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Abstract. Optimizing the structure of neural networks remsarhard task. If too small, the
architecture does not allow for proper learningrfriie data, whereas if the structure is too large,
learning leads to the well-known overfitting profleThis paper considers this issue, and proposes
a new pruning approach to determine the optimatsaire. Our algorithm is based on variance
sensitivity analysis, and prunes the different sypeunit (hidden neurons, inputs, and weights)
sequentially. The stop criterion is based on agueréince evaluation of the network results from
both the learning and validation datasets. Fouramgs of this algorithm are proposed. These
variants use two different estimators of the var@ahey are tested and compared with four
classical algorithms on three classification arrdatregression problems. The results show that
the proposed algorithms outperform the classicpt@ches in terms of both computational time

and accuracy.

Keywords: neural network, multilayer perceptronyping, classification,

regression, data mining
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1 Introduction

From the first works of Rumelhart and McClellandl, [rtificial neural network
models have been successfully applied to solve rddfgrent problems,
including the identification of dynamical systerpajtern classification, adaptive
control, and function approximation.

Among these artificial neural network models, thdtitayer perceptron (MLP)

is, by far, the most popular architecture becatises gtructural flexibility, good
representational capabilities, and the availabdita large number of training
algorithms [2]. This model is used for both classifion and regression tasks. The
goal of classification is to map the data into jfe@ted groups or classes. In the
regression phase, the aim is to map data itemsedal&alued prediction variable
[3].

For both classification and regression, the sanestipn must be addressed: how
many nodes should be used in each layer? Despitedhlth of literature on the
MLP, defining the optimal architecture remains edhtask. If too small, the
architecture cannot learn from the data properheneas if the structure is too
large, learning leads to the well-known overfittipigpblem. To avoid overfitting,
we can apply early stopping [4], a robust minim@afriterion [5-6],
regularization approaches [7-9], or determine thintal structure of the network.
The latter method allows us to obtain a simpler emdller model. Hence, a
crucial step in designing the MLP is network maskgection [10]. Many
algorithms have been proposed to determine thenapairchitecture of the
network. However, because this determination islBrhard problem, most
existing algorithms are approximate and produce-apimal solutions [11].
These algorithms can be classified into four groppsning algorithms,
constructive algorithms, hybrid algorithms, andlationary algorithms.

Pruning algorithms learn using an over-sized stmggtand then, in a second step,
eliminate spurious parameters and/or neurons. ®©tieanain advantages of
these algorithms is that they are able to perfa@ature selection simultaneously
[12-16]. Constructive algorithms start from a sniailial architecture, and add
new hidden units or layers until the results aeptable [17-20]. Hybrid
algorithms combine pruning and constructive appniead¢21-23], whereas
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evolutionary algorithms conduct a search acrosp#nameter space and
determine the optimal structure using some perfageandex [24-25].

This paper focuses on pruning algorithms, and ep@a new method based on
the variance sensitivity analysis proposed by Hirgeht [26]. We prune different
types of unit (hidden neurons, inputs, and weigbgsjuentially, and use a stop
criterion based on a performance evaluation ohttevork results from both the
learning and validation datasets. The main goathisfalgorithm are to improve
structure determination and minimize computatidimaé for both classification
and regression. Four variants of this algorithmpogposed.

The remainder of this paper is organized as folld&vestion 2 presents a brief
overview of structure determination and pruningathms, and Section 3
describes the network architecture and learningrakgn. Section 4 introduces
the proposed pruning algorithm and its four vasa®ections 5 and 6 present the
results obtained from benchmark classification tptession tasks, respectively.
The results given by the proposed algorithms anepewed with those obtained by

conventional pruning algorithms. Finally, Sectionohcludes the paper.
2 Brief overview of structure determination

2.1 Problem origination

As explained previously, determining the optimalhétecture of a neural network
iIs an NP-hard problem. The original work on thislppem is Kolmogorov's
theorem, which states that any continuous funatioan n-dimensional cube can
be represented by the sum and superposition oincamts functions of one
variable [27]. Cybenko [28] and Funahashi [29] hax@ved that sigmoidal
functions are suitable for this work, and so neastvorks with only one hidden
layer that use a sigmoidal function can be seamagrsal approximators.
However, these results are not sufficient to detegrthe size of this hidden layer.
Hecht-Nielsen [30] has proved that any continuaustion can be represented by
a neural network that has only one hidden layehn exactly 2+1 neurons, where
ni is the number of inputs. However, the activationction used in his work is
more complex than the sigmoidal one. Huang [31]ex@snded this work, and
proved that, with two hidden layers,/(n, +2)N hidden units allocated between

the two hidden layers are enough to Iddrsamples with negligibly small error

3
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(no denotes the number of outputs). The problem Isete fit a function with a
finite number of (generally noisy) samples. In tteése, the network may learn the
noise on the function, and not the function itdelfding to an overfitting problem
[32].

Thus, no exact paradigm exists to estimate thengptneural network, with
different approaches and algorithms being usecterchine its structure.

2.2 Optimal structure determination approaches: a brief overview

The oldest and most primitive approach to detemgirthe optimal structure is
simple trial-and-error, which can lead to severelipoptimal structures.

Another approach is to perform an exhaustive se&tolvever, this is not a
realistic option for many real applications. Moregvan exhaustive search will be

complicated by the noisy fitness evaluation prob|88j.

2.2.1. Evolutionary approach

Evolutionary algorithms can be seen as an extertfitime exhaustive search
using mechanisms inspired by biological evolutguch as reproduction,
mutation, recombination, and selection. Evolutigreggproaches have been used
in a restrictive way to prune oversized structi8ds35]. However, this approach
may be used with a hybrid goal (construction anthjprg) [36-37]. Evolutionary
algorithms may be used to simultaneously optintigearchitecture and weights
[25, 38-39] or to concentrate on the structure 33540].

