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Decision-making and interacting neuron

populations

S. MANCINI

MAPMO, Université d’Orléans

Abstract

In this article we present the modeling of bi-stability view problems
described by the activity or firing rates of two interacting population
of neurons. Starting from the study of a complex system, the sys-
tem of stochastic differential equations describing the time evolution
of the activity of the two populations of neurons, we point out the
strength and weakness of this model and consider its associated par-
tial differential equation, which resolution gives statistical information
on the firing rates distributions. The slow-fast characterization of the
solutions finally leads us to a complexity reduction of the model by
the definition of a one-dimensional stochastic differential equation and
its associated one-dimensional partial differential equation. This last
model turns out to be well adapted to the resolution of the prob-
lem giving access, in particular, to reaction times and performance,
two macroscopic variables describing the decision-making in the view
problem.

1 Introduction

Decision-making problems in social and natural sciences are often described
by means of complex systems governed by differential equations giving the
time variation of some quantities. We can represent the two choices decision
making situation like a set of particles evolving in double wells potentials
(potential functions with two minima or stable equilibrium points and one
maximum or unstable equilibrium point) and submitted to interactions. Each
well represents one of the decision states and corresponds to one attractor
of the system. The function describing the double well potential is usually a
fourth order polynomial (like in the Van der Pool equation), and the prob-
lem can be explicitly solved, see for example the book by Galam (2012) for

1



an application to social sciences. The decision-making process may also be
described by the evolution of the reaction times and performance, two macro-
scopic variables representing the mean minimal time a subject needs to make
a decision (or a particle needs to exit a potantial well), and the amount of
subjects having choosen a particular decision state (or the sum of all particles
being in a potential well) at a given time.

In this paper we deal with bi-stability visual situations. The decision-
making process in this context involve a huge number of interacting neurons
and it is not possible to describe it by the knowledge of each single neuron.
The synchronization of the neurons activity leads to an equilibrium repre-
senting the decision. We can briefly sketch the situation as follows. A subject
is asked to choose between two possible views of a picture. His sight has to fo-
cus on one of these views, and this is done at a neuronal level. The decision is
taken once the focus is done. Neuron-physicists are then interested in the two
macroscopic quantities: the reaction times and the performance. Since neu-
rons in the visual cortex have different skills and are connected, this problem
can’t be modeled by the description of a single neuron activity, but different
populations of neurons in interaction must be considered. In computational
neurosciences, the decision making of interacting population of neurons (ex-
citatory and inhibitory ones) have been successfully described by a system of
deterministic differential equations, called the Wilson-Cowan system, see the
seminal work by Wilson & Cowan (1972). In this model, the unknowns are
function of time only and represent the mean firing rate of each population of
neurons, i.e. for each population, the mean frequency of the neuronal signal,
hence its activity. Moreover, the underlying potential is not a fourth order
polynomial function and can’t be explicitly computed. More recently, noise
has been added to the model, see Deco & Martì (2007), in order to account
for the finite number of neurons in the mean field approximation used to
derive the Wilson-Cowan model. The non-linearity in the model makes its
mathematical analysis difficult. In particular, it is not possible to write the
explicit solution of the stationary associated problem. Nevertheless, in Deco
& Martì (2007) the authors numerically show, applying the moment anal-
ysis, that for the ranges of parameters they are interested in, the solutions
are bi-modal, i.e. double peaked. This method works well, but no closure to
the system of equation is provided. In order to write an approximation of
the explicit stationary solution to the problem, knowing that the solutions
must be bi-modal and applying Taylor expansion methods, it is also possible
to define a fourth order polynomial V , passing from the equilibrium points,
see for example Roxin & Ledberg (2008). This function V is then also used
to compute reaction times (by means of Kramers formula) and performance
(by means of the steady state). This approach, which is usually applied in
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computational neurosciences, gives results in agreement with experimental
data, see Roxin & Ledberg (2008), but only holds locally.

