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PAXQuery: Efficient Parallel Processing of
Complex XQuery

Jesús Camacho-Rodrı́guez, Dario Colazzo, and Ioana Manolescu

Abstract—Increasing volumes of data are being produced and exchanged over the Web, in particular in tree-structured formats such

as XML or JSON. This leads to a need of highly scalable algorithms and tools for processing such data, capable to take advantage of

massively parallel processing platforms.

This work considers the problem of efficiently parallelizing the execution of complex nested data processing, expressed in XQuery. We

provide novel algorithms showing how to translate such queries into PACT, a recent framework generalizing MapReduce in particular

by supporting many-input tasks. We present the first formal translation of complex XQuery algebraic expressions into PACT plans, and

demonstrate experimentally the efficiency and scalability of our approach.

Index Terms—XQuery processing, XQuery parallelization, XML data management.

✦

1 INTRODUCTION

To scale data processing up to very large data volumes,

platforms are increasingly relying on implicit parallel frame-

works [8], [19], [48]. The main advantage of using such

frameworks is that processing is distributed across many

sites without the application having to explicitly handle data

fragmentation, fragment placement etc.

By far the most widely adopted framework, MapRe-

duce [19] features a very simple processing model consisting

of two operations, Map which distributes processing over sets

of (key, value) pairs, and Reduce which processes the sets of

results computed by Map for each distinct key. However, the

simplicity of this processing model makes complex compu-

tations hard to express. Therefore, high-level data analytics

languages such as Pig [36], Hive [45] or Jaql [11], that

are translated (compiled) into MapReduce programs, have

emerged. Still, complex processing translates to large and com-

plex MapReduce programs, which may miss parallelization

opportunities and thus execute inefficiently.

Recently, more powerful abstractions for implicitly parallel

data processing have emerged, such as the Resilient Dis-

tributed Datasets [48] or Parallelization Contracts [8] (PACT,

in short). In particular, PACT generalizes MapReduce by

(i) manipulating records with any number of fields, instead

of (key, value) pairs, (ii) enabling the definition of custom

parallel operators by means of second-order functions, and

(iii) allowing one parallel operator to receive as input the

outputs of several other such operators. The PACT model

lies at the core of the Stratosphere platform [44], which can

read data from and write data to the Hadoop Distributed File

System (HDFS) [3].
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In this work, we are interested in the implicit parallelization

of XQuery [40], the W3C’s standard query language for XML

data. The language has been recently enhanced with features

geared towards XML analytics [21], such as explicit group-

ing. Given a very large collection of documents, evaluating

an XQuery query that navigates over these documents and

also joins results from different documents raises performance

challenges, which may be addressed by parallelism. In contrast

with prior work [12], [18], [27], we are interested in implicit

parallelism, which does not require the application (or the

user) to partition the XML input nor the query across many

nodes.

The contributions of this work are the following:

1) We present a novel methodology for massively parallel

evaluation of XQuery, based on PACT and previous

research in algebraic XQuery optimization.

2) We provide a translation algorithm from the algebraic

operators required by a large powerful fragment of

XQuery into operators of the PACT parallel frame-

work. This enables parallel XQuery evaluation without

requiring data or query partitioning effort from the

application.

Toward this goal, we first translate XML data instances

(trees with identity) into PACT nested records, to ensure

XML query results are returned after the PACT manip-

ulations of nested records.

Second, we bridge the gap between the XQuery algebra,

and in particular, many flavors of joins [20], [31], [32]

going beyond simple conjunctive equality joins, and

PACT operators which (like MapReduce) are fundamen-

tally designed around the equality of key values in their

inputs.

Our translation of complex joins into PACT is of interest

beyond the XQuery context, as it may enable compiling

other high-level languages [11], [36], [45] into PACT to

take advantage of its efficiency.

3) We fully implemented our translation technique into our
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xmlwrite

reduce(post)

cogroup($i=$b) cogroup($i=$s)

map(navigation1) map(navigation2)

xmlscan(‘people’) xmlscan(‘closed auctions’)

Fig. 1. Outline of the PACT program generated by PAX-
Query for the XQuery in Example 1.

PAXQuery platform. We present experiments demon-

strating that our translation approach (i) effectively

parallelizes XQuery evaluation taking advantage of the

PACT framework, and (ii) scales well beyond alternative

approaches for implicitly parallel XQuery evaluation, in

particular as soon as joins across documents are present

in the workload.

The remainder of the paper is organized as follows. Sec-

tion 2 introduces the problem by means of an example.

Section 3 provides background on XML, XQuery, and the

PACT model. Section 4 overviews our complete solution and

characterizes the XQuery algebras targeted by our translation.

Section 5 presents the translation algorithm from XQuery

plans to PACT, at the core of this work. Section 6 describes

our experimental evaluation. Section 7 discusses related work

and then we conclude.

2 MOTIVATION

Example 1. Consider the following XQuery that extracts the

name of users, and the items of their auctions (if any):
let $pc := collection( ‘ people ’),

$cc := collection( ‘ c losed auct ions ’)
for $p in $pc/site/people/person, $i in $p/@id

let $n := $p/name

let $r :=

for $c in $cc//closed_auction,

$b in $c/buyer/@person,

$s in $c/seller/@person

let $a := $c/itemref

where $i = $b or $i = $s

return $a

return <res>{$n,$r}</res> ⋄

We would like to evaluate this query over two large col-

lections of documents (concerning people, respectively closed

auctions) stored in HDFS. Evaluating the query in a massively

parallel fashion as previously proposed, e.g., in [27] requires

the programmer to explicitly insert parallelization primitives

in the query, which requires time and advanced expertise.

Alternatively, one could partition the XML data, as in [12],

[18], and run the query as such. This also requires human input

(potentially different for each query); moreover, for complex

XQuery queries like the one in Example 1, it also requires

manual decomposition of the query into (i) ”embarrassingly

parallel” subqueries which can be directly run in parallel over

many documents, and (ii) a ”recomposition” query that applies

the remaining query operations.

In contrast, given this query, PAXQuery generates in a fully

automated fashion the PACT program shown in Figure 1. We

outline here its functioning while on purpose omitting details,

which will be introduced later on. The xmlscan(‘people’)
and xmlscan(‘closed auctions’) operators scan (in parallel) the

respective collections and transform each document into a

record. Next, the map operators navigate in parallel within

the records thus obtained, following the query’s XPath expres-

sions, and bind the query variables. The next operators in the

PACT plan (cogroup) go beyond MapReduce. In a nutshell,

a cogroup can be seen as a reduce operator on multiple

inputs: it groups together records from all inputs sharing the

same key value, and then it applies a user-defined function on

each group. In this example, the functions are actually quite

complex (we explain them in Section 5). The difficulty they

have to solve is to correctly express (i) the disjunction in the

where clause of the query, and (ii) the outerjoin semantics

frequent in XQuery: in this example, a <res> element must

be output even for people with no auctions. The output of both

cogroup operators is received by the reduce, which builds

join results between people and closed auctions, while the last

xmlstore builds and returns XML results.

This approach enables us to take advantage of the Strato-

sphere platform [44] in order to automatically parallelize com-

plex XML processing, expressed in a rich dialect of XQuery. In

contrast, state-of-the-art solutions require partitioning, among

nodes and by hand, the query and/or the data. Moreover,

using PACT gives PAXQuery a performance advantage over

MapReduce-based systems, because PACT’s more expressive

massively parallel operators allow more efficient query imple-

mentations.

3 BACKGROUND

In the following, we provide background on the XML data

model and XQuery dialect we target (Section 3.1), and the

PACT programming model used by Stratosphere (Section 3.2).

3.1 XML and XQuery fragment

XML data. We view XML data as a forest of ordered, node-

labeled, unranked trees, as outlined by the simple grammar:
Tree d ::= si | li[f ]
Forest f ::= () | f,f | d

A tree d is either a text node (si), or an element node having

the label li and a forest of children; in accordance with the

W3C’s XML data model, each node is endowed with a unique

identity, which we materialize through the i index. A forest f

is a sequence of XML trees; () denotes the empty forest. For

the sake of presentation we omitted attributes in our grammar.

XQuery dialect. We consider a representative subset of the

XQuery 3.0 language [40]. Our goal was to cover (i) the

main navigating features of XQuery, and (ii) key constructs

to express analytical style queries, e.g., aggregation, explicit

grouping, or rich comparison predicates. However, extensions

to support other XQuery constructs, e.g., if or switch expres-

sions, can be integrated into our proposal in a straightforward

manner. The full presentation of our XQuery dialect, including

the grammar, can be found in Appendix A.
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Q1

let $ic := collection( ‘ i tems ’)
let $i := $ic/site/regions//item

return count($i)

Q2

let $ic := collection( ‘ i tems ’)
for $i in $ic/site/regions//item

let $l := $i/location/text()

group by $l

return <res><name>{$l}</name>

<num>{count($i)}</num></res>

Q3

let $pc := collection( ‘ people ’),
$cc := collection( ‘ c losed auct ions ’)

for $p in $pc/site/people/person, $i in $p/@id

let $n := $p/name/text()

let $a :=

for $t in $cc/site/closed_auctions/closed_auction,

$b in $t/buyer/@person

where $b = $i

return $t

return <item person="{$n}">{count($a)}</item>

Fig. 2. Sample queries expressed in our XQuery gram-
mar.

Figure 2 provides three sample queries. A path starts from

the root of each document in a collection found at URI Uri ,

or from the root of one document at URI Uri , or from the

bindings of a previously introduced variable. The path expres-

sion dialect Path belongs to the XPath{/,//,[]} language [34].

We support two different types of comparators in predicates:

(ValCmp) to compare atomic values, and (NodeCmp) to

compare nodes by their identity. Finally, the group by clause

groups tuples based on variable values.

In Figure 2, queries Q1 and Q2 use only one collection of

documents while query Q3 joins two collections. Further, Q2

and Q3 construct new XML elements while Q1 returns the

result of an aggregation over nodes from the input documents.

3.2 PACT framework

The PACT model [8] is a generalization of MapReduce,

based on the concept of parallel data processing operators.

PACT plans are DAGs of implicit parallel operators, that are

optimized and translated into explicit parallel data flows by

Stratosphere.

We introduce below the PACT data model and formalize

the semantics of its operators.

Data model. PACT plans manipulate records of the form:

r = ((f1, f2, . . . , fn), (i1, i2, . . . , ik))
where 1 ≤ k ≤ n and:

• (f1, f2, . . . , fn) is an ordered sequence of fields fi. In

turn, a field fi is either an atomic value (string) or an

ordered sequence (r′1, . . . , r
′
m) of records.

• (i1, i2, . . . , ik) is an ordered, possibly empty, sequence

of record positions in [1 . . . n] indicating the key fields

for the record. Each of the key fields must be an atomic

value.

The key of a record r is the concatenation of all the key

fields fi1 , fi2 , . . . , fik . We denote by r[i] and r.key the field i

and the key of record r, respectively. A ⊥-record is a record

whose fields consist of null (⊥) values. Finally, R denotes the

infinite domain of records.

Path indexes are needed to describe navigation through

records. A path index pi obeys the grammar pi := j.pi | ǫ,
with j ≥ 0. Navigation through r along a path index j.pi first

selects r[j]. If pi is empty (ǫ), then we are at the target field.

Operator

  User function (UF)

Parallelization
contract

Annotations

Compiler hints
DataData

Fig. 3. PACT operator outline.

Otherwise, if r[j] is a list of records (the field at position j is

nested), pi navigation is performed on each record.

Data sources and sinks are, respectively, the starting and

terminal nodes of a PACT plan. The input data is stored

in files; the function parameterizing data source operators

specifies how to structure the data into records. In turn, data

is output into files, with the destination and format similarly

controlled by an output function.

