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ABSTRACT

We present a novel approach for parallelizing the execution
of queries over XML documents, implemented within our
system PAXQuery. We compile a rich subset of XQuery into
plans expressed in the PArallelization ConTracts (PACT)
programming model. These plans are then optimized and
executed in parallel by the Stratosphere system. We demon-
strate the efficiency and scalability of our approach through
experiments on hundreds of GB of XML data.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Design, Performance, Experimentation

1. INTRODUCTION
Increasingly large data volumes have lead to the appari-

tion of massively parallel processing frameworks, such as
MapReduce [7]. Its main advantage is to simplify parallel
data processing and handle task allocation and fault toler-
ance transparently from the application.

While the simplicity of MapReduce is an advantage, it
is also a limitation, since large data processing tasks are
represented by complex programs consisting of many Map
and Reduce tasks. In particular, since these tasks are con-
ceptually very simple, one often needs to write programs
comprising many successive tasks, which limits parallelism.
To overcome this problem, more powerful abstractions have
appeared to express massively parallel complex data pro-
cessing, such as the Parallelization Contracts programming
model [2] (or PACT, in short).

In a nutshell, PACT generalizes MapReduce by (i) manip-
ulating records with any number of fields, instead of (key,
value) pairs, (ii) enabling the definition of custom parallel
operators by means of second-order functions, and (iii) al-
lowing one parallel operator to receive as input the outputs
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Figure 1: PAXQuery architecture overview.

of several other such operators. The PACT model is part of
the open-source Stratosphere platform [18].

In this work, we present PAXQuery, a massively paral-
lel XQuery processor. Given a very large collection of XML
documents, evaluating a query that navigates over these doc-
uments and also joins results from different documents raises
performance challenges, which may be addressed by paral-
lelism. Inspired by other high-level data analytics languages
that are compiled into parallel frameworks [3, 10, 16], PAX-
Query translates XML queries into PACT plans. The main
advantage of this approach is implicit parallelism: neither
the application nor the user need to partition the XML input
or the query across nodes. This contrasts with prior work [4,
12]. Further, we can rely on the Stratosphere platform for
the optimization of the PACT plan and its automatic trans-
formation into a data flow that is evaluated in parallel on
top of the Hadoop Distributed File System (HDFS); these
steps are explained in [2].

In the sequel, Section 2 describes PAXQuery architecture
and main features in detail, and provides a beginning-to-end
query translation example. Section 3 describes the experi-
mental evaluation of our system. Section 4 discusses related
work and Section 5 concludes.

2. PAXQUERY ARCHITECTURE
Our approach for implicit parallel evaluation of XML queries

is to translate them into PACT plans as depicted in Figure 1.
The central vertical stack traces the query translation steps
from the top to the bottom, while at the right of each step
we show the data models manipulated by that step. We
present each step of the translation below.

2.1 Query language
PAXQuery supports a representative subset of XQuery [19],

the W3C’s standard query language for XML data, which
has been recently enhanced with strongly requested fea-
tures geared towards XML analytics. In particular, our
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goal was to cover (i) the main navigational mechanisms of
XQuery, and (ii) its key constructs to express analytical
style queries e.g. aggregation, explicit grouping, and rich
comparison predicates.

Example. The following XQuery extracts the name of users,
and the items of their auctions (if any):
let $pc := collection( ‘ people ’),

$cc := collection( ‘ c l o s ed auc t i on s ’)
for $p in $pc/site/people/person, $i in $p/@id

let $n := $p/name

let $r :=

for $c in $cc//closed_auction, $b in $c/buyer/@person,

$s in $c/seller/@person

let $a := $c/itemref

where $i = $b or $i = $s

return $a

return <res>{$n,$r}</res>

The above query shows some of the main features of our
XQuery fragment. It includes FLWR expressions, which are
powerful enough to express complex operations like iterating
over sequences, joining multiple documents, and performing
grouping. XPath paths start from the root of each document
in a collection of XML documents, or from the bindings of a
previously introduced variable; we support the XPath{/,//,[]}

fragment [15]. In addition, our subset supports rich predi-
cates expressed in disjunctive normal form (DNF), support-
ing value- and node identity-based comparisons.

2.2 XML query algebra
Our approach is based on the representation of the XQuery

query as an equivalent algebraic expression, on which mul-
tiple optimizations can be applied. XQuery translation into
different algebra formalisms and the optimization of result-
ing expressions have been extensively studied [5, 8, 17].

