vT
(

I3 − aaT
)

fu (s, χ, u) = 0

g(e, t) = 0

. (37)

Note how, again, being χ̇ = 0 it is g(e, t) = 0 (global

convergence for the error system (3) as in the sphere case).

Matrix ΩΩ
T reduces to its single eigenvalue

σ2
1 = ΩΩ

T = ‖v‖2 − (aTv)2. (38)

It is worth comparing (38) with the result obtained for the

sphere (σ2
1 = ‖v‖2). In the cylinder case, the convergence

rate of the estimation error is affected by both the norm and

the direction of the linear velocity v. In particular, for a

given ‖v‖ = const, the maximum value for σ2
1 is obtained

when v has a null component along the cylinder axis a

(aTv = 0) with, in this case, σ2
1 = σ2

max = ‖v‖2. Intuitively,

any camera motion along the cylinder axis does not provide

any useful information to the estimation task. Furthermore,

as in all previous cases, keeping a σ2
1(t) = const allows

to exactly enforce the ideal estimation error dynamics (9),

see Remark II.4.

Finally, from (38) one has

˙(σ2
1) = Jv,1v̇ + Ja,1ȧ = Jv,1v̇ + Ja,1[a]×ω (39)

with Jv,1 = 2vT
(

I3 − aaT
)

and Ja,1 = 2vTavT . Al-

though (39) also depends on the angular velocity ω, it is

possible to fully compensate for the effects of Ja,1[a]×ω (a

known quantity) when inverting (39) w.r.t. v̇ as discussed in

Sect. IV-D. Therefore, one can act on v̇ to regulate the value of

σ2
1(t) and, at the same time and in a decoupled way, exploit the

camera angular velocity ω for implementing additional tasks

of interest such as keeping the cylinder axis a at the center of

the image plane by enforcing (sx, sy) = 0.

IV. SIMULATION AND EXPERIMENTAL RESULTS

In this section we show some experimental and simulation

results meant to validate the theoretical developments of the

previous sections. The experiments were run by employing

a greyscale camera with a resolution of 640 × 480 px and a

framerate of 30 fps. The camera was mounted on the end-

effector of a 6-dofs Gantry robot commanded in velocity

at a frequency of 100Hz. All the image processing and

feature tracking were implemented via the open-source ViSP

library [31]. Some snapshots of the three experiments are

shown in Fig. 4 where the result of the image processing is

highlighted in red.

A video of the reported experiments (including the three

cases of point, sphere and cylinder) is also attached to the

paper for the reader’s convenience.

A. Comparison of planar and spherical projection models

We start by comparing via simulation results the effects

of adopting a planar and spherical projection model for the

depth estimation of a point feature as extensively discussed

in Sect. III-A1 and Sect. III-A2. We considered three cases

differing for the location on the image plane at which the point

feature was (purposely) kept exploiting the camera angular

velocity ω:

1) in case I the point feature was kept at the center of the

image plane (red line in the following plots);

2) in case II the point feature was kept at one of the corners

of an image plane with the same size of the camera used

in the experiments (green line in the following plots);

3) in case III the point feature was kept at one of the corners

of an image plane with a size five times larger than case II

(blue line in the following plots).

In all cases, a constant camera velocity v(t) ≡ v(t0) = const
was kept during motion, with the initial condition v(t0) chosen

so as to comply with the optimality conditions discussed in

Sects. III-A1 and III-A2 for letting σ2
1 = σ2

max (e.g., with

v(t0) being a solution of (17) in the planar projection case).

Figure 5a shows the behavior of z(t) for the three cases

when using a planar projection model. We can then note how

the convergence rate of the estimation error increases from

case I (slowest convergence) to case III (fastest convergence)

as predicted by the theory (for the same ‖v‖ a larger ‖p‖ re-

sults in a larger σ2
max). Similarly, Fig. 5b reports the behavior

of σ2
1(t) for the three cases: as expected, σ2

1(t) results largest
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(a) (b) (c)

Fig. 4: Camera snapshots for the point feature (a), the sphere (b) and the cylinder (c) experiment.

for case III. Note also how σ2
1(t) for case II (green line) is only

slightly larger than case I (red line). This is due to relatively

small size of the image plane of case II whose dimensions

were set as those of the real camera used for the experiments.

