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This work provides a global optimization analysis, looking for perturbations inducing
the largest energy growth at a finite time in a boundary-layer flow in the presence of
smooth three-dimensional roughness elements. Amplification mechanisms are described
which can by-pass the asymptotical growth of Tollmien–Schlichting waves. Smooth ax-
isymmetric roughness elements of different height have been studied, at different Reynolds
numbers. The results show that even very small roughness elements, inducing only a
weak deformation of the base flow, can localize the optimal disturbance characterizing
the Blasius boundary-layer flow. Moreover, for large enough bump heights and Reynolds
numbers, a strong amplification mechanism has been recovered, inducing an increase of
several order of magnitude of the energy gain with respect to the Blasius case. In partic-
ular, the highest value of the energy gain is obtained for an initial varicose perturbation,
differently to what found for a streaky parallel flow. Optimal varicose perturbations
grow very rapidly by transporting the strong wall-normal shear of the base flow, which
is localized in the wake of the bump. Such optimal disturbances are found to lead to
transition for initial energies and amplitudes considerably smaller than sinuous optimal
ones, inducing hairpin vortices downstream of the roughness element.

1. Introduction

Transition to turbulence in spatially developing boundary-layer flows is a fundamental
issue for many aerodynamic and industrial applications, but its understanding, prediction
and control still remain a challenging issue. For small amplitude disturbances and super-
critical Reynolds numbers, the linear stability analysis predicts the slow transition process
due to the generation, amplification and secondary instability of Tollmien–Schlichting
(TS) waves (Schmid & Henningson 2001). However, even if the regime is subcritical with
respect to TS waves (i.e., all eigenmodes are damped), a so-called by-pass transition
to turbulence is often observed. In fact, due to the non-normality of the Navier-Stokes
operator, disturbances could experience a large transient amplification, arising from the
constructive interference of damped non-orthogonal eigenmodes (Schmid & Henningson
2001). If growth is sufficient, such amplified structures could induce secondary instability
and breakdown, leading to a by-pass transition (see Schoppa & Hussain (2002); Brandt
et al. (2004)).
With the aim of analysing the early phases of bypass transition, the concept of ”opti-
mal perturbation” was introduced (see Farrell (1988); Butler & Farrell (1992)), which
is defined as the perturbation of the steady base flow inducing the maximum energy
growth at a target time. Since then, many works have focused on the ”local” stability
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analysis of parallel and weakly non-parallel flows, looking for ”local optimal perturba-
tions” characterized by a given wavenumber in the streamwise and spanwise directions
(Luchini 2000; Schmid 2000; Corbett & Bottaro 2000). In a boundary layer, the local
optimal perturbation is characterized by a streamwise-invariant counter-rotating vortex
pair, and resulting at finite time in a pair of streamwise velocity streaks. The results of
such an analysis have been very promising, being able to predict the onset of elongated
structures which are indeed observed in transitional boundary-layer flows (see Schoppa &
Hussain (2002); Brandt et al. (2004)). However, the drawbacks of such ”local” methods
are that they focus onto a single wavenumber/frequency and that they neglect the effects
due to the non-parallelism of the flow. Thus, they appear to be not suitable to study the
instability behaviour of non-parallel flows.
In the past few years, these limitations have been overtaken thanks to the development
of the ”global” stability analysis, which considers two (or three) eigendirections, allow-
ing to study a non-parallel base flow with general perturbations, not characterized by a
single wavenumber. For instance, such methods have been used to study the eigenmodes
of a periodic wake of a circular cylinder (Barkley & Henderson 1996); the convective
and absolute instability of the flow in a curved channel (Marquet et al. 2008) and past a
backward-facing step (Barkley et al. 2002; Blackburn et al. 2008); the asymptotical cen-
trifugal instability and the non-normal growth in a recirculation bubble over a flat plate
(Theofilis et al. 2000; Gallaire et al. 2007; Cherubini et al. 2010c). A review of the global
instability methods and their applications is provided in Theofilis (2003). Such methods
are very powerful since, even in weakly non-parallel flows, they allow to take into account
the transient amplification of the disturbance energy due to the non-orthogonality of the
eigenvectors, providing a useful tool to study the early phases of by-pass transition. For
instance, in the case of the boundary-layer flow, a global instability analysis has recently
assessed that streamwise-modulated counter-rotating vortices are transiently amplified
more than streamwise-independent ones (see Cherubini et al. (2010b)). Such global opti-