The use of evolutionary algorithms for structuréedmination introduces two
sources of noise, one from the initialization oigies, and the other from the
chosen optimizer. In contrast, the simultaneousutom of architecture and
weights is muddled by the well-known permutatioalgpem. Additionally, the
computational cost of implementing evolutionaryosithms, even for structure

determination alone, may become prohibitive [41].

2.2.2. Constructive approach

The goal of constructive approaches is to deteriiaeptimal structure of the
network by sequentially adding hidden neurons ddén layers to a small initial
structure. Many algorithms have been proposed uhieparadigm [42]. Among

these algorithms, we can cite dynamic node creaiiahits variants [43-44],
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activity-based structure-level adaptation [45-4@kcade correlation [18, 47], and
the constructive one-hidden-layer algorithm andiasants [42, 48-49]. Most of
these algorithms lead to more complex structuresizyng various activation
functions [20, 49] or adding new hidden layers vatimnections between neurons
that are not in successive layers [18, 41]. Hetingse algorithms lead to neural
network structures that are not strictly feedfomyand require specific
algorithms to learn parameters while the structposvs [48, 50]. Moreover, these
algorithms can lead to suboptimal networks [42hecome trapped in local
minima because the error surface of a smaller m&tiganore complicated and
includes more local minima than the error surfaca larger network [51-52].

2.2.3. Pruning approach

In pruning approaches, an oversized structuressléarned, before spurious
parameters are eliminated in a second step. Ma@oyitdms using this approach
have been proposed, and these can be classifeethneie broad groups:
magnitude-based (pruning during learning), brutedpand sensitivity-based
(post-learning pruning) [15-16].

In magnitude-based approaches (pruning duringilegyna term is added to the
objective function for choosing the most efficisotution. For example, a term
proportional to the sum of all weight magnitudegofa a solution with small
weights; those that are nearly zero are not likeiypfluence the output much, and
can thus be eliminated [15]. This approach pruhesetwork by driving the
weights toward zero during learning, and variodfetgnt penalty terms and
weight decays have been proposed and studied {8853

Brute-force pruning methods (post-learning prunisef)the weights to zero one-
by-one, and evaluate the change in the errorintiieases too much, then that
weight is restored; otherwise, the element is rezdo$etiono and Leow [59]
used this approach to prune hidden neurons andsimptwo steps.
Sensitivity-based approaches (post-learning pryremgluate the sensitivity of
the error function to the removal of an elemenm8algorithms consider the
change in the error function due to small changdke values of the weights.
Measures of the relative effect of the differentghs, or saliencies, can be
computed, and weights with low saliencies are ddleDptimal Brain Damage
[13], Optimal Brain Surgeon (OBS) [14], and all@ighms derived from these

5
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[60-61] use a second-order Taylor expansion otther function to estimate how
the training error will change as the weights aggyrbed. Leungt al [62]

applied the same approach for a recursive leastregualgorithm, whereas Tang
et al [63] used the error covariance matrix obtainedndulearning in a similar
way to the Hessian matrix in the OBS algorithm.

The output of sensitivity analysis methods is based variance analysis of
sensitivity information, given by the derivativetbe neural network output with
respect to the parameters [26]. These are powmtihods, because the network
structure inherently contains all of the informatizeeded to compute these
derivatives efficiently [64]. Zeng and Yeung [68kerted an input perturbation
and studied its effect on the output sensitivitja@drasekaraet al. [66]

proposed a sensitivity-based method based on lumeamodels, and Lauret al
[67] used the extended Fourier amplitude test emtjty the relevance of the
hidden neurons. Augasta and Kathirvalavakumar @g8hed the significance of
a neuron as the sum-norm of its output. They tloenpared this significance to a
threshold to determine which neurons must be pruned

Levin et al [69] applied principal component analysis to seédements for
removal, while Medeiro and Barreto [70] determim@dch weights to prune by
evaluating the correlation between error signa®eiated with the neurons of a
given layer and the error signal propagated batkd@revious layer. Weights
that generate lower correlations are not relevaard,can therefore be pruned.
Beigy and Meybodi [11] proposed an automaton thataetermine whether a
hidden neuron should be preserved or pruned. Thayaton exploits the
variance of the activation of a neuron. Liang [@&yeloped an orthogonal
projection to determine the importance of hiddeuaroes.

Although there are many different pruning methalds,main ideas underlying
most of them are similar. They all try to estabbsteasonable relevance measure
for a specified parameter (input, weight, or nejysno that the pruning action will
hopefully have the least effect on the performasfd@de network [65].

One of the disadvantages of pruning algorithmbes theavy computational
burden, as the majority of the training time isrgpEn networks that are larger

than necessary [2].
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2.2.4. Hybrid approach

Hybrid algorithms combine pruning and construcapproaches. Nabhan and
Zomaya [22] exploited an intelligent generate-agst-procedure that evaluates
the learning performance of the structure, and thedifies it by exploring
different alternatives and selecting the most psamgi. The algorithm modifies
the structure of the neural network by adding detiteg neurons and/or layers.
Rivals and Personnaz [72] associated a construafipeoach based on
conditioning the Jacobian matrix of the candidageral models with a pruning
phase based on statistical tests. Hugtrag. [73] have developed an on-line
training algorithm for a radial basis function nelunetwork, and Narasimle al
[23] reported a method that starts with an emptwaek (no hidden unit) and
successively adds hidden units, retraining onlgeéhgew units. In a second step,
an orthonormalization pruning algorithm is usedeimove spurious parameters.
Hsu [74] has exploited an on-line hybrid algorittordesign a neural network
controller for a linear piezo-electric ceramic nmotdan and Qiao [2] optimized
the network structure by combining error reparatiad sensitivity analysis
techniques.

