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Indoor air quality is a major determinaffitpersonal exposure to pollutants in today’s daihce people

spend much of their time in numerous different imdenvironments. The Anaximen company develops a
smart and connected object named Alima, which caasore every minute several physical parameters:
temperature, humidity, concentrations of COV,2Cformaldehyde and particulate matter (pm). Beydmad t
measurement aspect, Alima presents some data enddature named ‘predictive analytics’, whose
primary aim is to predict the evolution of indoallptants in time. In this article, the neural netiw (NN)
model, embedded in this object and designed fdufamit prediction, is presented. In addition wilistNN
model, this article also details an approach whmteh learning is performed periodically when a too
important drift between the model and the systedetscted. This approach is based on control charts

1 INTRODUCTION

Air pollution is now identified as a major
international issue. However, in people’s mind, it
always refers to the quality of outdoor air, wherea
the predominant environment in this regard is the
residence. Indeed, indoor air quality is a major
determinant of personal exposure to pollutants in
today’s world since people spend much of their time
in numerous different indoor environments (Walsh
et al 1987).

During the last two decades there has been
increasing concern within the scientific community
over the effects of indoor air quality on health.
Changes in building design devised to improve
energy efficiency have meant that modern homes
and offices are frequently more airtight than older
structures. Furthermore, advances in construction
technology have caused a much greater use o
synthetic building materials, which provide indoor
pollution (Jones 1999).

The known health impacts and corresponding
pollutants are numerous. Table 1 is an excerpttake

furniture, stoves...) or outdoor (air coming through
an opened window or via the ventilation system).

Table 1. Pollutants and sources

Pollutant Major emission sources
Allergens House dust, domestic animals,
Asbestos Fire retardant materials, insulation

Carbon dioxide

Metabolic activity, combustion aittes,

Carbon monoxide

Fuel burning, boilers, stoves, gas.|.

Formaldehyde

Particleboard, insulation, furnishing

Micro-organisms

People, animals, plants, air caowiing

Nitrogen dioxide

Outdoor air, fuel burning, motahicles

Organic substances

Adhesives, solvents, building mads,

Ozone

Photochemical reactions

Particles

Tobacco smoke, combustion products. ).

Polycyclic aromatic

Fuel combustion, tobacco smoke

3

hydrocarbons
Pollens Outdoor air, trees, grass, weeds, plant
Radon Soil, building construction materials

(concrete, stone)

Fungal spores

Solil, plants, foodstuffs, internafemes

Sulfur dioxide

Outdoor air, fuel combustion

from (Spengler and Sexton, 1983) to illustrate some Symptoms and consequences of exposure to a

of the major indoor pollutants. The sources of po|ytant can vary depending on the pollutant type
pollution can be located indoor (building material, anqg concentration. For example, the carbon dioxide
(whose indoor concentrations can vary from 700 to



3000 ppm) is a simple suffocating gas and can alsoAmong these artificial neural network models, the

act as a respiratory irritant (Maroet al 1995), multilayer perceptron (MLP) is, by far, the most
whereas the exposition to a formaldehyde popular architecture due to its structural flextiil
concentration of 100 ppm can cause death. good representational capabilies, and the

It thus explains why indoor air quality recently availability of a large number of training algorits

receives much public attention, and people are NoW(Han and Qiao 2013). This model is used for both
eager to measure in their own homes the quality of c|assification and regression tasks.

their i_ndoor air. To answer to this growing needeT  \yorks of Cybenko (1989) and Funahashi (1989)
AnaX|mter(11 [Son:pany d(,jb\el'\/elopjl' a ZSOT??H and have proved that a MLP with only one hidden layer
connected object named Alima (Alima, )- using a sigmoidal activation function and an output

In fact,_ pollutant levels ar('a COI_‘\S_tantIy c_hanglng, layer can approximate all non-linear functions with
depending on the tenants’ activities. Alima can S )
the wanted accuracy. Its structure is given by:

measure every minute several physical parameters:
temperature, humidity, concentrations of COV,,CO . . )
formaldehyde and particulate matter (pm). Data are _

stored on the object or can be sent to a distant Z= gz(z_ll V\;q[hz_; WX+ E’J+ %
database, and are available for the user online via ) )

phone apps or websites. Beyond the measurement

aspect, the society currently plans to embed imali ~ Where:

some data analysis feature named ‘predictive- X are thenoinputs of the neural network,
analytics’, whose primary aim is to predict the _
evolution of indoor pollutants in time. Anaximen
and the CRAN laboratory are associated to develop

w;, are the weights connecting the input layer
to the hidden layer,

this leading-edge feature. - b are the biases of the hidden neurons,
In this article, a neural network (NN) model - gy() is the activation function of the hidden
designed for pollutant prediction is presented. neurons (namely the hyperbolic tangent),
However, a drift can appear between the NN model_ 2 are the weights connecting the hidden

and the system modelled (due to, for example, a
modification of the occupant behavior), and forces
the NN to do a relearning phase. But this relegnin ~
phase is time and resource consuming and should be
done sparingly. So, in addition with the NN model
for pollutant detection, this article also detadla )
approach where batch learning is performed
periodically when a too important drift between the
model and the system is detected. This approach i
based on control charts.

