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Abstract. Optimizing the structure of neural networks remains a hard task. If too small, the 

architecture does not allow for proper learning from the data, whereas if the structure is too large, 

learning leads to the well-known overfitting problem. This paper considers this issue, and proposes 

a new pruning approach to determine the optimal structure. Our algorithm is based on variance 

sensitivity analysis, and prunes the different types of unit (hidden neurons, inputs, and weights) 

sequentially. The stop criterion is based on a performance evaluation of the network results from 

both the learning and validation datasets. Four variants of this algorithm are proposed. These 

variants use two different estimators of the variance. They are tested and compared with four 

classical algorithms on three classification and three regression problems. The results show that 

the proposed algorithms outperform the classical approaches in terms of both computational time 

and accuracy. 

Keywords: neural network, multilayer perceptron, pruning, classification, 

regression, data mining 
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1 Introduction 

From the first works of Rumelhart and McClelland [1], artificial neural network 

models have been successfully applied to solve many different problems, 

including the identification of dynamical systems, pattern classification, adaptive 

control, and function approximation.  

Among these artificial neural network models, the multilayer perceptron (MLP) 

is, by far, the most popular architecture because of its structural flexibility, good 

representational capabilities, and the availability of a large number of training 

algorithms [2]. This model is used for both classification and regression tasks. The 

goal of classification is to map the data into predefined groups or classes. In the 

regression phase, the aim is to map data items to a real-valued prediction variable 

[3].  

For both classification and regression, the same question must be addressed: how 

many nodes should be used in each layer? Despite the wealth of literature on the 

MLP, defining the optimal architecture remains a hard task. If too small, the 

architecture cannot learn from the data properly, whereas if the structure is too 

large, learning leads to the well-known overfitting problem. To avoid overfitting, 

we can apply early stopping [4], a robust minimization criterion [5-6], 

regularization approaches [7-9], or determine the optimal structure of the network. 

The latter method allows us to obtain a simpler and smaller model. Hence, a 

crucial step in designing the MLP is network model selection [10]. Many 

algorithms have been proposed to determine the optimal architecture of the 

network. However, because this determination is an NP-hard problem, most 

existing algorithms are approximate and produce near-optimal solutions [11]. 

These algorithms can be classified into four groups: pruning algorithms, 

constructive algorithms, hybrid algorithms, and evolutionary algorithms. 

Pruning algorithms learn using an over-sized structure, and then, in a second step, 

eliminate spurious parameters and/or neurons. One of the main advantages of 

these algorithms is that they are able to perform feature selection simultaneously 

[12-16]. Constructive algorithms start from a small initial architecture, and add 

new hidden units or layers until the results are acceptable [17-20]. Hybrid 

algorithms combine pruning and constructive approaches [21-23], whereas 
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evolutionary algorithms conduct a search across the parameter space and 

determine the optimal structure using some performance index [24-25]. 

This paper focuses on pruning algorithms, and proposes a new method based on 

the variance sensitivity analysis proposed by Engelbrecht [26]. We prune different 

types of unit (hidden neurons, inputs, and weights) sequentially, and use a stop 

criterion based on a performance evaluation of the network results from both the 

learning and validation datasets. The main goals of this algorithm are to improve 

structure determination and minimize computational time for both classification 

and regression. Four variants of this algorithm are proposed. 

The remainder of this paper is organized as follows. Section 2 presents a brief 

overview of structure determination and pruning algorithms, and Section 3 

describes the network architecture and learning algorithm. Section 4 introduces 

the proposed pruning algorithm and its four variants. Sections 5 and 6 present the 

results obtained from benchmark classification and regression tasks, respectively. 

The results given by the proposed algorithms are compared with those obtained by 

conventional pruning algorithms. Finally, Section 7 concludes the paper. 

2 Brief overview of structure determination 

2.1 Problem origination 

As explained previously, determining the optimal architecture of a neural network 

is an NP-hard problem. The original work on this problem is Kolmogorov’s 

theorem, which states that any continuous function on an n-dimensional cube can 

be represented by the sum and superposition of continuous functions of one 

variable [27]. Cybenko [28] and Funahashi [29] have proved that sigmoidal 

functions are suitable for this work, and so neural networks with only one hidden 

layer that use a sigmoidal function can be seen as universal approximators. 

However, these results are not sufficient to determine the size of this hidden layer. 

Hecht-Nielsen [30] has proved that any continuous function can be represented by 

a neural network that has only one hidden layer with exactly 2ni+1 neurons, where 

ni is the number of inputs. However, the activation function used in his work is 

more complex than the sigmoidal one. Huang [31] has extended this work, and 

proved that, with two hidden layers, 2 ( 2)on N+  hidden units allocated between 

the two hidden layers are enough to learn N samples with negligibly small error 
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(no denotes the number of outputs). The problem here is to fit a function with a 

finite number of (generally noisy) samples. In this case, the network may learn the 

noise on the function, and not the function itself, leading to an overfitting problem 

[32].  

Thus, no exact paradigm exists to estimate the optimal neural network, with 

different approaches and algorithms being used to determine its structure.  

2.2 Optimal structure determination approaches: a brief overview 

The oldest and most primitive approach to determining the optimal structure is 

simple trial-and-error, which can lead to severely suboptimal structures.  

Another approach is to perform an exhaustive search. However, this is not a 

realistic option for many real applications. Moreover, an exhaustive search will be 

complicated by the noisy fitness evaluation problem [33].  

2.2.1. Evolutionary approach 

Evolutionary algorithms can be seen as an extension of the exhaustive search 

using mechanisms inspired by biological evolution, such as reproduction, 

mutation, recombination, and selection. Evolutionary approaches have been used 

in a restrictive way to prune oversized structures [34-35]. However, this approach 

may be used with a hybrid goal (construction and pruning) [36-37]. Evolutionary 

algorithms may be used to simultaneously optimize the architecture and weights 

[25, 38-39] or to concentrate on the structure [35-37, 40]. 