Semantics. Operators are data processing nodes in a PACT

plan. Each operator manipulates bags of records; we write

{{r1, r2, . . . , rn}} to indicate a bag of n records. From now

on, for simplicity, we will call a PACT operator simply a

PACT, whenever this does not cause confusion. As Figure 3

shows, a PACT consists of (i) a parallelization contract, (ii) a

user function (UF in short) and (iii) optional annotations and

compiler hints characterizing the UF behaviour. We describe

these next.

1) Parallelization contract. A PACT can have k ≥ 1
inputs, each of which is a finite bag of records. The

contract determines how input records are organized into

groups.

2) User function. The UF is executed independently over

each bag of records created by the parallelization con-

tract, therefore these executions can take place in paral-

lel. For each input bag of records, the UF returns a bag

of records.

3) Annotations and/or compiler hints may be used to enable

optimizations (with no impact on the semantics), thus we

do not discuss them further.

The semantics of the PACT op given as input k bags of

records I1, . . . , Ik, with Ii ⊂ R, 1 ≤ i ≤ k, and having the

parallelization contract c and the user function f is:

op(I1, . . . , Ik) =
⋃

s∈c(I1,...,Ik)

f(s)

In the above, c builds bags of records by grouping the input

records belonging to bags I1, . . . , Ik; f is invoked on each bag

produced by c, and the resulting bags are unioned.

Predefined contracts. Although the PACT model allows

creating custom parallelization contracts, a set of them for

the most common cases is built-in:

• Map has a single input, and builds a singleton for each

input record. Formally, given the bag I1 ⊂ R of records,

Map is defined as:

cmp(I1) = {{{r} | r ∈ I1}}

• Reduce also has a single input and groups together all

records that share the same key. Given a bag of input

records I1:
crd(I1) = {s = {{r1, r2, . . . , rm}} | r1, r2, . . . , rm ∈ I1

and r1.key = r2.key = . . . = rm.key and

6 ∃r′ ∈ I \ s such that (r′.key = r1.key)}
• Cross builds the cartesian product of two inputs.

• Match builds all pairs of records from its two inputs,

which share the same key. Thus, given I1, I2 ⊂ R:
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XML algebra 

expression

Extended XQuery 

Data Model (EXDM)

PACT plan PACT Data Model

Stratosphere 

system

XQuery
XQuery Data 

Model (XDM)

XQuery 

results
XML

documents

Fig. 4. Translation process overview.

cmt(I1, I2) = {{(r1, r2) | r1 ∈ I1, r2 ∈ I2 and

r1.key = r2.key}}
• CoGroup can be seen as a “Reduce on two inputs”; it

groups the records from both inputs, sharing the same

key value. Formally, given I1, I2 ⊂ R:

ccg(I1, I2) = {s = {{r11, . . . , r1m, r21, . . . , r2j}} |
r11, . . . , r1m ∈ I1 and r21, . . . , r2j ∈ I2
and ∀r, r′ ∈ s : r.key = r′.key

and 6 ∃r′′ ∈ (I1 ∪ I2) \ s
such that r′′.key = r11.key}

4 OUTLINE

Our approach for implicit parallel XQuery evaluation is to

translate XQuery into PACT plans as depicted in Figure 4.

The central vertical stack traces the query translation steps

from the top to the bottom, while at the right of each step we

show the data models manipulated by that step.

First, the XQuery query is represented as an algebraic

expression, on which multiple optimizations can be applied.

XQuery translation into different algebra formalisms and the

subsequent optimization of resulting expressions have been

extensively studied [9], [14], [39], [49]. In Section 4.1, we

characterize the class of XML algebras over which our trans-

lation technique can be applied, while we present the nested-

tuple data model and algebra used by our work in Section 4.2.

Second, the XQuery logical expression is translated into a

PACT plan; we explain this step in detail in Section 5.

Finally, the Stratosphere platform receives the PACT plan,

optimizes it, and turns it into a data flow that is evaluated in

parallel; these steps are explained in [8].

4.1 Assumptions on the XQuery algebra

Numerous logical algebras have been proposed for

XQuery [9], [20], [31], [39]. While the language has a

functional flavor, most algebras decompose the processing of

a query into operators, such as: navigation (or tree pattern

matching), which given a path (or tree pattern) query, extracts

from a document tuples of nodes matching it; selection;

projection; join etc.

A significant source of XQuery complexity comes from

nesting: an XQuery expression can be nested in almost any

position within another. In particular, nested queries challenge

the optimizer, as straightforward translation into nested plans

leads to very poor performance. For instance, in Figure 2, Q3

contains a nested subquery for $t ... return $t (shown

indented in the figure); let us call it Q4 and write Q3 = e(Q4).
A naı̈ve algebraic expression of such a query would evaluate

Q4 once per result of e in order to compute Q3 results, which

is typically inefficient.

Efficient optimization techniques translate nested XQuery

into unnested plans relying on joining and grouping [20], [31],

[32]. Thus, a smarter method to represent such query is to

connect the sub-plans of Q4 and e with a join in the plan of

Q3; the join condition in this example is $b=$i. Depending

on the query shape, such decorrelating joins may be nested

and/or outer.

Our goal is to complement existing engines, which translate

from XQuery to an internal algebra, by an efficient compilation

of this algebra into an implicit parallel framework such as

PACT. This enables plugging a highly parallel back-end to an

XQuery engine to improve its scalability. Accordingly, we aim

to adapt to any XML query algebra satisfying the following

two assumptions:

• The algebra is tuple-oriented (potentially using nested

tuples).

• The algebra is rich enough to support decorrelated

(unnested) plans even for nested XQuery; in particular

we consider that the query plan has been unnested before

we start translating it into PACT.

Three observations are in order here.

First, to express complex queries without nesting, the al-

gebra may include any type of joins (conjunctive/disjunctive,

value or identity-based, possibly nested, possibly outer), as

well as grouping; accordingly, we must be able to translate all

such operators into PACT.

Second, a tuple-based algebra for XQuery provides border

operators for (i) creating tuples from XML trees, in leaf

operators of the algebraic plan; (ii) constructing XML trees

out of tuples, at the top of the algebraic plan, so that XML

results can be returned.

Finally, we require no optimization but unnesting [32] to

be applied on the XML algebraic plan before translating it to

PACT; however, any optimization may be applied before (and

orthogonal to) our translation.

4.2 Algebra and data model

In the sequel, we present our work based on the algebra in [31].

We describe the nested tuple data model manipulated by this

algebra, then present its operators.

Nested tuples data model for XML. The data model extends

the W3C’s XPath/XQuery data model with nested tuples to

facilitate describing algebraic operations.

Formally, a tuple t is a list of variable-value pairs:

(($V 1, v1), ($V 2, v2), . . . , ($V k, vk))
where the variable names $V i are all distinct, and each value

vi is either (i) an item, which can be an XML node, atomic

value or ⊥, or (ii) a homogeneous collection of tuples (see

below).
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e1 $pc:*

site

people

$p: person

$i: @id $n: name

n: $t

e2 $cc:*

$c: closed auction

buyer

$b: @person

seller

$s: @person

$a: itemref

n: $u

constrL

nojoin l
$i=$b∨$i=$s

nave1 nave2

scan(‘people’) scan(‘closed auctions’)

S1:=($pc)

S2:=($pc, $p, $i, $t{$n})

S3:=($cc)

S4:=($cc, $c, $b, $s, $u{$a})

S5:=($pc, $p, $i, $t{$n},

$r{$cc, $c, $b, $s, $u{$a}})

Fig. 5. Sample logical plan for the query in Example 1.

Three flavours of collections are considered, namely: lists,

bags and sets, denoted as (t1, t2, . . . , tn), {{t1, t2, . . . , tn}},

and {t1, t2, . . . , tn}, respectively.

Tuple schemas are needed for our discussion. The schema

S of a tuple t is a set of pairs {($V 1, S1), . . . , ($V n, Sn)}
where each Si is the schema of the value of the variable $V i.

We use val to denote the type of (any) atomic value, and

node to denote an XML node type. Further, a collection of

values has the schema C{S} where C is list, bag, or set,

depending on the kind of collection, and S is the schema of

all values in the collection i.e., only homogeneous collections

are considered.

The concatenation of two tuples t1 and t2 is denoted by

t1+t2.

Algebraic representation of XQuery. In the following, we

introduce the translation process and the main operators by

example. A methodology for translating our XQuery dialect

into the algebra we consider was described in [6], and de-

tailed through examples in [30]. The complete list of algebra

operators and their semantics can be found in Appendix B.

Example 1 (continuation). The algebraic plan corresponding

to the XQuery introduced in Section 2 is shown in Figure 5.

For simplicity, we omit the variable types in the operators

schema and only show the variable names. We discuss the

operators starting from the leaves.

The XML scan operators take as input the ‘people’ (respec-

tively ‘closed auctions’) XML forests and create a tuple out of

each tree in them. XML scan is one of the border operators.

XPath and XQuery may perform navigation, which, in

a nutshell, binds variables to the result of path traversals.

Navigation is commonly represented through tree patterns,

whose nodes carry the labels appearing in the paths, and

where some target nodes are also annotated with names of

variables to be bound, e.g., $pc, $i etc. The algebra we

consider allows to consolidate as many navigation operations

from the same query as possible within a single navigation

tree pattern, and in particular navigation performed outside

of the for clauses [6], [20], [33]. Large navigation patterns

lead to more efficient query execution, since patterns can be

matched very efficiently against XML documents; for instance,

if the pattern only uses child and descendant edges, it can be

matched in a single pass over the input [16]. In the spirit of

generalized tree patterns [17], annotated tree patterns [37],

or XML access modules [5], we assume a navigation (nav )

operator parameterized by an extended tree pattern (ETP)

supporting multiple returning nodes, child and descendant

axis, and nested and optional edges.

Consider the ETP e1 in Figure 5. The node labeled $n:name

is (i) optional and (ii) nested with respect to its parent node

$p:person, since by XQuery semantics: (i) if a given $p lacks

a name, it will still contribute to the query result; (ii) if a

given $p has several names, let binds them all into a single

node collection. The operator nave1 concatenates each tuple

successively with all @id attributes (variable $i) and name

elements (variable $n) resulting from the embeddings of e1
in the value bound to $pc. Observe that variable $n is nested

into variable $t, which did not appear in the original query;

in fact, $t is created by the XQuery to algebra translation

to hold the nested collection with values bound to $n. The

operator nave2 is generated in a similar fashion. Therefore, in

the previous query, ETPs e1 and e2 correspond to the following

fragment:

for $p in $pc/site/people/person, $i in $p/@id

let $n := $p/name

let $r :=

for $c in $cc//closed_auction,

$b in $c/buyer/@person,

$s in $c/seller/@person

let $a := $c/itemref

Above the nav operators in Figure 5, we find a nested join

(nojoin l
ρ) on a disjunctive predicate ρ, which selects those

people that appear as buyers or sellers in an auction.

Finally, the XML construction (constrL) is the border

operator responsible for transforming a collection of tuples

to XML forests [23], [43]. The information on how to build

the XML forest is specified by a list L of construction tree

patterns (CTPs in short), attached to the constr operator. For

each tuple in its input, constrL builds one XML tree for each

CTP in L [31]. In our example, L contains a single CTP that

generates for each tuple an XML tree consisting of elements

of the form <res>{$n,$r}</res>. We omit further details

here; the interested reader may find them in Appendix B. ⋄

Full operator set. We briefly comment below on the rest of

operators that are handled by our translation.

The rest of unary operators are very close to their known

counterparts in nested relational algebra. These are flatten

(flatp) which unnests tuples, selection (selρ) based on a predi-

cate ρ, projection (proj V ), aggregation (aggp,a,$r) computing

the usual aggregates over (nested) records, and value-based

duplicate elimination (dupelimV ). One operator that is slightly

different is group-by (grpGid ,Gv,$r). In order to conform to

XML semantics, the operator may group by identity based

on the variables in Gid , and/or by value on the variables in

Gv [20], [31].