In this paper, we will consider the partial differential equation associated
to the stochastic system which describes the evolution of the probability dis-
tribution function in terms of the firing rates of the two neuron populations.
We will see in the sequel how its mathematical analysis and numerical sim-
ulations can help to reduce the complexity of the problem leading to faster
computations of the reaction times and the performance, and compare the
results of the simplified model with the initial one. The presented complexity
reduction method is a good way to overcome the difficulty of not knowing
the explicit form of the underlying potential and the approximated solutions
are defined on the whole domain we are interested in, and not only locally
as usually done in computational neurosciences. The present work resumes
the results of several papers done in collaborations with J. A. Carrillo (Lon-
don), G. Deco (Barcelona) and S. Cordier (Orléans), see Carrillo, Cordier &
Mancini (2011), Carrillo, Cordier & Mancini (2013) and Carrillo, Cordier,
Deco & Mancini (2013).

2 The mathematical model

Recently bi-stability visual problems have been investigated by considering
systems of stochastic differential equations which describe the time evolution
of the firing rates for two or more interacting populations of neurons (see for
example Deco & Martì (2007) and Roxin & Ledberg (2008)). This kind of
models, based on the deterministic Wilson-Cowan one (see Wilson & Cowan
(1972)), permits to numerically evaluate the subject reaction times and the
performance together with their variations with respect to the differences
on the applied stimuli and/or the weight of the interactions. For instance,
reaction times correspond to the time needed for the subject to make a
decision, and performance is the number of good responses taken by the
subject without limitation on time. The model can be interpreted from a
physical point of view as particles trapped in a double (or multiple) well
potential, reaction times corresponding then to the exit time from a well and
performance being given by the density contained in the well associated to
the correct answer.

The model studied in Deco & Martì (2007) considers the time evolution
of the firing rates ν1 = ν1(t) and ν2 = ν2(t) of two neuron populations. Their
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behavior satisfies the following system of stochastic differential equations:
{

dν1 = ψ1(ν1, ν2)dt + dξ

dν2 = ψ2(ν1, ν2)dt + dξ,
(1)

where dξ is a white noise of standard deviation β and ψ1, ψ2 are the dynamical
part of the equations and model the neuronal activity. They are defined by:

ψ1 = −ν1 + φ(λ1 + w ν1 + ŵ ν2),

ψ2 = −ν2 + φ(λ2 + ŵ ν1 + w ν2),

with φ(z) the so-called response function to the mean excitation z, defined
by the sigmoid:

φ(z) =
νc

1 + exp(−α(z/νc − 1))
,

with νc and α parameters that are fixed by biology and where the mean exci-
tation z is given by the sum of the applied stimuli (λ1 or λ2) and the internal
activities given by a linear combination of the activity of each population
weighted respectively by w and ŵ depending if we are considering the same
population or not. Note that, the weights being symmetric, if the applied
stimuli are the same (i.e. λ1 = λ2), then the problem is symmetric and is
defined as the unbiased case, whereas if one of the stimuli is larger than the
other (say λ1 = λ2 + ∆λ), the problem loses its symmetry and we define
this situation as the biased case, with the bias given by ∆λ. In the following
numerical results, with the exeption of those in figure 3 which consider a
slightly different potential, νc = 20, α = 4, w = 0.45, ŵ = 1.23, β = 0.3,
λ1 = λ2 = 15 and ∆λ = 0.01.

It’s well-know in literature that we can deduce a Fokker-Planck equation
from system (1) applying Ito calculus or considering the forward Kolmogorov
equation associated to (1): for (t, ν1, ν2) ∈ (0,+∞)× Ω,

∂tp+∇ ·

(

F p−
β2

2
∇p

)

= 0, (2)

where p = p(t, ν1, ν2) is the probability distribution function representing the
probability that at time t ≥ 0 the firing rates are in (ν1, ν2) ∈ Ω ⊂ R

2
+,

and with F = F (ν1, ν2) = (f(ν1, ν2), g(ν1, ν2)) the drift term. The domain Ω
being bounded (the square [0, νm]× [0, νm], with νm the maximal firing rate
value for the neuron populations), we complete equation (2) by the following
Robin type (or no flux) boundary conditions: on ∂Ω,

F p−
β2

2
∇p = 0 ,
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and we finally consider the normalized initial condition:

p(0, ν1, ν2) = p0(ν1, ν2) ≥ 0.