The use of evolutionary algorithms for structure determination introduces two 

sources of noise, one from the initialization of weights, and the other from the 

chosen optimizer. In contrast, the simultaneous evolution of architecture and 

weights is muddled by the well-known permutation problem. Additionally, the 

computational cost of implementing evolutionary algorithms, even for structure 

determination alone, may become prohibitive [41]. 

2.2.2. Constructive approach 

The goal of constructive approaches is to determine the optimal structure of the 

network by sequentially adding hidden neurons or hidden layers to a small initial 

structure. Many algorithms have been proposed under this paradigm [42]. Among 

these algorithms, we can cite dynamic node creation and its variants [43-44], 
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activity-based structure-level adaptation [45-46], cascade correlation [18, 47], and 

the constructive one-hidden-layer algorithm and its variants [42, 48-49]. Most of 

these algorithms lead to more complex structures by mixing various activation 

functions [20, 49] or adding new hidden layers with connections between neurons 

that are not in successive layers [18, 41]. Hence, these algorithms lead to neural 

network structures that are not strictly feedforward, and require specific 

algorithms to learn parameters while the structure grows [48, 50]. Moreover, these 

algorithms can lead to suboptimal networks [42], or become trapped in local 

minima because the error surface of a smaller network is more complicated and 

includes more local minima than the error surface of a larger network [51-52].  

2.2.3. Pruning approach 

In pruning approaches, an oversized structure is first learned, before spurious 

parameters are eliminated in a second step. Many algorithms using this approach 

have been proposed, and these can be classified into three broad groups: 

magnitude-based (pruning during learning), brute-force, and sensitivity-based 

(post-learning pruning) [15-16].  

In magnitude-based approaches (pruning during learning), a term is added to the 

objective function for choosing the most efficient solution. For example, a term 

proportional to the sum of all weight magnitudes favors a solution with small 

weights; those that are nearly zero are not likely to influence the output much, and 

can thus be eliminated [15]. This approach prunes the network by driving the 

weights toward zero during learning, and various different penalty terms and 

weight decays have been proposed and studied [9, 53-58]. 

Brute-force pruning methods (post-learning pruning) set the weights to zero one-

by-one, and evaluate the change in the error. If it increases too much, then that 

weight is restored; otherwise, the element is removed. Setiono and Leow [59] 

used this approach to prune hidden neurons and inputs in two steps.  

Sensitivity-based approaches (post-learning pruning) evaluate the sensitivity of 

the error function to the removal of an element. Some algorithms consider the 

change in the error function due to small changes in the values of the weights. 

Measures of the relative effect of the different weights, or saliencies, can be 

computed, and weights with low saliencies are deleted. Optimal Brain Damage 

[13], Optimal Brain Surgeon (OBS) [14], and all algorithms derived from these 
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[60-61] use a second-order Taylor expansion of the error function to estimate how 

the training error will change as the weights are perturbed. Leung et al. [62] 

applied the same approach for a recursive least-squares algorithm, whereas Tang 

et al. [63] used the error covariance matrix obtained during learning in a similar 

way to the Hessian matrix in the OBS algorithm.  

The output of sensitivity analysis methods is based on a variance analysis of 

sensitivity information, given by the derivative of the neural network output with 

respect to the parameters [26]. These are powerful methods, because the network 

structure inherently contains all of the information needed to compute these 

derivatives efficiently [64]. Zeng and Yeung [65] inserted an input perturbation 

and studied its effect on the output sensitivity. Chandrasekaran et al. [66] 

proposed a sensitivity-based method based on linear unit models, and Lauret et al. 

[67] used the extended Fourier amplitude test to quantify the relevance of the 

hidden neurons. Augasta and Kathirvalavakumar [68] defined the significance of 

a neuron as the sum-norm of its output. They then compared this significance to a 

threshold to determine which neurons must be pruned. 

Levin et al. [69] applied principal component analysis to select elements for 

removal, while Medeiro and Barreto [70] determined which weights to prune by 

evaluating the correlation between error signals associated with the neurons of a 

given layer and the error signal propagated back to the previous layer. Weights 

that generate lower correlations are not relevant, and can therefore be pruned. 

Beigy and Meybodi [11] proposed an automaton that can determine whether a 

hidden neuron should be preserved or pruned. This automaton exploits the 

variance of the activation of a neuron. Liang [71] developed an orthogonal 

projection to determine the importance of hidden neurons. 

Although there are many different pruning methods, the main ideas underlying 

most of them are similar. They all try to establish a reasonable relevance measure 

for a specified parameter (input, weight, or neuron), so that the pruning action will 

hopefully have the least effect on the performance of the network [65]. 

One of the disadvantages of pruning algorithms is their heavy computational 

burden, as the majority of the training time is spent on networks that are larger 

than necessary [2]. 
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2.2.4. Hybrid approach 

Hybrid algorithms combine pruning and constructive approaches. Nabhan and 

Zomaya [22] exploited an intelligent generate-and-test procedure that evaluates 

the learning performance of the structure, and then modifies it by exploring 

different alternatives and selecting the most promising. The algorithm modifies 

the structure of the neural network by adding or deleting neurons and/or layers. 

Rivals and Personnaz [72] associated a constructive approach based on 

conditioning the Jacobian matrix of the candidate neural models with a pruning 

phase based on statistical tests. Huang et al. [73] have developed an on-line 

training algorithm for a radial basis function neural network, and Narasimha et al. 

[23] reported a method that starts with an empty network (no hidden unit) and 

successively adds hidden units, retraining only these new units. In a second step, 

an orthonormalization pruning algorithm is used to remove spurious parameters. 