Binary operators include the usual cartesian product (prod ),

join (joinρ), outer join (ojoin l
ρ) and nested outer join

(nojoin l
ρ).
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vi → ri i = 1 . . . n

(($V 1, v1), . . . ($V n, vn))→ r1+ . . .+rn
(TUPLE)

v ::node

v → (id(v), v)
(XMLNODE)

v ::val

v → (v)
(ATOMICVALUE)

v :: C{S} v ≡ [t1, t2, . . . , tm]
ti → ri i = 1 . . .m

v → ( (r1, . . . , rm) )
(COLLVALUE)

Fig. 6. Data model translation rules.

5 XML ALGEBRA TO PACT

Within the global approach depicted in Figure 4, this section

describes our contribution: translating (i) from the Extended

XQuery Data Model (or EXDM, in short) into the PACT Data

Model (Section 5.1) and (ii) from algebraic expressions into

PACT plans (Section 5.2). The most complex technical issues

are raised by the latter.

XQuery algebraic plans are translated into PACT plans

recursively, operator by operator; for each XQuery operator,

the translation outputs one or several PACT operators for

which we need to choose (i) the parallelization contract

(and possibly its corresponding key fields), and (ii) the user

function, which together determine the PACT behavior. The

hardest to translate are those algebraic operators whose input

cannot be fragmented based on conjunctive key equalities

(e.g., disjunctive joins) . This is because all massively parallel

operators in PACT are based on key equality comparisons [8].

Translation rules. As in [39], we use deduction rules to

specify our translation. In a nutshell, a deduction rule describes

how the translation is performed when some conditions are

met over the input. Our rules rely on translation judgments,

noted as J, Ji, and are of the form:

cond J1 . . . Jn
J

stating that the translation J (conclusion) is recursively made

in terms of translations J1 . . . Jn (premises) when the

(optional) condition cond holds. The translation judgments Ji
are optional; their absence denotes that the rule handles the

“fixpoint” (start of the recursive translation).

5.1 Translating XML tuples into PACT records

Rules for translating instances of EXDM into those of PACT

rely on translation judgments of the form t → r , or: “the

EXDM instance t translates into the PACT record r”.

The translation rules appear in Figure 6, where + denotes

record concatenation. Rules produce records whose key fields

are not set yet; as we will see in Section 5.2, the keys are

filled in by the translation.

Rule (TUPLE) produces a record from a tuple: it translates

each tuple value, and then builds the output record r by

concatenating the results according to tuple order.

There are three rules that can be triggered by rule (TUPLE).

First, rule (XMLNODE) translates an XML node into a record

TABLE 1
Auxiliary functions details.

Signature Description

S;V 7→id F

Given the variable paths V bound to XML
nodes according to S, returns the index
path positions F in S-records correspond-
ing to the XML node IDs.

S;V 7→v F

Given a list of variable paths V bound to
XML nodes, atomic values or collections,
according to S, returns the index path
positions F of the values of those variables
in S-records.

S;V 7→id,v F “Union” of the two previous functions.

S;L 7→ L′
Given a list of CTPs L, returns the CTPs
L′ where variables are replaced with cor-
responding fields in S-records.

S; e 7→ e′
Given an ETP e whose root is a variable
in S, builds a new ETP e′ rooted with the
corresponding field position in S-records.

S; ρ 7→ ρ′ As above (replace ETPs with predicates).

S1, S2; ρ 7→ ρ′

Given a predicate ρ referencing variables
in tuples in S1 and S2, generates a new
predicate ρ′ referencing field positions in
S1- and S2-records.

with two fields: the first one contains the XML ID, while

the second is the text serialization of the XML tree rooted at

the node. In turn, rule (ATOMICVALUE) translates an XML

value. Finally, rule (COLLVALUE) translates a tuple collection

into a single-field record that contains the nested collection of

records corresponding to the tuples in the input.

5.2 Translating algebraic expressions to PACT

Rules for translating an algebraic expression into a PACT

plan are based on judgments of the form A ⇒ P , or:

“A translates into a PACT plan P”. All rules are defined

recursively over the structure of their input A; for instance,

the translation of A = selρ(A
′) relies on the PACT plan P ′

resulting from the translation of the smaller expression A′,

and so on.

The specific behavior of each rule is encoded in the choice

of the parallelization contracts (and corresponding keys) and

the user functions, so this is what we comment on below.

Preliminaries. In the translation, we denote a PACT operator

by its parallelization contract c, user function f and the list

K of key field positions in the PACT input. In particular:

• a unary PACT is of the form cK
f ; if K=∅, for simplicity

we omit it and use just cf .

• a binary PACT is of the form c
K1,K2

f , assuming that the

key of the left input records consists of the fields K1 and

that of the right input records of K2, respectively.

To keep track of attribute position through the translation,

we use a set of helper functions associating to variables

from S, the index positions of the corresponding fields in

the PACT records. These functions are outlined in Table 1;

we use the term S-records as a shortcut for records obtained

by translating tuples that conform to schema S. The helper

functions implementation details are quite straightforward.
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A ⇒ P
SA;L 7→ L

′

constrL(A)⇒ xmlwriteL′(P)
(CONSTRUCTION)

scan(f)⇒ xmlscan(f)
(SCAN)

Fig. 7. Border operators translation rules.

A ⇒ P
SA; e 7→ e

′
f := nav(e′)

nave(A)⇒ mpf (P)
(NAVIGATION)

A ⇒ P
SA;Gid 7→id G

′
id SA;Gv 7→v G

′
v

K := G
′
id +G

′
v f := grp(K)

grpGid ,Gv,$r
(A)⇒ rd

K
f (P)

(GROUP-BY)

A ⇒ P
SA; p 7→v pi f := flat(pi)

flatp(A)⇒ mpf (P)
(FLATTEN)

A ⇒ P
SA; ρ 7→ ρ

′
f := sel(ρ′)

selρ(A)⇒ mpf (P)
(SELECTION)

A ⇒ P
SA;V 7→id,v V

′
f := proj (V ′)

projV (A)⇒ mpf (P)
(PROJECTION)

A ⇒ P
SA; p 7→v pi

if p.length 6= 1
then f := aggn(pi , a) U := mpf

else K := ∅ f := agg(pi , a) U := rd
K
f

aggp,a,$r(A)⇒ U(P)
(AGGREGATION)

A ⇒ P
SA;V 7→v K f := dupelim

dupelimV (A)⇒ rd
K
f (P)

(DUPLELIM)

Fig. 8. Unary operators translation rules.

5.2.1 Border operators translation

Figure 7 outlines the translation of border operators.

Rule (CONSTRUCTION) translates the logical constrL op-

erator into a data sink that uses our output function xmlwrite.

For each input record from P , xmlwrite generates XML

content using the list of construction patterns in L′ and writes

the results to a file.

Rule (SCAN) translates the logical operator scanf into a

data source built up by means of our input function xmlscan .

For each XML document in f , xmlscan returns a single-field

record holding the content of the document.

5.2.2 Unary operators translation

Unary operators are translated by the rules in Figure 8.

Rule (NAVIGATION) uses an auxiliary judgment that trans-

lates the input ETP e into e′ using SA. Navigation is applied

over each record independently, and thus we use a PACT with

a Map contract. The UF is nav , which generates new records

a) constrL

grp∅,{$o},$s

nave

scan(‘people’)

S3:=($o, $s{$pc, $p, $r{$n}})

S2:=($pc, $p, $o, $r{$n})

S1:=($pc)

e $pc:*

people

$p: person

watches

watch

$o: @open auction

$n: name

n: $r

b)

xmlscan(‘people’) mpnav(e′) rdgrp(K) xmlwriteL′

K:=(#6)

Fig. 9. Logical expression (a) and corresponding PACT
plan (b) for the query in Example 2.

from the (possibly partial) embeddings of e′ in each input

record.

Rule (GROUP-BY) translates a group-by expression into

a PACT with a Reduce contract, as the records need to be

partitioned by the value of their grouping fields. The fields

in K, which form the key used by the Reduce contract, are

obtained appending G′
v to G′

id . K is also handed to the grp

UF, which creates one record from each input collection of

records. The new record contains the values for each field in

K, and a new field which is the collection of the input records

themselves.

Example 2. The following XQuery groups together the peo-

ple that share interest in the same auctions:

let $pc := collection( ‘ people ’)
for $p in $pc//people/person,

$o in $p/watches/watch/@open_auction

let $n := $p/name

group by $o

return <res><a>{$o}</a>{$n}</res>

The XML algebraic expression generated from this query

is shown in Figure 9a. Using the judgments in Figure 8, the

expression is translated into the PACT plan of Figure 9b.

Observe that the grouping variable $o is translated into field

position #6, used as key for the Reduce PACT. ⋄

Rule (FLATTEN) translates a flatten expression into a Map

PACT, that applies the flattening UF flat on each input record

independently. The path pi to the nested collection is obtained

from p using SA.

Rule (SELECTION) produces a Map PACT that applies the

selection to each record produced by P . Selection is performed

by the sel UF, which uses the filtering condition ρ′ obtained

from ρ and SA.

Rule (PROJECTION) translates a projection expression into

a PACT using a Map contract. The positions V ′ of the fields

that should be kept by the projection are obtained from V

using the schema SA.

The translation of (AGGREGATION) is interesting as it can

use one PACT or another, depending on the path p to the

variable being aggregated. If the variable is contained in a

nested collection, i.e., p.length 6= 1, we produce a PACT with

a Map contract; for each input record, the aggn UF executes

the aggregation operation a over the field pointed by pi and

outputs a record with the aggregation results.
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A1 ⇒ P1 A2 ⇒ P2

f := concat

prod(A1,A2)⇒ crf (P1,P2)
(CARTESIANPRODUCT)

A1 ⇒ P1 A2 ⇒ P2

SA1
, SA2

; ρ 7→ ρ
′

ρ
′
⇀l K1 ρ

′
⇀r K2 f := concat

joinρ(A1,A2)⇒ mt
K1,K2

f (P1,P2)
(∧ JOIN=)

A1 ⇒ P1 A2 ⇒ P2

SA1
, SA2

; ρ 7→ ρ
′

ρ
′
⇀l K1 ρ

′
⇀r K2 f := oconcat l

ojoin
l
ρ(A1,A2)⇒ cg

K1,K2

f (P1,P2)
(LO ∧ JOIN=)

A1 ⇒ P1 A2 ⇒ P2

SA1
, SA2

; ρ 7→ ρ
′

ρ
′
⇀l K1 ρ

′
⇀r K2 f := noconcat l

nojoin
l
ρ(A1,A2)⇒ cg

K1,K2

f (P1,P2)
(NLO ∧ JOIN=)

Fig. 10. Cartesian product and conjunctive equi-join
translation rules.

Otherwise, if the aggregation is executed on the complete

input collection, we use a Reduce contract wrapping the input

in a single group. The agg UF creates an output record having

(i) a field with a nested collection of all input records and (ii) a

field with the result of executing the aggregation a over the

field pointed by pi .

Finally, rule (DUPLELIM) translates a duplicate elimination

expression into a PACT with a Reduce contract. Each group

handed to the UF holds the bag of records containing the same

values in the fields pointed by K; the duplicate elimination UF,

denoted by dupelim , outputs only one record from the group.

5.2.3 Binary operators translation

The rules are depicted in Figure 10; we assume that the inputs

A1 and A2 of the algebraic binary operator translate into the

PACT plans P1 and P2.

a) Cartesian product. This operator requires the simple

concatenation UF, taking as input a pair of records, and

outputting their concatenation: concat(r1, r2) = r1+r2.

