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The linear global instability and resulting transition to turbulence induced by an iso-
lated cylindrical roughness element of height h and diameter d immersed within an incom-
pressible boundary layer flow along a flat plate is investigated using the joint application
of direct numerical simulations and fully three-dimensional global stability analyses. For
the range of parameters investigated, base flow computations show that the roughness
element induces a wake composed of a central low-speed region surrounded by a three-
dimensional shear layer and a pair of low- and high-speed streaks on each of its sides.
Results from the global stability analyses highlight the unstable nature of the central
low-speed region and its crucial importance in the laminar-turbulent transition process.
It is able to sustain two different global instabilities: a sinuous and a varicose one. Each
of these globally unstable modes are related to a different physical mechanism. While the
varicose mode finds its root in the instability of the whole three-dimensional shear layer
surrounding the central low-speed region, the sinuous instability turns out to be similar to
the von Kármán instability in the two-dimensional cylinder wake and finds its root in the
lateral shear layers of the separated zone. The aspect ratio of the roughness element plays
a key role on the selection of the dominant instability. Indeed, whereas the flow over thin
cylindrical roughness elements transitions due to a sinuous instability of the near-wake,
for larger roughness element the varicose instability of the central low-speed region turns
out to be the dominant one. Direct numerical simulations of the flow past an aspect ratio
η = 1 (with η = d/h) roughness element sustaining only the sinuous instability have
revealed that the bifurcation occurring in this particular case is supercritical. Finally,
comparison of the transition thresholds predicted by global linear stability analyses with
the von Doenhoff-Braslow transition diagram provides qualitatively good agreements.

Key words:

1. Introduction

Understanding, predicting and eventually delaying the laminar-turbulent transition in
boundary layer flows still is a challenging issue for researchers ever since the pioneering
work by Ludwig Prandtl and his two students, Walter Tollmien and Hermann Schlichting.
For small amplitude disturbances and supercritical Reynolds numbers, the linear stabil-
ity theory predicts the slow transition process due to the generation, amplification and
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secondary instability of Tollmien-Schlichting (TS) waves. It has however been known for
quite a long time that this transition process can be greatly modified by environmental
noise or by the presence of localised or distributed surface roughness. Depending on the
characteristics of the flow and the nature of the surface roughness, the transition process
can either be promoted or delayed.
On the one hand, in their experimental work, Klebanoff & Tidstrom (1972) have

shown that this natural transition could be promoted using spanwise invariant rough-
ness elements. This earlier transition is related to the modified stability properties of the
boundary layer flow developing downstream the roughness element. More precisely, this
transition process is explained by the enhancement of the unstable TS waves due to mod-
ifications of the flow’s properties in the downstream reversed flow and recovery regions.
More recently, Perraud et al. (2004) have shown that the higher the two-dimensional
roughness element, the closer to it does transition to turbulence take place. On the other
hand, the influence of fully three-dimensional roughness elements on the transition to
turbulence is very different. Indeed, whereas fully three-dimensional roughness elements
hardly promote flow separation, they induce streamwise velocity streaks. It has been
shown by Cossu & Brandt (2004) that these streaks act as stabilising the TS waves and
thus delay the natural transition process. This delay of the transition to turbulence by
fully three-dimensional roughness elements has been further confirmed experimentally
by Fransson et al. (2004, 2005, 2006), using an array of cylindrical roughness elements.
Though promising, this delay technique needs a careful choice of the main parameters
of the setup, namely the Reynolds numbers, the shape and spacing of the roughness
elements, as well as their height with respect to the thickness of the boundary layer. In
fact, the previously mentioned authors have observed that, beyond a given threshold,
the velocity streaks induced by the three-dimensional roughness elements can become
themselves unstable yielding the flow to transition to turbulence right downstream the
roughness elements.
It is known that in the presence of moderate to high environmental noise, free-stream

disturbances can penetrate into the boundary layer and trigger by-pass transition. The
developing perturbations no longer take the form of TS waves but of velocity streaks
which are quasi-optimal disturbances (i.e. with the optimal perturbation being the one
inducing the largest transient energy growth in the considered base flow). Because three-
dimensional roughness elements also induce velocity streaks in the boundary layer, it
is believed that such by-pass transition and fully three-dimensional roughness-induced
transition share some connections. The formation process of these high- and low-speed
streaks has been explained by Landahl (1990) and relies on the lift-up effect. The free-
stream disturbances entering the boundary layer give birth to streamwise aligned counter-
rotating vortices. Such vortices then transfer high-speed fluid from the outer part of the
boundary layer toward the wall and low-speed fluid from the wall toward the outer region
of the boundary layer. Due to this transfer of momentum, the resulting perturbation
takes the form of high- and low-speed streaks. The dynamics of optimal streaks has
been investigated by Andersson et al. (2001). These can potentially undergo a secondary
instability taking the form of a sinuous modulation of the streaks when their amplitude
exceeds approximately 26% of the free-stream velocity. Instability with respect to varicose
perturbations has also been reported for optimal streaks having an amplitude larger than
roughly 37% of the free-stream velocity. However, more recently, Konishi & Asai (2004)
have shown experimentally that the stability properties of isolated streaks, as the ones
induced by an isolated three-dimensional roughness element, are different from the ones
of spanwise-periodic, optimal streaks as those considered in Andersson et al. (2001). In
fact, even if one can carefully choose the shape and aspect ratio of an isolated roughness
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element trying to reproduce the wavelength of spanwise-periodic streaks (Ergin & White
2006), the shape of the induced streaks will be rather different, especially concerning the
lateral ones, which would easily fade away in the absence of side vortices able to sustain
them.
Concerning the flow past three-dimensional roughness elements and its transition to

turbulence, Sedney (1972) has reviewed most of the literature available until the early
1970’s. The flow pattern induced by an isolated three-dimensional roughness element
has been known for almost 60 years (Gregory & Walker 1955). When impinging the
three-dimensional roughness element, the spanwise vorticity of the incoming boundary
layer wraps around the protuberance thus creating horseshoe vortices. One of the most
thorough investigations of the structure of such vortical structures has been carried out
by Baker (1978), for an isolated cylindrical roughness mounted on a flat plate. As shown
by Baker (1978), the number of horseshoe vortices wrapped around the roughness ele-
ment, as well as their main features, mostly depend on the aspect ratio of the roughness
element considered. However, in all of these cases, such horseshoe vortices give birth
further downstream to quasi-aligned streamwise vortices. As already explained, due to
the lift-up effect (Landahl 1990), these streamwise aligned vortices can trigger strong
transient growth of the boundary layer streaks (Joslin & Grosch 1995), strong enough to
yield their breakdown and subsequent transition to turbulence.
The receptivity of the boundary layer flow to an array of three-dimensional cylindri-
cal roughness elements and the associated transient growth of the velocity streaks have
been thoroughly investigated by various authors as Fischer & Choudhari (2004), Er-
gin & White (2006), Fransson et al. (2004, 2005), as well as Denissen & White (2008,
2009). Their major finding is that the streamwise transient growth of the induced streaks
roughly scales with the square of the roughness Reynolds number, Reh = UBl(xk, h)h/ν
(UBl being the value of the Blasius velocity profile evaluated at the roughness element’s
position xk and height h).
The crucial importance of the roughness Reynolds number in the roughness-induced
transition to turbulence had already been outlined many years earlier. Indeed, as soon as
the early 1960’s, Tani et al. (1962) had already observed experimentally that the tran-
sition to turbulence in the wake of an aspect ratio η = 1 cylindrical roughness element
is occurring in the vicinity of Reh = 600 almost independently of the other parameters
characterising the flow (provided the roughness element is totally immersed within the
boundary layer). Almost at the same time, von Doenhoff & Braslow (1961) have reviewed
most of the experimental results available back then, obtained for roughness elements
of different shape, height and spanwise spacings, and compiled them into a transition
diagram correlating the aspect ratio of the roughness element to the roughness Reynolds
number beyond which the induced flow would transition to turbulence. The von Doenhoff
& Braslow (1961) diagram clearly shows that the fundamental parameters for predict-
ing transition to turbulence past a roughness element are its aspect ratio and its height
with respect to the Blasius boundary layer profile. In particular, the height of the rough-
ness element appears to be fundamental for the development of streamwise streaks of
finite amplitude and length. The crucial role of streaks in the onset of transition has
been highlighted by Vermeersch (2009) and Arnal et al. (2011), who have developed a
model grounded on optimal perturbation theory to determine transition to turbulence
past roughness elements of any shape. In particular, they have conjectured that transi-
tion occurs when the ratio of the shear stress generated by optimal streaks, with respect
to the viscous stress, reaches a given critical value. Though promising, their approach
relies on the strong assumption of quasi-parallelism of the flow induced by the three-
dimensional roughness element, regardless of the separation zones which can be induced
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in the near-wake for large/high enough roughness elements. The same authors have also
shown that arrays of smooth roughness elements share similar features with sharp-edged
ones, both concerning stabilization of TS waves and transition to turbulence.
The receptivity of a boundary-layer flow to an array of bumps has been investigated by
Tumin & Reshotko (2005). Similarly to what has been observed for cylindrical rough-
ness elements, they found that, behind each bump, a pair of counter-rotating vortices
is generated, creating relatively high- and low-speed streaks in the wake downstream of
the bump. An investigation of the local stability of streamwise streaks developing past a
smooth, large, isolated roughness element has been carried out by Piot et al. (2008). As-
suming that the flow past the smooth roughness element evolves slowly in the streamwise
direction, they have studied its local stability properties at each streamwise location just
behind the roughness element, assessing the stabilizing effect of such a pre-streaky flow
on the growth of TS waves. The same configuration has been studied very recently by
Cherubini et al. (2013) from a global point of view. To investigate bypass transition in
the presence of a large isolated bump, these authors have searched for the optimal per-
turbation inducing the largest growth of disturbances over the fully three-dimensional
flow field surrounding this smooth roughness element. In this three-dimensional frame-
work, the optimal perturbation takes the form of a wavepacket-like structure initially
localised in the vicinity of the separation line on the top of the roughness element and
will eventually travel along the central low-speed streak induced by the roughness ele-
ment. Interestingly enough, at small target times, this optimal perturbation exhibits a
varicose symmetry, whereas at larger target times it exhibits a sinuous structure. It is
worthy to note that for the geometry they have investigated, the varicose optimal per-
turbation is the most efficient to trigger localised transition and induces hairpin vortices
once non-linearities are taken into account. However, due to the linearly stable nature
of the flow considered, the unsteadiness observed is not self-sustaining once these linear
transients have been washed out from the computational domain. In the mean time,
de Tullio et al. (2013) have investigated the roughness-induced transition in the case of
a compressible boundary layer flow using the joint application of local stability analy-
sis, parabolised stability equations and direct numerical simulations. These authors have
shown that the flows they have investigated are much more convectively unstable, be it to
varicose or sinuous perturbations, than the classic boundary layer flow. Moreover, for the
sharp-edged rectangular roughness element they considered, the varicose perturbations
exhibit larger temporal and spatial growth rates than their sinuous counterparts.
Though they provide valuable insights into the linear dynamics of the flow, stability anal-
yses as performed by Piot et al. (2008) (for bumps), de Tullio et al. (2013) (for rectangular
roughness elements), and Denissen & White (2013) (for cylinders), rely on the strong as-
sumption of a nearly parallel flow. However, the flow past three-dimensional roughness
elements exhibits some reversed flow regions where such parallel assumption can not
hold. As a consequence, for such class of flows, stability analyses relying on a parallel
flow hypothesis totally discard the influence of the region in the vicinity of the roughness
element on the stability properties of the overall flow field which, as seen by Fransson
et al. (2005), appears to be the region triggering the unsteadiness. To circumvent this
major drawback and to fully capture the instability mechanisms, one then has to turn to a
fully three-dimensional global stability framework for which no such parallel assumption
is required. Since the number of degrees of freedom involved in such formulation of the
stability problem is extremely large, fully three-dimensional global stability analysis still
is nowadays a heavy computational task. Hopefully, with the increase of computational
ressources over the past decade and the recent popularisation of new eigenvalues algo-
rithms (Edwards et al. 1994; Bagheri et al. 2009a), investigation of the linear stability
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of flows with three inhomogeneous directions has become feasible. Recently, on the case
of a jet in cross flow, Bagheri et al. (2009b) and Ilak et al. (2012) have shown that fully
three-dimensional global stability analysis is able to provide a better understanding of
the underlying instability mechanisms. To our knowledge, no such global stability analy-
sis has ever been attempted on the flow past a three-dimensional roughness element. The
aim of the present work is to provide new insights on the roughness-induced transition
using these new developments in the global stability theory. Indeed, it is believed that
fully three-dimensional global stability analysis can help us addressing several questions
among which:
(i) Can the varicose and sinuous instability mechanisms found by local stability anal-