Hsu [74] has exploited an on-line hybrid algorithm to design a neural network 

controller for a linear piezo-electric ceramic motor. Han and Qiao [2] optimized 

the network structure by combining error reparation and sensitivity analysis 

techniques.  

The main drawbacks of these algorithms are similar to those of the constructive 

approach; i.e., they may require particular learning algorithms and can lead to 

suboptimal networks [52]. 

2.3. Selection criteria 

The main risk is that current algorithms may become stuck at local minima. Thus, 

different sets of initial weights are generally used to avoid the local minima 

trapping problem [11]. In addition, selection criteria are generally used to 

determine a suitable structure.  

For regression problems, many selection criteria have been proposed, such as 

Akaike’s information criterion (AIC), Bayesian information criterion (BIC), root 

mean square error (RMSE), and mean absolute percentage error (MAPE). Qi and 

Zhang [75] compared these criteria and their extensions, and concluded that there 

is no best method. Egrioglu et al. [76] proposed an association of these different 

criteria to select the optimal structure. AIC and BIC penalize large models, 

whereas RMSE and MAPE are measures of the deviation of the predicted values 

from actual values [76]. For regression problems, the goal is to reduce the 
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distance between the model and the data. Hence, the RMSE criterion is suitable, 

and is used in this work: 

2

1

1
ˆ( )

N

n n
n

RMSE y y
N =

= −∑   (1) 

where N denotes the number of data, yn is the nth actual data point, and ̂ny  is the 

predicted value.  

In classification problems, the goal is to reduce the number of misclassified data. 

Thus, the classical criterion for classification problems is the misclassification rate 

(error rate or “zero-one” score function) [77]: 

01
1

1
ˆ( , ) 

N

n n
n

S I y y
N =

= ∑   (2) 

where I(a, b) = 1 when a ≠ b and 0 otherwise. 

A related difficulty arises if there are different costs associated with different 

misclassifications. In this case, a general loss matrix should be constructed [10]. 

This problem is not considered here. 

3 Network architecture and learning algorithm 

3.1. Multilayer perceptron  

The works of Cybenko [28] and Funahashi [29] have shown that a multilayer 

neural network consisting of only one hidden layer (using a sigmoidal activation 

function) and an output layer can approximate all nonlinear functions with the 

desired accuracy. This result explains the great interest in this type of neural 

network, the aforementioned MLP.  

Its structure is given by: 

2 1 1

1 1

ˆ . .
o in n

o h h hi i h
h i

y g w g w x b b
= =

  
= + +  

  
∑ ∑   (3) 

where ix  are the ni inputs of the neural network, 1hiw  are the weights connecting 

the input layer to the hidden layer, 1hb  are the biases of the hidden neurons, gh(.) 

is the activation function of the hidden neurons (here, the hyperbolic tangent for 

all hidden neurons), 2
hw  are the weights connecting the hidden neurons to the 
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output neuron, b is the bias of the output neuron, go(.) is the activation function of 

the output neuron, and ̂y  is the network output.  

The activation function used for the output layer differs according to the problem 

under consideration. For regression problems, this function is typically chosen to 

be linear, whereas for classification problems, the network’s output should 

represent the probability that a pattern belongs to the considered class. In this 

case, the activation function go(.) is generally chosen to be sigmoidal. 

3.2. Learning algorithm 

The MLP’s parameters (weights and biases) are determined using supervised 

learning. This performs a local search for the optimum, which implies that the 

initial set of parameters has a great influence on the final result.  

3.2.1. Weights and biases initialization 

Many initialization algorithms have been proposed [78]. We use a modification of 

the Nguyen and Widrow (NW) algorithm [79], which allows a random 

initialization of weights and biases to be associated with an optimal placement in 

the input and output spaces. The NW algorithm has been modified by Demuth and 

Beale [80] for non-normalized inputs. 

For regression problems, the output of the network may be a real value if no 

normalization occurs. To take this into account, a second modification has been 

introduced concerning the biases and weights connecting the hidden layer to the 

output layer to deal with non-normalized outputs [78]. 

3.2.2. Robust learning algorithm 

We use a Levenberg–Marquardt algorithm associated with a robust criterion [6]. 

This algorithm performs a local search for the optimum, and the robust criterion 

accounts for the presence of outliers in the data and has a regularization effect 

during learning. The robust criterion is based on Huber’s model of measurement 

noise contaminated by outliers [81]. This model considers the distribution of the 

noise e as a mixture of two density functions. The first corresponds to the basic 

distribution of a measurement noise (e.g., normal, variance 2
1σ ), whereas the 

second, corresponding to outliers, is an arbitrary symmetric long-tailed 

distribution (e.g., normal, but with variance 22σ  such that 2 2
1 2σ σ< ). 
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4 Proposed pruning algorithm 

Even if the learning algorithm has a regularization effect, it is useful to determine 

the optimal structure of the network to simplify the model.  

4.1. Variance nullity measure 

The proposed algorithm uses the variance nullity measure (VNM) [26, 82-83], in 

which the variance of the sensitivity of an input, a hidden neuron’s output, or a 

parameter (weight or bias) is measured for different patterns. If this variance is not 

significantly different from zero, and if the average sensitivity is small, the input 

or the hidden neuron under consideration has no effect on the network output. 

Therefore, the VNM can be used in hypothesis testing to determine whether an 

input, hidden neuron, or parameter has a statistical impact on the network using 

the χ2 distribution. If not, it must be pruned. This is repeated for each type of 

element (input, hidden neuron, weight connecting input to hidden layer, bias of 

hidden layer), and requires the sensitivity of the network output to be determined 

for each type of element. 