Finally, Fig. 5c shows the behavior of the perturbation term

g(e, t) in the three cases: here, one can verify how g = 0 for

case I, with then an increasing |g| for cases II and III. Indeed,

as discussed in Sect. III-A1, the ‘amplification’ effect on σ2
max

obtained by increasing ‖p‖ comes at the price of an increased

magnitude of the perturbation g. This is also evident in Fig. 5a

where the ideal response of (9) is plotted with dashed lines for

the three considered cases. We can thus note how z(t) in case I

presents a perfect match with its corresponding ideal response,

with then an increasing (albeit very limited) mismatch in the

other two cases due to the increased effect of the perturbation

g.

As for the spherical projection model, Fig. 5d reports the

behavior of the estimation error z(t) for the three cases under

consideration, together with the ideal response (9). Here, the

symbol zs(t) is used to denote the estimation error in the

spherical projection case in order to distinguish it from the

error obtained with the planar projection model. All the plots

result perfectly superimposed as expected from the analysis of

Sect. III-A2. Indeed, in the spherical projection case, σ2
max =

‖v‖2 regardless of the location of p and g(t) ≡ 0. However,

absence of perturbation terms is obtained at the expense of the

convergence rate of zs(t), which indeed results slower or equal

to that of z(t) in the planar projection case. This is shown in

Fig. 5e where the behavior of z(t)− zs(t) is reported for the

three cases. We can then note how z(t) − zs(t) = 0 only in

case I, as the planar and spherical models coincide when the

feature point is at the center of the image plane.

These results then fully confirm the validity of the theoreti-

cal analysis reported in Sects. III-A1 and III-A2. However, we

also note the marginal effects of the two projection models on

the estimation performance when applied to an image plane

of size comparable to that of the real camera used in our

experimental setup. Therefore, in the following experimental

results we will only consider the case of planar projection

model.

B. Depth estimation for a point feature

We here report some experimental results for the depth

estimation of a point feature under a planar projection model

(Sect. III-A1). The following experiments are meant to demon-

strate how the proposed active estimation framework can be

exploited to select online the ‘best’ camera motion. As visual

target, we made use of a circular white dot of 5mm radius

painted on a planar black surface and sufficiently far from the

camera in order to safely consider it as a ‘point feature’.

Figure 6a shows the evolution of the estimation error z(t) =
1/Z(t) − 1/Ẑ(t) for two experiments4 in which ‖v(t)‖ =
‖v0‖ but with its direction being either optimized in order to

maximize the estimation convergence rate (case I, red line) or

kept constant so that v(t) = v0 = const (case II, blue line).

This effect was obtained by using the following control law5

v̇ =
v

‖v‖2 k1 (κdes − κ) + k2

(

I3 −
vvT

‖v‖2
)

JT
v,1 (40)

with k1 > 0, k2 ≥ 0, κ = 1
2v

Tv, κdes = 1
2v

T
0 v0, and

Jv,1 given by (15). In fact, the first term in (40) enforces

the constraint ‖v(t)‖ = ‖v0‖ (same control effort in both

cases), while the second term allows to implement either case I

(k2 > 0) or case II (k2 = 0) (maximization of σ2
1) within the

null-space of the first constraint. In both cases, the angular

velocity ω was exploited for keeping the point feature at the

center of the image plane (x, y) → (0, 0). We note that,

as discussed in Sect. III-A1, when (x, y) = (0, 0) one has

σ2
max = v2x+v2y from (16) and σ2

1 = σ2
max iff vz = 0 (circular

motion around the point feature). The experiments were run

with the following parameters: αβ = 103 for gains Q and Λ,

c1 = c∗1 for D1 in (6), v(t0) = v0 = (0.03, 0,−0.04) m/s,
k1 = 5 and k2 = 104, thus resulting in the maximum value

σ2
max = 0.0025 for the eigenvalue σ2

1 .