yses, as well as the critical Reynolds number measured in experiments and numerical
simulations, be accurately recovered using a fully three-dimensional global approach?
(ii) Can one link the roughness-induced transition to a global instability of the flow

and not only to transient growth and associated convectively unstable perturbations as
widely accepted until now?
(iii) Is it possible to predict the flow’s non-linear patterns and dynamics using pieces

of information stemming from linear analyses?
The case of a cylindrical roughness element immersed within a laminar boundary layer

flow developing along a flat plate is investigated. The present paper is structured as
follows: first, in section 2 the problem under consideration and the numerical methods
used are presented. In section 3, the experimental case investigated by Fransson et al.
(2005) is reproduced numerically and its global instability is investigated. In section 4, a
parametric investigation is carried out, highlighting two instability mechanisms, a sinuous
and a varicose one, arising for roughness elements of different aspect ratio. In section 5,
direct numerical simulations revealing the non-linear evolution of these instabilities as
well as the criticality of the bifurcation associated with the sinuous one are presented.
Finally, in section 6 concluding remarks are provided.

2. Problem formulation

2.1. Governing equations

The dynamics of a three-dimensional incompressible flow are described by the incom-
pressible Navier-Stokes equations:







∂U

∂t
+ (U · ∇)U = −∇P +

1

Re
∆U

∇ ·U = 0
(2.1)

where U = (U, V,W )T is the velocity vector and P the pressure term. Dimensionless
variables are defined with respect to the height h of the cylindrical roughness element
and to the free-stream velocity U∞. Therefore, the Reynolds number is defined as Re =
U∞h/ν, with ν being the kinematic viscosity. Concerning the coordinate system, x, y
and z are defined as the streamwise, wall-normal and spanwise directions, respectively,
with x having its origin at the leading edge of the flat plate. However, since the domains
used in this work do not include the leading edge of the flat plate, it is convenient
to define a shifted streamwise axis X = x − xk, having its origin at the location xk

of the roughness element along the flat plate. A sketch of the computational domain
considered is depicted on figure 1, along with this roughness-centered coordinate system.
The cylindrical roughness element, having diameter d and height h, is thus centred in
(X, z) = (0, 0). The computational box has a streamwise extent LX = 105 (−15 6 X 6
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Figure 1. Sketch of the computational domain under consideration. The parameters defining
the geometry take the following values: h = 1, l = 15 and (Lx, Ly) = (105, 50). Only the
roughness element’s diameter d will be varied and the spanwise dimension of the domain Lz.

90), a wall-normal extension of Ly = 50, whereas the spanwise extent Lz will be varied in
the different computations as specified in the next sections. In particular, in most of the
computations, the spanwise domain length is chosen in order to make sure the roughness
element behaves as being isolated (von Doenhoff & Braslow 1961), by scaling it with
respect to the aspect ratio of the roughness element, η = d/h.

The following boundary conditions have been applied:

• at the inlet (Xin = −15), a Dirichlet boundary condition is imposed on the velocity.
• at the outlet (Xout = 90), a Neumann boundary condition is imposed on the velocity

∇U · x = 0;
• on the spanwise end planes (zside = ±Lz/2), periodic boundary conditions are im-

posed for the three components of the velocity vector;
• at the upper boundary (ytop = 50), the following conditions are applied: U = 1 and

∂V/∂y = ∂W/∂y = 0;
• finally, a no-slip boundary condition is imposed on the flat plate and the walls of

the roughness element.

Note that two other domains extending down to Xout = 30 and Xout = 60 in the
streamwise direction have been considered, whereas the inlet of the domain has been
kept at a streamwise distance l = 15 upstream the center of the roughness element (see
figure 1). However, in order to present results independent of the domain size, only the
longest domain (i.e. Xout = 90) will be considered in the present work, as discussed in
detail in Appendix B providing a numerical convergence analysis.

Calculations have been performed using the code Nek5000 developed at Argonne Na-
tional Laboratory by Fischer et al. (2008). Spatial discretisation is done by a Legendre
spectral elements method with polynomials of order 12. Depending on the aspect ratio
considered, the number of spectral elements in the mesh ranges from 10 000 for η = 1 up
to 18 800 for η = 3. The convective terms are advanced in time using an extrapolation of
order 3, whereas for viscous terms a backward differentiation of order 3 is used, resulting
in the time-advancement scheme labelled BDF3/EXT3.
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η 1 2 3
Re 1000− 1500 750− 1000 500− 800
χ 0.05 − 0.1 0.05− 0.1 0.05 − 0.1
ωc 0.25 0.5 0.5

Table 1. Typical values of the parameters χ and ωc used in the selective frequency damping
as to compute the base flows for the different cases considered.

2.2. Base flows computation

Seeking for stationary solutions Ub = (Ub, Vb,Wb)
T of the Navier-Stokes equations is a

pre-requisite to the stability analysis performed in this work. Such solutions, also called
base flows or fixed points of system (2.1), have been computed using the selective fre-
quency damping (SFD) approach introduced by Akervik et al. (2006). This technique
enables a damping of the oscillations of the unsteady part of the solution using a tempo-
ral low-pass filter. This is achieved by adding a forcing term to the right-hand side of the
Navier-Stokes equations and extending the system (2.1) with an equation for the filtered
state Ū. The extended system is then governed by the following set of equations:























∇ ·U = 0

∂U

∂t
= −(U · ∇)U−∇P +

1

Re
∆U− χ(U− Ū)

∂Ū

∂t
= ωc(U − Ū)

(2.2)

with χ being the gain of the filter and ωc its cutting circular frequency. The choice of
these two parameters is crucial for the computation of unstable base flows: the gain
χ has to be positive and larger than the growth rate σ of the instability one aims to
quench, whereas ωc has to be lower than the eigenfrequency ω of the instability (usually
ωc = ω/2). It can be shown that this extended system converges toward the equilibrium
solution Ub = (Ub, Vb,Wb)

T of the Navier-Stokes equations. Table 1 provides typical
values of χ and ωc that have been used for the base flows computations. For further
details, the reader is referred to Akervik et al. (2006).

Since the computational domain does not include the leading edge of the flat plate,
a Blasius velocity profile is imposed at inlet points. The imposed profile is chosen by
requiring that the theoretical Blasius boundary layer displacement thickness, δ∗, that
the flow would have at (X, z) = (0, 0) in the absence of the roughness element, has a
prescribed value with respect to the roughness height. The prescribed values of δ∗, as well
as the associated values of the displacement thickness Reynolds number, Reδ∗ = U∞δ∗/ν,
will be given in the next sections, allowing a comparison with the configurations used in
previous studies.