4.1.1. Sensitivity to a hidden neuron  

To determine whether a hidden neuron h must be pruned, the VNM of the weight 

2
hw  (h = 1…nh) that connects this hidden neuron to the output neuron must be 

calculated. For this, we must determine the sensitivity of the network output ̂y  

to the parameter 2
hw . This sensitivity corresponds to the contribution of this 

parameter to the output error. This contribution is determined by the partial 

derivative of the network output ̂y  with respect to the parameter 2hw  being 

considered: 

2
' 1

2

ˆ( ) ( )
( ) . ( ( )). ( )

( )h
o hw

h

y n z n
S n g z n x n

z n w

∂ ∂= =
∂ ∂

 (4) 

where n is the number of data patterns from the learning database and ' ( ( ))og z n  

is the derivative of the activation function of the output neuron go(). When this 

activation function is linear (i.e., for regression problems), its derivative is: 

' ( ( )) 1og z n =  (5) 
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For classification problems, the activation function is chosen to be sigmoidal, and 

its derivative becomes: 

( )' ˆ ˆ( ( )) ( ). 1 ( )og z n y n y n= −  (6) 

4.1.2. Sensitivity to an input 

Similarly, the sensitivity of the network output ŷ  to the input ix  (i=1…ni) is 

obtained by taking the partial derivative of the output with respect to the input ix  

under consideration: 

( )( )

1 1

1 1
1

2' 2 1 1

1

ˆ ˆ( ) ( ) ( ) ( ) ( )
( ) . . .

( ) ( ) ( ) ( ) ( )

( ( )). . 1 ( ) .

h

i

h

n
h h

x
hi h h i

n

o h h hi
h

y n y n z n x n z n
S n

x n z n x n z n x n

g z n w x n w

=

=

∂ ∂ ∂ ∂ ∂= =
∂ ∂ ∂ ∂ ∂

= −

∑

∑
 (7) 

where ' ( ( ))og z n  is given by (5) for regression problems and (6) for classification 

problems. 

4.1.3. Sensitivity to a weight connecting the input to the hidden layer 

The sensitivity of the network output ŷ  to the weights 1
hiw  (i = 1..., ni; h = 1..., 

nh) connecting the input to the hidden layers is obtained by taking the partial 

derivative of the output with respect to the weight 1
hiw  under consideration: 

( )( )
1

1 1

1 1 1 1
1

2' 2 1

1

ˆ ˆ( ) ( ) ( ) ( ) ( )
( ) . . .

( ) ( ) ( ) ( ) ( )

( ( )). . 1 ( ) . ( )

h

hi

h

n
h h

w
hhi h h hi

n

o h h i
h

y n y n z n x n z n
S n

w n z n x n z n w n

g z n w x n x n

=

=

∂ ∂ ∂ ∂ ∂= =
∂ ∂ ∂ ∂ ∂

= −

∑

∑
 (8) 

where ' ( ( ))og z n  is given by (5) for regression problems and (6) for classification 

problems. 

4.1.4. Sensitivity to the bias of the hidden layer 

The sensitivity of the network output ŷ  to the bias 1
hb  (h = 1..., nh) of the 

hidden neurons is obtained by taking the partial derivative of the output with 

respect to the bias 1hb  under consideration: 
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( )( )
1

1 1

1 1 1 1
1

2' 2 1

1

ˆ ˆ( ) ( ) ( ) ( ) ( )
( ) . . .

( ) ( ) ( ) ( ) ( )

( ( )). . 1 ( )

h

h

h

n
h h

b
hh h h h

n

o h h
h

y n y n z n x n z n
S n

b n z n x n z n b n

g z n w x n

=

=

∂ ∂ ∂ ∂ ∂= =
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= −

∑

∑
 (9) 

where ' ( ( ))og z n  is given by (5) for regression problems and (6) for classification 

problems. 

4.1.5. Determination of the VNM 

The sensitivity of the network output to a hidden neuron, input, weight, or bias of 

the hidden layer can be explained using the unified notation ( )
k

S nθ  {n = 1…N 

and k = 1…K=ni+nh.(ni+2)}, with θk corresponding to xi when considering input i, 

to 2
hw  when considering hidden neuron h, to 1

hiw  when considering the weight 

connecting input i to hidden neuron h, or to 1
hb  when considering the bias of 

hidden neuron h. Thus, ( )
k

S nθ  is given by equation (4), (7), (8), or (9). 

The VNM is the unknown variance 2

kθσ  of the sensitivity of output to parameter 

θk. Engelbrecht [26] used a classical estimator for this variance: 

( )2

2 1

( )
ˆ

1

k k

k

N

n

S n S

N

θ θ

θσ =

−
=

−

∑
 (10) 

where 
k

Sθ  is the mean of the sensitivity of the output to θk: 

1

( )
k

k

N

n

S n
S

N

θ

θ
==
∑

 (11) 

Another estimation of this variance is given by [84]: 

2ˆ
0.7k

MAD
θσ =  (12) 

where MAD is the median of { }( )
k k

S n Sθ θ− ɶ , with 
k

Sθ
ɶ  the median of ( )

k
S nθ .  

This estimator uses the median instead of the mean, and is more robust to the 

presence of outliers in the data. These two variants are tested and compared in 

later sections.  
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A statistical hypothesis test is used to determine whether the VNM of the 

considered parameter is null. The null hypothesis 0H  (that the variance in 

parameter sensitivity is approximately zero) and its alternative 1H  are: 

2 2
0 0

2 2
1 0

:

:
k

k

θ

θ

σ σ
σ σ

 ≤


>

H

H
 (13) 

where 2
0σ  is a small positive real number. 

Using the fact that, under the null hypothesis, the relation: 

2

2
0

ˆ( 1).
k

k

N θ
θ

σ
σ
−

Γ =  (14) 

has a χ2(v) distribution, with 1Nυ = −  degrees of freedom in the case of N 

patterns, the test described by (13) is performed by comparing (14) with the 

critical value Γc obtained from χ2 distribution tables: 

( )2 ,1C χ υ αΓ = −  (15) 

where α is the significance level of the test. If 
k CθΓ ≥ Γ , the element under 

consideration is retained; if not, it is pruned. 