The main drawbacks of these algorithms are sintvléinose of the constructive
approach; i.e., they may require particular leagralgorithms and can lead to

suboptimal networks [52].

2.3. Selection criteria

The main risk is that current algorithms may becastuek at local minima. Thus,
different sets of initial weights are generally dise avoid the local minima
trapping problem [11]. In addition, selection arideare generally used to
determine a suitable structure.

For regression problems, many selection criterisetmeen proposed, such as
Akaike’s information criterion (AIC), Bayesian imfmation criterion (BIC), root
mean square error (RMSE), and mean absolute pageetror (MAPE). Qi and
Zhang [75] compared these criteria and their extess and concluded that there
is no best method. Egriogét al [76] proposed an association of these different
criteria to select the optimal structure. AIC an€Benalize large models,
whereas RMSE and MAPE are measures of the deviatithre predicted values

from actual values [76]. For regression probletns,goal is to reduce the
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distance between the model and the data. Henc&MNISE criterion is suitable,

and is used in this work:

RMSE= JﬁZ( =W W

whereN denotes the number of dayajs then actual data point, andy, is the

predicted value.
In classification problems, the goal is to redueehnumber of misclassified data.
Thus, the classical criterion for classificatiomlplems is the misclassification rate

(error rate or “zero-one” score function) [77]:
13 n
S)lzﬁz l(yn’ yn) (2)
n=1

wherel(a, b) = 1 whema # b and 0 otherwise.
A related difficulty arises if there are differeststs associated with different
misclassifications. In this case, a general lossimshould be constructed [10].

This problem is not considered here.
3 Network architecture and learning algorithm

3.1. Multilayer perceptron

The works of Cybenko [28] and Funahashi [29] hdweas that a multilayer
neural network consisting of only one hidden layssing a sigmoidal activation
function) and an output layer can approximate afilimear functions with the
desired accuracy. This result explains the greatest in this type of neural
network, the aforementioned MLP.

Its structure is given by:

y= g(hiwﬁg{i W X+ lﬁ} % (3)

i=1

where x are then inputs of the neural networkw;, are the weights connecting
the input layer to the hidden layeb; are the biases of the hidden neuran6)

is the activation function of the hidden neuronsré) the hyperbolic tangent for

all hidden neurons)w? are the weights connecting the hidden neuroniseto t
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output neuronb is the bias of the output neurag(.) is the activation function of
the output neuron, and is the network output.

The activation function used for the output laydieds according to the problem
under consideration. For regression problems ftmstion is typically chosen to
be linear, whereas for classification problems,ntéwvork’s output should
represent the probability that a pattern belongbhéaconsidered class. In this

case, the activation functiapg(.) is generally chosen to be sigmoidal.

3.2. Learning algorithm

The MLP’s parameters (weights and biases) areméeted using supervised
learning. This performs a local search for theroptn, which implies that the
initial set of parameters has a great influencéherfinal result.

3.2.1. Weights and biases initialization

Many initialization algorithms have been proposég]] We use a modification of
the Nguyen and Widrow (NW) algorithm [79], whichaals a random
initialization of weights and biases to be assecdatith an optimal placement in
the input and output spaces. The NW algorithm le@s modified by Demuth and
Beale [80] for non-normalized inputs.

For regression problems, the output of the netwoaly be a real value if no
normalization occurs. To take this into accourdgeeond modification has been
introduced concerning the biases and weights caimgeihe hidden layer to the

output layer to deal with non-normalized outputd][7

3.2.2. Robust learning algorithm

We use a Levenberg—Marquardt algorithm associatédanrobust criterion [6].
This algorithm performs a local search for the mypitin, and the robust criterion
accounts for the presence of outliers in the datbheas a regularization effect
during learning. The robust criterion is based aét’s model of measurement
noise contaminated by outliers [81]. This modelsiders the distribution of the

noisee as a mixture of two density functions. The firstresponds to the basic

distribution of a measurement noise (e.g., nornaiance g7 ), whereas the

second, corresponding to outliers, is an arbitsgrymetric long-tailed

distribution (e.g., normal, but with variancg’ such thato? < o?).
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4 Proposed pruning algorithm

Even if the learning algorithm has a regularizatdfiect, it is useful to determine

the optimal structure of the network to simplifgtimodel.

4.1. Variance nullity measure

The proposed algorithm uses the variance nullitgsuee (VNM) [26, 82-83], in
which the variance of the sensitivity of an inputiidden neuron’s output, or a
parameter (weight or bias) is measured for diffepatterns. If this variance is not
significantly different from zero, and if the avgeasensitivity is small, the input
or the hidden neuron under consideration has r@tedin the network output.
Therefore, the VNM can be used in hypothesis tgdbrdetermine whether an
input, hidden neuron, or parameter has a statistigzact on the network using
thex? distribution. If not, it must be pruned. This épeated for each type of
element (input, hidden neuron, weight connectimyirio hidden layer, bias of
hidden layer), and requires the sensitivity ofrileévork output to be determined

for each type of element.