As clear from Fig. 6b, while in case II the camera gets

closer to the point feature, the use of the active strategy of

case I results in a null component of v along the projection

4The ground truth Z0(t) was obtained from a previous offline estimation
of the 3D position P 0 in the world frame, and by then using the information
on the camera position provided by the robot forward kinematics.

5The value of v̇ resulting from this (and following) optimizations was
numerically integrated so as to obtain the commanded v(t) sent to the robot
low-level controller.
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Fig. 5: Simulation results comparing the planar and spherical projec-

tion models for the depth estimation of a point feature. The following

color coding is adopted for the three considered cases: red–case I,

green–case II, blue–case III. (a) behavior of the estimation error

z(t) in the planar projection case (solid lines) with superimposed

the corresponding ideal response (9) (dashed lines). (b) behavior of

σ
2

1(t) for the three cases with, again, the largest σ
2

1(t) in case III.

(c) behavior of the perturbation term g(e, t) for the three cases. (d)

behavior of the estimation error zs(t) for the spherical projection

model in the three cases. (e) behavior of z(t)− zs(t).
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Fig. 6: Experimental results for the point feature case. (a):

behavior of the estimation error for case I (solid red line)

and case II (solid blue line), and for an ‘ideal’ second order

system (9) with desired poles at σ2
max (dashed black line).

The two vertical dashed lines indicate the times T1 = 4.95 s

and T2 = 9.85 s at which the estimation error drops below the

threshold of 5mm. (b): Camera trajectories for case I (red line)

and case II (blue line) with arrows indicating the direction of

the camera optical axis. (c): behavior of σ2
1(t) for case I (red

line) and case II (blue line).

ray of the point feature (i.e., vz = 0) and in an associated

circular trajectory centered on the tracked point as predicted

by the theoretical analysis of Sect. IV-A. This then allows to

move faster in the ‘useful’ directions (while keeping the same

constant ‖v‖), and, thus, to increase the value of σ2
1 towards its

theoretical maximum σ2
max = 0.0025 (Fig. 6c), resulting in an

overall faster convergence for the estimation error (Fig. 6a).

Furthermore, Fig. 6a also reports the ideal response of (9)

with desired poles at σ2
max (dashed black line). We can then

note the almost perfect match with case I (solid red line):

indeed, as explained in Remark II.4, imposing a σ2
1(t) = const

allows to exactly obtain the ideal behavior governed by (9).

It is finally worth noting the accuracy of the reconstructed

depth: Fig. 6a reports two vertical dashed lines indicating, for

the two cases under consideration, the times T1 = 4.95 s and

T2 = 9.85 s at which the estimation error z(t) becomes smaller

than 5mm. We then obtained a standard deviation of approx.

0.8 and 0.3mm evaluated on a time window of 1 s after the
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times T1 and T2, respectively. These results then also confirm

the robustness of the proposed estimation approach despite the

unavoidable presence of noise and discretization in the image

acquisition. Note also that, as expected, the estimation error in

the (active) case I reaches ‘convergence’ (i.e., drops below the

threshold of 5mm) significantly faster than case II (T1 < T2).

C. Structure Estimation for a Spherical Target

We now discuss some experimental results concerning the

estimation of the radius of a spherical target: indeed, as

explained in Sect. III-B, estimation of R allows to fully recover

the sphere 3D position P 0 = sR where vector s is directly

obtainable from image measurements, see (22). As object to

be tracked, we made use of a white table tennis ball placed

on a black table and with a radius of 1.9 cm. As explained

in Sect. III-B, the convergence rate of the estimation error

for the sphere case only depends on the norm of the linear

velocity ‖v‖ and not on its direction. This fact is proven by

the first experiment where the estimation task is run twice

starting from two different positions and imposing two differ-

ent camera velocities but with same norm. These values were

used during the experiments: αβ = 2 · 103 for gains Q and

Λ, c1 = c∗1 = 2
√
αβσ1 for D1 in (6), and v = (−0.05, 0, 0)

m/s for case I and v = (0, 0.045, 0.02) m/s for case II, with

‖v‖ = 0.05 m/s in both cases. The camera angular velocity

ω was exploited to keep (sx, sy) ≃ (0, 0) (centered sphere).