Rule (CARTESIANPRODUCT) translates a cartesian product

into a Cross PACT with a concat UF.

b) Joins with conjunctive equality predicates. This family

comprises joins on equality predicates, which can be simple

(natural) equi-joins, or outer joins (without loss of generality

we focus on left outer joins).

b.1) Conjunctive equi-join. The conjunctive equi-join oper-

ator is translated by rule (∧ JOIN=), as follows. First, the

predicate ρ over A1 and A2 translates into a predicate ρ′

over records produced by P1 and P2. Then, the list of fields

pointed by the left (⇀l), resp. right (⇀r) of the condition

ρ′ are extracted, and finally they are used as the keys of the

generated Match PACT.

b.2) Left outer conjunctive equi-join. In the rule (LO

∧ JOIN=), the output PACT is a CoGroup whose keys are

taken from the fields of the translated join predicate ρ′. The

CoGroup contract groups the records produced by P1 and P2

a)
e1 $pc:*

site

people

$p: person

$i: @id $n: name

n: $t

e2 $cc:*

$c: closed auction

buyer

$b: @person

$a: itemref
n: $u

constrL

nojoin l
$i=$b

nave1 nave2

scan(‘people’) scan(‘closed auctions’)

S1:=($pc)

S2:=($pc, $p, $i, $t{$n})

S3:=($cc)

S4:=($cc, $c, $b, $u{$a})

S5:=($pc, $p, $i, $t{$n}, $r{$cc, $c, $b, $u{$a}})

b) xmlwriteL′

cgnoconcatl

mpnav(e′
1
) mpnav(e′

2
)

xmlscan(‘people’) xmlscan(‘closed auctions’)

K1:=(#6) K2:=(#6)

Fig. 11. Logical expression (a) and corresponding PACT
plan (b) for the query in Example 3.

sharing the same key. Then, the oconcat l UF that we describe

next is applied over each group, to produce the expected result.

Definition 1 (oconcat l): The left outer concatenation UF,

oconcat l, of two record bags {{r1, . . . , rx}} and {{r′1, . . . , r
′
y}}

is defined as:

• If y 6= 0, the cartesian product of the two bags.

• Otherwise, {{r1+ ⊥′, . . . , rx+ ⊥′}} i.e., concatenate

each left input record with a ⊥-record having the schema

(structure) of the right records. ⋄

b.3) Nested left outer conjunctive equi-join. Similar to the

non-nested case, rule (NLO ∧ JOIN=) translates the nested

left outer conjunctive equi-join into a CoGroup PACT whose

key is extracted from ρ′. However, we need a different UF in

order to generate the desired right-hand side nested records,

and we define it below.

Definition 2 (noconcat l): The nested left outer concate-

nation UF, noconcat l, of the bags {{r1, . . . , rx}} and

{{r′1, . . . , r
′
y}} is defined as:

• If y 6= 0, {{r1+(r′1, . . . , r
′
y), . . . , rx+(r′1, . . . , r

′
y)}} i.e.,

nest the right set as a new field concatenated to each

record from the left.

• Otherwise, {{r1+(⊥′), . . . , rx+(⊥′)}} i.e., add to each

left record a field with a list containing a ⊥-record

conforming to the schema of the right records. ⋄

Example 3. The following XQuery extracts the name of users

and the items that they bought (if any):
let $pc := collection( ‘ people ’),

$cc := collection( ‘ c losed auct ions ’)
for $p in $pc/site/people/person, $i in $p/@id

let $n := $p/name

let $r :=

for $c in $cc//closed_auction,
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A1 ⇒ P1 A2 ⇒ P2

SA1
, SA2

; ρ 7→ ρ
′

ρ
′ ≡ ρ

′
1 ∨ . . . ∨ ρ

′
n

ρ
′
k ⇀l K1k ρ

′
k ⇀r K2k

fk := pnjoin(ρ′, k−1) k = 1 . . . n

U := {mtK11,K21

f1
, . . . , mt

K1n,K2n

fn
}

joinρ(A1,A2)⇒ U(P1,P2)
(∨ JOIN=)

A1 ⇒ P1 A2 ⇒ P2

SA1
, SA2

; ρ 7→ ρ
′

ρ
′ ≡ ρ

′
1 ∨ . . . ∨ ρ

′
n

ρ
′
k ⇀l K1k ρ

′
k ⇀r K2k

fk := nopnjoinl(ρ
′
, k−1) k = 1 . . . n

U := {cgK11,K21

f1
, . . . , cg

K1n,K2n

fn
}

SA1
 K f

′ := opost l∨

ojoin
l
ρ(A1,A2)⇒ rd

K
f ′(U(P1,P2))

(LO ∨ JOIN=)

A1 ⇒ P1 A2 ⇒ P2

SA1
, SA2

; ρ 7→ ρ
′

ρ
′ ≡ ρ

′
1 ∨ . . . ∨ ρ

′
n

ρ
′
k ⇀l K1k ρ

′
k ⇀r K2k

fk := nopnjoinl(ρ
′
, k−1) k = 1 . . . n

U := {cgK11,K21

f1
, . . . , cg

K1n,K2n

fn
}

SA1
 K f

′ := nopost l∨

nojoin
l
ρ(A1,A2)⇒ rd

K
f ′(U(P1,P2))

(NLO ∨ JOIN=)

Fig. 12. Disjunctive equi-join translation rules.

$b in $c/buyer/@person

let $a := $c/itemref

where $i = $b

return $a

return <res>{$n,$r}</res>

The query translates into the algebraic expression depicted

in Figure 11a, while the corresponding PACT plan is shown

in Figure 11b.

Rule (NLO ∧ JOIN=) translates the nested left outer con-

junctive equi-join into a PACT with a CoGroup contract that

groups together all records having the same values in the

fields corresponding to $i (K1) and $b (K2), and applies our

noconcat l UF on them. ⋄

c) Joins with disjunctive equality predicates. Translating

joins with disjunctive equality predicates is harder. The reason

is that PACT contracts are centered around equality of record

fields, and thus inherently not suited to disjunctive semantics.

To solve this mismatch, our translation relies on using more

than one PACT for each operator, as we explain below.

c.1) Disjunctive equi-join. In rule (∨ JOIN=), the predicate

ρ′ is generated from ρ using SA1
and SA2

. Then, for each

conjunctive predicate ρ′k in ρ′, we create a Match whose

keys are the fields participating in ρ′k. Observe that the UFs

of these Match operators should guarantee that no erroneous

duplicates are generated when the evaluation of more than

one conjunctive predicates ρ′i, ρ
′
j , i 6= j is true for a certain

record. To that purpose, we define the new UF pnjoin below,

parameterized by k and performing a partial negative join.

Definition 3 (pnjoin): Let ρ′ = ρ′1 ∨ ρ′2 ∨ . . . ∨ ρ′n and k

be an integer, with 0 ≤ k < n. Given two records r1, r2, the

pnjoin(ρ′, k) UF evaluates ρ′1 ∨ ρ′2 ∨ . . .∨ ρ′k over r1, r2, and

outputs r1+r2 if they evaluate to false. ⋄

Note that the UF ensures correct multiplicity of each record

in the result.

a)
e1 $pc:*

site

people

$p: person

$i: @id $n: name

n: $r

e2 $cc:*

$c: closed auction

buyer

$b: @person

seller

$s: @person

constrL

join$i=$b∨$i=$s

nave1 nave2

scan(‘people’) scan(‘closed auctions’)

S1:=($pc)

S2:=($pc, $p, $i, $r{$n})

S3:=($cc)

S4:=($cc, $c, $b, $s)

S5:=($pc, $p, $i, $r{$n}, $cc, $c, $b, $s)

b)
K1 := (#6)
K2 := (#6)
K′

1 := (#6)
K′

2 := (#8)
ρ′ := (#6=#6)∨

(#6=#8)

xmlwriteL′

mtpnjoin(ρ′,0) mtpnjoin(ρ′,1)

mpnav(e′
1
) mpnav(e′

2
)

xmlscan(‘people’) xmlscan(‘closed auctions’)

K1

K′

1K2

K′

2

Fig. 13. Logical expression (a) and corresponding PACT
plan (b) for the query in Example 4.

Example 4. The following XQuery extracts the names of

users involved in at least one auction, either as buyers or

sellers:

let $pc := collection( ‘ people ’),
$cc := collection( ‘ c losed auct ions ’)

for $p in $pc/site/people/person, $i in $p/@id,

$c in $cc//closed_auction,

$b in $c/buyer/@person,

$s in $c/seller/@person

let $n := $p/name

where $i = $b or $i = $s

return <res>{$n}</res>

Rule (∨ JOIN=) translates the disjunctive equi-join into two

PACTs with Match contracts, one per disjunction. Observe that

two distinct values (0 and 1) of k are used in the pnjoin UFs

to prevent spurious duplicates, one for the predicate $i=$b

and one for $i=$s. ⋄

c.2) (Nested) left outer disjunctive equi-join. The translation

of the plain and nested variants of the outer disjunctive equi-

join, described by the (LO ∨ JOIN=) and (NLO ∨ JOIN=)

rules respectively, are very similar; as illustrated next, the main

difference resides in the different post-processing operations

they adopt. The translation of these two operators is chal-

lenging because we want to ensure parallel evaluation of each

conjunctive join predicate in the disjunction, and at the same

time we need to:

1) Avoid the generation of duplicate records. We adopt a

non trivial variation of the technique used previously for

disjunctive equi-join.

2) Recognise records generated by the left hand-side ex-

pression which do not join any record coming from

the right-hand side expression. We use the XML node

identifiers in each left hand-side record to identify it

uniquely, so that, after the parallel evaluation of each
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conjunction, a Reduce post-processing PACT groups all

resulting combinations having the same left hand-side

record; if none of such combinations exists, the left

hand-side record representing a group is concatenated

to a (nested) ⊥-record conforming to the right input

schema, and the resulting record is output; otherwise the

output record(s) are generated from the combinations.

In the first step, we must evaluate in parallel the joins related

to predicates ρ′i. A PACT with a CoGroup contract is built

for each conjunctive predicate ρ′k. Each such PACT groups

together all records that share the same value in the fields

pointed by ρ′k, then applies the nopnjoin l UF (see below) on

each group, with the goal of avoiding erroneous duplicates in

the result; the UF is more complex than pnjoin though, as

it has to handle the disjunction and the nesting. nopnjoin l is

parameterized by k, as we will use it once for each conjunction

ρ′k. Furthermore, nopnjoin l takes as input two bags of records

and is defined as follows, along the lines of pnjoin .

Definition 4 (nopnjoin l): Let ρ′ = ρ′1 ∨ ρ′2 ∨ . . . ∨ ρ′n be a

predicate where each ρ′i is conjunctive. Given two input bags

{{r1, . . . , rx}} and {{r′1, . . . , r
′
y}}, the nopnjoin l(ρ

′, k) UF is

defined as follows:

• If the second input is empty (y = 0), return {{r1+(⊥′

), . . . , rx+(⊥′)}} i.e., concatenate every left input record

with a field containing a nested list of one ⊥-record

conforming to the schema of the right input.

• Otherwise, for each left input record ri:

1) create an empty list ci;

2) for each r′j,1≤j≤y , evaluate ρ′1 ∨ ρ′2 ∨ . . . ∨ ρ′k over

ri and r′j , and add r′j to ci if the result is false;

3) if ci is empty, then insert into ci a ⊥-record with

the schema of the right input;

4) output ri concatenated with a new field whose value

is ci. ⋄

The second PACT produced by the (LO ∨ JOIN=) and

(NLO ∨ JOIN=) rules uses a Reduce contract, taking as input

the outputs of all the CoGroup operators; its key consists of

the XML node identifiers in each left hand-side record (we

denote by  the extraction of these fields from the schema).

This amounts to grouping together the records originated from

the same left input record.

Depending on the join flavor though, this last PACT uses a

different UF. For the plain (non-nested) join (LO ∨ JOIN=),

we use the opost l∨ UF producing records with an unnested

right side. For the nested join (NLO ∨ JOIN=), on the other

hand, the nopost l∨ UF is used to produce nested records. Due

to space constraints, we omit the definition of these UFs here

and delegate their details to Appendix C.

Example 1 (continuation). Our algorithms translate the al-

gebraic expression shown in Figure 5 into the PACT plan

depicted in Figure 14; observe that it is the same PACT plan

that was shown in less detail in Figure 1.