Section 2 presents a short state-of-the-art onaheur

network modelling, section 3 details the approach . . .
used to control gtlhe drift and perform thef)pbatch weights and biases. This step is important because

learning while section 4 presents the industrial 182Ming algorithm performs a local search of the
application. Section 5 first exposes the results Minimum. So, in order to avoid local minimum
obtained by the NN model for pollutant prediction trapping, different initial sets must be constrdcte
(without any relearning phase), and then describeswhich allow beginning to learn in different zonds o

the results obtained when using the drift detectionthe  criteria  domain.  Different initialization
algorithm. algorithms have been proposed in the literature

(Thomas and Bloch 1997). The initialization

algorithm used in this paper is the one proposed by
2 NEURAL NETWORK MODEL Nguyen and Widrow (1990) which allows
associating a random initialization of weights and
biases to an optimal placement in input and output
spaces.
The second step is performed by the learning
algorithm which must fit the network output witreth
data. In industrial applications, data are noisg an
corrupted with many outliers. In order to limit the

neurons to the output one,

b is the bias of the output neuron,

g2(.) is the activation function of the output
neuron and,

zis the network output.

Because the problem is a regression probe(), is
chosen linear.

SThree steps must be performed in order to design th
neural modelinitialization, learning andpruning

The first one is the determination of the initiat sf

Artificial neural network models have been
successfully applied to solve many different
problems, including dynamic systems identification,
patterns classification, adaptive control, funcsion
approximation and so on.



impact of outliers on the results, a robust Levegbe between the system behavior and its corresponding
Marquardt algorithm is used (Thomas al 1999). NN model is detected.
Levenberg—Marquard algorithm allows associating In many case, a drift may appear between the model
the speed of the Hessian methods to the stability o constructed and the system studied. This drift may
the gradient methods. This is performed by adding abe due to two main reasons. The first one concerns
parameter multiplied by the identity matrix in orde the evolution of input parameters. With a learning
to permit the inversion of the Hessian matrix eifen  approach, the obtained model is valid only on the
it is singular. The tuning of this parameter durihg learned domain. The model is able to provide advali
learning allows the Levenberg—Marquard algorithm solution only in this concerned domain.
to work as a gradient descent algorithm when this The second reason concerns the uncontrolled
parameter is large and as a Gauss—Newton algorithmmodification of the machine or environment
when this parameter is small. The use of a robustbehavior. Indeed, A change of a parameter
criterion allows to avoid the influence of outliersd ~ (voluntarily or not, measured or not) which is ot
provides a regularization effect in order to pregven input of the model, can affect the behavior of the
overfitting. An important issue in neural network Machine. In this case, this parameter should be par
design is the determination of its structure. To of the model inputs but, as it was considered
determine it, two approaches can be used. The firsconstant for the duration of the leaming stepyas
one is constructive, where the hidden neurons arehot retained as such. Due to this change, which may
added one after the other (Ma and Khorasani 2004).€VEN be unknown to operators and users, the model
The second approach exploits a structure with tooW'” therefore provide results out of step withliga
many initial hidden neurons, and then prunes the To take into account these problems, a relearning o
least significant ones (Setiono and Leow 2000, new data is needed. There are two practical ways to
Engelbrecht 2001). We focus on the pruning implement learning in neural networks: batch
approach that allows a simultaneous selection @f th training and on-line training. Whenever a new data
input neurons and the number of hidden neurons.is received, batch learning uses this new data
The pruning phase is performed in two steps. First, together with the past data to perform a retraining
the Engelbrecht algorithm is used which allows to But this approach is time consuming. The on-line
quickly simplify the structure and second, the approach uses only new data to adapt the model.
Setiono and Leow algorithm is used which is slower However, this approach suffers from slow training
but also more efficient (Thomas al 2013). error convergence as a large number of training dat
may be required (Lianget al 2006). Moreover,
different works have shown that on-line training
3 ONLINE ADAPTATION OF THE strategy does not converge to the optimal weights
M ODEL (Heskes and Wiegerinck 1996, Nakama 2009).
We thus propose here another approach where a
. batch learning is performed periodically when dtdri
3.1 Generalities between the model and the system occurs, in order
to synchronize the model with the reality.
Ideally, the data collected during the Because this synchronization is time consuming, the
experimentation phase Should describe a.” theState Synchronization frequency must be Opt|m|zed
of the system to model. However, it is sometimes Rather than consider a resynchronization frequency
not feasible due to the high number of potential jn response to events (arrival of new information
situations the system could encounter. |ndeeduin O from one of the connected deviceS, So]icitatiomby
case data collected are different depending on theoperator...) or a periodically one (every hour,
seasons, the yearly weather, changes in user'sshabi yeek...), it is better to rely on statistical findig
and so on. Technically, it would thus be highly Among the 7 basic tools for quality control, comtro
difficult to obtain an exhaustive data set. Assule  charts, also known as Shewhart charts or process-
our approach consists in two phases: first, a Iegrn  pehavior charts (Shewhart 1931), are interesting