Figure 7a shows the behavior of the estimation errors (solid

blue and red lines): note how the error transient response for

the two cases is essentially coincident, and also equivalent to

that of the reference second order system (9) with the desired

poles, i.e., by setting σ2
1 = ‖v‖2 = const and c1 = c∗1 in (9)

(dashed black line). The higher noise level in case II (red

line) is due to the larger distance between the camera and

the spherical target (see Fig. 7b) which negatively affects the

estimation task. The standard deviation of the radius estimation

error, computed on a time window of 1 s after z(t) has become

smaller than 1mm (vertical dashed lines in the plot), is 0.3mm

for case I and 0.2mm for case II: we can note, again, the

very satisfactory results obtained with the proposed estimation

scheme in terms of accuracy of the reconstructed sphere radius.

Note also how, in the two cases, the estimation error z(t) drops

below the threshold of 1mm at essentially the same time, as

expected (same error transient respose).

Since the direction of the velocity does not play any role

in this case, no optimization of σ2
1 can be performed under

the constraint ‖v‖ = const. On the other hand, the analysis

of Sect. II-B clearly indicates the importance of choosing a

proper value of c1 for the damping matrix D1 in (6). To show

this fact, we report here three experiments characterized by

the same camera trajectory of the previous case I, but by

employing three different values for c1, that is, c∗1, 2c∗1 and

0.5c∗1. These correspond to a critically damped, overdamped

and underdamped response for the ideal system (9), respec-

tively. The experimental results reported in Fig. 8 show that the

behavior of the estimation error z (solid lines) has an excellent

match with that of (9) (represented by dashed lines), thus fully

confirming (i) the validity of the proposed theoretical analysis,
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Fig. 7: Experimental results for the estimation of the radius

of a sphere using different constant camera velocities with the

same norm. (a): behavior of the estimation error z(t) for the

two cases (solid blue and red lines), and for an ‘ideal’ second

order system with poles at the desired locations (dashed black

line). The vertical dashed lines indicate the times at which the

estimation error z(t) drops below the threshold of 1mm. (b):

camera trajectories for case I (blue line) and case II (red line)

with arrows indicating the direction of the camera optical axis.
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Fig. 8: Experimental results for the estimation of the radius of

a sphere with c1 = c∗1 (blue line), c1 = 2c∗1 (green line) and

c1 = 0.5c∗1 (red line). The dashed lines represent the response

of an ‘ideal’ second order system with the corresponding

poles. Note again the almost perfect match between the plots.

and (ii) the importance of choosing the ‘right’ damping matrix

D1 for optimizing the convergence speed in addition to a

proper regulation of σ2
1 .

D. Structure Estimation for a Cylindrical Target

In this final section we report some experimental results

concerning the active estimation of the radius of a cylindrical

object. Indeed, as in the sphere case, knowledge of R allows to

fully recover the 3D point P 0 = Rs, with vector s from (33)
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and the cylinder axis a in (35) being directly obtainable from

image measurements. For these experiments we used a white

cardboard cylinder placed on a black table. The radius of the

cylinder was approximately 4.2 cm.

In the cylinder case, the convergence rate of the estimation

error depends both on the norm of the camera linear velocity v

and on its direction w.r.t. the cylinder axis a, see (38). It is then

interesting to optimize the direction of v under the constraint

‖v‖ = const for maximizing the eigenvalue σ2
1 (i.e., so as to

obtain the fastest convergence rate for a given ‘control effort’

‖v‖).