mal disturbances, modulated in the streamwise and spanwise direction, have been found
to induce transition at lower energy than the streamwise-elongated local ones. This points
out the importance of using global methods to study non-parallel and even weakly-non
parallel flows such as the boundary-layer flow.
It is well–known that transition in a boundary-layer flow is triggered by exogenous dis-
turbances, namely wall roughness, acoustic waves, or freestream turbulence. Although
progress has been made in the study of the early phases of transition, the process by
which surface roughness affects the laminar-turbulent transition is only partially under-
stood. Pioneer work in this field has been performed experimentally by Gregory &Walker
(1956); Tani et al. (1962); Acalar & Smith (1987), and numerically by Joslin & Grosch
(1995), for different roughness shapes (cones, cylinders, hemispheres, and bumps, respec-
tively). All of this studies have identified a vortex-generation mechanism inducing streaks
downstream of the roughness element, which causes strong distortions on the mean flow,
modifying the asymptotical and transient dynamics of the flow. Since then, many experi-
mental and numerical works have focused on cylindrical-shaped roughness elements (Tani
et al. (1962); White (2002); White & Ergin (2003); Fransson et al. (2004); Choudhari &
Fischer (2005) among the others), observing that, for such non-smooth roughness ele-
ments, bypass transition is reached at a critical value of the roughness Reynolds number,
Rek (based on the height of the roughness and the Blasius boundary-layer streamwise
velocity on top of the roughness element), indicating that a global modal instability may
set in at such a critical value of Rek. On the other hand, for subcritical values of Rek, by-
pass transition is never observed, and a stabilizing effect of the roughness-induced streaks
on the growth of TS waves has been found (see Fransson et al. (2004, 2005, 2006)). How-
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ever, all of these experimental studies have focused on arrays of non-smooth roughness
elements having a non-small aspect ratio (between 1 : 2 and 1 : 3, height over diameter of
the roughness element). Whereas, smaller efforts have been dedicated to shallow smooth
roughness elements (bumps), which can be comparable to defects or imperfections of a
flat plate. Indeed, shallow roughness elements having a smoother shape are expected to
have a more subtle influence on bypass transition, since they induce weaker distortions of
the mean flow than in the non-smooth case (Piot et al. 2008). Thus, it may be expected
that smooth roughness elements will enhance the receptivity of the boundary-layer flow
with respect to external disturbances, inducing transition to turbulence by means of a
non-modal mechanism.
The first theoretical, experimental and numerical studies of the flow around isolated
three-dimensional bumps (see Lipatov & Vinogradov (2000); Joslin & Grosch (1995)),
have shown the existence of a complex pattern of streamwise streaks and vortices, similar
to the optimal disturbances typical of a boundary-layer over a flat plate. More recently,
Piot et al. (2008) have assessed the stabilizing nature of such roughness-induced streaks
on the growth of TS waves. They have assumed that the flow past the smooth rough-
ness element evolves slowly in the streamwise direction. Then, the local stability of the
pre-streaky flow just behind the roughness element has been studied by considering the
two-dimensional flow at each streamwise location. Solving an eigenvalue problem for
each of the two-dimensional base flows obtained, the authors found that the modes have
smaller growth rates then the associated Blasius TS-waves, assessing the stabilizing ef-
fect of the pre-streaky flow on the growth of TS waves. Nevertheless, the same authors
observed, by using direct numerical simulations (DNS), that the interaction of such TS
modes could induce an amplification of perturbation energy much larger than in the
Blasius case. This behaviour could be due to the non-normality of the considered modes,
leading to a transient amplification of the disturbance energy.
The aim of the present work is to assess whether smooth three-dimensional roughness ele-
ments are capable of inducing linear amplification mechanisms which by-pass the asymp-
totical growth of TS waves and lead the flow to transition even if all eigenmodes are
stable. To this purpose, we perform a fully three-dimensional energy optimization anal-
ysis, looking for perturbations inducing the largest energy growth at a finite time in
a boundary-layer flow in the presence of a three-dimensional bump. The shape of the
roughness element has been described by the immersed boundary (IB) technique, useful
to handle complex geometries, already employed for the stability analysis of the two-
dimensional flow past a cylinder by Giannetti & Luchini (2007).
The paper is organized as follows. In the second section we define the problem and
describe the optimization method as well as the IB technique. In the third section, a
thorough discussion of the results of the optimization analysis is provided. Finally, con-
cluding remarks are provided.