phase is achieved based on a data set obtained via statistical Process Control (SPC) tools usefubiar
relatively short experimentation phase (in our cdse  proposed system.

month, see section 4.1) to construct a first “speci
NN model. Then, a relearning is launched if and
only if a significant difference (called “drift”)



3.2 Control charts Our control charts (s charts) aim to determine if a
process characteristic is stable. The center (38 (

Control charts are particularly relevant to the is given by the standard deviation of the considere

dynamic quality control with the use of time-series characteristics. The Upper Control Limit (UCL) and

(Tague 2004). They can determine statistically if a the Lower Control Limit (LCL) are calculated for

variation is no longer under control. Indeed, it is representing 99.8% of data (NIST/SEMATECH

known that even when a process is under control2012). These limits are given by:

there is approximately a 0.27% probability of anpoi

exceeding a & control limit (Pareto). These few

isolated points should not trigger synchronization.

But the detection of too many points above thistlim _

may underlines the presence of a special causa, eve CL=s

if it is not yet known.

The Combination of a neural network with the

control charts can therefore inherit from the

robustness of the statistical analysis and the ]

adaptability of the neural network. bat al (2012) wher_e. .

work on the inverse combination of both tools véth = S stands for the center line (CL) gnq

recognition algorithm of control charts using néura correspond to the estimated standard deviation

networks to get alerts in case of quality problems of_the Ch‘?‘raCte”St'C monitored,

and to provide clues in defining causes. - nisthe size of the sample, .

In our case, when a set ofnew data is collected, a ¢s is a factor allowing to find an unbiased

performance indicator is calculated and compared to ~ €Stimator of the standard deviation

two bounds determined on the initial validationadat

set. If this indicator is still between the two Inds, S=Go (3)

the model is always suitable. If the new valuehef t

indicator is outside the bounds, a relearning plmse With c4 given by:

needed on these new collected data. Figure 1 shows

5 2
UCL=3+3>/1- ¢ @)
C

4

an example of control chart to monitor the accuracy n

of the model. It presents the evolution of the 5 (2‘1j!

considered indicator compared to the upper (UCL) C, =1[—— 4
and lower bounds (LCL) in function of samples of n—l(n—l_lj!

sizen. In this example, the two first samples present 2

acceptable results and the model accuracy is
sufficient. For the third sample, the indicator is where the non-integer factorial is given by:
outside the bounds and a relearning omtlest data
n 1
S e

is needed to drive the indicator inside the bounds [n]' _( nj ( n j
eato ‘ - Wi elearning | ‘ ‘ ‘ ‘ In the considered case, the monitored characteristi

the next samples. If no relearning occurs, thet drif 2/ —2'1 :
between model and reality stays and may grow.
ek ] is the error performed by the network, and so, the
parameter to monitor is the sample standard

ve deviation given by:

2

(6)

LCL|

. . .
1 2 3 4 sample

Figure 1: Example of control chart used for moriitgr whereg stands for the error performed on diagand

accuracy of the model. £ stands for the mean of the error.
The value of the estimated standard deviafons
3.3 control bounds obtained on the validation data set used to vaidat

the initial model.



4 |INDUSTRIAL APPLICATION

4.1 Description of the case study I
The experimentation site is a single storey dwegllin 14
whose floor plan is shown figure 2.