Rule (NLO ∨ JOIN=) translates the nested left outer dis-

junctive equi-join into (i) two PACTs with CoGroup contracts,

one for each disjunction, and (ii) a PACT with a Reduce

contract that groups together records originating from the same

K1 := (#6)
K2 := (#6)
K′

1 := (#6)
K′

2 := (#8)
ρ′ := #6=#6∨

#6=#8
K3 := (#1,#3,#5)

xmlwriteL′

rdnopost
l∨

cgnopnjoin
l
(ρ′,0) cgnopnjoin

l
(ρ′,1)

mpnav(e′
1
) mpnav(e′

2
)

xmlscan(‘people’) xmlscan(‘closed auctions’)

K1

K′

1
K2

K′

2

K3 K3

Fig. 14. PACT plan corresponding to the logical expres-
sion in Figure 5.

left-hand side record, i.e., K3 holds field positions #1,#3,#5,

which contain the XML node identifiers of $pc, $p, $i, respec-

tively. ⋄

d) Joins on inequalities. Our XQuery subset also supports

joins with inequality conditions. In this case, the translation

uses Cross contracts. Further, just like for joins with disjunc-

tive predicates, the non-nested and nested outer variants of

the joins on inequalities require more than one PACT. The

corresponding translation rules can be found in Appendix D.

Syntactically complex translation vs. performance Clearly,

complex joins such as those considered in c) could be trans-

lated into a single Cross PACT over the pairs of records as

in d). However, this would be less efficient and scale poorly

(number of comparisons quadratic in the input size), as our

experiments will demonstrate.

6 EXPERIMENTAL EVALUATION

We implemented our PAXQuery translation approach in Java

1.6, and relied on the Stratosphere platform [44] supporting

PACT. We first describe the experimental setup, and then

present our results.

Experimental setup. The experiments run in a cluster of 8

nodes on an 1GB Ethernet. Each node has 2 × 2.93GHz Quad

Core Xeon CPUs, 16GB RAM and two 600GB SATA hard

disks and runs Linux CentOS 6.4. PAXQuery is built on top

of Stratosphere 0.2.1; it stores the XML data in HDFS 1.1.2.

XML data. We used XMark [42] data; to study queries joining

several documents, we used the split option of the XMark

generator to create four collections of XML documents, each

containing a specific type of XMark subtrees: users (10% of

the dataset size), items (50%), open auctions (25%) and closed

auctions (15%). We used datasets of up to 272GB as detailed

below.

All documents are simply stored in HDFS (which replicates

them three times), that is, we do not control the distribution/al-

location of documents over the nodes.

XML queries. We used a subset of XMark queries from our

XQuery fragment, and added queries with features supported

by our dialect but absent from the original XMark, e.g.,

joins on disjunctive predicates; all queries are detailed in

Appendix E.

Table 2 outlines the queries: the collection(s) that each query

carries over, the corresponding XML algebraic operators and
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TABLE 2
Query details.

Query Collections Algebra operators (#)
Parallelization
contracts (#)

q1 users Navigation (1) Map (1)

q2 items Navigation (1) Map (1)

q3 items Navigation (1) Map (1)

q4 closed auct. Navigation (1) Map (1)

q5 closed auct. Navigation (1) Map (1)

q6 users Navigation (1) Map (1)

q7 closed auct. Navigation (1) Map (2)
Aggregation (2) Reduce (1)

q8 items Navigation (1) Map (2)
Aggregation (2) Reduce (1)

q9 users Navigation (2) Map (3)
closed auct. Projection (1) Reduce (1)

Group-by/aggregation (1) Match (1)
Conj. equi-join (1)

q10 users Navigation (3) Map (5)
items Projection (2) CoGroup (2)
closed auct. NLO conj. equi-join (2)

q11 users Navigation (2) Map (3)
Projection (1) Reduce (1)
Dup. elim. (1) CoGroup (1)
NLO conj. equi-join (1)

q12 users Navigation (2) Map (3)
closed auct. Projection (1) CoGroup (1)

NLO conj. equi-join/
aggregation (1)

q13 users Navigation (2) Map (3)
closed auct. Projection (1) Reduce (2)

NLO disj. equi-join (1) CoGroup (2)

q14 users Navigation (2) Map (3)
open auct. Projection (1) Reduce (2)

NLO inequi-join (1) Cross (1)
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Fig. 15. PAXQuery scalability evaluation.

their numbers of occurrences, and the parallelization contracts

used in the plan generated by our translation framework.

Queries q9-q14 all involve value joins, which carry over thou-

sands of documents arbitrarily distributed across the HDFS

nodes.

6.1 PAXQuery scalability

Our first goal is to check that PAXQuery brings to XQuery

evaluation the desired benefits of implicit parallelism. For this,

we fixed a set of queries, generated 11.000 documents (34GB)

per node, and varied the number of nodes from 1 to 2, 4, 8

respectively; the total dataset size increases accordingly in a

linear fashion, up to 272GB.

Figure 15 shows the response times for each query. Queries

TABLE 3
Query evaluation time (1 node, 34GB).

Query
Evaluation time (seconds)

BaseX Saxon-PE Qizx/open PAXQuery

q1 206 145 90 72

q2 629 OOM OOM 125

q3 600 OOM OOM 120

q4 189 OOM 84 51

q5 183 125 183 51

q6 233 162 109 70

q7 181 111 88 54

q8 599 OOM OOM 126

q9 TO OOM OOM 94

q10 OOM OOM OOM 229

q11 TO TO TO 236

q12 TO OOM OOM 113

q13 TO OOM OOM 424

q14 OOM OOM OOM 331

q1-q6 navigate in the input document according to a given

navigation pattern of 5 to 14 nodes; each translates into a Map

PACT, thus their response time follows the size of the input.

These queries scale up well; we see a moderate overhead in

Figure 15 as the data volume and number of nodes increases.

Queries q7 and q8 apply an aggregation over all the records

generated by a navigation. For both queries, the navigation

generates nested records and the aggregation consists on two

steps. The first step goes over the nested fields in each input

record, and thus it uses a Map contract. The second step is

executed over the results of the first. Therefore, a Reduce

contract that groups together all records coming from the

previous operator is used. Since the running time is dominated

by the Map PACTs which parallelize very well, q7 and q8 also

scale up well.

Queries q9-q12 involve conjunctive equi-joins over the col-

lections. Query q13 executes a NLO disjunctive equi-join,

while q14 applies a NLO inequi-join. We notice a very good

scaleup for q9-q13, whose joins are translated in many PACTs

(recall the rules in Figure 12). In contrast, q14, which translates

into a Cross PACT, scales noticeably less well. This validates

the interest of translating disjunctive equi-joins into many

PACTs (as our rules do), rather than into a single Cross, since,

despite parallelization, it fundamentally does not scale.

6.2 Comparison against other processors

To evaluate the performance of our processor against existing

alternatives, we started by comparing it on a single node with

other popular centralized XQuery processors. The purpose

is to validate our choice of an XML algebra as outlined

in Section 4.2 as input to our translation, by demonstrating

that single-site query evaluation based on such an algebra

is efficient. For this, we compare our processor with BaseX

7.7 [7], Saxon-PE 9.4 [41] and Qizx/open 4.1 [38], on a dataset

of 11000 XML documents (34GB).

Table 3 shows the response times for each query and

processor; the shortest time is shown in bold, while OOM

stands for out of memory, and TO for timeout (above 2 hours).

In Table 3, we identify two query groups. First, q1-q8 do not

feature joins; while the performance varies across systems,



12

TABLE 4
Query evaluation time (8 nodes, 272GB).

Query
Evaluation time (seconds)

BaseX BaseX
PAXQuery

Hadoop-MR Stratosphere-PACT

q1 465 66 70
q2 773 282 189

q3 762 243 172

q4 244 72 58

q5 237 72 57

q6 488 70 73
q7 245 74 62

q8 576 237 206

q9 OOM OOM 114

q10 OOM OOM 299

q11 OOM OOM 334

q12 OOM OOM 132

q13 OOM OOM 456

q14 OOM OOM 683

only BaseX and PAXQuery are able to run all these queries.

PAXQuery outperforms other systems because, compiled in

PACT, it is able to exploit the multicore architecture.

In the second group, queries q9-q14 join across the docu-

ments. None of the competing XQuery processors completes

their evaluation, while PAXQuery executes them quite fast. For

these, the usage of outer joins and multicore parallelization are

key to this good performance behavior.

We next compare our system with other alternatives for

implicitly parallel evaluation of XQuery. As explained in the

Introduction, no comparable system is available yet. Therefore,

for our comparison, we picked the BaseX centralized system

(the best performing in the experiment above) and used

Hadoop-MapReduce on one hand, and Stratosphere-PACT on

the other hand, to parallelize its execution.

We compare PAXQuery, relying on the XML algebra-to-

PACT translation we described, with the following alternative

architecture. We deployed BaseX on each node, and paral-

lelized XQuery execution as follows:

1) Manually decompose each query into a set of leaf sub-

queries performing just tree pattern navigation, followed

by a recomposition subquery which applies (possibly

nested, outer) joins over the results of the leaf sub-

queries;

2) Parallelize the evaluation of the leaf subqueries through

one Map over all the documents, followed by one

Reduce to union all the results. Moreover, if the recom-

position query is not empty, start a new MapReduce

job running the recomposition XQuery query over all

the results thus obtained, in order to compute complete

query results.

This alternative architecture is in-between ChuQL [27],

where the query writer explicitly controls the choice of Map

and Reduce keys, i.e., MapReduce is visible at the query

level, and PAXQuery where parallelism is completely hidden.

In this architecture, q1-q8 translate to one Map and one

Reduce, whereas q9-q14 feature joins which translates into a

recomposition query and thus a second job.

Table 4 shows the response times when running the query

on the 8 nodes and 272GB; the shortest time is in bold. First,

we notice that BaseX runs 2 to 5 times faster on Stratosphere

than on Hadoop. This is due to Hadoop’s checkpoints (writing

intermediary results to disk) while Stratosphere currently does

not, trading reliability for speed. For queries without joins

(q1-q8), PAXQuery is faster for most queries than BaseX on

Hadoop or Stratosphere; this simply points out that our in-

house tree pattern matching operator (physical implementation

of nav) is more efficient than the one of BaseX. Queries with

joins (q9-q14) fail in the competitor architecture again. The

reason is that intermediary join results grow too large and this

leads to an out-of-memory error. PAXQuery evaluates such

queries well, based on its massively parallel (outer) joins.

6.3 Conclusions of the experiments

Our experiments demonstrate the efficiency of an XQuery

processor built on top of PACT.

First, our scalability evaluation has shown that the trans-

lation to PACT allows PAXQuery to parallelize every query

execution step with no effort required to partition, redistribute

data etc., and thus to scale out with the number of machines

in a cluster. The only case where scale-up was not so good

is q14 where we used a Cross (cartesian product) to translate

an inequality join; an orthogonal optimization here would be

to use a smarter dedicated join operator for such predicates,

e.g. [35].

Secondly, we have shown that PAXQuery outperforms com-

petitor XQuery processors, whether centralized or distributed

over Hadoop and Stratosphere. None of the competing proces-

sors was able to evaluate any of our queries with joins across

documents on the data volumes we considered, highlighting

the need for efficient parallel platforms for evaluating such

queries.

7 RELATED WORK

Massively parallel XML query processing. In this area,

MRQL [22] proposes a simple SQL-like XML query language

implemented through a few operators directly compilable into

MapReduce. Like our XQuery fragment, MRQL queries may

be nested, however, its dialect does not allow expressing the

rich join flavours that we use. Further, the XML navigation

supported by MRQL is limited to XPath, in contrast to our

richer navigation based on tree patterns with multiple returning

nodes, and nested and optional edges.