From (39), maximization of σ2
1(t) w.r.t. vector v can be

obtained by choosing

v̇ = JT
v,1 − J

†
v,1Ja,1[a]×ω, (41)

with A† being the pseudoinverse of a matrix A, i.e., by

following the gradient of σ2
1 w.r.t. v and by compensating

for the (known) effects of input ω. In order to additionally

enforce the constraint ‖v‖ = const during the eigenvalue

maximization, eq. (41) can be modified as

v̇ =
v

‖v‖2 k1 (κdes − κ) + k2

(

I3 −
vvT

‖v‖2
)

(JT
v,1 − J

†
v,1Ja,1[a]×ω),

(42)

with k1 > 0 and k2 > 0. Analogously to the point feature case,

the first term in (42) asymptotically guarantees ‖v(t)‖ = ‖v0‖
while the second term projects (41) onto the null-space of the

constraint ‖v(t)‖ = const. As for the angular velocity ω, we

exploited it for keeping the axis of the cylinder at the center

of the image plane by regulating (sx, sy) to (0, 0).
We now present three experimental results structured as

follows: in the first experiment (case I), the update rule (42)

is fully implemented (k1 > 0, k2 > 0) for actively optimizing

the direction of v. In the second experiment (case II), the

camera starts from the same initial pose and velocity as in

case I, but (42) is implemented with k1 > 0 and k2 = 0,

i.e., without performing any optimization of σ2
1 . Finally, in

the third experiment (case III), the camera starts from a

different initial pose and with a different velocity direction

(but same norm) w.r.t. the previous two cases, and (42) is

again fully implemented. This last case is meant to show how

the convergence properties of the estimator are not affected by

the direction of the camera linear velocity as long as it stays

orthogonal to the cylinder axis a.

The experiments were run with the following conditions:

αβ = 500 for gains Q and Λ, c1 = c∗1 for D1 in (6), k1 = 10,

k2 = 1 for cases I and III, and k2 = 0 for case II. As for

the linear velocity, we set v(t0) = v0 = (−0.01, 0.05, 0.05)
m/s for cases I and II, and v(t0) = v0 = (−0.05, 0.05, 0.01)
m/s for case III (note how ‖v0‖2 = 5.1× 10−3 m2/s2 in all

three cases).

The behavior of σ2
1(t) is shown in Fig. 9a: as explained

at the end of Sect. III-C, under the constraint ‖v‖ = const,
one has maxv σ

2
1 = ‖v‖2 as the largest possible value for

σ2
1 (obtained when vTa = 0). It is then possible to verify

that, indeed, σ2
1(t) → ‖v0‖2 in cases I and III despite the

different initial conditions of the experiments (different camera

pose and direction of v). The optimization in (42) results in a
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Fig. 9: Experimental results for the estimation of the radius of

a cylinder with the following color coding: blue – case I, red

– case II, green – case III. (a): behavior of σ2
1(t) for the three

cases (coincident for cases I and III and larger than in case II).

(b): behavior of z(t). The three vertical dashed lines indicate

the times T1 = 2.74 s , T2 = 4.78 s and T3 = 2.66 s at which

the estimation error drops below the threshold of 2mm. Note

how T1 ≈ T3 and T1 < T2 as expected. (c): two views of the

camera trajectories for the three cases with arrows indicating

the direction of the camera optical axis.

null component of v along a, thus allowing to move faster in

the ‘useful’ directions (while keeping a constant ‖v‖), and to

increase the value of σ2
1 to its maximum possible value. Also,

note how the value of σ2
1(t) for case II results smaller than

in the other two cases (as expected) since no optimization is

present in this case.