4.1.1. Sensitivity to a hidden neuron

To determine whether a hidden neuromust be pruned, the VNM of the weight

w’ (h=1...n) that connects this hidden neuron to the outputaremust be
calculated. For this, we must determine the sefitgitf the network outputy
to the parametem? . This sensitivity corresponds to the contributidithis

parameter to the output error. This contributiodagermined by the partial

derivative of the network outpuf/ with respect to the parametev? being

considered:

_9(n) 94N _
Se (M= 5 avg = SAM- KD @

wheren is the number of data patterns from the learnitglohse andy, (z(n))

is the derivative of the activation function of thietput neuromgo(). When this

activation function is linear (i.e., for regressigmoblems), its derivative is:
go(Z M) =1 ()

10
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For classification problems, the activation funatis chosen to be sigmoidal, and

its derivative becomes:

9o(2(M) = ¥ N.(1- X n) ()
4.1.2. Sensitivity to an input

Similarly, the sensitivity of the network outpui to the input x (i=1...n;) is
obtained by taking the partial derivative of thepau with respect to the inpux

under consideration:

_0y(n) _ 0% 04D dK(hoANn
S0 0x () hzaz(r) OX(N oz hoxh

=§gg(2(n))-vxi.(1—( %(1) )vp

()

where g_(z(n)) is given by §) for regression problems an@) for classification

problems.
4.1.3. Sensitivity to a weight connecting the input to the hidden layer

The sensitivity of the network outpu§ to the weightsw;, (i =1...,n; h=1...,

nn) connecting the input to the hidden layers is ioleid by taking the partial

derivative of the output with respect to the weightt under consideration:

09(r) _$-0%(1) 04) O K(h 0 L )
o, () 4020 0R(DO A N W

= D0 {1 400)) 1o

S (0=
®)

where g, (z(n) is given by §) for regression problems an@) for classification

problems.

4.1.4. Sensitivity to the bias of the hidden layer

The sensitivity of the network outpu§ to the biasb! (h= 1...,n) of the

hidden neurons is obtained by taking the partialvdéve of the output with

respect to the bias, under consideration:

11
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_ %) _$0%(0) 04D O KDoA N
T o) 450N (DK n'd K n

=;g;(z( 0).vi. (1= (£ (0)’)

©)

where g_(z(n)) is given by §) for regression problems an@) for classification

problems.

4.1.5. Determination of the VNM
The sensitivity of the network output to a hiddewron, input, weight, or bias of
the hidden layer can be explained using the unifigdtion S, (n) {n=1...N

andk = 1...K=nj+nn.(ni+2)}, with & corresponding t& when considering inpuf

to w? when considering hidden neurbnto w;, when considering the weight
connecting input to hidden neuroh, or to b} when considering the bias of
hidden neurom. Thus, S, (n) is given by equatiory, (7), (8), or (9).

The VNM is the unknown variance‘rjk of the sensitivity of output to parameter

é.. Engelbrecht [26] used a classical estimator fa Hairiance:

where g is the mean of the sensitivity of the outpu&to

N
250
S, ="—— (11
4 N (11
Another estimation of this variance is given by][84

., MAD
02 =—— (12
% 07 (12)

where MAD is the median o{‘SaK(rb -3 ‘} ,with S, the median ofS, (n).

This estimator uses the median instead of the naahis more robust to the
presence of outliers in the dafhese two variants are tested and compared in

later sections.

12
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A statistical hypothesis test is used to determihether the VNM of the

considered parameter is null. The null hypothe#s (that the variance in

parameter sensitivity is approximately zero) asdilternative ¥ are:

{5(0: Oy <0, (13

%: o, >0,

where ¢ is a small positive real number.
Using the fact that, under the null hypothesis,réation:

A2
_ (N-1).0,

My o (14)

has ax?(v) distribution, with v = N -1 degrees of freedom in the casé\of
patterns, the test described hy)(is performed by comparing 4) with the

critical valuer ¢ obtained from? distribution tables:
re=x*(v.1-a) (15

wherea is the significance level of the test. If, >T ., the element under

consideration is retained; if not, it is pruned.

The value of g is crucial to the success of this test.df is too small, no
elements will be pruned, whereasdf’ is too large, too many inputs or hidden
neurons will be discarded. Engelbrecht [26] adviaging with a small value of
o. (0.001) and multiplying this value by 10 if notbiis pruned, up to a

maximal value ofg®__ =0.1.

max

4.2. Neural network sequential pruning algorithm (NNSP)

The proposed NNSP pruning algorithm uses the VNBtdeed above. The main
idea of this algorithm is to evaluate and sequéntmune, if necessary, the
different types of elements. Our aim is to imprbe¢h the computational time

and pruning results. Two variants of this algoritara proposed, and these will be

compared in the two next sections.

13
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4.2.1. NNSP hidden neurons before inputs (NNSP-HI)

This algorithm consists of three steps. In thisiaer, these are the pruning of the
hidden neurons, pruning of the inputs, and pruoindpe weights and biases of
the hidden layer. This algorithm is described igufe 1.

In each step, two stop criteria are used. Theifirsthen o> reaches its maximal

value ¢?_, . The second is based on the mean absolute dev{iaD), which

measures the performance of the network [59]. TwikDWalues are calculated

from the learning dataset (subscfiptand the validation dataset (subsckift

M. |yT(n)_ S’T(n)|
\ (16

|yv(n) - S’v(n)|

Mz iD7

M,

1
N
1
N,

I
-

n

The algorithm is initialized by calculatindr andMv (16), and by initializing the

memories M?*' =M., M/**=M, and a threshold
Bl = (max{ M$93t;MVbeS}) *(1+0), whered (tuned to 0.025) is used to avoid an

early termination to the pruning.

| initial NN I

Evaluate results (16
Initiate Jg
]

For hidden neurons
Calculate VNM
(4) & (100r12)

Evaluate results (16
Initiate
]

For inputs
Calculate VNM
(N&(00r12)

Evaluate results (16
Initiate
v

For hidden weights
Calculate VNM
(8&IN&(100r12)

Increaseo; Increased; Increased;

Prune hidden neuron: Prune inputs Prune hidden weightd
with g <l with [ <l with g <l

retrain NN retrain NN retrain NN

<& <& <&

yes yes yes

Restore NN Restore NN Restore NN

END hidden neurong . . .
END inputs prning END pruing

Fig. 1 NNSP-HI algorithm
The pruning phase of the hidden neurons startedoying the oversized MLP.