ECTER S N

Figure 2: Implantation of the 5 Alima in a house.
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Figure 3: Pollutant prediction principle.
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Figure 4: prediction of G0



Red points indicate the different locations of the In a first step, the results obtained on the véilica
Alimas installed in the house. The experimentation data set are presented. Figure 4 presents the
ran during a period of 1 month during summer 2013, prediction of CO (in green) to compare to the real
and Alimas were recording each minute the valuesvalues collected (in black). This figure shows that
of their different sensors. The data set is didide the evolution of CO2 level may be predicted with a

two subsets (learning and validation data set) eachgood accuracy even if the amplitude of the larger
corresponding to 15 days of collected data. Only yariation can't be predicted.

data collected by Alimal are used for the learning The figure 5 presents the prediction error for the

and validation. CC? pollutant (for the first 5 days of the validation
. data set). This figure shows that the model is &ble

4.2 Considered problem predict the smooth evolution but it is not abldital

. the total amplitude of greatest variations. Forséhe
We focus here on the problem of pollutant evolution figures, the data are normalized due to
prediction. As explain previously, each Alima cnfijential needing. However, the model works
collects, each minute, the values of five paramseter | i the true range of variation.

(temperature, humidity, GO COV and particulate

Predictior

matter (pm)). The goal is to predict 30 minutes emwroncg
ahead the level of each pollutant in function o th o

actual and past level of these pollutants. In otder og 1
improve the performance of the model, different of 1
situations (cooking, sleeping...) are detected by |
using a classification model. The output of this L »JLV M ol
classification model is used as an input of the T d ¥ "‘M |

o

o

prediction model.
The figure 3 presents the principle of the preditti
of pollutants. The database collects data from the
Alima. These data are use in a first step in otder
detect the current situation (cooking, sleeping...)
which may have an impact on the pollutant
evolution. The design of the classification modas$ h
already been submitted to the MOSIM2014
conference. This article is thus entirely focused o
the prediction model. This model takes as inpugs th *
8 actual outputs of the classification model arel3h oo
past valuest( t-1, t-2, t-3, t-4) of the parameters
collected by Alima. Three different models are buil

for each pollutant (C&® COV, pm). The output of

the considered model is the value of the considered ,,

pollutant 30 minutes latet+30). In order to avoid i " W%W
the local minimum trapping, the learning is | ‘ N
performed on 20 different initial parameters sets. ‘ kR

The data set is divided in two subsets (learnim an  °
validation data set) each corresponding to 15 ohys Figure 6: prediction of pm.

collected data. Only data collected by Alimal are

used for the learning and validation. A pruning i ) )
algorithm is used in order to avoid the overfitting These two figures shows that pm is corrupted with

problem. At last, the best resulting model is selec ~ @n important noise. The events to detect have an
amplitude of the same order to the noise variance.

However, the model is able to predict the evolution
5 RESULTS of the pm pollutant with a good accuracy.

ay

Figure 5: prediction error of €0

The results obtained for the COV pollutant is quite
similar and are not presented here.

Figure 6 and 7 present the same results obtairred fo
pm pollutants.

5.1 Resultsobtained on thevalidation 5.2 Adaptation of the moddls

data set The main goal of this model is to be suitable eifen
the conditions change (move in the house, or change



of house ...) and the model must to be portable from contains 240 patterns. Figure 8 presents the g-char
one Alima to another. In order to do that, the niode obtained for the pm model used with data collected
must be adaptable on-line. To do that, we propose t by airbox2.

detect if the model varies from the reality, and to

' . This figure shows that, as awaited, the model ts no
perform a relearning only if needed.

accurate for the first sample of 240 data. So a

eworny T relearning occurs on these 240 first data. This
ol | relearning allows to fit the model to these new
ol ] condition and the model accuracy is satisfactory

until the sample 25. For this sample, the valuthef
standard deviation is slightly outside the bounnid a

a second relearning is needed. So, for the 15 afays

1 the experiments, only 2 relearning are needed to
maintain a good accuracy of the model.

0.1!

0..

-0.04°

0.1

Figure 9 presents the prediction error for the pm
pollutant. This figure shows that this strategyat
maintaining an accurate model even when the
conditions change.

Figure 7: prediction error of pm.

In order to illustrate this, the preceding models
constructed with the data collected by airbox1 are
used with the data collected on airbox2.

The s-chart described part 3 is used in order to
determine if a relearning is needed. The size ef th
samples is fixed to 240 minutes and so each sample

S-charj
O

1400" | \\\ .
—Relearning needed

1200 | | 5 i
5 \ 2

1000° 3 \ 8 1
L \| )
é =)}

B \ 2 |
800~ @ £
£ :

Ll ®© = |
600" & °
s T

400 = N o 7

e O ucy

e e R =

| | | | |
-200y 10 20 30 40 50 samples

Figure 8: S-chart: monitoring of model accuracy.
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