2.3. Three-dimensional global stability analysis

Linear stability analysis enables the investigation of the asymptotic time evolution of
infinitesimal perturbations in the vicinity of a given fixed point of the original system. In
the present case, one needs to use the linearised Navier-Stokes equations. The linearised
dynamics of such infinitesimal perturbations evolving onto the base flow Ub are governed
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Figure 2. Block-diagram of the Arnoldi algorithm used.

by the following set of equations:














∂u

∂t
= −(u · ∇)Ub − (Ub · ∇)u−∇p+

1

Re
∆u

∇ · u = 0

(2.3)

where u = (u, v, w)T is the perturbation velocity vector and p the perturbation pressure.
This set of equations is subject to the same boundary conditions as system (2.1) with
the inlet Dirichlet boundary condition being a zero-velocity condition. Introducing the
perturbation state vector q = (u, p)T , one can recast the previous set of equations into
the following linear dynamical system form:

B∂q

∂t
= Jq (2.4)

where B is a singular mass matrix, and J is the Jacobian matrix of the Navier-Stokes
equations (2.1) linearised around the fixed point Ub. Once projected onto a divergence-
free vector space, this system simply reads:

∂u

∂t
= Au (2.5)

with A being the projection of the Jacobian matrix J onto the divergence-free vector
space. Because the number of degrees of freedom involved in the computation is far too
large to enable explicit storage of A and thus direct computation of its eigenvalues, a
time-stepper approach as introduced by Edwards et al. (1994) and Bagheri et al. (2009a)
is used. This method, based on an Arnoldi algorithm and on the formal solution u(∆t) =
eA∆tu0 to equation (2.5), aims at computing the eigenpairs of the exponential propagator
M = eA∆t instead of those of the Jacobian matrix A. Indeed, though the Jacobian
matrix A cannot be explicitly computed, the action of the exponential propagator onto
a given vector can be easily approximated by time-marching the linearised Navier-Stokes
equations from t = 0 to t = ∆t. At iteration k, the basic Arnoldi iteration thus reads:

MVk ≃ VkHk (2.6)

with Vk being an orthonormal set of vectors spanning a Krylov subspace of dimension
k onto which M is projected, and Hk being the associated projection. The Hessenberg
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Case 1 Case 2 Case 3 Case 4

δ∗(xk) 0.6026 0.5547 0.5425 0.5310
Reδ∗ 281 305 312 319
Re 466 550 575 600

Stability Stable Stable Unstable Unstable

Table 2. Summary of the different cases considered in Section 3. For all of them, the roughness
elements are located at a distance xk = 57.14 from the leading edge, separated by Lz = 10 and
have an aspect ratio η = 3.

matrix Hk resulting from this Arnoldi iteration is a small k× k matrix whose eigenpairs
(Σ,X), also called Ritz pairs, can be directly computed and are a good approximation
of those of M. Ritz pairs are linked to the eigenvalues and eigenvectors (Λ,Q) of the
Jacobian matrix A by the following relationship:

Λ =
log(Σ)

∆t
, Q = VX (2.7)

with Λ = σ+iω, σ being the growth rate and ω the circular frequency. The block-diagram
of the complete algorithm is depicted on figure 2. It can be seen as an alternative to the
algorithm proposed by Barkley et al. (2008) where the exit condition has been simplified.
All of the results presented throughout this paper were obtained using a Krylov subspace
of dimension 500 and a sampling period ∆t = 0.625 enabling good convergence of the
eigenvalues with circular frequency equals to 2.5 and lower. Concerning the convergence
of the procedure with respect to other numerical parameters, more details are given in
Appendix B.

3. The Fransson experiment

Following the theoretical work by Cossu & Brandt (2004), Fransson et al. (2004, 2005,
2006) have conducted a series of experiments demonstrating the ability for finite am-
plitude streaks to stabilise the Tollmien-Schlichting waves and thus delay the natural
transition of the boundary layer flow. With this aim, they have placed an array of rough-
ness elements, having an aspect ratio η = 3, located at xk = 57.14 from the leading edge
of a flat plate and separated one from another by a spanwise distance Lz = 10 (Frans-
son et al. 2005). Despite the stabilising effect of the streaks on the TS waves, transition
was however observed to take place right downstream the roughness elements beyond a
critical Reynolds number. In this section, the case described by Fransson et al. (2005) is
reproduced numerically, in order to ascertain that fully three-dimensional global insta-
bility analysis is able to predict with reasonable accuracy the critical Reynolds number
experimentally obtained by the previously mentioned authors. The prescribed Reynolds
numbers as well as the displacement thickness δ∗(xk) are given in table 2.

3.1. Base flow

Figure 3 depicts the base flow obtained for (Re,Reδ∗ , η) = (466, 281, 3), i.e. the same
setup as the reference one in Fransson et al. (2005). It exhibits the two major features of
all the steady solutions that have been investigated within the present work: an upstream
and a downstream reversed flow region (visualised by the Ub = 0 isosurface in the left
frame), as well as a system of multiple vortices stemming from the upstream recirculation
zone, wrapping around the roughness element and eventually getting almost aligned
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(a) (b)

Figure 3. Computed base flow for (Re,Reδ∗ , η) = (466, 281, 3). (a) Visualisation of the vortical
system using streamlines and isosurfaces of the upstream and downstream reversed flow regions
(visualised by the Ub = 0 isosurface). (b) Close-up of the upstream vortical system highlighted
by streamlines in the symmetry plane coloured with the velocity magnitude.

with the streamwise direction of the flow as shown by the streamlines. The topology of
this upstream vortical system has been investigated experimentally by Baker (1978) and
exhibits between one and three counter-rotating vortex pairs. According to Baker (1978),
the particular vortical topology chosen by the flow essentially depends on the Reynolds
number and on the ratio of the roughness element’s diameter d over the boundary layer
displacement thickness δ∗. This vortical system can be seen on figure 3(b) depicting
streamlines in the symmetry plane. The impact of this vortical system on the boundary
layer flow is as follows:

(i) Upstream the roughness element, all of the vorticity is in the spanwise direction.
(ii) Once the flow encounters the roughness element, the upstream spanwise vorticity

rolls up, forming the vortical system observed in figure 3(b).
(iii) It then wraps around the roughness element and is transferred into streamwise

vorticity further downstream thus creating the legs of the horseshoe vortices.

The legs of these horseshoe vortices being streamwise-aligned vortices, high speed fluid
is transported from the outer region of the boundary layer toward the wall, whereas low
speed fluid is transported away from the wall toward the outer region of the bound-
ary layer. This transport of momentum, known as the lift-up effect, thus gives birth to
streamwise velocity streaks (Landahl 1990).

Figure 4 depicts the spatial distribution of the central low-speed region and outer
streaks induced by the array of roughness elements at various streamwise stations. These
streaks have been identified using the deviation of the base flow streamwise component
from the corresponding Blasius boundary layer flow (UBl), as used by Fischer & Choud-
hari (2004), i.e. ū = Ub−UBl. As shown on figure 4(a), the roughness element generates a
central low-speed region created by the streamwise velocity deficit induced by the rough-
ness element and a pair of high- and low-speed streaks induced by the legs of the primary
horseshoe vortex on each side. On the one hand, the central low-speed region appears to
fade away relatively rapidely in the streamwise direction, while on the other hand the
outer pairs of streaks appear to sustain over quite a long distance. This can be better
visualised on figures 4(b) to (d) depicting contours of the streamwise velocity deviation
in various X = constant planes. It clearly appears from these figures that, while the
amplitude of the central low-speed region has dramatically decreased as soon as X = 40,
the amplitude of the outer low- and high-speed streaks varies very little. Such behavior
has already been observed experimentally by Fransson et al. (2004) (see figure 2 of the
cited paper).
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(a)

(b) X = 20 (c) X = 40 (d) X = 80

Figure 4. Streamwise evolution of the streaks induced by the array of roughness elements for
(Re,Reδ∗) = (466, 281): top view of the ū = ±0.3 surfaces (black and white), with ū = Ub−UBl

being the deviation of the base flow from the Blasius boundary layer flow (a); slices extracted
at X = 20 (b), X = 40 (c) and X = 80 (d). The shaded contours range from ū = 0.3 (red) to
ū = −0.3 (blue), whereas the solid lines depict the base flows streamwise velocity isocontours
from Ub = 0.1 to 0.99.

3.2. Global stability

In order to investigate the early transition observed in the experiment (Fransson et al.
2005), global stability analyses of various base flows are conducted. All of the cases
considered are reported in table 2. Figure 5 depicts the spectra of eigenvalues for Re =
550 (Reδ∗ = 305) and Re = 575 (Reδ∗ = 319). It is clear from these eigenspectra
that the flow experiences a Hopf bifurcation for 550 < Rec < 575 due to an isolated
pair of complex conjugate eigenvalues of the linearised Navier-Stokes operator moving
into the upper-half complex plane. A linear interpolation provides a critical Reynolds
number Rec = 564 ((Reδ∗)c = 309) only 6% larger than the critical Reynolds number
experimentally obtained by Fransson et al. (2005). This good agreement for the value
of the critical Reynolds number strongly suggests that the transition observed in the
experiment might be the consequence of a three-dimensional global instability of the
flow. Comparison of the dominant frequency in the flow dynamics however turned out
to be unconclusive essentially because the frequency reported by Fransson et al. (2005)
has been measured far beyond the end of the computational domain considered herein
(X ≃ 175 compared to Xout = 90).

The shape of the associated unstable global mode is depicted on figure 6. As one can
see on figure 6(a), this mode takes the form of streamwise alternated patches of positive
and negative velocity exhibiting a varicose symmetry with respect to the spanwise mid-
plane. To get a better insight of the structure of the mode and of its location with respect
to the base flow’s features, figure 6 provides slices of its spatial support in the X = 23 (b)
and the X = 40 (c) planes. The mode is identified using its streamwise velocity contours
(shaded) whereas the solid black lines depict the baseflow Ub isocontours. These figures
make it clear that, though the mode is initially located along the central low-speed region,
it then contaminates almost the whole spanwise extent of the domain before fading away
for X > 60. Moreover, for all of the streamwise planes considered, the maximum of the
mode is located along the shear layers delimiting the central low-speed region and the
streaks.
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Figure 5. Eigenspectra of the linearised Navier-Stokes operator. Blue dots show the eigenvalues
for (Re,Reδ∗) = (550, 305), whereas green triangles show the ones for (Re,Reδ∗) = (575, 312).

(a)

(b) X = 23 (c) X = 40

Figure 6. Visualisation of the streamwise velocity component of the leading unstable global
mode at (Re,Reδ∗) = (575, 312). (a) Top view of isosurfaces depicting ±10% of the mode’s
maximum streamwise velocity. Slices in the (b) X = 23 plane (i.e., where the mode achieve
its maximum amplitude) and in the (c) X = 40 plane. Both figures (b) and (c) have been
normalised by the local maximum velocity. The solid lines depict the base flows streamwise
velocity isocontours from Ub = 0.1 to 0.99.