First, we initialize o, the MAD valuesMt andMy, and the thresholBrmax. The
algorithm then calculates the VNM measures ofredlhidden neurons. Two

14
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variants of these VNM measures are determined wesingtions4) and (L0)
(NNSP-HI-mean) or equationg)(and (2) (NNSP-HI-mad). The values of ,

for all hidden neurons are compared to the threshollf none of thel, are

lower than this threshold, the parametef is multiplied by 10 and thd

values are recalculated.

If some of the ", measures are lower than the thresfieldhe corresponding

hidden neurons are pruned and the network is netiaiThe two MAD values are

calculated from16), and compared to the thresh@udhax If the new structure

improves the results, the memori#s>**, M ¥, and the thresholdEr,_, are

updated with their improved values. If the resigtiretwork becomes too
degraded, the preceding structure is restoredrentitiden neuron pruning phase
terminates. The input pruning phase can then Sthe.pruning phases of the
inputs and hidden weights and biases takes the appreach as the hidden

neuron pruning phase, using equatiénand equations3] and @), respectively.

4.2.2. NNSP inputs before hidden neurons (NNSP-IH)

The second version of the algorithm first prunesitiputs, before eliminating
spurious hidden neurons and, finally, the weights lsiases of the hidden layer.
This algorithm is described in Figure 2, and ispg@milar to the first algorithm.

As in the first algorithm, two variants of the VNiMeasures are determined using
equation {0) or equation12). These two variants of the algorithms are denoted

as NNSP-IH-mean and NNSP-IH-mad, respectively.

| initial NN I
Evaluate results (16
Initiate O
]

Evaluate results (16
Initiate Jg
v
For hidden neurons

For inputs
Calculate VNM Calculate VNM
(A &(100r12)

(N &((100r12)

Evaluate results (16
Initiate O

or hidden weights
Calculate VNM
8&9) & (100

Increased,
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. . END hidden neurong .
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Fig. 2 NNSP-IH algorithm

5 Experimental results on classification examples

In this section, the proposed algorithms (four aai$) are implemented and
compared with the previous pruning methods of VRE|,[N2PFA [59], OBS
[14], and N2PS [68] on three classification prolbdeor each problem, 20 initial
parameter sets are constructed (83.2.1) and learitiedhe robust algorithm
(83.2.2). The eight pruning algorithms are appt@®the same 20 learned

networks.

5.1. Pima Indians Diabetes dataset

This dataset is available from WEKA [85-86]. Thelplem is to predict whether a
patient will test positive or negative for diabeéesording to the criteria given by
the World Health Organization. This is a two-clpssblem with class values of O
(500 data) and 1 (268 data) interpreted as negatidgoositive results for
diabetes. There are eight input data for eachnpafidis dataset was randomly
divided into two datasets for learning (375 dataj @alidation (393 data). The
initial learning was performed with 20 hidden nengo

Table 1 lists the best results obtained with tightgpruning algorithms, as well as
for the learning without pruning. These resultsvglioat even when learning is
performed on an oversized structure, the use obast criterion allows the
generalization capabilities of the network to besarved.

The best misclassification rat§,, — was obtained on the validation dataset by

the NNSP-IH-mean algorithm. A McNemar statisticgbbthesis test was used to
determine whether the misclassification rate oép#igorithms was statistically
different to that obtained with NNSP-IH-medrhe null hypothesis (thahe

tested algorithms is statistically equal to thet loe®) was tested, wher&, and

its alternative # are:

{*%o: Sor = Sy, 17)

H: S 7S,

The null hypothesis#, is rejected with a risk level of 5% if:
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U :M >1.96 (18)
N+ Ny,

whereNo is the number of cases where the best classifier gives correct class and
the compared classifier gives wrong class ldnds the number of cases where
the best classifier gives wrong class and the compared classifier gives cor
class. The results of this test are presented in Table 1. beytkat the N2PS
and VNP algorithms become trapped at a poor local minimum.
The four proposed algorithms outperformed N2PS and VNP, and gavar si
results to the N2PFA and OBS algorithms on the validaticesdatHowever, the
four proposed algorithms pruned more parameters and inputs th&AN2ie
OBS without degrading the results, and were less time-consynegjring
~50% of the time of N2PFA). The smallest structure was giveh®\WNSP-HI-

mean algorithm.