2. Problem formulation

2.1. Governing equations and numerical method

The dynamics of a three-dimensional incompressible flow is described by the following
governing equations:

ut + (u · ∇)u = −∇p+
1

Re
∇

2u (2.1)

∇ · u = 0 (2.2)
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where u is the velocity vector and p is the pressure term (including the contribution of
conservative-force fields). Dimensionless variables are defined with respect to the Blasius
displacement thickness measured at the abscissa corresponding to the center of the rough-
ness element, δ∗, and to the freestream velocity, U∞; therefore, the Reynolds number is
Re = U∞δ∗/ν, ν being the kinematic viscosity. The reference computational domain has
dimensions equal to Lx = 216, Ly = 27.5 and Lz = 72, x, y and z being the streamwise,
wall-normal and spanwise directions, respectively. The roughness element is an axisym-
metric bump and its height is defined as h(r) = k cos3(πr/d), where k is the maximum
height, r is the distance from the center of the bump on the x − z plane, and d is its
diameter (see Piot et al. (2008)). Computations have been performed using five values
of k, namely, k = 0.5, 0.75, 1, 1.25, 1.5; whereas the diameter, d = 26, has been kept
constant. The roughness element is centered at z = 36 in the spanwise direction, and it
is placed 40.5 units downstream of the inlet section of the computational domain. For
the three values of the Reynolds number considered here, namely Re = 170, 235, 300, the
inlet velocity corresponds to the Blasius profile at a distance of xin = 15, 36.5, 60 units
downstream of the leading edge of the plate, respectively.
The base flow is obtained by integrating the Navier–Stokes equations with the following
boundary conditions: at inlet points, the Blasius boundary-layer profile is imposed for
the streamwise and wall-normal components of the velocity vector whereas the spanwise
component is set to zero. At outlet points, a standard convective condition is employed
(Bottaro 1990). In the spanwise direction periodicity is imposed for the three velocity
components. At the upper-boundary points, the Blasius solution is imposed for the wall-
normal component of the velocity, whereas the spanwise velocity component and the
spanwise vorticity are set to zero. Finally, at the bottom boundary, the no-slip boundary
condition is prescribed using the IB technique. In particular, as shown in Figure 1, the
body surface is overlapped onto the volume mesh, splitting it into fluid and solid regions,
Γ1 and Γ2, respectively. The computational cells are assigned to each zone using a ray-
tracing technique (O’Rourke 1993). At each point of the computational domain Γ1 +Γ2,
the governing equations (2.1) and (2.2) are solved, using a direct forcing technique at
interface points to force the desired velocity value. A more detailed description of the IB
technique is provided in Appendix A.
The governing equations are discretized by a finite-difference fractional-step method
(Verzicco & Orlandi 1996). The viscous terms are discretized in time using an implicit
Crank–Nicolson scheme, whereas an explicit third-order-accurate Runge–Kutta scheme
is employed for the non-linear terms. A second-order-accurate centered space discretiza-
tion is used on a staggered grid. After a grid-convergence analysis, a mesh made up by
301×150×91 points clustered towards the wall is selected for the computational domain.