A significant source of XQuery complexity comes from
nesting: an XQuery expression can be nested in almost
any position within another. In particular, nested queries
challenge the optimizer, as straightforward translation into
nested plans leads to very poor performance. Effective opti-
mization techniques translate nested XQuery into unnested
plans relying on joining and grouping [8, 13, 14]. Depending
on the query shape, such decorrelating joins may be nested
and/or outer joins.

PAXQuery uses the algebra presented in [13], and transla-
tion from XQuery to this algebra is outlined in [1]. However,
we can easily adapt to any XML query algebra used by ex-
isting engines that satisfies the following two assumptions:
(i) the algebra is tuple-oriented (potentially using nested tu-
ples), and (ii) the algebra is rich enough to support decorre-
lated (unnested) plans even for nested XQuery; in particular
we consider that the query plan has been unnested [14] be-
fore we start translating it into PACT.

2.3 Algebraic representation of XQuery
We introduce our algebraic representation of XQuery by

the following example (see [13] for details):

Example (continuation). The algebra plan for the XQuery
introduced above is shown in Figure 2. The schemas of the
tuples produced by each operator are denoted by Si. We
discuss the operators starting from the leaves.

The XML scan operators take as input the ‘people’ (re-
spectively ‘closed auctions’) collection of XML documents and
create a tuple out of each document in the collection.

XQuery may perform navigation, which, in a nutshell,
binds variables to the result of path traversals. Navigation is
commonly represented through tree patterns, whose nodes

e1 $pc:*

site

people

$p: person

$i: @id $n: name

n: $t

e2 $cc:*

$c: closed auction

buyer

$b: @person

seller

$s: @person

$a: itemref

n: $u

constructL

nojoinl
$i=$b∨$i=$s

navigatione1
navigatione2

scan(‘people’) scan(‘closed auct.’)

S1:=($pc)

S2:=($pc, $p, $i, $t{$n})

S3:=($cc)

S4:=($cc, $c, $b, $s, $u{$a})

S5:=($pc, $p, $i, $t{$n},

$r{$cc, $c, $b, $s, $u{$a}})

Figure 2: Logical plan for the example query.

carry the labels appearing in the paths, and where some
target nodes are also annotated with names of variables to
be bound, e.g.$pc, $i etc. The algebra we consider allows
for consolidating as many navigation operations from the
same query as possible within a single navigation tree pat-
tern, and in particular navigation performed outside of the
for clauses. Large navigation patterns lead to more effi-
cient query execution, since patterns can be matched very
efficiently against XML documents [6]. Our algebra uses a
navigation operator parameterized by an extended tree pat-
tern (ETP) supporting multiple returning nodes, child and
descendant axis, and nested and optional edges.

Consider the ETP e1 in Figure 2. The operator navigatione1

concatenates each input tuple successively with all @id at-
tributes (variable $i) resulting from the embeddings of e1
in the value bound to $pc. The node labeled $n:name is
(i) optional and (ii) nested with respect to its parent node
$p:person, since by XQuery semantics: (i) if a given $p lacks a
name, $p still contributes to the query result; (ii) all names
for a given $p are bound into a single sequence. Observe
that all name elements (variable $n) are nested into variable
$t, which did not appear in the original query; in fact, $t
is created by the XQuery to algebra translation to hold the
nested collection with all values bound to $n. The operator
navigatione2

is generated in a similar fashion. Therefore,
in the previous query, ETPs e1 and e2 correspond to the
following fragment:
for $p in $pc/site/people/person, $i in $p/@id

let $n := $p/name

let $r :=

for $c in $cc//closed_auction, $b in $c/buyer/@person,

$s in $c/seller/@person

let $a := $c/itemref

Above the navigation operators in Figure 2, we have a
nested left outer join (nojoinl

ρ) on a disjunctive predicate ρ,
which brings together people and the auctions they partic-
ipated in, either as buyers or sellers. Observe that as the
join is outer, all people are kept in the output, even if they
did not participate in any auction.

Finally, the XML construction (constructL) is responsi-
ble for transforming a collection of tuples to XML. For each
tuple in its input, constructL builds one XML tree for each
construction tree pattern in the list L attached to the op-
erator. In our example, L contains a single pattern that
generates for each tuple an XML tree consisting of elements
of the form <res>{$n,$r}</res>.