Table 1: Best results obtained on the diabetesdata

Structure of NN Misclassification rateS U
# of inputs # of hidden| # of parameters Duratio Tngini Validation Validation|
without pruning| 8 20 201 - 0.221 0.247 0.80
NNSP-HI-meap 7 3 28 0.45s 0.189 0.237 0.24
NNSP-HI-mad 7 10 74 0.41s 0.192 0.237 0.24
NNSP-IH-meap 7 11 60 0.851s 0.149 0.232 -
NNSP-IH-mad 7 12 87 0.41s 0.200 0.242 0.5
N2PFA 8 11 111 1.15s 0.112 0.244 0.60
N2PS 5 10 71 0.17s 0.272 0.298 2.80
OBS 8 20 131 48.34s 0.253 0.237 0.50
VNP 7 15 136 0.02s 0.237 0.303 2.77
10 learning dataset‘ 12 va!idation datasgt
_ [ INNSP-HI-mean
9 1 [ NNSP-HI-mad
10 [T NNSP-IH-mean H
8 M M M 1 [ NNSP-IH-mad
.1 L | I \2PFA
8 I NoPs H
6 R , _
5 H R 6 —
al | L
4 B
a3l |
A |
A |
: ] i
0 0.1-0.15 015-02 02-025 025-0.4 0 02-025 025-03 03-035 0.35-0.4

Fig. 3 Distribution of the misclassification rate on leig and validation datasets

Figure 3 presents the distribution of the misclassification raendyy the six best
pruning algorithms. These results were obtained over the 20 nstaorke
learning and validation datasets. This figure shows that NNSPadRiNNSP-

IH-mean, and N2PFA often produced good results. In particuldheowalidation
17
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dataset, the misclassification rate given by tllesse algorithms belongs to the

best class (0.2—-0.25) in more than 50% of cases.

5.2. lonosphere dataset

The second classification problem considered thesphere dataset, also
available from WEKA [86-87]. These radar data weslected by a system in
Goose Bay, Labrador, Canada. This is a two-clasisi@m with class values of 0
(225 data) and 1 (126 data) interpreted as badjaod. There are 33 input data
for each pattern. The dataset was randomly dividiedtwo datasets, one for
learning (186 data) and the other for validatio®s(tlata). The initial learning was
performed with 10 hidden neurons.

Table 2 shows the best results obtained with thlet giruning algorithms and for
the learning without pruning. As for the diabetaesadet, the use of a robust
criterion allowed the generalization capabilitiéshe network to be preserved.
The OBS algorithm produced the best results owvafidation dataset, albeit with
a considerable computation time. The other algostigave equivalent results for
the misclassification rate on the validation dataBeis is confirmed by the
results of the statistical hypothesis test (17)iclare always less than 1.96.
However, three of the four proposed algorithms medahese results with a
smaller structure than that of OBS (NNSP-HI-meaN3R-HI-mad; NNSP-IH-

mad).

Table 2: Best results obtained on the ionosphetasda

Structure of NN Misclassification rate S U
# of inputs # of hidden| # of parameters Duratio Tngini Validation Validation|
without pruning| 33 10 351 - 0.0000 0.1271 0.99
NNSP-HI-meafp 26 2 57 0.25s 0.0647 0.1492 1.6%
NNSP-HI-mad 30 10 53 0.63s 0.0000 0.1215 0.8
NNSP-IH-meafp 26 10 198 0.75s 0.0000 0.1492 1.5
NNSP-IH-mad 17 10 50 0.70s 0.0765 0.1215 0.7
N2PFA 31 7 232 1.04s 0.0294 0.1326 1.11
N2PS 24 5 131 0.17s 0.0000 0.1436 1.54
OBS 25 8 58 157.2s 0.0529 0.0884 -
VNP 32 10 341 0.01s 0.0706 0.1271 0.83

It can be seen that, in many cases, the prunirayitiighs were unable to find a
better structure than the initial one. N2PFA aralfthur proposed algorithms did
not prune a single parameter in 30% of the casesN2PS retained an unaltered

structure in 75% of cases.
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5.3. Quality dataset

The third classification problem considered isa rpiality classification problem
from a robotic lacquering process [88]. In thisadat, one defect (stains on back)
Is considered. This is a two-class problem witls€halues of 0 (1997 data) and 1
(273 data) interpreted as having no defects antylaefective, respectively.
There are 15 input data for each pattern. The eateas randomly divided into
two for learning (1099 data) and validation (11&tad. The initial learning was
performed with 25 hidden neurons.

Table 3 shows the best results obtained with thlet giruning algorithms and for

the learning without pruning.

Table 3: Best results obtained on the quality ddtas

Structure of NN Misclassification rateyS U

# of inputs # of hidden| # of parameters Duratiot] Tingini Validation | Validation

without pruning| 15 25 426 - 0.1605 0.1448 2.7
NNSP-HI-meap 10 25 93 24min 544 0.1260 0.1144 0.6p

NNSP-HI-mad 10 15 53 57min 449 0.1338 0.1072 -

NNSP-IH-meap 9 25 81 58min 365 0.1231 0.1164 0.8p
NNSP-IH-mad 15 8 137 57min 3s 0.1307 0.1159 0.71

N2PFA 14 23 369 56 min 3s 0.1449 0.1372 211
N2PS 10 12 145 57min 39s 0.1524 0.1390 2.24
OBS 13 25 178 1h 12min 3%s 0.1157 0.1247 1.3p

VNP 8 25 196 56min 25s 0.1303 0.1626 3.8(

The results of the statistical hypothesis test §how that N2PFA, N2PS, and
VNP gave statistically worse results than thosaioled by the best algorithm,
NNSP-HI-mad. However, the use of a robust critedaring learning was not
sufficient to avoid the overfitting problem.

Moreover, the four variants of the proposed alpomioutperformed the other
algorithms on the validation dataset and produbedsimallest structures. Note
that the VNP algorithm gave acceptable resultsilg one case. All other
algorithms gave acceptable results in over 50%asés. NNSP-HI-mean and
NNSP-IH-mean, which use the variance estimatiail ), were unable to prune

any of the hidden neurons. The smallest struct@a® given by NNSP-HI-mad.