2.2. Lagrangian optimization

The linear behavior of a perturbation q = (u′, v′, w′, p′)T evolving in a laminar incom-
pressible flow over a roughness element placed over a flat plate is studied by employing
the governing equations linearized around the steady state Q = (U, V,W, P )T . A zero
perturbation condition is chosen for the three velocity components at the x and y bound-
aries, whereas periodicity of the perturbation is imposed in the spanwise direction. The
zero perturbation condition at the outflow is enforced by means of a fringe region, which
allows the perturbation at the exit boundary to vanish smoothly.
In order to identify the perturbation at t = 0 capable of producing the largest energy
growth at any given target time, T , a Lagrange multiplier technique is used (see Zuccher
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Figure 1. Sketch of the computational domain: Γ1 and Γ2 indicate the fluid and solid regions
respectively, separated by the body surface, in gray.

et al. (2004)). Let us define the disturbance energy as:

E(t) =

∫

V

(

u′2(t) + v′
2
(t) + w′2(t)

)

dV (2.3)

where V is the computational volume. The objective function of the procedure is the
energy gain at the target time t = T , i.e. E(T )/E(0). The Lagrange multiplier tech-
nique consists in seeking extrema of the augmented functional L with respect to every
independent variable. Such a functional is written as:

L =
E(T )

E(0)
+

∫

V

∫ T

0

a
(

u′
x + v′y + w′

z

)

dtdV

+

∫

V

∫ T

0

b

(

u′
t + (u′U)x + Uyv

′ + V u′
y + Uzw

′ +Wu′
z + p′x −

u′
xx + u′

yy + u′
zz

Re

)

dtdV

+

∫

V

∫ T

0

c

(

v′t + Uv′x + (v′V )y + u′Vx + Vzw
′ +Wv′z + p′y −

v′xx + v′yy + v′zz
Re

)

dtdV

+

∫

V

∫ T

0

d

(

w′
t + Uw′

x + V w′
y +Wxu

′ +Wyv
′ + (Ww′)z + p′z −

w′
xx + w′

yy + w′
zz

Re

)

dtdV

(2.4)

where a, b, c, d are the Lagrange multipliers (also called adjoint variables) and the
linearized governing equations (also called direct problem) are the constraints, where the
subscripts denote derivation. Integrating by parts and setting to zero the first variation
of L with respect to u′, v′, w′, p′ leads to the adjoint equations and to the compatibility
conditions, which are detailed in Appendix B. Enforcing the boundary conditions on the
direct variables we obtain corresponding boundary conditions for the adjoint variables.
For both the direct and adjoint equations, the zero perturbation condition at the wall
is imposed by means of the IB technique (see Appendix A). Finally, the gradient of
the augmented functional with respect to the initial perturbation is forced to vanish by
means of a coupled iterative approach similar to that used by Marquet et al. (2008) and
Cherubini et al. (2011), employing a conjugate gradient method. A detailed description
of the optimization technique is provided in Appendix B.
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k = 0.50 k = 0.75 k = 1.00 k = 1.25 k = 1.50

Re = 170 25.1 57.5 95.4 144.9 198.3

Re = 235 35.5 77.6 134.1 203.2 275.6

Re = 300 47.1 99.7 171.2 252.3 351.5

Table 1. Values of Rek for all of the base flows considered.

(a) (b)

Figure 2. Contours of the streamwise vorticity in the plane y = k + 1, for the two base flows
with k = 0.75 (a), and k = 1.5 (b) at Re = 235. The black circle represents the bump.