ChuQL [27] is an XQuery extension that exposes the

MapReduce framework to the developer in order to distribute

computations among XQuery engines; this leaves the paral-

lelization work to the programmer, in contrast with our implic-

itly parallel approach which does not expose the underlying

parallelism at the query level.

HadoopXML [18] and the recent [12] process XML queries

in Hadoop clusters by explicitly fragmenting the input data

in a schema-driven, respectively, query-driven way, which

is effective when querying one single huge document. In

contrast, we focus on the frequent situation when no single

document is too large for one node, but there are many

documents whose global size is high, and queries may both
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navigate and join over them. Further, we do not require any

partitioning work from the application level.

After the wide acceptance of Hadoop, other parallel execu-

tion engines and programming abstractions conceived to run

custom data intensive tasks over large data sets have been

proposed: PACT [8], Dryad [25], Hyracks [15] or Spark [48].

Among these, the only effort at parallelizing XQuery is

the ongoing VXQuery project [4], translating XQuery into

the Algebricks algebra, which compiles into parallel plans

executable by Hyracks. In contrast, PAXQuery translates into

an implicit parallel logical model such as PACT. Thus, our

algorithms do not need to address underlying parallelization

issues such as data redistribution between computation steps

etc. which [15] explicitly mentions.

XQuery processing in centralized settings has been thor-

oughly studied, in particular through algebras in [39], [20],

[32], [31]. Our focus is on extending the benefits of implicit

large-scale parallelism to a complex XML algebra, by formal-

izing its translation into the implicitly parallel PACT paradigm.

XML data management has also been studied from many

other angles, e.g., on top of column stores [14], distributed

with [28] or without [1] an explicit fragmentation specification,

in P2P [29] etc. We focus on XQuery evaluation through the

massively parallel PACT framework, which leads to specific

translation difficulties we addressed.

Parallelizable nested languages. Recently, many high-level

languages which translate into massively parallel frameworks

have been proposed; some of them work with nested data

and/or feature nesting in the language, thus somehow resemble

XQuery.

Jaql [11] is a scripting language tailored to JSON data,

which translates into MapReduce programs; Meteor [24], also

for JSON, translates into PACT. None of these languages

handles XQuery semantics exactly, since JSON does not

feature node identity; the languages are also more limited,

e.g., Jaql only supports equi-joins.

The Asterix Query Language [10], or AQL in short, is based

on FLOWR expressions and resembles XQuery, but ignores

node identity which is important in XQuery and which we

support. Like VXQuery, AQL queries are translated into Alge-

bricks; recall that unlike our translation, its compilation to the

underlying Hyracks engine needs to deal with parallelization

related issues.

Finally, other higher level languages that support nested

data models and translate into parallel processing paradigms

include Pig [36] or Hive [45]. Our XQuery fragment is more

expressive, in particular supporting more types of joins. In

addition, Pig only allows two levels of nesting in queries,

which is a limitation. In contrast, we translate XQuery into

unnested algebraic plans with (possibly nested, possibly outer)

joins and grouping which we parallelize, leading to efficient

execution even for (originally) nested queries.

Complex operations using implicit parallel models. The

problem of evaluating complex operations through implicit

parallelism is of independent interest. For instance, the ex-

ecution of join operations using MapReduce has been studied

extensively. Shortly after the first formal proposal to compute

equi-joins on MapReduce [47], other studies extending it [13],

[26] or focusing on the processing of specific join types such as

multi-way joins [2], set-similarity joins [46], or θ-joins [35],

appeared. PAXQuery is the first to translate a large family

of joins (which can be used outside XQuery), into the more

flexible PACT parallel framework.

8 CONCLUSION AND FUTURE WORK

We have presented the PAXQuery approach for the im-

plicit parallelization of XQuery, through the translation of

an XQuery algebraic plan into a PACT parallel plan. We

targeted a rich subset of XQuery 3.0 including recent additions

such as explicit grouping, and demonstrated the efficiency and

scalability of PAXQuery with experiments on collections of

hundreds of GBs.

For future work, we contemplate the integration of indexing

techniques into PAXQuery to improve query evaluation time.

Further, we would like to explore reutilization of intermediary

results in the PACT framework to enable efficient multiple-

query processing.
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Query ::= FLWRExpr
FLWRExpr ::= Initial Middle* Return
Initial ::= For | Let
Middle ::= Initial | Where | GroupBy
For ::= for ForBinding (, ForBinding)*
ForBinding ::= Var in PathExpr
PathExpr ::= (distinct-values)? (collection(Uri) | doc(Uri) |

Var ) Path
Let ::= let LetBinding (, LetBinding)*
LetBinding ::= Var := (FLWRExpr | AggrExpr | PathExpr )
AggrExpr ::= (count | avg | max | min | sum) Var
Where ::= where OrExpr
OrExpr ::= AndExpr (or AndExpr )*
AndExpr ::= BoolExpr (and BoolExpr )*
BoolExpr ::= (not)? (Pred | Contains | Empty )
Pred ::= Var (ValCmp | NodeCmp) (Var | C)
Contains ::= contains (Var, C)
Empty ::= empty (Var )
GroupBy ::= group by Var (, Var )*
Return ::= return (EleConst | (AggrExpr | Var )+)
EleConst ::=<EName Att* (/> | (> (EleConst

| AggrExpr | Var )* </ EName >))
Att ::= AName = ”(AggrExpr | Var | AVal)*”
Var ::= $VarName

Fig. 16. Grammar for the considered XQuery dialect.

APPENDIX A
XQUERY DIALECT

Figure 16 depicts the grammar for our XQuery dialect.

A query is a FLWR expression, which is a powerful abstrac-

tion that can be used for many purposes, including iterating

over sequences, joining multiple documents, and performing

grouping.

The initial clause of the expression is a for or let . The for

clause iterates over the items in the sequence resulting from

its associated expression, binding the variable to each item.

In turn, a let clause binds each variable to the result of its

associated expression, without iteration.

The bindings for for clauses are generated from an ex-

pression PathExp. A path is evaluated starting from the

root of each document in a collection available at URI Uri ,

from the root of a single document available at URI Uri , or

from the bindings of a previously introduced variable. Path

corresponds to the navigational path used to locate nodes

within trees. In particular, Path belongs to the XPath{/,//,[]}

language [34]. In turn, the bindings for let clauses can be

an expression PathExp, another FLWR expression or an

aggregation expression AggrExpr .

The middle clauses (for , let , where, or group by ) may

appear multiple times and in any order. The where clause

supports expressions formed with or and and, in disjunctive

normal form (DNF). We support two different types of elemen-

tary comparators: (ValCmp) compares atomic values, while

(NodeCmp) compares nodes by their identity or by their

document order. The group by clause groups tuples based

on the value of the variables specified in the clause.

Finally, the FLWR expression ends with a return clause.

For each tuple of bindings, the clause builds an XML forest

using an element construction expression EleConst or a list of

variables Var+. When we use the element construction expres-

sion, the value in AVal follow the XML naming convention

for attribute values, while AName and EName follow the

restrictions associated to the XML node naming conventions.

http://www.axyana.com/qizxopen/
http://www.saxonica.com/
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A ::= constrL (Operator )
Operator ::= Scan | UnaryOp | BinaryOp
Scan ::= scan
UnaryOp ::= (Navigation | Group-By | Flatten |

Selection | Projection | Aggregation |
DupElim) Operator

Navigation ::=nave

Selection ::= selρ
Projection ::= projV
Group-By ::= grpGid ,Gv,$r

Flatten ::=flatp
Aggregation ::= aggp,a,$r
DupElim ::= dupelimV

BinaryOp ::= (CartProd | Join | LeftOuterJoin |
NestedLeftOuterJoin) Operator, Opera-
tor

CartProd ::= prod
Join ::= joinρ

LeftOuterJoin ::= ojoinl
ρ

NestedLeftOuterJoin ::=nojoinl
ρ

Fig. 17. XML algebraic plan grammar.

APPENDIX B
XML ALGEBRA OPERATORS

This section provides details about algebraic operators used

by the algebra considered in this work. In the following, we

denote by F the domain of XML forests, and we denote by

T the domain of tuples.

B.1 Border operators

XML Construction (constrL). The input to the operator is

a collection of tuples, and from each tuple an XML forest is

created: constrL : T ∗ → F∗.

The information on how to build the XML forest is specified

by a list L of construction tree patterns (CTPs in short),

attached to the constr operator. For each tuple in its input,

constrL builds one XML tree for each CTP in L [31].

Formally, Construction Tree Patterns are defined as follows.

Definition 5 (Construction Tree Pattern): A Construction

Tree Pattern is a tree c = (V,E) such that each node n ∈ V

is labeled with (i) a valid XML element or attribute name, or

(ii) a variable path p, which is $V 1.p
′ where p′ is in turn a

variable path.

If a node n is labeled with a variable path p, and a

descendant ndesc of n is annotated with a variable path pdesc,

then p is a prefix of pdesc .

Finally, we depict an optional construction subtree in c with

a dashed edge. ⋄

Without loss of generality, we will assume from now on

that in all CTPs, the paths are valid wrt the schema of tuples

in the input to the constr operator.

The semantics of constrL for an input collection of tuples

T and a list of CTPs L is depicted in Algorithm 1. We use an

XML forest f , initially empty, to gather the resulting XML.

XML content is built out of each tuple t ∈ T during a top-

down, left-to right traversal of each CTP c ∈ L; constr is

called recursively following this order (lines 5-12). Observe

that if an intermediary node in c is labeled with a variable path

p, p is followed to extract a nested collection of tuples within

t, which is in turn used as input for the subsequent constr

call (line 7). Thus, we can navigate over the nested collection

Algorithm 1: XML Construction

Input : Collection of tuples T , list of CTPs L
Output: XML forest
f ← ()1

for t ∈ T do2

for c ∈ L do3

r ← c.root ; N ← children(r); fn ← ()4

for n ∈ N do5

if n is not a leaf and n is labeled with a variable6

path p then

T ′ ← collection of tuples obtained by7

following p within t

else8

T ′ ← T9

L′ ← children(n)10

f ′ ← constrL′(T ′)11

append f ′ to fn12

if r is not optional or any variable path pr labeling a leaf13

under r leads to a non-⊥ value within t then
fr ← ()14

if r is labeled with an element (resp. attribute) name15

l then
fr ← new element/attribute labeled l16

else17

if r is a leaf labeled with variable path p then18

fr ← t|p19

if fr is not () then20

add fn as child of fr21

else22

fr ← fn23

append fr to f24

output f ; exit25

of tuples to build the construction results. Afterwards, XML

content for the current node r and its children (if any) is

created and appended to f iff (i) r is not the root of an optional

subtree, or (ii) r is the root of an optional subtree but following

any variable path pr labeling a leaf under r leads to a non-⊥
value within t (lines 13-24).

In Figure 18a, we show four CTPs c1, . . . , c4, while Fig-

ure 18b shows three nested tuples and the four different XML

forests produced out of these three tuples by the operator

constr ci,1≤i≤4. Regardless of the construction pattern used,

there are three trees in the forest, each built from one input

tuple. The root of each tree is a newly created node labeled

person, as dictated by each of the four cis. Further, in each

tree of the forest built for c1, the children of the person node

are deep copies1 of the forests found in the $N attribute,

respectively, in the nested $R.$Z and $R.$C attributes. Since

in the third tuple the latter forests are empty, the third tree

in the forest of c1 only has a copy of n3 as child. Observe

that the same happens for c2, as the subtree rooted at address

is optional and thus it is only built if $R.$Z or $R.$C are

not bound to ⊥. Finally, note that when the CTP c4 is used,

1. Following standard XQuery semantics [40], whenever an input node
needs to be output under a new parent, a deep copy of the input node is
used.
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c1 person

$N $R.$Z $R.$C

c2 person

$N address

$R.$Z $R.$C

c3 person

$N address

$R

$Z $C

c4 person

$N $R

address

$Z $C

(a) Sample CTPs.