The behavior of the estimation error z(t) is shown

in Fig. 9b: again, we can note that the transient response for

cases I and III results essentially coincident and in almost

perfect agreement with that of the reference system (9) with

desired poles (dashed black line). As expected, the response

for case II (red line) is slower than in cases I and III. As in the

point feature case, Fig. 9b reports, for the three cases under

consideration, the times T1 = 2.74 s, T2 = 4.78 s and T3 =
2.66 s at which the estimation error drops below the threshold

2mm (vertical dashed lines). The standard deviation of the

error evaluated on a time window of 1 s after convergence has

been ‘reached’ resulted in the values of 0.4, 0.6 and 0.7mm,

respectively. We can then appreciate, again, the high accuracy

of the proposed approach in estimating the cylinder radius
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R while also optimizing online for the camera motion. The

higher estimation error in case III can be ascribed to the

larger distance between the camera and the observed target,

which increases the effect of discretization errors. Note also

how T1 ≈ T3 < T2 thanks to the active optimization of the

error convergence rate. Finally, Fig. 9c depicts the camera

trajectories for the three experiments with arrows indicating

the direction of the optical axis. In case II the camera simply

travels along a straight line (v(t) ≡ v0), while in cases I

and III the direction of v is suitably modified resulting in a

trajectory lying on a plane orthogonal to a.

V. CONCLUSIONS

In this paper we have addressed the problem of active

SfM for recovering the 3D structure of a point feature and

of spherical and cylindrical objects by exploiting a novel

active estimation strategy tailored to the three cases under

consideration. For the depth estimation of a point feature, two

possibilities differing in the adopted projection model (planar

or spherical) were proposed and critically compared. The

results showed the complementarity of the two models in terms

of attainable convergence rates and basin of attraction for the

estimation error. In the spherical and cylindrical cases, we

instead showed how an adequate choice of the measured visual

features allows to reduce the SfM task to the estimation of a

single unknown constant quantity (the sphere/cylinder radius

R) in place of the classical (and time-varying) three parameters

(scaled normal vector of the planar limb surface). Availability

of this quantity allows to then retrieve the full 3D structure

of the observed targets. The reported experimental results

fully confirmed the validity of the theoretical analysis and, in

particular, the ability of the proposed active estimation strategy

to impose, in all three cases, a desired transient response to

the estimation error equivalent to that of a reference linear

second-order system with desired poles.

We are currently investigating the use of similar active

strategies for dealing with more complex 3D scenes. A pos-

sibility in this sense could be to decompose the SfM problem

in two phases by (i) extracting and classifying, possibly from

an initial measurement in the form of a point cloud, a set of

primitive shapes belonging to the classes described in our work

(points, spheres, cylinders or other 3D geometries), or also to

other classes such as 2D planar patches made of discrete/dense

sets of points; (ii) performing an (active) estimation of the

whole scene structure by applying the same strategy presented

here and by either sequencing the estimation of single scene

components, or considering an “extended” system obtained

by concatenating the observable and unobservable components

corresponding to each of the basic shapes/classes.

We are also investigating how to extend our solution to

problems involving the estimation of more parameters than

the number of available measurements (i.e., with m < p), thus

requiring to fulfil the more general observability condition (4).

Finally, we are also interested in the use of the proposed

active strategy in the context of vision-based manipulation

tasks. Some preliminary results in this context are reported

in [32] where it is shown, and experimentally proven, that an

online optimization of the estimation convergergence rate can

improve the performance in executing visual servoing tasks.

APPENDIX A

TIME-DERIVATIVE OF THE LIMB SURFACE PARAMETERS

FOR A SPHERICAL TARGET

Differentiation of χ from (21) w.r.t. time yields

χ̇ =
Ṗ 0K − P 0K̇

K2
=

Ṗ 0K − 2P 0P
T
0 Ṗ 0

K2
(43)

which, being Ṗ 0 = −v− [ω]×P 0 and exploiting the property

P T
0 [ω]×P 0 = 0, can be rewritten as

χ̇ = − v

K
− [ω]×P 0

K
+ 2

P 0P
T
0 v

K2
= − v

K
− [ω]×χ+ 2χχTv.