6 Experimental results on regression examples

In this section, the proposed algorithms (four amats) are compared with VNP
[26], N2PFA [59], OBS [14], and N2PS [68] on thregression problems. For
each problem, 20 initial sets of parameters arstcocied (83.2.1) and learned
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with the robust algorithm (83.2.2). The eight pngalgorithms are applied to the

same 20 learned networks.

6.1. Modeling of a static system

The problem considered here is the modeling ofrgpk& nonlinear system [89].
This system is based on a one-hidden-layer peameptructure with three inputs
and one output. This system, supposed to be unknewhosen to avoid
problems related to the differences between tha fafrthe ‘true’ model and that

of the fitted model. The system is described by:
y(t) =1+tanh( 2x €)% ¢ ) 3% ¢)+ tanhx (3 x )+ e ¢ (19)

wheree(t) is additive Gaussian noise with mean 0 and standiewiation 0.2.

Two datasets of 500 points were created for legraird validation. These two
datasets include five input variables, 2, andxs and two supplementary ones).
These five inputs are sequences of steps of ramelogith and amplitude. To give
each input a different influence, input ranges—df;[1], [0; 1.5], [-1; 1.5],

[0; 0.5], and [-1; O] were applied, respectivelfeTinitial structure of the neural
network comprised eight hidden neurons.

Table 4 lists the best results obtained with tightgoruning algorithms and for the
learning without pruning.

In regression, the mean of the residual must ble finlis, a two-tailed statistical

hypothesis test can be employed to determine ¢highé different algorithms.

The null hypothesis#, (that the mean of the residuashull) and its alternative

J¢ are:

{9(0: u=0

F: u#0 (20)

where y is the mean of the residuals populatic¥, is rejected with a risk

level of 5% if:

3
U= >1.96
s/+/'N
or (22)
3
U= <-1.96
s/+/'N
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whereN is the size of the validation dataset, and s’ are the estimated mean
and variance of the residuals.

For this simulation example, the true standardaten of the noiseg, is
known to be 0.2. Thus, the two-tailed statistiogddthesis test was used to
determine whether the variance of the populatiwh obtained with the different

algorithms was statistically different to?. The null hypothesis#, and its

alternative ¢ were therefore:

¥ : o’=0;
¥: o°>0; (22)
o’ <o?

and €, can be rejected with a risk level of 5% if:

r= - ;1-).82_ <ry=x° (U’gj

2 2
e (23)
r= 0D, = (0
g, 2

whereN is the size of the validation dataseis the number of degrees of

freedom, andr is the confidence interval. For this example,tthe bounds T

and ', were 439.0 and 562.8. The results of this stagibhiypothesis test on

the validation datasets are presented in Tabldi. Shows that all algorithms
gave equivalent results and correctly learned ystesn. The mean of the

residuals is statistically null, and the variarestatistically equal tag? for all

algorithms.

However, N2PS was not able to prune any parametedsconsistently preserved
the initial structure. The best structure obtaingith the VNP algorithm includes
49 parameters. The other algorithms gave very aimasults. N2PFA and two
proposed variants (NNSP-HI-mad and NNSP-IH-madpébtihe minimal number
of hidden neurons. OBS produced the smallest streicbut required a significant

computation time.

Table 4: Best results obtained on the static mdd&lset
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Structure of NN RMSE Statistical Testing (valid.)
# of inputs # of hidden| # of paramefers  Duratio Tgini Validation U r
without pruning) 5 8 57 - 0.166 0.221 0.24 535.]
NNSP-HI-meap 4 4 13 0.69s 0.181 0.200 0.53 500]7
NNSP-HI-mad 5 2 15 0.26s 0.181 0.200 0.24 5358
NNSP-IH-meap 4 4 15 0.63s 0.181 0.200 0.44 5001
NNSP-IH-mad 5 2 15 0.23s 0.193 0.206 -0.2 499p
N2PFA 4 2 13 0.59s 0.181 0.200 0.57 498.
N2PS 5 8 57 0.04s 0.166 0.221 0.24 535.p
OBS 4 3 9 6.30s 0.181 0.201 0.57 502.
VNP 4 8 49 0.01s 0.171 0.209 0.63 498 4
learning dataset validation dataset
20 : . 20 : : : ,
| [ INNSP-HI-mean | |
181 1018 I NNSP-HI-mad
16+ 1 16t I NNSP-IH-mean | |
[ NNSP-IH-mad
L i L I N\2PFA
14 14
I oBs
12 4 12t
10F 1 10 o
8t E 8
6F E 6
4t E 4t
o ‘ S

I
0.17-0.175 0.175-0.185 0.185-0.19 0.19-0.2 0.19-0.25 0.25-0.215 0.215-0.225 0.225 24

Fig. 4 RMSE distribution on learning and validation datas
Figure 4 shows the RMSE distribution of the sixtheforming algorithms on
the learning and validation datasets for the 20ainsets of weights. This figure

shows that these six algorithms consistently fosattsfactory results.

6.2. Modeling of a dynamic system

The second system model is also based on a sirdfderlayer perceptron, but
uses delayed inputs [89]. This system is desciiyed

y(t) =1+tanh(x ¢- 2, ¢ 3% ¢~ 1)+ tanfx © 2} x € I e

(24)

wheree(t) is additive Gaussian noise with mean 0 and standiewiation 0.17.
The delayed inputs; andx. are sequences of steps of random length and
amplitude. The duration of the steps of inpufrespectively) was randomly
chosen between 5 and 10 (respectively 8 and 1% antplitude ok
(respectivelyxo) was randomly chosen between -1 and 1 (respegtivahd 1.5).
Two datasets of 500 points were created for legraimd validation. The input
vector used for the learning consisted of the wyuisx; andx. and their
respective delays t-1,t-2,t—3, and—4. This leads to 10 input neurons for the
initial structure of the neural network. The inliikarning was performed with 10

hidden neurons.
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For all algorithms, two statistical hypothesis $g&1) and (23) were performed to

test the mean and variance of the residuals. Aseipreceding example, the true
standard deviationg, of the noise is known to be 0.17. The two bourids
and ', are 439.0 and 562.8. Table 5 lists the best esblained with the eight

pruning algorithms and for the learning withoutming. This shows that VNP is

not able to find a suitable structure because thamand variance of the residuals

are different from 0 ando?, respectively. For all other algorithms, the resale

equivalent.