4. Parametric investigation

In order to get a better understanding of the physical mechanisms underlying the
roughness-induced transition, a parametric investigation is conducted. As to avoid the
potential interaction between roughness elements, the spanwise extent of the computa-
tional domain has been changed from Lz = 10 to Lz = 8η (with η being the aspect ratio
of the roughness element considered) such that they behave as being isolated no matter
the aspect ratio considered. Moreover, for the sake of clarity, the theoretical displace-
ment thickness of the incoming Blasius boundary layer at the position of the roughness
element is kept equal to δ∗(xk) = 0.6883 (the boundary layer thickness being fixed at
δ99(xk) = 2) throughout this investigation. This allows to isolate the influence of changes
in the Reynolds number only and not a mixed combination of changes in the Reynolds
number and displacement thickness at the same time. Finally, the aspect ratio η of the
roughness elements considered will be varied from η = 0.85 up to η = 3, while the
Reynolds number ranges from Re = 600 up to Re = 1250. Table 3 summarises most of
the different cases treated during this parametric investigation.
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η 1-3 1-3 1-3 1-2 1-2 1 1

Re 600 700 800 900 1000 1100 1250
xk 96 112 128 144 160 176 200

Reδ∗ 413 482 551 620 688 757 860

Table 3. Location xk of the roughness element along the flat plate such that δ∗(xk) = 0.6883
and the associated Reynolds numbers Re,Reδ∗ for most of the different cases considered in
Section 4’s parametric investigation.

4.1. Base flow

4.1.1. Influence of the Reynolds number

The influence of the Reynolds number Re on the base flow can be assessed from
figures 7 and 8. Figures 7(a) and (b) provide slices of the streamwise velocity component
of the base flow in the symmetry plane for (Re, η) = (600, 1) and (Re, η) = (1250, 1),
respectively. It can be seen that when increasing the Reynolds number, the shape of
the reversed flow regions remains almost unchanged. The main impact on the flow of
an increase of the Reynolds number, and hence a decrease of the effect of viscosity, is
however to strengthen the gradients as can be assessed from the stronger deformation
of the iso-contours in figure 7(b). Increasing the Reynolds number also has an effect
on the streaks induced by the vortical system identified previously. As can be seen on
figure 8(a) in the lower Reynolds number case, the central low-speed streak induced by the
roughness element’s blockage is fading away quite rapidly in the streamwise direction and
one can even observe a merging of the two outer high-speed streaks resulting in only three
streaks near the outflow: a central high-speed streak flanked with two low-speed ones.
The merging of the high-speed streaks and the resulting pattern near the outflow can be
better observed by visualizing the streamwise velocity contours on differentX = constant
planes, as provided in figure 9(a). A very similar behaviour has already been observed
experimentally by Fransson et al. (2004) in a highly subcritical configuration. On the
other hand, in the higher Reynolds number case shown in figures 8(b) and 9(b), the
decrease of the viscosity’s effect allows the central low-speed region to sustain over a much
longer streamwise extent and prevents, at least in the computational domain considered,
the merging of the two high-speed streaks.

In both cases, the amplitude of the different streaks has been measured from X = 10,
i.e. sufficiently far from the roughness element such that the strongly non-parallel effects
induced by the reversed flow region can be discarded. Though the amplitude of the central
low-speed region decays monotically in the streamwise direction for both cases, the initial
amplitudes are quite different: miny,z(ū) = −0.21 for Re = 600 and miny,z(ū) = −0.47
for Re = 1250 at the streamwise position X = 10. On the other hand, the amplitude of
the outer streaks varies between ±0.14 for Re = 600 and roughly ±0.3 for Re = 1250.
From the work of Andersson et al. (2001), it would thus appear that the Re = 600 case
is stable while the Re = 1250 case might be prone to streaks instability.

4.1.2. Influence of the aspect ratio

Figures 10(a) and (b) provide slices of the streamwise component of two base flows in
the spanwise mid-plane obtained for the same Reynolds number and two different aspect
ratios, namely (Re, η) = (600, 2) and (Re, η) = (600, 3), respectively. As one could have
expected, due to the larger blockage induced by the roughness element, the reversed flow
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(a) (Re, η) = (600, 1) (b) (Re, η) = (1250, 1)

Figure 7. Slices in the symmetry plane of different base flows. The dashed red line depicts the
spatial extent of the reversed flow regions, whereas the thin solid black lines are the streamwise
velocity contours ranging from 0.1 up to 0.99.

(a) (Re, η) = (600, 1), ū = ±0.075

(b) (Re, η) = (1250, 1), ū = ±0.2

Figure 8. Top view of the streaks induced by the roughness elements. Low-speed (white) and
high-speed streaks (black) are depicted using isosurfaces of the streamwise velocity deviation of
the baseflows from the theoretical Blasius boundary layer flow, ū = Ub − UBl.

(a) (Re, η) = (600, 1)

(b) (Re, η) = (1250, 1)

Figure 9. Visualisation of the streaks pattern in several different streamwise planes. On fig-
ure (a), the color table ranges from ū = −0.2 (blue) to ū = 0.2 (red), while it ranges from
ū = −0.4 (blue) to ū = 0.4 in figure (b). The solid lines depict the base flows streamwise
velocity isocontours from Ub = 0.1 to 0.99.

regions (depicted by the dashed red line) in the case of the η = 3 roughness element have
a longer upstream and downstream extent than for the roughness elements of aspect
ratio η = 1 and 2 (compare with figure 7(a) as well). Moreover, increasing the roughness
element’s aspect ratio also slightly strengthens the gradients of the base flows. It is also
worth noting that, when increasing the spanwise blockage given by the cylinder, more and
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(a) (Re, η) = (600, 2) (b) (Re, η) = (600, 3)

Figure 10. Slices in the symmetry plane of different base flows. The dashed red line depicts the
spatial extent of the reversed flow regions, whereas the thin solid black lines are the streamwise
velocity contours ranging from 0.1 up to 0.99.

(a) (Re, η) = (600, 2), ū = ±0.2

(b) (Re, η) = (600, 3), ū = ±0.2

Figure 11. Top view of the streaks induced by the roughness elements. Low-speed (white) and
high-speed streaks (black) are depicted using isosurfaces of the streamwise velocity deviation of
the baseflows from the theoretical Blasius boundary layer flow, ū = Ub − UBl.

more upstream spanwise vorticity has to wrap around the roughness element, influencing
the strength of the vortical system identified previously and, hence, the amplitude of
the induced low- and high-speed streaks further downstream. These can be visualised on
figure 11 where the deviation from the theoretical Blasius boundary layer of the steady
equilibrium solutions for (Re, η) = (600, 2) and (Re, η) = (600, 3) are shown. Though for
the present flows no merging of the high-speed streaks is observed, increasing the aspect
ratio of the roughness element allows once again the central low-speed region to sustain
on a longer streamwise extent indicating that the amplitude of the streaks is stronger.

As previously, the amplitude of the different streaks has been measured from X = 10
such that one can almost neglect the strongly non-parallel influence of the roughness
element. While the central low-speed region has an amplitude of −0.4 at X = 10 for
the η = 2 roughness element, its amplitude is −0.54 for the η = 3 case. However, the
amplitude of the outer streaks roughly varies between ū = ±0.27, for η = 2, and ū = ±0.4,
for η = 3. Once again, from the work of Andersson et al. (2001), it would thus appear
that both cases might be prone to streaks local instabilities.
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(a) (Re, η) = (600, 2)

(b) (Re, η) = (600, 3)

Figure 12. Visualisation of the streaks pattern in several different streamwise planes. The color
table ranges from ū = −0.4 (blue) to ū = 0.4 (red). Solid lines depict the base flows streamwise
velocity isocontours from Ub = 0.1 to 0.99.

4.2. Global stability

Figure 13 depicts the eigenspectra obtained for three of the cases considered. For all of
them, the flow experiences a Hopf bifurcation due to an isolated complex conjugate pair
of eigenvalues moving toward the upper-half complex plane. These isolated modes show
a different type of structure depending on the aspect ratio considered. In particular, a
sinuous global mode is observed for η = 0.85 and η = 1 (see the green dot in figure 13
(a)), whereas a varicose mode is obtained for η = 2 and η = 3 (see figures 13(b-c)).
Shortly below, all these isolated eigenvalues are followed by a branch of modes exhibiting
exclusively a varicose symmetry. For η = 3, this branch is closer to the isolated mode, so
that a second unstable mode can be observed already at Re = 700. However, since the
frequency and the structure of these two unstable modes are very similar, this does not
result in strong changes on the related route to transition. It is worthy to notice that,
whereas the isolated eigenvalues do not seem to be to very sensitive to the streamwise
extent of the computational domain (provided Xout > 60), the branches of eigenvalues
on the other hand appear to be extremely sensitive and tend to move toward the upper-
half complex plane as the streamwise length of the domain is reduced. For the longest
domain considered (i.e. Xout = 90), table 4 provides the critical Reynolds numbers and
the symmetry of the associated leading global mode for roughness elements of various
aspect ratio η. Figure 14 depicts the leading unstable mode for each of the aspect ratios
considered, at different Reynolds numbers. Since for all of these modes the streamwise
component is at least almost 4 times larger than the other components, only the real
part of this component is depicted. As can be seen, all the modes are mostly localised
along the central low-speed region, differently from the case of non-isolated cylinder
analysed in the previous section for which a large part of the mode migrates on the
outer streaks downstream of the roughness element. The crucial importance of such
low-speed regions in the roughness-induced transition process to turbulence has already
been underlined by previous studies such as the experimental work by Asai et al. (2002,
2007), or the numerical investigation by Brandt (2007) and Denissen & White (2013).
More recently, several different authors have observed a similar behaviour in the case of
roughness-induced compressible boundary layer flows (Bernardini et al. 2012; Balakumar
& Kegerise 2013; Iyer & Mahesh 2013; de Tullio et al. 2013; Subbareddy et al. 2014).
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(c) (Re, η) = (700, 3)

Figure 13. Spectrum of eigenvalues for different cases considered in the present work. Red
squares denote varicose modes whereas the green dot stands for a sinuous one.