As proven in Carrillo, Cordier & Mancini (2011), under the assumption of
incoming flux, the problem is well posed and there exists a unique steady
state solution of the stationary Fokker-Planck equation. Nevertheless, as
explained in Carrillo, Cordier & Mancini (2011) there is no potential function
V = V (ν1, ν2) such that F = −∇V . This fact implies that it is not possible
to write explicitly the steady state associated to (2). Recall that the steady
state and the potential V are essential for the computing of reaction times
and performance.

The bi-dimensional behavior of the solution of (2) at a given time is shown
in figure 1: the solution is concentrated around the two stable equilibrium
points and is aligned along the equilibrium manifold. The bi-modal aspect
of the solution is well captured by the numerical simulations of the Fokker-
Planck equation (left). When the situation is biased (i.e. one of the applied
stimuli is bigger), then one of the wells is deeper than the other and the sym-
metry of the problem is lost. In this situation the solution at equilibrium (or
for large times) is concentrated around the equilibrium point corresponding
to the deeper well, (right). Note that in Deco & Martì (2007) the authors
represented the solution by means of their marginals (i.e. the projections
along each axis) and no bi-dimensional numerical result was obtained.

Figure 1: Solution to equation (2). Left : unbiased case. Right : biased case.
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3 Complexity reduction

Although the behavior of the solution of equation (2) is in agreement with
what is expected physically, the application to real problems of this equa-
tion, or the use of the associated numerical simulations, are not competitive,
since nor the potential function V nor the steady state are known and to
approximate them numerically requires very long CPU times.

Nevertheless, the study of problem (2) shows that its solution is char-
acterized by a slow-fast behavior: rapid diffusion towards the equilibrium
manifold and slow drift along the manifold towards the stable equilibrium
points. In Carrillo, Cordier & Mancini (2013) we have proposed a complex-
ity reduction of (3) based on this slow-fast characteristic of the problem and
leads to a one-dimensional Fokker-Planck equation living on the equilibrium
manifold (see Berglund & Gentz (2005)). The fast convergence being along
a direction which is given by a linear combination of ν1 and ν2, we can de-
fine two new variables x and y respectively as the variable along which the
fast convergence is done and the one corresponding to the slow direction (see
Carrillo, Cordier & Mancini (2013) for more details). With this change of
variables the stochastic system (1) transforms in:

{

dx = f(x, y)dt + dξx,

dy = g(x, y)dt + dξy,
(3)

where f(x, y), respectively g(x, y), are the linear combination of the functions
ψ1 and ψ2, and where dξx et dξy are two white noises of standard deviation βx
and βy. Summarizing, we may say that f and g are the functions describing
the activity of the combined firing rates x and y, respectively.

We can define the coefficient ε as the ratio of the two eigenvalues associ-
ated to the Jacobian matrix of F , in such a way that ε≪ 1. This coefficient
represents then the time scaling between the fast and slow variables. It is
then possible to write the deterministic part of (3) as follows:

{

εdx = f(x, y)dt,

dy = g(x, y)dt.

Considering the limit of ε going to zero, we can implicitly solve the first
equation and define a curve x∗(y) such that f(x∗(y), y) = 0. Replacing in
the equation for the slow variable y, we get:

ẏ = g(x∗(y), y).