Table 5: Best results obtained on the dynamic mddtlset

Structure of NN RMSE Statistical Testing (valid.)
# of inputs # of hidden| # of paramefers  Duratio Tgini Validation U r

without pruning) 10 10 121 - 0.148 0.183 1.32 547.1
NNSP-HI-meap 6 5 27 0.7s 0.151 0.174 0.33 522{7
NNSP-HI-mad 10 6 73 0.28s 0.147 0.177 1.2] 54044
NNSP-IH-meap 4 4 25 0.6s 0.154 0.176 0.37 5228
NNSP-IH-mad 10 2 25 0.55s 0.154 0.175 0.54 5269
N2PFA 6 8 65 0.93s 0.150 0.180 0.85 521.9
N2PS 5 3 22 0.1s 0.168 0.182 1.32 547.p
OBS 5 4 13 27.32s 0.154 0.172 0.27 520.6

VNP 3 5 26 0.02s 0.235 0.236 5.25 910.4

It can be seen that N2PS was able to prune paresnetenly one case. In the 19
other cases, this algorithm preserved the initralcsure. OBS determined the best
structure, but was again very computationally espan N2PFA and the four
proposed algorithms produced very similar resbis the four proposed
algorithms are less time-consuming. NNSP-IH-madMNN&P-HI-mad, which

use the variance estimation {2}, were unable to prune the inputs. As for the

preceding cases, the use of a robust criteriomdueiarning allows the overfitting

problem to be avoided.

6.3. Ailerons dataset

The regression problem considered here is alstad@ifrom WEKA [86]. This
dataset addresses a control problem, namely fefmg16 aircraft. The attributes
describe the status of the airplane, and the gdal predict the control action on
the ailerons of the aircraft, which comprises 13@&flerns. There are 39 inputs
for each pattern. This dataset was randomly dividextwo for learning (6868
data) and validation (6882 data). The initial l&agnvas performed with 20
hidden neurons. Because of its computational tegeirements, the OBS

algorithm was executed only once.
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For all algorithms, the two statistical hypothdsists (21) and (23) were

performed to test the mean and variance of theuats. In this real example, the

true variance of the noiser? is unknown. In test (23), its value is replaced by
the lower variance value obtained on the validatiataset. For this example, the

two boundsl", and I'_, are 6690 and 7076. Table 6 presents the results

obtained for the different algorithms. This showatttheVNP algorithm could
not find a suitable structure, instead pruningpalameters and becoming trapped
in a very bad local minimum. N2PS and one varidhe proposed algorithm
(NNSP-IH-mean) were unable to prune any parameteastherefore preserved
the initial structure. These two algorithms and QfaS8e results that were
statistically worse than those of N2PFA, which proed the best results. OBS
again required a considerable computation time ¢ntiwain one day). The results
obtained with the other algorithms are statisticatjuivalent. N2PFA was the
only algorithm that was able to prune the inputswidver, NNSP-HI-mean and
NNSP-IH-mad pruned more hidden neurons and parasyeted determined
equivalent structures quicker than N2PFA. The cdatmnal time for N2PFA is
four times higher than those for the proposed #lyois.

Table 6: Best results obtained on the aileronsseata

Structure of NN RMSE Statistical Testing (valid.)
# of inputs # of hidden| # of paramefers  Duratio Tgini Validation U r

without pruning] 39 20 821 - 1.61*10* 1.65*10* 0.89 7106
NNSP-HI-meaf 39 4 165 3min 34s 157440 | 1.63*10" 0.27 6908
NNSP-HI-mad 39 15 616 2min 6s 158<t0 | 1.63*10* 0.41 6914
NNSP-IH-meaf 39 20 821 20.93s 1.61¥0| 1.65*10* 0.89 7106
NNSP-IH-mad 39 7 288 4min 23s| 1.58+10* 1.63*10* 0.89 6880
N2PFA 23 9 226 16min 59s 1.58*f0 | 1.62*10" -1.11 6882
N2PS 39 20 821 9.75s 1.61+f0 | 1.65+10" 0.89 7106
OBS 38 20 601 27h19min2%s  1.64*40 | 1.68*10" 0.20 7331

VNP 0 0 1 0.312s | 29.66*10* | 29.67*10* | -17.05 43079

7 Conclusions

In this paper, a new pruning algorithm was propdsedetermine the optimal
structure of a MLP for both classification and esgion problems. Four variants
of this algorithm were tested and compared withr fdassical pruning algorithms
on three classification problems and three regoagsioblems. The proposed
algorithms produced equivalent results or outpentat the four comparative
algorithms. Moreover, they required less computetioime than the OBS and
N2PFA algorithms.
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Of the four proposed variants, NNSP-HI-mean gaeeost results. This variant

begins by pruning hidden neurons, then considergnbuts, and finally the

parameters. It uses the variance estimdtdy groposed by Engelbrecht [26].

The results have shown that the use of a robustifepalgorithm allows the

overfitting problem to be avoided in both classifion and regression problems.
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