η 0.85 1 2 3 Fransson et al. (2005)
Rec 910 1040 805 656 564
Rec

h 712 813 630 513 519
Symmetry S S V V V

Table 4. Critical Reynolds number Rec and symmetry of the associated leading unstable global
mode for various aspect ratio η. S stands for a sinuous global mode, and V for a varicose one.

It is obvious from table 4 and figure 14 that an exchange of symmetry of the leading
unstable global mode occurs as the aspect ratio of the roughness element is increased. In-
deed, whereas sinuous modes are found to be the dominant instability for thin cylindrical
roughness elements (η 6 1), the varicose global instability turns out to be the dominant
one when roughness elements of larger aspect ratio (η > 2) are considered. This exchange
of symmetry of the leading unstable mode beyond a given threshold of the roughness el-
ement’s aspect ratio had already been underlined experimentally by Sakamoto & Arie
(1983) and Beaudoin (2004). The former authors have investigated the nature of the
vortices shed periodically from prismatic and cylindrical roughness elements immersed
within a turbulent boundary layer. For thin roughness elements, they have reported a
shedding of von Kármán (sinuous) vortices, whereas they have labelled vortices shed
from larger roughness elements as being arch-type vortices exhibiting a varicose symme-
try. Though the present setup is different, due to the laminar nature of the incoming
boundary layer flow, results from global stability analyses regarding the spatial structure
of the dominant eigenmode are in qualitatively good agreement with their experimental
observations, as it will shown in more detail in Section 5 by direct numerical simulations.

4.2.1. Analysis of the modes

Regarding the sinuous mode, its spatial structure has already been shown in fig-
ure 14(a) and (b). As one can see, it consists in positive and negative patches of veloc-
ity mostly localised along the central low-speed region. Its streamwise and wall-normal
components are exhibiting a sinuous symmetry with respect to the spanwise mid-plane,
whereas its spanwise component exhibits a varicose symmetry with respect to the same
plane (not shown). To get a better insight of the structure of the mode and of its location
with respect to the base flow’s features, figure 15(a) provides a slice of it in the X = 25
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(a) (Re, η) = (1250, 0.85)

(b) (Re, η) = (1125, 1)

(c) (Re, η) = (900, 2)

(d) (Re, η) = (700, 3)

Figure 14. Real part of the leading unstable mode streamwise component with increasing
roughness element’s aspect ratio η from top to bottom, and different Reynolds numbers indicated
within the figure. The isosurfaces depict u = ±10% of the maximum amplitude of the modes,
whereas open black circles denote the location of the roughness elements.

plane for (Re, η) = (1125, 1). The mode is identified using its streamwise velocity con-
tours (shaded) whereas the solid black lines depict the baseflow Ub isocontours. The fully
three-dimensional shear layer developing around the velocity streaks, here depicted by
the red dashed line, is identified using the points of null curvature in the Ub distribution,
i.e. ∂2Ub/∂y

2 + ∂2Ub/∂z
2 = 0. It can be seen that the regions of maximum amplitude of

the mode are located on the flanks of the central low-speed region along its shear layer.
Such particular location, where the wall-normal and spanwise gradients of the base flow
are relatively strong, let us think that this sinuous global instability is likely to extract the
energy for its growth from the transport of these two shears along the central low-speed
region, as it will be shown in detail in subsection 4.3.

The second type of global instability identified from figures 14(c) and (d) is a varicose
global instability. As for its sinuous counterpart, this second family of unstable modes
is essentially localised along the central low-speed region and consists in streamwise al-
ternated patches of positive and negative velocity. The major difference is however the
symmetry of the mode: its streamwise and wall-normal components now exhibit a vari-
cose symmetry with respect to the spanwise mid-plane, whereas its spanwise component
exhibits a sinuous symmetry (not shown). As previously, in order to gain a better under-
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(a) (Re, η) = (1125, 1) (b) (Re, η) = (850, 2)

Figure 15. Slice of the streamwise component of the sinuous unstable global mode (a) and
varicose global mode (b) in the X = 25 plane identified by the shaded red and blue contours.
Solid lines depict the base flows streamwise velocity isocontours from Ub = 0.1 to 0.99, whereas
the red dashed line stands for the location of the shear layer identified by the points of null
curvature (i.e. ∂2Ub/∂y

2 + ∂2Ub/∂z
2 = 0).

standing of the mode structure, a slice of it in the streamwise X = 25 plane is depicted
on figure 15(b) for (Re, η) = (850, 2). As for its sinuous counterpart, the varicose mode
is essentially located along the shear layer delimiting the central low-speed region. It is
worthy to note however that, for the set of parameters considered here, small non-zero
patches of velocity are visible on the shear layers of the lateral low-speed streaks as well.
Once again, such location of the mode let us conjecture that it essentially extracts the
energy necessary for its growth from the transport of the base flow streamwise compo-
nent shears along the whole shear layer. One must also be aware that all of the modes
belonging to the branches of eigenvalues observed in the spectra depicted on figure 13
share common features with this particular varicose mode.

It is worthy to note finally that, relatively far from the roughness element, the shapes
of these global modes visualized in different X = constant planes are very similar to
that found by Brandt (2007) and more recently by de Tullio et al. (2013) and Denissen &
White (2013) using a local stability approach. Indeed, due the strong predominance of the
base flow streamwise component and its nearly parallel nature far from the roughness
element, it is expected that the two approaches, global and local, give similar results
regarding the shape of the modes in the almost parallel parts of the flow. However, the
critical Reynolds numbers can be greatly over- or under-predicted when the non-parallel
flow regions in the vicinity of the roughness element are not taken into account, as it will
be discussed in subsection 4.4.

4.3. Perturbation kinetic energy budget

Aiming to get a better understanding of the mechanisms yielding the flow to become
unstable and to understand how and where the sinuous and varicose unstable global
modes do extract their energy, the transfer of kinetic energy between the base flow and
the global modes is investigated. Similar analysis has already been conducted in a local
framework by Brandt (2007). Calculating this kinetic energy transfer has proven to be
very helpful in order to get a better insight of the instability mechanisms. The kinetic
energy rate of change is given by the Reynolds-Orr equation:

∂E

∂t
= −D +

9
∑

i=1

∫

V

IidV (4.1)

where the total kinetic energy and the total dissipation in the computational domain’s
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volume V are given by:

E =
1

2

∫

V

u · u dV, D =
1

Re

∫

V

∇u : ∇u dV (4.2)

and where the integrands Ii which represent the production terms are:

I1 = −u2
∂Ub

∂x
, I2 = −uv

∂Ub

∂y
, I3 = −uw

∂Ub

∂z

I4 = −uv
∂Vb

∂x
, I5 = −v2

∂Vb

∂y
, I6 = −vw

∂Vb

∂z

I7 = −wu
∂Wb

∂x
, I8 = −wv

∂Wb

∂y
, I9 = −w2

∂Wb

∂z

(4.3)

The sign of the different integrands Ii indicates whether the local transfer of kinetic
energy associated to them acts as stabilising (negative) or destabilising (positive). For
the sake of comparison, all the kinetic energy budgets presented in this section have been
normalised by the dissipation D.

4.3.1. Sinuous instability

Figures 16(a) and (b) provide the integral over the whole computational domain of the
production terms I1 to I9 along with the diffusion term D for (Re, η) = (1125, 1) and
(Re, η) = (1250, 1), respectively. As one can see, only the base flow streamwise component
related shears (

∫

V
I1 dV ,

∫

V
I2 dV and

∫

V
I3 dV ) provide a significant contribution to the

energy transfer. More particularly, as expected from the analysis of the shape of the mode
in the X = 25 plane shown in figure 15(a), this sinuous instability essentially extracts
its energy from the work of the Reynolds stresses uv against the wall-normal gradient
of the base flow streamwise component ∂Ub/∂y (I2), as well as from the work of uw
against the spanwise gradient ∂Ub/∂z (I3) no matter the Reynolds number considered.
Figures 16(c) and (d) provide the streamwise evolution of

∫

y,z
I2 dydz (red dashed line)

and
∫

y,z
I3 dydz (blue solid line) for the two Reynolds numbers considered. As one can

see, in both cases, a large peak in the streamwise evolution of the spanwise production
term occurs in the vicinity of the downstream reversed flow region. The major impact
of an increase of the Reynolds number beyond its critical value is to greatly amplify the
amount of energy extracted from this near-wake region, whereas the energy extraction
process further downstream seems to be only slightly influenced. This might indicate
that the instability mechanism linked to the sinuous mode finds its origin mostly in the
near wake region, as will be further discussed in subsection 4.4. The spatial distribution
of the I2 and I3 production terms in the X = 25 plane for (Re, η) = (1125, 1) are
depicted on figures 17(a) and (b), respectively. As one can see, the sinuous global mode
mostly extracts its energy spatially from the lateral parts of the central low-speed region’s
delimiting shear layer. Moreover, the spatial distribution in the y = 0.75 horizontal
plane of I3 is depicted on figure 17(c). As highlighted by the kinetic energy budget, this
production term appears to be very active right downstream the roughness element as
well as further downstream along the sides of the central low-speed region.

4.3.2. Varicose instability

Results for the varicose instability are summarised in figures 18(a) and (c) for (Re, η) =
(850, 2) and figures 18(b) and (d) for (Re, η) = (1000, 2). At Re = 850, slightly above
the critical Reynolds number, one can see on figure 18(a) that, though

∫

V
I2 dV gives

a small non-zero contribution to the energy extraction process, the mode surprisingly
extracts most of its energy from the work of uw against the spanwise gradient of the
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Figure 16. Top: Sinuous unstable mode’s kinetic energy budget integrated over the whole
domain. Bottom: Streamwise evolution of the production terms

∫
y,z

I2 dydz (red dashed line)

and
∫
y,z

I3 dydz (blue solid line).