(44)

Letting sz = Z0/R (sz > 1), one then has

χTχ− 1

s2z
χ2
z =

X2
0 + Y 2

0 + Z2
0

K2
− R2

Z2
0

Z2
0

K2
=

1

K
. (45)

This then shows how 1/K can be expressed in terms of

χ and of s2z , with sz being directly obtainable from image

measurements, see (22).

APPENDIX B

ESTIMATION OF THE LIMB SURFACE PARAMETER FOR A

CYLINDRICAL TARGET

In order to estimate the parameters of the limb surface

associated to a cylindrical object, one could consider as

measurement the 2 + 2 angle-distance parameters (θi, ρi) of

the straight lines resulting from the projection of the cylinder

on the image plane. From [17], [27], the interaction matrix in

this case is given by:

L =









λρ1
c1 λρ1

s1 −λρ1
ρ1 (1 + ρ21)s1 −(1 + ρ21)c1 0

λθ1c1 λθ1s1 −λθ1ρ1 −ρ1c1 −ρ1s1 −1
λρ2

c2 λρ2
s2 −λρ2

ρ2 (1 + ρ22)s2 −(1 + ρ22)c2 0
λθ2c2 λθ2s2 −λθ2ρ2 −ρ2c2 −ρ2s2 −1









(46)

with si = sin θi, ci = cos θi, and
{

λρi
= − (χxρici + χyρisi + χz)

λθi = χyci − χxsi
. (47)

Therefore, being (46) and (47) linear in the unknown χ, one

can again apply the estimation scheme (2) with s taken as

the vector of measured quantities on the image plane, i.e.,

s = (ρ1, θ1, ρ2, θ2).
As for the dynamics of χ, since (21) still holds for a

cylindrical object (see [27]), one can again exploit (43) with,

however, in this case

Ṗ 0 = −
(

I3 − aaT
)

v − [ω]× P 0

and thus

χ̇ = −
(

1

K
I3 − 2χχT

)

(

I3 − aaT
)

v − [ω]× χ.

Finally, one can invoke (45) in order to express 1/K as a

function of χ and s2z , with sz being the third element of vector

s in (33).
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APPENDIX C

DERIVATION OF EQUATION (36)

We note that the cylinder axis a can be determined by the

intersection of two planes Pi : r
T
i X − di = 0, i = 1, 2, with

r1 =
[a]× P 0

‖P 0‖
, d1 = 0, r2 = − P 0

‖P 0‖
, d2 = ‖P 0‖, (48)

see Fig. 3. In particular, plane P1 passes through the camera

optical center, it is orthogonal to plane P2, and both planes

contain the axis a passing through P 0 (by construction).

Since Rs = P 0 and P 0 belongs to the cylinder axis a,

we have RrTi s − di = 0, i = 1, 2 (the point Rs belongs

to both planes Pi). Taking the time derivative of these latter

constraints (with R = const), one has

rTi ṡ =
1

R
ḋi − sT ṙi, i = 1, 2. (49)

Since ṙi = [ri]× ω and ḋi = rTi v (see [10]), eq. (49) can be

rewritten as

rTi ṡ =
1

R
rTi v − sT [ri]× ω, i = 1, 2. (50)

Finally, from aTP 0 = 0 and P 0 = Rs we have aTs = 0
implying that

aT ṡ = −sT ȧ = −sT [a]× ω. (51)

We now note that equations (50) and (51) provide three

linear constraints for ṡ which, by using (48), can be rearranged

in matrix form as the following linear system















P T
0

‖P 0‖
aT

(

[a]× P 0

)T

‖P 0‖















ṡ =
1

R

















P T
0

‖P 0‖
v

−P T
0 [a]×ω

‖P 0‖aTω +

(

[a]× P 0

)T

‖P 0‖
v

















. (52)

It is easy to verify that the 3 × 3 matrix on the left hand

side of (52) is orthonormal: by then solving (52) for ṡ and

performing some simplifications we finally obtain the sought

result

ṡ =

[

− 1

R

(

I3 − aaT
)

[s]×

]

u. (53)
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graduated from École Nationale Supérieure de
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