The value of 2
0σ  is crucial to the success of this test. If 20σ  is too small, no 

elements will be pruned, whereas if 20σ  is too large, too many inputs or hidden 

neurons will be discarded. Engelbrecht [26] advises starting with a small value of 

2
0σ  (0.001) and multiplying this value by 10 if nothing is pruned, up to a 

maximal value of 2
max 0.1σ = . 

4.2. Neural network sequential pruning algorithm (NNSP) 

The proposed NNSP pruning algorithm uses the VNM described above. The main 

idea of this algorithm is to evaluate and sequentially prune, if necessary, the 

different types of elements. Our aim is to improve both the computational time 

and pruning results. Two variants of this algorithm are proposed, and these will be 

compared in the two next sections.  
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4.2.1. NNSP hidden neurons before inputs (NNSP-HI) 

This algorithm consists of three steps. In this version, these are the pruning of the 

hidden neurons, pruning of the inputs, and pruning of the weights and biases of 

the hidden layer. This algorithm is described in Figure 1. 

In each step, two stop criteria are used. The first is when 2
0σ  reaches its maximal 

value 2
maxσ . The second is based on the mean absolute deviation (MAD), which 

measures the performance of the network [59]. Two MAD values are calculated 

from the learning dataset (subscript T) and the validation dataset (subscript V): 

1

1

1
ˆ. ( ) ( )

1
ˆ. ( ) ( )

T

V

N

T T T
nT

N

V V V
nV

M y n y n
N

M y n y n
N

=

=


= −



 = −


∑

∑
 (16) 

The algorithm is initialized by calculating MT and MV (16), and by initializing the 

memories best
T TM M= , best

V VM M=  and a threshold 

{ }( )max max ; *(1 )best best
T VEr M M δ= + , where δ (tuned to 0.025) is used to avoid an 

early termination to the pruning.  

 

 

Fig. 1 NNSP-HI algorithm 
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variants of these VNM measures are determined using equations (4) and (10) 

(NNSP-HI-mean) or equations (4) and (12) (NNSP-HI-mad). The values of 
kθΓ  

for all hidden neurons are compared to the threshold Γc. If none of the 
kθΓ  are 

lower than this threshold, the parameter 2
0σ  is multiplied by 10 and the 

kθΓ  

values are recalculated.  

If some of the 
kθΓ  measures are lower than the threshold Γc, the corresponding 

hidden neurons are pruned and the network is retrained. The two MAD values are 

calculated from (16), and compared to the threshold Ermax. If the new structure 

improves the results, the memories best
TM , best

VM , and the threshold maxEr  are 

updated with their improved values. If the resulting network becomes too 

degraded, the preceding structure is restored and the hidden neuron pruning phase 

terminates. The input pruning phase can then start. The pruning phases of the 

inputs and hidden weights and biases takes the same approach as the hidden 

neuron pruning phase, using equation (7) and equations (8) and (9), respectively. 

4.2.2. NNSP inputs before hidden neurons (NNSP-IH) 

The second version of the algorithm first prunes the inputs, before eliminating 

spurious hidden neurons and, finally, the weights and biases of the hidden layer. 

This algorithm is described in Figure 2, and is very similar to the first algorithm. 

As in the first algorithm, two variants of the VNM measures are determined using 

equation (10) or equation (12). These two variants of the algorithms are denoted 

as NNSP-IH-mean and NNSP-IH-mad, respectively. 
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Fig. 2 NNSP-IH algorithm 

5 Experimental results on classification examples 

In this section, the proposed algorithms (four variants) are implemented and 

compared with the previous pruning methods of VNP [26], N2PFA [59], OBS 

[14], and N2PS [68] on three classification problems. For each problem, 20 initial 

parameter sets are constructed (§3.2.1) and learned with the robust algorithm 

(§3.2.2). The eight pruning algorithms are applied to the same 20 learned 

networks.  

5.1. Pima Indians Diabetes dataset 

This dataset is available from WEKA [85-86]. The problem is to predict whether a 

patient will test positive or negative for diabetes according to the criteria given by 

the World Health Organization. This is a two-class problem with class values of 0 

(500 data) and 1 (268 data) interpreted as negative and positive results for 

diabetes. There are eight input data for each pattern. This dataset was randomly 

divided into two datasets for learning (375 data) and validation (393 data). The 

initial learning was performed with 20 hidden neurons. 

Table 1 lists the best results obtained with the eight pruning algorithms, as well as 

for the learning without pruning. These results show that even when learning is 

performed on an oversized structure, the use of a robust criterion allows the 

generalization capabilities of the network to be preserved.  

The best misclassification rate 
min01S  was obtained on the validation dataset by 

the NNSP-IH-mean algorithm. A McNemar statistical hypothesis test was used to 

determine whether the misclassification rate of other algorithms was statistically 

different to that obtained with NNSP-IH-mean. The null hypothesis (that the 

tested algorithms is statistically equal to the best one) was tested, where 0H  and 

its alternative 1H  are: 

min

min

0 01 01

1 01 01

:

:

S S

S S

=
 ≠

H

H
 (17) 

The null hypothesis 0H  is rejected with a risk level of 5% if: 
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10 01

10 01

1.96
N N

U
N N

−
= >

+
 (18) 

where N10 is the number of cases where the best classifier gives correct class and 

the compared classifier gives wrong class and N01 is the number of cases where 

the best classifier gives wrong class and the compared classifier gives correct 

class. The results of this test are presented in Table 1. They show that the N2PS 

and VNP algorithms become trapped at a poor local minimum.  

The four proposed algorithms outperformed N2PS and VNP, and gave similar 

results to the N2PFA and OBS algorithms on the validation dataset. However, the 

four proposed algorithms pruned more parameters and inputs than N2PFA and 

OBS without degrading the results, and were less time-consuming (requiring 

≈50% of the time of N2PFA). The smallest structure was given by the NNSP-HI-

mean algorithm.  