Figure 3: (a) Map, (b) Reduce, (c) Cross, (d) Match, and (e) CoGroup parallelization contracts.1

2.4 PACT model
The PACT model [2] is a generalization of MapReduce,

based on the concept of parallel data processing operators.
PACT plans are DAGs of implicit parallel operators, that
are optimized and translated into explicit parallel data flows
by Stratosphere.
Data model. PACT plans manipulate nested records of the
form r = ((f1, f2, . . . , fn), (i1, i2, . . . , ik)) where 1 ≤ k ≤ n.
The first component (f1, f2, . . . , fn) is an ordered sequence
of fields fi; in turn, a field fi is either an atomic value (string)
or a ordered sequence (r′1, . . . , r

′
m) of records. The second

component (i1, i2, . . . , ik) is an ordered, possibly empty, se-
quence of record positions in [1 . . . n] indicating the key fields
for the record. Each of the key fields must be an atomic
value. The key of a record r is the concatenation of all the
key fields fi1 , fi2 , . . . , fik .
Processing model. Data sources and sinks are, respec-
tively, the starting and terminal nodes of a PACT plan. The
input data is stored in files; a function parameterizing the
data source specifies how to structure the data into records.
In turn, data is output into files, with the destination and
format similarly controlled by an output function.

The rest of data processing nodes in a PACT plan are
operators. An operator manipulates bags of records. Its
semantics is defined by (i) a parallelization contract, which
determines how input records are organized into groups; and
(ii) a user function (or UF) that is executed independently
over each bag (group) of records created by the paralleliza-
tion contract (these executions can take place in parallel).

Although the PACT model allows creating custom paral-
lelization contracts, a set of them for the most common cases
is built-in: Map, Reduce, Cross, Match, and CoGroup (see
Figure 3). The Map contract forms an individual group for
every input record. The Reduce contract forms a group for
every unique value of the key attribute in the input data
set, and the group contains all records with that key value.
The Cross, Match, and CoGroup contracts are used to de-
fine binary operators. The Cross contract forms a group
from every pair of records in its two inputs (essentially, it
produces the Cartesian product of the two input bags). The
Match contract forms a group from every pair of records in
its two inputs, only if the records have the same value for
the key attribute. Finally, the CoGroup contract forms a
group for every value of the key attribute (from the domains
of both inputs), and places each record in the appropriate
group depending on the key value of the record.

2.5 From algebra expressions to PACT plans
We describe now how PAXQuery translates XML alge-

bra expressions into PACT plans. First, out of nested tu-
ples containing XML data instances (trees with identity), we
create PACT nested records. Second, we translate XQuery

1Figure reproduced from [11].

Table 1: Algebra to PACT overview.
Algebra operators PACT operators (#)

Scan Source (1)
Construct Sink (1)

Navigation Map (1)
Group-by Reduce (1)
Flatten Map (1)
Selection Map (1)
Projection Map (1)
Aggregation (on nested field) Map (1)
Aggregation (on top-level field) Reduce (1)
Duplicate elimination Reduce (1)

Cartesian product Cross (1)

Conjunctive equi-join
Inner Match (1)
Outer CoGroup (1)
Nested outer CoGroup (1)

Disjunctive equi-join
(n conjunctions)

Inner Match (n)
Outer CoGroup (n) & Reduce (1)
Nested outer CoGroup (n) & Reduce (1)

Theta-join
Inner Cross (1)
Outer Cross (1) & Reduce (1)
Nested outer Cross (1) & Reduce (1)

K1 := (#5)
K2 := (#5)
K′

1
:= (#5)

K′

2
:= (#7)

ρ′ := #5=#5 or
#5=#7

K3 := (#0, #2, #4)

XML sinkL′

Reducenopostl

CoGroupnopnjoinl(ρ
′,0) CoGroupnopnjoinl(ρ

′,1)

Mapnavigation(e′
1
) Mapnavigation(e′

2
)

XML source(‘people’) XML source(‘closed auct.’)

K1

K′

1
K2

K′

2

K3 K3

Figure 4: PACT plan corresponding to the logical
expression in Figure 2.

algebraic expressions into PACT plans. Details about the
former are omitted in this presentation, for space reason,
while we focus in the latter.