(a) I2 = −uv∂U/∂y (b) I3 = −uw∂U/∂z

(c) I3 = −uw∂U/∂z

Figure 17. Top: Spatial distribution of the I2 = −uv∂Ub/∂y (a) and I3 = −uw∂Ub/∂z (b)
production terms in the plane X = 25 for (Re, η) = (1125, 1). Solid lines depict the base flows
streamwise velocity isocontours from Ub = 0.1 to 0.99, whereas the red dashed lines stand for
the location of the shear layer. (c) Spatial distribution of I3 in the y = 0.75 horizontal plane.

base flow streamwise component ∂Ub/∂z, whereas in a local framework, varicose modes
are mostly linked to the transport of the wall-normal gradient. Looking at the stream-
wise evolution of these two terms depicted on figure 18(c) helps us to understand this
surprising dominance of

∫

V
I3 dV . Indeed, whereas

∫

y,z
I3 dydz is positive throughout

the whole streamwise extent of the domain, one can see that
∫

y,z
I2 dydz actually acts

as slightly stabilising in a large portion of the computational domain (from X ≃ 40 up
to X ≃ 70). This can be explained by the features of the associated base flow: while the
spanwise gradient remains more or less constant throughout the computational domain,
the destabilising effect of the wall-normal gradient induced by the central low-speed re-
gion quickly drops as the central low-speed region starts to fade away beyond X ≃ 40.
Figures 18(b) and (d) provide the same analysis for (Re, η) = (1000, 2). It is clear from
the global kinetic energy budget depicted on figure 18(b) that, whereas the contribution
of

∫

V
I3 dV does not change much, the contribution of

∫

V
I2 dV significantly increases.

This is also clearly visible on figure 18(d) where the region within which the wall-normal
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Figure 18. Top: Varicose unstable mode’s kinetic energy budget integrated over the whole
domain. Bottom: Streamwise evolution of the production terms

∫
y,z

I2 dydz (red dashed line)

and
∫
y,z

I3 dydz (blue solid line).

shear was acting as stabilising at lower Reynolds numbers has now disappeared. This be-
haviour can once again be explained by the features of the associated base flow. Indeed,
as shown in section 3.1.1, increasing the Reynolds number yields a strengthening of the
wall-normal gradients and causes the central low-speed region to sustain on a much longer
streamwise extent. As a consequence, the varicose perturbation can then take advantage
of this to extract more energy from the wall-normal gradient of Ub over a longer stream-
wise distance. Two other major differences with respect to the sinuous instability can
also be recovered from these kinetic energy transfer analyses. First of all, figures 19(a)
and (b) provide the spatial distribution of the I2 and I3 integrands in the streamwise
X = 25 plane. Whereas the sinuous instability is essentially extracting its energy from
the lateral parts of the low speed region’s shear layer, one can see in the present case that
the varicose mode seems to be an instability of the fully three-dimensional shear layer as
a whole. More importantly, no peak of energy extraction can be found in the near wake
region for the varicose instability as highlighted by the curves on figures 18(c) and (d)
as well as on the spatial distribution of the I3 term in an horizontal plane as shown on
figure 19(c).

4.4. Wavemaker

Investigating the perturbation kinetic energy budget has proven helpful to get a better
understanding of the instability mechanisms. Yet, such analysis provides only limited
information about the core region of the instability, i.e. the region known as the wave-
maker. The concept of wavemaker has been introduced by Giannetti & Luchini (2007)
and Marquet et al. (2008) where it has been illustrated on the global instability of the
two-dimensional cylinder flow. It enables one to identify the most likely region for the
inception of the global instability under consideration. Following the definition given by
Giannetti & Luchini (2007), the wavemaker is given as the overlap of the direct and
adjoint modes:

ζ(x, y, z) =
‖u(x, y, z)‖‖u†(x, y, z)‖

〈u†,u〉 (4.4)

where u† is the adjoint of the global mode considered. For the set of adjoint equations
and visualisations of the adjoint sinuous and varicose modes, the reader is refered to
appendix A. Figures 20 depict the wavemaker region for (a) the sinuous instability and
(b) the varicose one, respectively. It is clear from these figures that the sinuous and
varicose instabilities have very different sensitivity regions.
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(a) I2 = −uv∂U/∂y (b) I3 = −uw∂U/∂z

(c) I3 = −uw∂U/∂z

Figure 19. Spatial distribution of the I2 = −uv∂Ub/∂y (a) and I3 = −uw∂Ub/∂z (b) production
terms in the plane X = 25 for (Re, η) = (850, 2). Solid lines depict the base flows streamwise
velocity isocontours from Ub = 0.1 to 0.99, whereas the red dashed lines stand for the location
of the shear layer. (c) Spatial distribution of I3 in the y = 0.75 horizontal plane.

Sinuous instability: As shown on figure 20(a), the wavemaker of the sinuous global
mode is exclusively localised within the downstream reversed flow region, having its
maximum values along the flanks of the recirculation bubble, very similarly to what is
found for a two-dimensional cylinder flow (compare with figure 17 in Giannetti & Luchini
(2007)). Once combined with the knowledge acquired from the kinetic energy analysis,
it thus appears that the sinuous global mode extracts its energy from two different
underlying instability mechanisms:
(i) First, a global instability of the downstream reversed flow region takes place. Ac-

cording to the nature of the mode and the location of its wavemaker, the sinuous global
mode seems to be related to the von Kármán global instability encountered in a super-
critical two-dimensional cylinder flow (Giannetti & Luchini 2007; Marquet et al. 2008)
(ii) Then, due to the spatially convective nature of the central low-speed region, the

sinuous mode experiences weak spatial convective growth before eventually fading away.
It thus appears from these results that the sinuous global instability observed in the

present investigation is very different from the sinuous instability of optimal streaks
underlined by Andersson et al. (2001).

Varicose instability: It is clear from figure 20(b) that the core region of the varicose
instability is quite different from that of the sinuous one. Indeed, its wavemaker is not
only localised within the downstream reversed flow region but also extends along the top
of the central low-speed region. This spatial extent further highlights the key role of the
central low-speed region and outer streaks on this global instability. However, despite
its elongated nature, it is worthy to note that the amplitude of the varicose wavemaker
within the downstream reversed flow region still is almost ten to fifteen times larger than
that within the wake of the roughness element. From these elements, it thus appears
that:
(i) The varicose mode finds its roots in a global instability of the downstream reversed

flow region. However, based on the kinetic energy budget, this particular region appears
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(a) (Re, η) = (1125, 1)

(b) (Re, η) = (900, 2)

Figure 20. Visualisation of the wavemaker region of the leading mode for (a) the sinuous
instability in the y = 0.5 plane and (b) the varicose instability in the z = 0 plane, respectively.
The red dashed lines depict the spatial extent of the reversed flow region.

to behave essentially as a wave generator and plays very little role in the energy extraction
process of the varicose instability.
(ii) Once generated from the wavemaker, the varicose global mode then experiences

large spatial transient growth along the central low-speed region induced by the roughness
element that dominates the whole energy budget.
As will be shown in section 5.1, such varicose global instability non-linearly seems to

give rise to hairpin vortices shed directly from the roughness element. It thus appears
that the linear mechanism identified from the perturbation kinetic energy and wavemaker
analyses of this varicose global instability is similar to the one proposed by Acarlar
& Smith (1987) for the creation of hairpin vortices right downstream a hemispheric
protuberance, i.e. a small roll-up of the downstream shear layer that is then convected
by the flow and greatly amplified along the central-low speed region, eventually giving
birth to a hairpin vortex by non-linear effects.

5. Non-linear evolution

5.1. Varicose global instability

In order to have a glimpse of the non-linear evolution of the varicose global instability
identified previously, a direct numerical simulation (DNS) of the Fransson’s setup already
introduced in section 3 is conducted for Re = 575, for which the global stability analysis
of the base flow predicts that only a single varicose global mode is unstable. The non-
linear Navier-Stokes equations have been initialised using the base flow solution and are
marched in time until a statistically steady state has been reached. Figure 21(a) shows
the streamwise velocity signal recorded by a probe located at (X, y, z) = (10, 0.5, 0), while
figure 21(b) presents the associated Fourier spectrum. It is clear from figure 21(a) that
the dynamics of the flow exhibit well established periodic oscillations. As shown in figure
21(b), these oscillations of the flow have a circular frequency ωDNS = 0.832, very close
to that of the unstable varicose global mode identified in section 3.2 (i.e. ω = 0.824).
Figure 22 depicts instantaneous vortical structures present within the flow that have been
identified using the λ2 criterion (Jeong & Hussain 1995). It seems obvious from this figure
that these vortical structures are hairpin vortices shed directly downstream the roughness
element. It thus appears that the self-sustaining oscillations of the flow recorded by the
probe consist in a periodic shedding of hairpin vortices resulting in a varicose modulation
of the central low-speed region and surrounding velocity streaks. Moreover, it can be
assessed from the large population of hairpin vortices that transition is triggered very
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(a) (b)

Figure 21. Probe measurements and normalised Fourier spectrum of the spanwise velocity in
the near wake region at (X, y, z) = (10, 0.5, 0) for the Fransson’s set up.

Figure 22. Top view of the hairpin vortices visualised by the isosurfaces of the λ2 = −0.025
criterion coloured with the local kinetic energy of the flow.

close to the roughness element, coherent with the numerous experimental observations
reviewed by von Doenhoff & Braslow (1961). Based on these observations and on results
from global stability analyses, one can conclude that the unstable varicose global mode
contributes to the birth of the set of hairpin vortices non-linearly generated and might
thus explain the early transition observed in the experimental work by Fransson et al.
(2005) for supercritical Reynolds numbers.