$N $R
$Z $C

n1 z1 c1

n2
z21 c21
z22 c22

n3 ⊥ ⊥

c1

c2

c3

c4

person

n1 z1 c1

person

n2 z21 z22 c21 c22

person

n3

person

n1 address

z1 c1

person

n2 address

z21 z22 c21 c22

person

n3

person

n1 address

z1 c1

person

n2 address

z21 c21 z22 c22

person

n3 address

person

n1 address

z1 c1

person

n2 address

z21 c21

address

z22 c22

person

n3 address

(b) Resulting XML forests after applying the CTPs to a collection
of tuples.

Fig. 18. Sample CTPs and corresponding XML construc-
tion results.

the root node in each tree has as children (copies of) the $N
nodes, as well as a newly created address node having the $Z
and $C forests as children.

Scan (scan). The scan operator takes as input an XML forest

and creates a tuple out of each tree in the forest: scan : F →
T ∗. The semantics of the scan operator whose input is an

XML forest f is the following:

scan(f) = {{〈($I, d.root)〉 | d ∈ f}}

B.2 Unary operators

Navigation (nave). The operator is applied on a set of tuples

and is parameterized by an extended tree pattern (ETP) [31].

In the following we introduce ETPs formally.

Definition 6 (Extended Tree Pattern): An Extended Tree

Pattern is a tree e = (V,E) where:

• The root r ∈ V is labeled with a variable $I .

• Each non-root node n ∈ V are labeled with (i) an

element/attribute name and (ii) optionally, a variable $V .

• Each e = (x, y) ∈ E is either a child edge from x to y,

denoted by a single line, or a descendant edge from x to

y, denoted by a double line. Further, optional edges are

depicted with dashed lines, and nested edges are labeled

with n. ⋄

Figure 19a depicts some sample extended tree patterns.

Given an ETP e and an XML tree d, an embedding generates

the tuple that results from binding the root variable of e to

d and mapping the nodes of e to a collection of nodes in d.

The variables of the binding tuples are ordered by the preorder

traversal sequence of e. Note that if e contains optional edges,

a mapping may be partial: nodes connected to the pattern by

e1 $I:*

person

$N:name $C:city

n: $R

e2 $I:*

person

$N: name address

$Z: zip

n: $R

e3 $I:*

person

$N: name address

$S: street

e4 $I:*

person

$N:name address

$Z:zip $C:city

n: $R

(a) Sample ETPs.

$I

root

e1 e2 e3 e4

$I $N $R
$C

root n1 c1

root n2
c21

c22

$I $N $R
$Z

root n1 z1

root n2
z21

z22

root n1 ⊥

$I $N $S $I $N $R
$Z $C

root n1 z1 c1

root n2
z21 c21

z22 c22

root n3 ⊥ ⊥

(b) Resulting tuples after applying ETPs to a given tuple.

Fig. 19. Sample ETPs and corresponding navigation
results.

root, people

p1, person

n1, name

“Martin”

a1, address

z1, zip

“75”

c1, city

“Paris”

p2, person

n2, name

“Bernard”

a21, address

z21, zip

“69”

c21, city

“Lyon”

a22, address

z22, zip

“75”

c22, city

“Paris”

p3, person

n3, name

“Dubois”

a3, address

Fig. 20. Sample XML tree.

these edges may not be mapped, in which case the node takes

the ⊥ value.

We denote by ϕ(e, d) all the embeddings from e to d. Then,

we define the semantics of the navigation operator as:

nave(A) =
⋃

t∈A

{{t+ t′ | t′ ∈ ϕ(e, t.$I)}}

In other words, the navigation operator nav is parameterized

by a tree pattern e, whose root is labeled with a variable $I ,

that must appear in tuples returned by the input expression A.

The nav operator concatenates t successively with all tuples

binding returned by ϕ(e, t.$I), for any tuple t returned by A.

The semantics of the operator are illustrated with four

examples in Figure 19b. Given a tuple with a variable $I
bound to the XML tree shown in Figure 20, the navigation

operator using e1 extracts the name and city nodes of each

person; observe that the variable $C is nested in $R and

that the person without any city node does not generate any

bindings. Instead, the navigation operator using e4 generates

bindings from all person nodes, as the subtree rooted at the

address node is optional. The navigation result for ETPs e2, e3
is extracted in the similar fashion.

Group-By (grpGid ,Gv,$r). The operator has three parameters:

the set of group-by-id variables Gid , the set of group-by-value

variables Gv and the result variable $r.

Let P (A, Gid , Gv) be the set of tuple collections that results

from partitioning the tuples output by A, such that the tuples

in a collection have id-equal values for the variables of Gid

and equal values for the variables of Gv . For each collection
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p ∈ P (A, Gid , Gv), let t
p
id (respectively, tpv) be the tuple

consisting of the Gid (respectively, Gv) variables together with

their values in p. Then, the semantics of group-by operator is

defined as follows.

grpGid ,Gv,$r(A) = {{tpid+tpv+〈($r, p)〉 |
p ∈ P (A, Gid , Gv)}}

Each tuple in the output of grp contains: the variables

of Gid and Gv with their values, and a newly introduced

variable $r, whose value is the group of input tuples whose

Gid attributes are ID-equal, and whose Gv values are equal.

Flatten (flatp). This operator unnests tuples in the collection

referenced by p.

In the following, we introduce the semantics when

p.length = 1; the other cases can be easily worked out

using the same approach. For each input tuple t ∈ A, let

t′ (respectively, t′′) be the tuple containing the variables

preceding (respectively, succeeding) p in t. Further, let ti
be each of tuples contained in the collection t|p. Then, we

formalize the semantics of the operator as follows:

flatp(A) = {{t′ + t
p
i + t′′ | t′ + 〈(p, t|p)〉+ t′′ ∈ A

and t
p
i ∈ t|p}}

Selection (selρ). The selection operator is defined in the usual

way based on a boolean predicate ρ to be tested on a tuple t.

Formally, a selection over a stream of tuples generated by A
is defined as:

selρ(A) = {{t | t ∈ A and ρ(t) holds}}

Projection (proj V ). The operator is defined by specifying a set

of variable names V = {$V 1, $V 2, . . . , $V k} that are present

in the schema of the input tuples and should be retained in

the output tuples. More precisely:

proj V (A) = {{〈($V 1, v1), ($V 2, v2), . . . , ($V k, vk)〉 | t ∈ A
and ∀j ∈ {1..k}.$V j ∈ V and ($V j , vj) ∈ t}}

Aggregation (aggp,a,$r). The operator has three parameters:

the variable path p that references the variable over whose

bound values we will execute the aggregation, the aggregation

operation a (recall that we support count, avg, max, min and

sum), and the result variable $r.

Let A(t, p, a) be the result of applying aggregation operation

a on the values bound to variable path p in tuple t.

If the path p refers to a variable in a immediate nested

collection, i.e. p.length = 2, the semantics of the aggregation

operator are defined as follows.

aggp,a,$r(A) = {{t+ t′ | t ∈ A
and t′ = 〈($r, A(t, p, a))〉}}

The semantics of the aggregation with more levels of

nesting, i.e. p.length > 2, is straightforward.

Finally, if we want to aggregate over a non-nested variable

of the input tuples, i.e. p.length = 1, we proceed by nesting

them under a new variable to produce the correct aggregation

result. Thus, the semantics is defined as follows.

aggp,a,$r(A) = {{aggp,a,$r({t}) | t = 〈($N, (A))〉}}

Duplicate elimination (dupelimV ). The operator is defined

by specifying a set of variable names V that are present in the

schema of the input tuples and whose bound value should be

unique among the output tuples.

Recall P (A, Gid , Gv) that partitions the tuples output by

A, such that the tuples in a collection have id-equal values

for the variables of Gid and equal values for the variables of

Gv . Then, the semantics of the duplicate elimination operator

is defined as follows.

dupelimV (A) = {t1 | {{t1, . . . , tn}} ∈ P (A, (), V )}

B.3 Binary operators

The last family of operators are binary: they take in input

two collections of tuples produced by the plans A1 and A2

respectively, and output a collection of tuples. We outline their

semantics in the following.

Cartesian product (prod ). The cartesian product is standard.

prod(A1,A2) = {{t1+t2 | t1 ∈ A1, t2 ∈ A2}}

Join (joinρ). The join relies on a boolean join predicate

ρ(t1, t2), and is defined as follows.

joinρ(A1,A2) = {{t1+t2 | t1 ∈ A1, t2 ∈ A2 and

ρ(t1, t2) holds}}
As stated previously, the join predicate is expressed in

disjunctive normal form (DNF).

Left outer join (ojoin l
ρ). Given two streams of tuples pro-

duced by A1,A2 and a DNF predicate ρ, ojoin l
ρ(A1,A2)

returns the pairs of tuples satisfying ρ, plus the tuples from

the left input without a matching right tuple. Its semantics are

defined as follows:
ojoin l

ρ(A1,A2)={{t1+t2 | t1 ∈ A1, t2 ∈ A2 and ρ(t1, t2)}}

∪ {{t1+ ⊥A2
| t1 ∈ A1, 6 ∃t2 ∈ A2 s.t. ρ(t1, t2)}}

where ⊥A2
is a tuple having the schema of the tuples in A2

and ⊥ values bound to its variables. As customary of left

outer joins, the left tuples without a matching right tuple are

concatenated to ⊥A2
.

Nested left outer join (nojoin l
ρ). The operator semantics are

defined as:
nojoin l

ρ(A1,A2) = {{t1 + 〈($r, (t21, t22, . . . , t2n))〉 |

t1 ∈ A1 and t21, t22, . . . , t2n ∈ A2

and ∀k ∈ {1..n}, ρ(t1, t2k) holds }} ∪

{{t1 + 〈($r,⊥A2
)〉 | t1 ∈ A1, 6 ∃t2 ∈ A2

such that ρ(t1, t2) holds}}
Thus, each tuple from the left input is paired with a new

nested variable $r, encapsulating all the matching tuples from

the right-hand input. If the left tuple does not have a matching

right tuple, $r must contain a tuple ⊥A2
.

APPENDIX C
DISJUNCTIVE EQUI-JOINS POST-PROCESSING

The semantics of these UFs are introduced in the following.

Definition 7 (opost l∨): Consider an input bag of records

{{r1, . . . , rx}}. Each record ri,1≤i≤x is separated in left and

right side, i.e. ri = rli+rri . Further, rri contains a single field

with a nested collection of records Ri. We denote by opost l∨
the post-processing UF which:

• If all nested collections Ri,1≤i≤x contain only ⊥-records,

it outputs a single record r = rli+ ⊥′, where rli is the

left side of any input record and ⊥′ is the ⊥-record

conforming to the signature of the records in Ri.

• Otherwise, it flattens the nested collections Ri,1≤i≤x

excluding ⊥-records, and returns the result. ⋄
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A1 ⇒ P1 A2 ⇒ P2

SA1
, SA2

; ρ 7→ ρ
′

f := pnjoin(ρ′)

joinρ(A1,A2)⇒ crf (P1,P2)
(INEQUI-JOIN)

A1 ⇒ P1 A2 ⇒ P2

SA1
, SA2

; ρ 7→ ρ
′

f := ojoinl(ρ
′)

SA1
 K f

′ := opost l

ojoin
l
ρ(A1,A2)⇒ rd

K
f ′(crf (P1,P2))

(LO INEQUI-JOIN)

A1 ⇒ P1 A2 ⇒ P2

SA1
, SA2

; ρ 7→ ρ
′

f := ojoinl(ρ
′)

SA1
 K f

′ := nopost l

nojoin
l
ρ(A1,A2)⇒ rd

K
f ′(crf (P1,P2))

(NLO INEQUI-JOIN)

Fig. 21. Inequi-join translation rules.

Definition 8 (nopost l∨): Consider an input bag of records

{{r1, . . . , rx}}. Each record ri,1≤i≤x is separated in left and

right side, i.e. ri = rli+rri . Further, rri contains a single field

with a nested collection of records Ri. We denote by nopost l∨
the post-processing UF that outputs a single record r = rli+r′,

where:

• If all nested collections Ri,1≤i≤x contain only ⊥-records,

r′ contains a field with a nested collection with a ⊥-

record conforming to the signature of the records in Ri.