Table 1: Best results obtained on the diabetes dataset 

 

 

Fig. 3 Distribution of the misclassification rate on learning and validation datasets 

Figure 3 presents the distribution of the misclassification rate given by the six best 

pruning algorithms. These results were obtained over the 20 networks on the 

learning and validation datasets. This figure shows that NNSP-HI-mean, NNSP-

IH-mean, and N2PFA often produced good results. In particular, on the validation 

U

# of inputs # of hidden # of parameters Duration Training Validation Validation
without pruning 8 20 201 - 0.221 0.247 0.80

NNSP-HI-mean 7 3 28 0.45s 0.189 0.237 0.25
NNSP-HI-mad 7 10 74 0.41s 0.192 0.237 0.28
NNSP-IH-mean 7 11 60 0.851s 0.149 0.232 -
NNSP-IH-mad 7 12 87 0.41s 0.200 0.242 0.53

N2PFA 8 11 111 1.15s 0.112 0.244 0.60
N2PS 5 10 71 0.17s 0.272 0.298 2.80
OBS 8 20 131 48.34s 0.253 0.237 0.50
VNP 7 15 136 0.02s 0.237 0.303 2.77

Structure of NN Misclassification rate S01
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dataset, the misclassification rate given by these three algorithms belongs to the 

best class (0.2–0.25) in more than 50% of cases.  

5.2. Ionosphere dataset 

The second classification problem considered the ionosphere dataset, also 

available from WEKA [86-87]. These radar data were collected by a system in 

Goose Bay, Labrador, Canada. This is a two-class problem with class values of 0 

(225 data) and 1 (126 data) interpreted as bad and good. There are 33 input data 

for each pattern. The dataset was randomly divided into two datasets, one for 

learning (186 data) and the other for validation (165 data). The initial learning was 

performed with 10 hidden neurons. 

Table 2 shows the best results obtained with the eight pruning algorithms and for 

the learning without pruning. As for the diabetes dataset, the use of a robust 

criterion allowed the generalization capabilities of the network to be preserved. 

The OBS algorithm produced the best results on the validation dataset, albeit with 

a considerable computation time. The other algorithms gave equivalent results for 

the misclassification rate on the validation dataset. This is confirmed by the 

results of the statistical hypothesis test (17), which are always less than 1.96. 

However, three of the four proposed algorithms reached these results with a 

smaller structure than that of OBS (NNSP-HI-mean; NNSP-HI-mad; NNSP-IH-

mad). 

Table 2: Best results obtained on the ionosphere dataset 

 

It can be seen that, in many cases, the pruning algorithms were unable to find a 

better structure than the initial one. N2PFA and the four proposed algorithms did 

not prune a single parameter in 30% of the cases, and N2PS retained an unaltered 

structure in 75% of cases.  

U

# of inputs # of hidden # of parameters Duration Training Validation Validation
without pruning 33 10 351 - 0.0000 0.1271 0.99

NNSP-HI-mean 26 2 57 0.25s 0.0647 0.1492 1.65
NNSP-HI-mad 30 10 53 0.63s 0.0000 0.1215 0.80
NNSP-IH-mean 26 10 198 0.75s 0.0000 0.1492 1.55
NNSP-IH-mad 17 10 50 0.70s 0.0765 0.1215 0.76

N2PFA 31 7 232 1.04s 0.0294 0.1326 1.11
N2PS 24 5 131 0.17s 0.0000 0.1436 1.54
OBS 25 8 58 157.2s 0.0529 0.0884 -
VNP 32 10 341 0.01s 0.0706 0.1271 0.83

Structure of NN Misclassification rate S01
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5.3. Quality dataset 

The third classification problem considered is a real quality classification problem 

from a robotic lacquering process [88]. In this dataset, one defect (stains on back) 

is considered. This is a two-class problem with class values of 0 (1997 data) and 1 

(273 data) interpreted as having no defects and being defective, respectively. 

There are 15 input data for each pattern. The dataset was randomly divided into 

two for learning (1099 data) and validation (1171 data). The initial learning was 

performed with 25 hidden neurons. 

Table 3 shows the best results obtained with the eight pruning algorithms and for 

the learning without pruning. 

Table 3: Best results obtained on the quality dataset 

 

The results of the statistical hypothesis test (17) show that N2PFA, N2PS, and 

VNP gave statistically worse results than those obtained by the best algorithm, 

NNSP-HI-mad. However, the use of a robust criterion during learning was not 

sufficient to avoid the overfitting problem. 

Moreover, the four variants of the proposed algorithm outperformed the other 

algorithms on the validation dataset and produced the smallest structures. Note 

that the VNP algorithm gave acceptable results in only one case. All other 

algorithms gave acceptable results in over 50% of cases. NNSP-HI-mean and 

NNSP-IH-mean, which use the variance estimation in (10), were unable to prune 

any of the hidden neurons. The smallest structure was given by NNSP-HI-mad. 

6 Experimental results on regression examples 

In this section, the proposed algorithms (four variants) are compared with VNP 

[26], N2PFA [59], OBS [14], and N2PS [68] on three regression problems. For 

each problem, 20 initial sets of parameters are constructed (§3.2.1) and learned 

U

# of inputs # of hidden # of parameters Duration Training Validation Validation
without pruning 15 25 426 - 0.1605 0.1448 2.71

NNSP-HI-mean 10 25 93 24min 54s 0.1260 0.1145 0.60
NNSP-HI-mad 10 15 53 57min 44s 0.1338 0.1072 -
NNSP-IH-mean 9 25 81 58min 36s 0.1231 0.1164 0.80
NNSP-IH-mad 15 8 137 57min 3s 0.1307 0.1159 0.71

N2PFA 14 23 369 56 min 3s 0.1449 0.1372 2.11
N2PS 10 12 145 57min 39s 0.1524 0.1390 2.24
OBS 13 25 178 1h 12min 39s 0.1157 0.1247 1.35
VNP 8 25 196 56min 25s 0.1303 0.1626 3.80

Structure of NN Misclassification rate S01
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with the robust algorithm (§3.2.2). The eight pruning algorithms are applied to the 

same 20 learned networks.  