5.2. Sinuous global instability

Most studies on roughness-induced transition have focused on roughness elements of
relatively large aspect ratio (η > 2) and, as a matter of fact, on the unsteadiness related
to the varicose instability mechanism only (Acarlar & Smith 1987; Tufo et al. 1999;
Stephani & Goldstein 2009; Zhou et al. 2010; de Tullio et al. 2013), whereas very little
can be found in the literature regarding the non-linearly saturated sinuous instability
(Sakamoto & Arie 1983; Beaudoin 2004). In the following section, we thus focus our
attention more closely on the non-linear evolution of the sinuous global mode using
direct numerical simulations of the non-linear Navier-Stokes equations. More specifically,
the nature of the bifurcation will be determined as well as the flow pattern and dynamics
resulting from the non-linear saturation of the sinuous unstable global mode. The direct
numerical simulations to be described have been performed for an aspect ratio η = 1
roughness element and Reynolds numbers ranging from 1030 up to 1125. The velocity
field used for initializing the DNS consists in the unstable equilibrium state onto which a
small disturbance made of the sinuous global mode is superimposed. The initial energy of
the perturbation field is chosen to be 108 times smaller than the energy of the base flow
to ensure that no by-pass transition could be triggered due to the initial amplitude of the
perturbation. The resulting flow field is then marched in time until non-linear saturation
is reached and a statistically steady state is obtained.

5.2.1. Criticality of the bifurcation

Before investigating the non-linear dynamics, the super- or subcritical nature of the
sinuous Hopf bifurcation is characterised. To do so, the Reynolds number of the non-
linearly saturated flow is incrementally decreased from Re = 1125 until a steady flow
is reached. Provided a steady solution is recovered for Re = Rec, the bifurcation is
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Figure 23. Bifurcation diagram of the sinuous instability for η = 1. Red squares depict the
perturbation spanwise amplitude at (X, y, z) = (10, 0.5, 0) whereas the black solid line stands for
the least-square best fit. The dashed line at Amplitude = 0 indicates the branch of equilibrium
solutions which becomes unstable for Re > Rec.

then determined as being supercritical. Otherwise, the bifurcation is labelled as being
subcritical. Since the base flow is symmetric with respect to the z = 0 plane, the spanwise
velocity recorded by a probe located at (X, y, z) = (10, 0.5, 0) is standing for a clear
signature of evolution of the sinuous unstable mode. As a consequence, such measurement
appears to be a good indicator to monitor how far the non-linearly saturated flow has
departed from the base flow solution. The evolution of the maximum amplitude of this
variable with respect to changes in the Reynolds number is depicted on figure 23. As the
Reynolds number is decreased from Re = 1125 to 1030, the maximum amplitude of the
spanwise velocity recorded by the probe is also decreasing. Moreover, below the critical
Reynolds number Rec = 1040, no more self-sustained oscillations of the flow are observed.
Similar observations have been made from the signals recorded by other probes placed
within the flow. This particular behaviour, i.e. no oscillation below the critical Reynolds
number predicted by linear stability analysis, provides striking evidence for the sinuous
Hopf bifurcation to be supercritical. This is further confirmed by how the maximum
amplitude of the perturbation depends on the off-criticality parameter ǫ = Re − Rec.
The solid line in figure 23 depicts the least-square best fit obtained using

√
Re − Rec

as the fitting function. It is clear that the maximum amplitude evolves as the square-
root of the off-criticality parameter, another clear signature of the supercritical nature
of this bifurcation. Consequently, the unsteadiness observed in the near-wake region in
the direct numerical simulation can be traced back to the sinuous unstable global mode
and not to any kind of by-pass transition.

5.2.2. Dynamics

Self-sustained oscillations are defined as persistent oscillations of the system arising
in the absence of any forcing or regardless of the nature of the small-amplitude forcing
eventually due to experimental or environmental noise. Such oscillations can be observed
in the near-wake region as highlighted by the spanwise velocity measurement recorded
from the probe located at (X, y, z) = (10, 0.5, 0) and the associated Fourier spectrum
(see figure 24(a) and (b), respectively). It is clear that saturated periodic dynamics are
well established in the near-wake laminar region with a dominant circular frequency
ωDNS = 0.687 close to that predicted by global stability analysis (i.e. ω = 0.672).
Figure 25 depicts the instantaneous streamwise velocity distribution in the y = 0.5 plane.
It appears obvious from this figure that the self-sustained oscillations recorded by the
probe are related to a sinuous wiggling of the central low-speed region induced by the
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Figure 24. Probe measurements and Fourier spectrum of the spanwise velocity in the near
wake region at (X, y, z) = (10, 0.5, 0)

Figure 25. Close-up of the hairpin vortices (visualised by the coloured isosurface of λ2 = −0.06)
shed in the near-wake region. Shaded grey contours depict the streamwise velocity distribution
in the y = 0.5 horizontal plane. A clear sinuous wiggling of the streaks can be observed.

sinuous global instability of the flow identified previously. The main wavelength of this
wiggling has been extracted by taking the Fourier transform in the X direction of the
saturated flow signal extracted at (y, z) = (0.5, 0). A dominant streamwise wavelength
of about 6.1 has been found, which matches well with the one characterising the sinuous
eigenmode, 6.9, extracted by Fourier transform of the eigenmode in X . However, despite
the sinuous wiggling of the central low-speed region, λ2 visualisations (Jeong & Hussain
1995) of the instantaneous vortical structures depicted on figures 25 and 26 reveal the
existence of hairpin vortices shed directly from the roughness element. Such shedding of
hairpin vortices behind roughness elements has already been investigated by Acarlar &
Smith (1987), Tufo et al. (1999) and Zhou et al. (2010) on hemispherical elements, and
more recently by Stephani & Goldstein (2009) on a cylindrical one. One major difference
with these works and the results presented in section 5.1 however is the nature of the
shedding. Indeed, in the cited works, hairpin vortices are exhibiting a varicose symmetry
with respect to the spanwise mid-plane. In the present case on the other hand, figure 25
clearly highlights that the hairpin vortices shed from the roughness element considered
herein are initially modulated by the sinuous wiggling of the central low-speed region
before eventually yielding the flow to transition to turbulence further downstream as
illustrated on figure 26. It is not clear at the present time however whether the mechanism
responsible for the creation of these hairpin vortices is the same as the one described by
Acarlar & Smith (1987) for hemispherical roughness elements or if they result from more
complicated interactions between the mean flow and the non-linearly saturated sinuous
global instability.

5.3. Comparison with von Doenhoff-Braslow transition diagram

Roughness-induced transition has been extensively investigated since the early 1950’s.
The large body of literature existing on the subject has been well summarized by von
Doenhoff & Braslow (1961) on a transition diagram, reproduced on figure 27. Based on
the roughness Reynolds number Reh = UBl(xk, h)h/ν (where UBl(xk, h) is the value of
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Figure 26. Hairpin vortices visualised by the isosurfaces of the λ2 = −0.06 criterion coloured
with the local kinetic energy.

Figure 27. Reproduction of the transition diagram by von Doenhoff & Braslow (1961). Green
squares stand for the critical value of the sinuous instability, whereas red dots denote the critical
value for varicose instability and the black cross the critical threshold in the experiment by
Fransson et al. (2005).

the Blasius velocity profile evaluated at the roughness element’s position xk and height
h) and the aspect ratio of the roughness elements considered, this diagram allows one to
predict the outcome of his experiment:
(i) If the parameters characterising the flow setup lie below the grey zone of this

diagram, it is then expected that the flow observed downstream the roughness element
is laminar and steady.
(ii) If these parameters lie above the grey zone, it is expected that transition has

already occured right downstream the roughness elements considered.
(iii) Finally, within the grey zone, the flow may undergo transition to turbulence

or experience unsteadiness, depending on the other configuration parameters (shape,
spanwise spacing, etc..).
It is noteworthy that the results summarized in the von Doenhoff & Braslow (1961)

diagram stem from various experimental investigations of transition induced by isolated
and/or periodic arrays of roughness elements of different shapes (cylindrical, hemispheric,
prismatic, ...) and wind tunnels of variable quality, thus explaining the large spread of
the transition region (grey shaded area in figure 27). Nonetheless, this transition diagram
allows qualitative comparison of the theoretical predictions with experimental results and
still is widely used nowadays in industries.
The various critical thresholds predicted by the global stability analyses performed here

have been rescaled to their roughness Reynolds number counterparts and reported on this
transition diagram. Red dots stand for the critical Reynolds numbers for varicose global
instability, whereas the green squares stand for the critical Reynolds numbers for sinuous
global instability. All of these critical Reynolds numbers lie within the transition band of
the diagram. Such positions suggest that a fully three-dimensional global instability of the
reversed flow region might be one of the possible explanations of the roughness-induced
transition.
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6. Summary and conclusions

The properties of the incompressible flow induced by three-dimensional cylindrical
roughness elements of various aspect ratios have been investigated by the joint applica-
tion of fully three-dimensional global stability analyses and direct numerical simulations.
In all cases considered, horseshoe vortices are created around the roughness element,
whose legs create two pairs of high- and low-speed streamwise streaks due to the lift-up
effect. Furthermore, a central low-speed region, whose crucial importance in the tran-
sition process has been indicated by several authors, as well as in the present work, is
created due to the streamwise velocity blockage induced by the presence of the roughness
element. The strength of this central low-speed region, and whether or not it sustains
over a long streamwise distance, is closely linked both to the aspect ratio of the roughness
element and to the Reynolds number.

Regarding the stability of such flows, two different types of global instabilities have been
identified. The symmetry of the dominant unstable mode depends on the aspect ratio
of the roughness element considered. For thin cylindrical roughness elements, the first
bifurcation encountered is related to a sinuous global instability of the lateral parts of the
shear layers developing in the downstream flow, whereas for larger roughness elements,
it is related to a varicose instability of the three-dimensional shear layer as a whole. The
underlying physical mechanisms are investigated by means of a kinetic energy transfer
analysis between the base flow and the perturbations as well as by the computation
of the wavemaker of the two global instabilities identified. Though both instabilities
are essentially fed by the work of the Reynolds stresses against the wall-normal and
spanwise gradients of the base flow streamwise component, some major differences are
observed that allow us to clearly differentiate between the underlying mechanisms. On
the one hand, the sinuous instability is related to a global instability of the near-wake
region and of the associated reversed flow region similar to what occurs in a supercritical
two-dimensional cylinder flow. On the other hand, the varicose mode appears to be
related to a global instability of the whole three-dimensional shear layer surrounding the
central low-speed streak. In particular, a weak pocket of instability is originated in the
near wake, which is strongly amplified further downstream due to the highly convective
nature of the downstream flow similarly to the explanation proposed by Acarlar & Smith
(1987) regarding the creation of hairpin vortices right downstream hemispheric roughness
elements.