Considering now the stochastic term, we end up with the stochastic differ-
ential equation:

ẏ = g(x∗(y), y) + βdξ. (4)
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We can then consider the associated partial differential equation on [0,∞]×
Ωy, with Ωy = [−ym, ym]:

∂tq + ∂y

(

g(x∗(y), y)q −
β2

2
∂yq

)

= 0, (5)

where q = q(t, y) is the probability distribution function representing the
probability that at time t ≥ 0, the firing rate is in y. This is a one-dimensional
Fokker-Planck equation, and we can endowed it by means of no flux boundary
conditions, for y = {−ym, ym}:

g(y)q −
β2

2
∂yq = 0,

and the normalized initial condition q(0, y) = q0(y), which is the projection
of p(t, ν1, ν2) only along the y variable. The slow behavior of the solution
persists, since q lives on the equilibrium manifold along the slow direction.
Nevertheless, computational time costs are reduced by using implicit in time
numerical schemes. Moreover, we can compute an approximation of the
potential function V and of the stable state. In fact, for a one-dimensional
Fokker-Planck equation the stable state is given by:

qs(y) = exp

(

−2G(y)

β2

)

, (6)

where G(y) is the potential function associated to g(x∗(y), y) and defined by:

G(y) = −

∫

g(x∗(z), z) dz.

As shown in figure 2, the complexity reduced equation (5) of the initial
Fokker-Planck model (2) gives very good results, both in the unbiased and
biased cases.
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Figure 2: Comparison of the solutions along y for equations (2) and (5), and
with the stable state (6). Left : unbiased. Right : biased.

Therefore, it is possible to compute the wanted macroscopic quantities:
reaction times and performance, as done in Carrillo, Cordier, Deco & Mancini
(2013).

4 Application to a three-well potential

The complexity reduction we have discussed for the double well potential is
also useful for studying more complex situations like a three well potential.
The main difference with what has been done previously is in a modified
definition of the response function φ. This situation is more realistic of what
happens in visual decision making. Before a decision is made neurons firing
rates are all concentrated at around a certain frequency value (the middle
well) and they do migrate towards the other values (external wells) when the
decision is made. Reaction times in the three well potential case are given
by the exit times from the middle well to get to one of the external wells
(the deeper one in the biased case). Whereas performance is defined by the
density being, at equilibrium or for large times, into one specific well. In
figure 3 we plot the computed reaction times (left) and performance (right)
both with respect to the difference on the applied stimuli ∆λ and for different
values of the coefficient w+, which is one of connectivity coefficients used in
the definition of the weights w and ŵ.
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Figure 3: Left : Reaction times. Right : Performance.

The chosen values of the coefficient w+ corresponds to a sub-critical bi-
furcation situation: the system passes form three minima to two minima.
Indeed, for w+ = 2.5685 the underlying potential has three stable equilib-
rium points and two unstable ones, for w+ = 2.5695 the middle well gets
flat (the system is at the bifurcation) and for w+ = 2.5705 the underlying
potential has two wells and separated by a maximum which has replaced
the middle well. Concerning reaction times (left), the larger the bias is the
faster firing rates move towards the deeper well, and when the middle well
disappears it become easier to take take a decision. Concerning, performance
(right), the larger is the bias the more the subjects will give the expected
answer, but the disappearance of the middle point doesn’t increase the den-
sity of the good decision since the bias also implies higher maximum values
in the potential to overcome in order to get to the expected well. The same
behavior was obtained in Roxin & Ledberg (2008) for a similar problem
and in several experimental results. Nevertheless, the approach proposed in
Roxin & Ledberg (2008) is valid only in a neighborhood of the spontaneous
state (middle well), whereas the analysis and results presented here are valid
on the whole domain of definition of the problem.

5 Conclusions

We have discussed here in the framework of bi-stability view problems and of
computational neurosciences, how the study of the partial differential equa-
tion associated to stochastic differential system of equation, can give com-
plementary informations and can lead to the computation of macroscopic
quantities (as reaction times and performance) of interest in the modeling of
interacting population of neurons. In particular, we have presented the com-
plexity reduction method based on the slow-fast behavior of the solution of
a given stochastic differential system and applied it to a three well potential
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case.
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