6.1. Modeling of a static system 

The problem considered here is the modeling of a simple nonlinear system [89]. 

This system is based on a one-hidden-layer perceptron structure with three inputs 

and one output. This system, supposed to be unknown, is chosen to avoid 

problems related to the differences between the form of the ‘true’ model and that 

of the fitted model. The system is described by: 

( ) ( )1 2 3 2 1( ) 1 tanh 2. ( ) ( ) 3. ( ) tanh ( ) ( ) ( )y t x t x t x t x t x t e t= + − + + − +  (19) 

where e(t) is additive Gaussian noise with mean 0 and standard deviation 0.2. 

Two datasets of 500 points were created for learning and validation. These two 

datasets include five input variables (x1, x2, and x3 and two supplementary ones). 

These five inputs are sequences of steps of random length and amplitude. To give 

each input a different influence, input ranges of [−1; 1], [0; 1.5], [−1; 1.5], 

[0; 0.5], and [−1; 0] were applied, respectively. The initial structure of the neural 

network comprised eight hidden neurons. 

Table 4 lists the best results obtained with the eight pruning algorithms and for the 

learning without pruning.  

In regression, the mean of the residual must be null. Thus, a two-tailed statistical 

hypothesis test can be employed to determine this for the different algorithms. 

The null hypothesis 0H  (that the mean of the residuals is null) and its alternative 

1H  are: 

0

1

: 0

: 0

µ
µ

=
 ≠

H

H
 (20) 

where µ  is the mean of the residuals population. 0H  is rejected with a risk 

level of 5% if: 

1.96
/

1.96
/

U
s N

or

U
s N

ε

ε

 = >



 = < −


 (21) 
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where N is the size of the validation dataset, and ε , s2 are the estimated mean 

and variance of the residuals.  

For this simulation example, the true standard deviation of the noise 0σ  is 

known to be 0.2. Thus, the two-tailed statistical hypothesis test was used to 

determine whether the variance of the population 2σ  obtained with the different 

algorithms was statistically different to 20σ . The null hypothesis 0H  and its 

alternative 1H  were therefore: 

2 2
0 0

2 2
1 0

2 2
0

:

:

σ σ
σ σ
σ σ

 =
 >
 <

H

H  (22) 

and 0H  can be rejected with a risk level of 5% if: 

2
2

12
0

2
2

22
0

( 1).
,
2

( 1).
,1

2

c

c

N s

N s

αχ υ
σ

αχ υ
σ

 −  Γ = < Γ =  
 


−  Γ = > Γ = −   

 (23) 

where N is the size of the validation dataset, υ is the number of degrees of 

freedom, and α is the confidence interval. For this example, the two bounds 1cΓ  

and 2cΓ  were 439.0 and 562.8. The results of this statistical hypothesis test on 

the validation datasets are presented in Table 4. This shows that all algorithms 

gave equivalent results and correctly learned the system. The mean of the 

residuals is statistically null, and the variance is statistically equal to 2
0σ  for all 

algorithms. 

However, N2PS was not able to prune any parameters, and consistently preserved 

the initial structure. The best structure obtained with the VNP algorithm includes 

49 parameters. The other algorithms gave very similar results. N2PFA and two 

proposed variants (NNSP-HI-mad and NNSP-IH-mad) found the minimal number 

of hidden neurons. OBS produced the smallest structure, but required a significant 

computation time.  

Table 4: Best results obtained on the static model dataset 
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Fig. 4 RMSE distribution on learning and validation datasets 

Figure 4 shows the RMSE distribution of the six best-performing algorithms on 

the learning and validation datasets for the 20 initial sets of weights. This figure 

shows that these six algorithms consistently found satisfactory results.  

6.2. Modeling of a dynamic system 

The second system model is also based on a single-hidden-layer perceptron, but 

uses delayed inputs [89]. This system is described by: 

( ) ( )1 2 2 1 2( ) 1 tanh ( 2) ( ) 3. ( 1) tanh ( 2) ( 2) ( )y t x t x t x t x t x t e t= + − − + − + − − − +
 (24) 

where e(t) is additive Gaussian noise with mean 0 and standard deviation 0.17. 

The delayed inputs x1 and x2 are sequences of steps of random length and 

amplitude. The duration of the steps of input x1 (respectively x2) was randomly 

chosen between 5 and 10 (respectively 8 and 15). The amplitude of x1 

(respectively x2) was randomly chosen between −1 and 1 (respectively 0 and 1.5). 

Two datasets of 500 points were created for learning and validation. The input 

vector used for the learning consisted of the two inputs x1 and x2 and their 

respective delays t, t–1, t–2, t–3, and t–4. This leads to 10 input neurons for the 

initial structure of the neural network. The initial learning was performed with 10 

hidden neurons.  