• Otherwise, r′ contains a field with a nested collection

with the records contained in Ri,1≤i≤x, excluding ⊥-

records. ⋄

APPENDIX D
JOINS ON INEQUALITIES

Our XQuery fragment also supports joins with inequality

conditions. In this case, the translation uses Cross contracts.

Further, just like for joins with disjunctive predicates, the non-

nested and nested outer variants of the inequi-join require more

than one PACT. We depict the corresponding translation rules

in Figure 21. In the following, we explain the translation of

this flavor of joins.

1) Inequi-join. Rule (INEQUI-JOIN) generates a PACT with

a Cross input contract. The predicate ρ is transformed into

ρ′, which is equivalent but replaces the EXDM variables

by positions in the PACTs records. Then the pnjoin UF

introduced in the following is applied over each pair of

records.

Definition 9 (pnjoin): Given two records r1, r2 and a pred-

icate ρ′, the pnjoin(ρ′) UF evaluates ρ′ over r1, r2, and

outputs r1+r2 if it evaluates to true. ⋄

2) (Nested) left outer inequi-join. As it happens with the

disjunctive equality predicates, the translation of the non-

nested and nested variant of the outer inequi-join, described

by the (LO INEQUI-JOIN) and (NLO INEQUI-JOIN) rules

respectively, resemble each other.

The translation of the non-nested and nested left outer

inequi-join results in two steps. The first step consists of a

PACT with a Cross contract. The UF of the PACT is ojoin l, a

traditional left outer join, that we introduced in the following.

Definition 10 (ojoin l): Given two records r1, r2 and a

predicate ρ′, the ojoin l(ρ
′) UF evaluates ρ′ over r1, r2, and:

• If it evaluates to true, outputs r1+r2.

• Otherwise, it outputs r1+ ⊥2, where ⊥2 is the ⊥-record

that conforms to the signature of r2. ⋄

The last PACT resulting from both translation rules uses

a Reduce contract that groups together the records originated

from the same left hand-side record. In the plain variant, the

UF is opost l that produces unnested records; otherwise, the

PACT uses the nopost l UF. We introduce both UFs in the

following.

Definition 11 (opost l): Consider an input bag of records

{{r1, . . . , rx}}. Each record ri,1≤i≤x is separated in left and

right side, i.e. ri = rli+rri . We denote by opost l the post-

processing UF which:

• If rri,1≤i≤x are all ⊥-records, it outputs one of them.

• Otherwise, it returns every ri,1≤i≤x where rri is not a

⊥-record. ⋄

Definition 12 (nopost l): Consider an input bag of records

{{r1, . . . , rx}}. Each record ri,1≤i≤x is separated in left and

right side, i.e. ri = rli+rri . We denote by nopost l the post-

processing UF that outputs a single record r = rli+r′, where:

• If rri,1≤i≤x are all ⊥-records, r′ contains a field with a

nested collection with a ⊥-record that conforms to the

signature of rri .

• Otherwise, r′ contains a field with a nested collection

with every rri,1≤i≤x that is not a ⊥-record. ⋄

Example 5. Consider the following XQuery that extracts the

name of users and (if any) the items they bought that were

valued more than their monthly incoming:
let $pc := collection( ‘ people ’),
$cc := collection( ‘ c losed auct ions ’)
for $p in $pc/site/people/person

let $n := $p/name

let $r :=

for $c in $cc//closed_auction, $i in $p/@id,

$b in $c/buyer/@person, $x in $p/profile/@income,

$y in $c/price

let $a := $c/itemref

where $i = $b and $x < $y

return $a

return <res>{$n,$r}</res>

The XML algebra expression generated from this query is

shown in Figure 22a. Using the rule (LO ∨ INEQUI-JOIN) in

Figure 21, the algebraic expression corresponding to the query

is translated into the PACT plan depicted in Figure 22b. ⋄

APPENDIX E
EXPERIMENTAL QUERIES DETAIL

This section lists the XQuery queries used in the experimental

section. They are based on the queries provided by the XMark

benchmark [42].

Query 1: Return the name of the person with ID ‘person0’.

let $pc := collection( ‘ XMarkPeople ’)
for $p in $pc/site/people/person[@id="person0"]

let $n := $p/name/text()

return $n
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a)
e1 $pc:*

site

people

$p: person

$i: @id profile

$x: @income

e2 $cc:*

$c: closed auction

buyer

$b: @person

$y: price $a: itemref

n: $t

e3 $p:*

$n: name

n: $s

constrL

nave3

grp{$p},∅,$r

ojoin l
$i=$b∨$x<$y

nave1 nave2

scan(‘people’) scan(‘closed auctions’)

S1:=($pc)

S2:=($pc, $p, $i, $x)

S3:=($cc)

S4:=($cc, $c, $b, $y, $t{$a})

S5:=($pc, $p, $i, $x, $cc, $c, $b, $y, $t{$a})

S6:=($p, $r{$pc, $i, $x, $cc, $c, $b, $y, $t{$a}})

S7:=($p, $r{$pc, $i, $x, $cc, $c, $b, $y, $t{$a}},

$s{$n})

b)

ρ′ := #6=#6 ∨ #8<#8
K1 := (#1,#3)
K2 := (#3)

xmlwriteL′

mpnav(e′
3
)

rdgrp(K2)

rdopost
l

crojoin
l
(ρ′)

mpnav(e′
1
) mpnav(e′

2
)

xmlscan(‘people’) xmlscan(‘closed auctions’)

K1

K2

Fig. 22. Logical expression (a) and corresponding PACT
plan (b) for the query in Example 5.

Query 2: List the names of items registered in Australia

along with their descriptions.

let $ic := collection( ‘ XMarkItems ’)
for $i in $ic/site/regions/australia/item

let $n := $i/name/text(), $d := $i/description

return <item name="{$n}">{$d}</item>

Query 3: Return the names of all items in Europe whose

description contains the word ‘gold’.

let $ic := collection( ‘ XMarkItems ’)
for $i in $ic/site//europe/item,

$d in $i/description/text/text()

let $n := $i/name/text()

where contains($d, "gold")

return $n

Query 4: Print the keywords in emphasis in annotations of

closed auctions.

let $cc := collection( ‘ XMarkClosedAuctions ’)
for $a in

$cc/site/closed_auctions/closed_auction/

annotation/description/parlist/listitem/

parlist/listitem/text/emph/keyword/text()

return <text>{$a}</text>

Query 5: Return the IDs of those auctions that have one or

more keywords in emphasis.

let $cc := collection( ‘ XMarkClosedAuctions ’)
for $a in

$cc/site/closed_auctions/closed_auction

for $k in $a/annotation/description/parlist/

listitem/parlist/listitem/text/emph/keyword/text()

let $s := $a/seller/@person

where not(empty($k))

return <person id="{$s}"/>

Query 6: Which persons have a homepage?

let $pc := collection( ‘ XMarkPeople ’)
for $p in $pc/site/people/person

let $h := $p/homepage,

$n := $p/name/text()

where not(empty($h))

return <person name="{$n}"/>

Query 7: How many sold items cost more than 40?

let $cc := collection( ‘ XMarkClosedAuctions ’)
let $p :=

for $i in $cc/site/closed_auctions/closed_auction

where $i/price/text() >= 40

return $i/price

let $c := count($p)

return $c

Query 8: How many items are listed on all continents?

let $ic := collection( ‘ XMarkItems ’)
let $i := $ic/site/regions//item

let $c := count($i)

return $c

Query 9: List the number of buyers per city of France.

let $pc := collection( ‘ XMarkPeople ’),
$cc := collection( ‘ XMarkClosedAuctions ’)

for $p in $pc/site/people/person

[address/country/text()= ‘ France ’]
let $a := $p/address/city/text()

for $c in $cc/site/closed_auctions/closed_auction,

$i in $p/@id, $b in $c/buyer/@person

where $i = $b

group by $a

return <res><city>{$a}</city>

<num>{count($p)}</num></res>

Query 10: List the names of persons and the names of the

items they bought in Europe.

let $pc := collection( ‘ XMarkPeople ’),
$cc := collection( ‘ XMarkClosedAuctions ’),
$ic := collection( ‘ XMarkItems ’)

let $ca := $cc/site/closed_auctions/closed_auction,

$ei := $ic/site/regions/europe/item

for $p in $pc/site/people/person

let $pn := $p/name/text()

let $a :=

for $t in $ca, $i in $p/@id,

$b in $t/buyer/@person

where $i = $b

return

let $n :=

for $t2 in $ei, $ti2 in $t2/@id,

$ti in $t/itemref/@item

where $ti = $ti2

return $t2

let $in := $n/name/text()

return <item>{$in}</item>

return <person name="{$pn}">{$a}</person>

Query 11: List all persons according to their interest; use

French markup in the result.
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let $pc := collection( ‘ XMarkPeople ’)
for $i in distinct-values($pc/site/people/person/

profile/interest/@category)

let $p :=

for $t in $pc/site/people/person,

$c in $t/profile/interest/@category

let $r1 := $t/profile/gender/text(),

$r2 := $t/profile/age/text(),

$r3 := $t/profile/education/text(),

$r4 := $t/profile/@income,

$r5 := $t/name/text(),

$r6 := $t/address/street/text(),

$r7 := $t/address/city/text(),

$r8 := $t/address/country/text(),

$r9 := $t/emailaddress/text(),

$r10 := $t/homepage/text(),

$r11 := $t/creditcard/text()

where $c = $i

return

<personne>

<statistiques>

<sexe>{$r1}</sexe>

<age>{$r2}</age>

<education>{$r3}</education>

<revenu>{$r4}</revenu>

</statistiques>

<coordonnees>

<nom>{$r5}</nom>

<rue>{$r6}</rue>

<ville>{$r7}</ville>

<pays>{$r8}</pays>

<reseau>

<courrier>{$r9}</courrier>

<pagePerso>{$r10}</pagePerso>

</reseau>

</coordonnees>

<cartePaiement>{$r11}</cartePaiement>

</personne>

return <categorie><id>{$i}</id>{$p}</categorie>

Query 12: List the names of persons and the number of

items they bought.

let $pc := collection( ‘ XMarkPeople ’),
$cc := collection( ‘ XMarkClosedAuctions ’)

for $p in $pc/site/people/person

let $n := $p/name/text()

let $a :=

for $t in $cc/site/closed_auctions/closed_auction,

$b in $t/buyer/@person, $i in $p/@id

where $b = $i

return $t

let $c := count($a)

return <item person="{$n}">{$c}</item>

Query 13: List the name of users in France and the items

that they bought or sold in an auction.

let $pc := collection( ‘ XMarkPeople ’),
$cc := collection( ‘ XMarkClosedAuctions ’)

for $p in $pc/site/people/person,

$i in $p/@id,

$ad in $p/address/country/text()

let $a :=

for $c in $cc//closed_auction,

$b in $c/buyer/@person,

$s in $c/seller/@person

let $ir := $c/itemref

where $i = $b or $i = $s

return $ir

let $n := $p/name

where $ad = ‘ France ’
return <res>{$n,$a}</res>

Query 14: For each rich person, list the number of cars-

related items currently on sale whose price does not exceed

0.02% of the person’s income.

let $pc := collection( ‘ XMarkPeople ’),
$oc := collection( ‘ XMarkOpenAuctions ’)

for $p in $pc/site/people/person

let $l :=

for $o in $oc/site/open_auctions/open_auction,

$i in $o/initial/text(),

$si in $p/profile/@income,

$a in $o/annotation//text/text()

let $x := 5000*$i

where $si > $x and contains($a,"car")

return $i

for $li in $p/profile/@income

let $n := count($l)

where $li > 200000

return <items person="{$li}">{$n}</items>
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