The non-linear evolutions of both instabilities have been investigated using direct nu-
merical simulations. For roughness elements having a relatively large aspect ratio, it has
been shown that the varicose global instability of the flow gives rise to a shedding of
hairpin vortices right downstream the roughness elements. These hairpin vortices trigger
a very rapid transition of the flow right after the roughness elements. Despite the tran-
sitional dynamics, Fourier analysis has shown that the dominant frequency involved in
the dynamics are in good agreement with the predictions made by global stability analy-
sis. The non-linear evolution of the sinuous global instability has been investigated more
deeply. Varying the Reynolds number of the simulation has revealed that the amplitude
of the sinuous perturbation, measured by a probe in the spanwise mid-plane, evolves
as the square root of the off-criticality parameter (i.e. ǫ = Re − Rec). Such evolution
is typical of supercritical bifurcations. Analyses of the dynamics show that the sinuous
global mode induces a wiggling of the central low-speed region. Once again, the domi-
nant frequency involved in these dynamics is well predicted by global stability analyses.
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Nonetheless, identification of the vortical structures present within the flow also revealed
the existence of hairpin vortices shed right downstream the roughness element. These
hairpin vortices slightly oscillate, showing a sinuous wiggling, and are then convected
by the flow, eventually triggering transition to turbulence further downstream. It is not
clear at the present time if these hairpin vortices are created by a mechanism similar to
that described by Acarlar & Smith (1987) or if they result from complicated non-linear
interactions between the mean flow and the non-linearly saturated sinuous instability.

Finally, the different transition thresholds computed by the fully three-dimensional
global stability analyses have been reported onto the transition diagram by von Doen-
hoff & Braslow (1961). Qualitatively good agreement is found between the predictions
obtained from linear global stability analyses and those of the transition diagram. More-
over, the experimental configuration used by Fransson et al. (2005) has been numerically
reproduced; predictions of the global instability analysis in this configuration show a very
good agreement with the critical Reynolds number measured by the previously mentioned
authors. These elements allows us to conjecture that a global instabilities of the reversed
flow region developing right downstream the roughness element may be a possible ex-
planation of the roughness-induced transition, at least in the configurations considered
herein.

Concluding remarks

The present work has provided some answers on the global origin of two different in-
stabilities arising past a cylindrical roughness element, on their onset depending on the
aspect ratio of the cylinder, and on the vortical structures and frequencies observed in the
route to turbulence for both transition scenarios. However, several questions still remain
unanswered and require further qualitative and quantitative investigations, namely:
(i) What is the mechanism responsible for the creation of hairpin vortices in the case

of a sinuous global instability of the flow?
(ii) What is the role of fully three-dimensional linearly and non-linearly transiently

growing perturbations in the transition process? Under which conditions, if any, such
optimal perturbations can trigger transition to turbulence and, as such, bypass all of the
linear instability scenario?
(iii) How does the shape of the three-dimensional roughness element influence the

transition process?
Concerning transiently growing perturbations, previous works have provided some ele-

ments indicating that they also might have a role in the transition process. In the case
of the streaky flow induced by a rectangular panel, Asai et al. (2002, 2007) and Brandt
(2007) have shown that the flow can exhibit local convective instability. As shown by
Chomaz (2005), such convective instability is closely related to transient growth. Very
recently, Cherubini et al. (2013) have moreover demonstrated that three-dimensional
linear optimal perturbations can trigger localised transition of the flow induced by a
smooth roughness element. For the range of subcritical roughness Reynolds numbers
investigated, the unsteadiness was however observed not to be self-sustaining and was
eventually washed out from the computational domain, the flow slowly recovering to-
ward its initial state. Under which conditions these optimal perturbations may lead to a
self-sustaining instability, and whether including the effects of non-linearity in the compu-
tation of these perturbations may lead to an early transition are points that still remain
to be unraveled.
Finally, concerning the influence of the shape of the roughness element on the stability
of the flow, the present authors (Loiseau et al. 2013) have already presented preliminary
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results indicating that, for a fixed aspect ratio, the smoother the roughness element the
higher the critical Reynolds number beyond which linearly global instability of the flow
can set in. Future work will aim at clarifying these aspects.
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Appendix A: Adjoint equations and adjoint modes

Adjoint state is a concept originating from the optimisation theory. Over the past
years, adjoint-based methods have been used successfully in flow control and stability
analysis. In the hydrodynamic instability framework, such methods have been used to
identify optimal perturbations, highlight the most receptive path to breakdown, select
the most destabilising base flow defect in an otherwise stable configuration, and map the
structural sensitivity of a flow oscillator. All of these uses have been recently reviewed
by Luchini & Bottaro (2014). The adjoint state equations read:







∂u†

∂t
+ (Ub · ∇)u† − (∇Ub)

T
u† = −∇p† +

1

Re
∆u†

∇ · u† = 0

(6.1)

For a complete derivation of the adjoint linearised Navier-Stokes equations as well as
the consequences on the boundary conditions of the problem, the reader is referred to
Barkley et al. (2008). Nonetheless, as for the linearised Navier-Stokes equations, this set
of equations can be recast into a linear dynamical system:

B
∂q†

∂t
= J∗q† (6.2)

where q† = (u†, p†)T is the adjoint state vector and J∗ the adjoint Jacobian matrix.
The eigenspectrum of this adjoint Jacobian matrix is then computed using the same
algorithm as the one introduced in section 2.3.

Figure 28 depicts the leading adjoint mode for (a) the sinuous instability with (η,Re) =
(1, 1125) and (b) the varicose instability with (η,Re) = (2, 900), respectively. As for its
direct counterpart, the streamwise and wall-normal components of the sinuous adjoint
mode are antisymmetric with respect to the z = 0 plane while its spanwise velocity
component is symmetric. Its maximum is located in the vicinity of the separation lines
on the vertical walls of the cylindrical roughness element. On the other hand, the leading
varicose adjoint mode has its maximum located within the symmetry plane of the domain,
in the vicinity of the separation point right downstream the cylindrical roughness element.
Its streamwise and wall-normal components are symmetric with respect to the z = 0 plane
while its spanwise velocity component is antisymmetric. Table 5 provides a comparison
of the leading eigenvalue of the direct and adjoint linearised Navier-Stokes operator. It
can be seen that, for all the different cases, they agree up to the fourth digit.
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(a) (b)

Figure 28. Visualisation of the streamwise velocity component of the leading adjoint mode for
(a) the sinuous instability in the y = 0.75 plane and (b) the varicose instability in the z = 0
plane, respectively. Red dashed line depicts the spatial extent of the reversed flow region.

η 1 2 Fransson et al. (2005)
Re 1125 900 575

λ (Direct) 0.0123 ± i0.6718 0.0395 ± i0.9395 0.0105 ± i0.8240
λ† (Adjoint) 0.0122 ± i0.6717 0.0396 ± i0.9394 0.0106 ± i0.8240

Table 5. Comparison of the leading eigenvalue of the direct and adjoint linearised
Navier-Stokes operators.

Appendix B: Convergence of the eigenvalue computations

In this appendix, we highlight the influence of the domain size and mesh refinement
on the computation of the leading eigenvalues and eigenvectors of the linearised Navier-
Stokes operator using the Fransson et al. (2005) setup investigated in section 3. Figure 29
depicts the distribution of spectral elements in an arbitrary horizontal plane. In all cases,
the wall-normal and spanwise extents of the computational domain have been kept con-
stant (i.e. Ly = 50 and Lz = 10), while the location of the outflow plane has been
changed from Xout = 30 (red long-dashed box), to Xout = 60 (blue dashed box) and
eventually to the longest domain considered herein Xout = 90. For all cases, the order
of the Legendre polynomials has been kept equal to 8. Figure 30 depicts the eigenspec-
trum of the linearised Navier-Stokes for each domain. On the one hand, the Xout = 30
spectrum only exhibits a branch of eigenvalues. On the other hand, the Xout = 60 and
Xout = 90 also exhibit an isolated eigenvalue lying in the upper-half complex plane.
Figure 31 depicts the streamwise velocity component of the leading eigenmode for each
domain considered. It is obvious from these figures that a sufficiently long domain is
required in order to capture appropriately the whole spatial support of the mode and
might explain the difference between the spectrum obtained for Xout = 30 with those for
Xout = 60 and 90. Morover, considering a short streamwise extent of the computational
domain yields to an under-prediction of the critical Reynolds number as shown in table 6.
Based on these conclusions, all the results presented in this paper have been obtained
for Xout = 90.

Now that it has been shown that the domain needs to be long enough to capture appro-
priately the global instability under investigation, the influence of the mesh refinement
on this instability is highlighted by table 7. All the results within this table have been
obtained on the longest domain considered (i.e. Xout = 90). The order of the Legendre
polynomials is changed from N = 6 to N = 12, resulting in an increase of the gridpoints
from 1.43 million up to almost 12 million. As one can see, provided N > 8, it is clear
from table 7 that the leading eigenvalue appears to be almost independant of the mesh
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Figure 29. Distribution of the spectral elements in an arbitrary horizontal plane. Red long–
dashed box depicts the extent of the smallest computational domain considered (Xout = 30),
while the blue dashed box depicts that of the intermediate one (Xout = 60).
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Figure 30. Comparison of the eigenspectrum for (a) Xout = 30 and (b) Xout = 60 and 90.

Figure 31. Streamwise velocity component of the leading global mode of the Fransson et al.
(2005) setup at Re = 575 for three different streamwise length of the computational domain.
Top: Xout = 30, middle: Xout = 60, bottom: Xout = 90.

refinement. All the results presented in this paper have been obtained using the finest
grid (N = 12).
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