# of inputs # of hidden # of parameters Duration Training Validation U Γ
without pruning 5 8 57 - 0.166 0.221 0.24 535.2

NNSP-HI-mean 4 4 13 0.69s 0.181 0.200 0.53 500.7
NNSP-HI-mad 5 2 15 0.26s 0.181 0.200 0.24 535.3
NNSP-IH-mean 4 4 15 0.63s 0.181 0.200 0.44 500.1
NNSP-IH-mad 5 2 15 0.23s 0.193 0.206 -0.28 499.2

N2PFA 4 2 13 0.59s 0.181 0.200 0.57 498.0
N2PS 5 8 57 0.04s 0.166 0.221 0.24 535.2
OBS 4 3 9 6.30s 0.181 0.201 0.57 502.5
VNP 4 8 49 0.01s 0.171 0.209 0.63 498.4

Structure of NN RMSE Statistical Testing (valid.)
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For all algorithms, two statistical hypothesis tests (21) and (23) were performed to 

test the mean and variance of the residuals. As in the preceding example, the true 

standard deviation 0σ  of the noise is known to be 0.17. The two bounds 1cΓ  

and 2cΓ  are 439.0 and 562.8. Table 5 lists the best results obtained with the eight 

pruning algorithms and for the learning without pruning. This shows that VNP is 

not able to find a suitable structure because the mean and variance of the residuals 

are different from 0 and 2
0σ , respectively. For all other algorithms, the results are 

equivalent.  

Table 5: Best results obtained on the dynamic model dataset 

 

It can be seen that N2PS was able to prune parameters in only one case. In the 19 

other cases, this algorithm preserved the initial structure. OBS determined the best 

structure, but was again very computationally expensive. N2PFA and the four 

proposed algorithms produced very similar results, but the four proposed 

algorithms are less time-consuming. NNSP-IH-mad and NNSP-HI-mad, which 

use the variance estimation in (12), were unable to prune the inputs. As for the 

preceding cases, the use of a robust criterion during learning allows the overfitting 

problem to be avoided. 

6.3. Ailerons dataset 

The regression problem considered here is also available from WEKA [86]. This 

dataset addresses a control problem, namely flying an F16 aircraft. The attributes 

describe the status of the airplane, and the goal is to predict the control action on 

the ailerons of the aircraft, which comprises 13750 patterns. There are 39 inputs 

for each pattern. This dataset was randomly divided into two for learning (6868 

data) and validation (6882 data). The initial learning was performed with 20 

hidden neurons. Because of its computational time requirements, the OBS 

algorithm was executed only once. 

# of inputs # of hidden # of parameters Duration Training Validation U Γ
without pruning 10 10 121 - 0.148 0.183 1.32 547.1

NNSP-HI-mean 6 5 27 0.7s 0.151 0.174 0.33 522.7
NNSP-HI-mad 10 6 73 0.28s 0.147 0.177 1.21 540.4
NNSP-IH-mean 4 4 25 0.6s 0.154 0.176 0.32 522.8
NNSP-IH-mad 10 2 25 0.55s 0.154 0.175 0.54 526.9

N2PFA 6 8 65 0.93s 0.150 0.180 0.85 521.9
N2PS 5 3 22 0.1s 0.168 0.182 1.32 547.2
OBS 5 4 13 27.32s 0.154 0.172 0.27 520.6
VNP 3 5 26 0.02s 0.235 0.236 5.25 910.9

Structure of NN RMSE Statistical Testing (valid.)
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For all algorithms, the two statistical hypothesis tests (21) and (23) were 

performed to test the mean and variance of the residuals. In this real example, the 

true variance of the noise 2
0σ  is unknown. In test (23), its value is replaced by 

the lower variance value obtained on the validation dataset. For this example, the 

two bounds 1cΓ  and 2cΓ  are 6690 and 7076. Table 6 presents the results 

obtained for the different algorithms. This shows that the VNP algorithm could 

not find a suitable structure, instead pruning all parameters and becoming trapped 

in a very bad local minimum. N2PS and one variant of the proposed algorithm 

(NNSP-IH-mean) were unable to prune any parameters, and therefore preserved 

the initial structure. These two algorithms and OBS gave results that were 

statistically worse than those of N2PFA, which produced the best results. OBS 

again required a considerable computation time (more than one day). The results 

obtained with the other algorithms are statistically equivalent. N2PFA was the 

only algorithm that was able to prune the inputs. However, NNSP-HI-mean and 

NNSP-IH-mad pruned more hidden neurons and parameters, and determined 

equivalent structures quicker than N2PFA. The computational time for N2PFA is 

four times higher than those for the proposed algorithms.  

Table 6: Best results obtained on the ailerons dataset 

 

7 Conclusions 

In this paper, a new pruning algorithm was proposed to determine the optimal 

structure of a MLP for both classification and regression problems. Four variants 

of this algorithm were tested and compared with four classical pruning algorithms 

on three classification problems and three regression problems. The proposed 

algorithms produced equivalent results or outperformed the four comparative 

algorithms. Moreover, they required less computational time than the OBS and 

N2PFA algorithms.  

# of inputs # of hidden # of parameters Duration Training Validation U Γ

without pruning 39 20 821 - 1.61*10-4 1.65*10-4
0.89 7106

NNSP-HI-mean 39 4 165 3min 34s 1.57*10-4 1.63*10-4 0.27 6908

NNSP-HI-mad 39 15 616 2min 6s 1.58*10-4 1.63*10-4 0.41 6914

NNSP-IH-mean 39 20 821 20.93s 1.61*10-4 1.65*10-4 0.89 7106

NNSP-IH-mad 39 7 288 4min 23s 1.58*10-4 1.63*10-4
0.89 6880

N2PFA 23 9 226 16min 59s 1.58*10-4 1.62*10-4 -1.11 6882

N2PS 39 20 821 9.75s 1.61*10-4 1.65*10-4 0.89 7106

OBS 38 20 601 27h 19min 25s 1.64*10-4 1.68*10-4 0.20 7331

VNP 0 0 1 0.312s 29.66*10-4 29.67*10-4 -17.05 43079

Structure of NN RMSE Statistical Testing (valid.)
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Of the four proposed variants, NNSP-HI-mean gave the best results. This variant 

begins by pruning hidden neurons, then considers the inputs, and finally the 

parameters. It uses the variance estimator (10) proposed by Engelbrecht [26].  

The results have shown that the use of a robust learning algorithm allows the 

overfitting problem to be avoided in both classification and regression problems. 
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