Table 1 depicts the supported algebra operators and the
contracts used by the PACT operators resulting from our
translation. First, observe that the scan, respectively con-
struct, functionality is integrated into a source, respec-
tively sink, in the PACT plan. In turn, unary operators
use Map and Reduce contracts depending on their seman-
tics; the implementation of their UFs is in most of the cases
straightforward. Finally, the translation of the binary oper-
ators is more complex, as they have to deal efficiently with
the nested and/or outer nature of some joins, which may re-
sult in multiple operators at the PACT level. We illustrate
this more elaborated translation with the following example.

Example (continuation). Consider the algebra plan in
Figure 2. PAXQuery generates the PACT program shown
in Figure 4; eachKi contains the positions of the key fields in
records. The XML source operators scan (in parallel) the
respective collections and transform each document into a
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Figure 5: PAXQuery scalability evaluation (left) and
comparison with centralized processors (right).

record. Next, the Map operators apply the navigation UF in
parallel on the records thus obtained, following the query’s
XPath expressions. The nested outer join is translated into
two CoGroup operators and a post-processing Reduce. The
core difficulty to address by our translation is to correctly
express (i) the disjunction in the where clause of the query,
and (ii) the outerjoin semantics (recall that in this exam-
ple a <res> element must be output even for people with
no auctions). The main feature of the nopnjoinl(ρ

′, k) UF
associated to each CoGroup is to guarantee that no erro-
neous duplicates are generated when the parallel evaluation
of more than one conjunctive predicate is true for a certain
record. The Reduce operator groups all the results of the
previous CoGroup operators having the same left hand-side
record, and then the nopost l UF associated to it is applied
to produce the final result for the join. Finally, the XML

sink builds and returns XML results.
Clearly, complex joins such as the one contained in the

example could be translated using a single Cross operator
instead of multiple CoGroup. However, this would be less
efficient and scale poorly (number of comparisons quadratic
in the input size), as our experiments demonstrate.

2.6 Optimization and execution by Stratosphere
In the last step, PAXQuery sends the PACT plan to the

Stratosphere platform, which optimizes it, and turns it into
a data flow that is evaluated in parallel, as explained in [2].

3. IMPLEMENTATION AND EXPERIMENTS
PAXQuery has been implemented in Java 1.6, and it relies

on the Stratosphere platform [18] for the execution. We
present here some experimental results we obtained with it.

PAXQuery scalability was studied by fixing a set of 14
queries, generating 11.000 documents (34GB) per node, and
varying the number of nodes from 1 to 2, 4, 8 respectively;
the total dataset size increases accordingly in a linear fash-
ion, up to 272GB. Figure 5 (left) shows the response times
for each query. Our results show that the translation to
PACT allows PAXQuery to parallelize every query execu-
tion step with no effort required to partition, redistribute
data etc., and thus to scale out with the number of ma-
chines in a cluster. The only case where scale-up was not
so good is q14 where we used a Cross to translate an in-
equality join; this highlights the interest of the more efficient
operators (especially CoGroup) used in the other plans.

Figure 5 compares PAXQuery with XQuery processors in
a centralized setting (one single node, 34 GB of data). None
of the competing processors was able to evaluate any of our
queries with joins across documents (q9-q14), as they run out
of memory or out of time, highlighting the need for efficient
parallel platforms for evaluating such queries on such large
document collections.

4. RELATED WORK
MRQL [9] proposes a simple SQL-like XML query lan-

guage implemented through a few operators directly com-

pilable into MapReduce. MRQL queries may be nested,
however, its dialect does not allow for expressing the rich
join flavours that we use. Further, the XML navigation sup-
ported by MRQL is limited to XPath, in contrast to our
richer navigation based on tree patterns with multiple re-
turning nodes, and nested and optional edges. ChuQL [12]
is an XQuery extension that exposes the MapReduce frame-
work to the developer in order to distribute computations
among XQuery engines; this leaves the parallelization work
to the programmer, in contrast with our implicit query par-
allelization approach.

5. CONCLUSION AND FUTURE WORK
We have presented the PAXQuery approach for the im-

plicit parallelization of XQuery through translation to PACT.
Our experiments demonstrate the efficiency and scalability
of PAXQuery. It is our plan to open-source the system in the
near future. In the future, we contemplate the integration
of indexing techniques into PAXQuery, and reusing inter-
mediary results in the PACT framework to enable efficient
multiple-query processing.
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