3. Results

3.1. The base flow

Steady base flows have been computed for three values of the Reynolds number, all
of them being subcritical with respect to TS waves, using five bump heights, namely,
k = 0.5, 0.75, 1, 1.25, 1.5. Table 1 provides, for all of the considered base flows, the values
of the roughness Reynolds number defined as Rek = U(y=k)k/ν (U(y=k) being the flow
velocity at the point of maximum roughness height in absence of the roughness element).
This is an important parameter related to the maximum streak amplitude (see White
& Ergin (2003)), providing a threshold for roughness-induced transition (Rek ≈ 600, see
Tani et al. (1962)). For the base flows considered here, the roughness Reynolds numbers
range from a minimum value of 25.1 (for Re = 170 and k = 0.5) to a maximum value
of 351.5 (for Re = 300 and k = 1.5), which is close to the Rek used by Fransson et al.

(2005) in an experimental work on cylindrical roughness elements. As found in previous
works (see Joslin & Grosch (1995); Fransson et al. (2004); Piot et al. (2008)), in all
cases we observe counter-rotating vortices downstream of the roughness element: Figure
2 provides the streamwise vorticity in the plane y = k+1 for the base flows at Re = 235
with k = 0.75 (a) and k = 1.5 (b). As also pointed out by Fransson et al. (2005), it
appears that the strength of the vortices is related to the roughness height with respect
to the boundary-layer displacement thickness. Figure 2 (a) shows that the smaller bump
is characterized by large vorticity regions in the near field downstream of the roughness
element, mostly due to the wake of the bump, whereas, for the larger bump elongated
streamwise vortices with a large development in the streamwise direction can be observed
in Figure 2 (b). The streamwise vortices transport the high-speed fluid from the outer
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Figure 3. Surfaces of the positive (light grey, yellow online) and negative (dark grey, blue
online) deviation of the streamwise component of velocity with respect to the spanwise-average
value for two base flows at Re = 170 (top frames), Re = 235 (middle frames), and Re = 300
(bottom frames) with k = 0.75 (left frames, u = ±0.01), and k = 1.5 (right frame, u = ±0.018).
The black circle represents the bump.

region of the boundary layer towards the wall, whereas the low-speed fluid is transported
away from the wall. This produces streamwise streaks which can be visualized by showing
the difference between the streamwise component of the velocity and its mean value in
the spanwise direction, U(x, y) = 1

Lz

∫

U(x, y, z)dz. The streamwise velocity deviation,

u(x, y, z) = u(x, y, z)−U(x, y), is provided in Figure 3 for Re = 170, 235, 300 (top, middle
and bottom frames, respectively), with k = 0.75 (left frames) and k = 1.5 (right frames).
In the latter case, the streamwise streaks developing into the boundary layer are clearly
seen. For a given k, the base flows obtained for different Reynolds numbers show rather
similar structures and velocity amplitudes. Thus, the base flow appears to depend more
on the height of the bump than on its position in the streamwise direction. For small
bump’s heights, low- and high- momentum regions are localized close to the roughness
element; whereas, for large bump heights, one can observe that three confining streaks
are generated downstream of the bump. The streamwise velocity deviation has a large
negative amplitude in the vicinity of the bump, reaching values up to u(x, y) ≈ −0.2 at
x ≈ 150 for Re = 300, but it tends to weaken as it develops in the streamwise direction
(u(x, y) ≈ −0.13 at x ≈ 250). Being strongly dependent on the streamwise abscissa, these
low-momentum structures are rather different from the quasi-parallel streaks representing
the local optimal perturbations in a boundary layer flow (Luchini 2000). The presence of
a negative streamwise streak following the wake of the bump is consistent with previous
experimental data on the flow past a shallow bump (see Joslin & Grosch (1995); Gaster
et al. (1994)). On the other hand, many experimental results for cylindrical roughness
elements (see Fransson et al. (2004, 2005)) show a positive streak following the wake, due
to the coalescence of the two positive streaks generated by the horseshoe vortex. This
difference is probably due to the large diameter of the bump considered here (in terms
of the boundary-layer displacement thickness) which hampers the coalescence of the two
positive streaks. It is noteworthy that the different structure of the base flow precludes the
generalization of the results of the stability analysis obtained here to roughness elements
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of any shape and aspect ratio.
The negative streak is flanked by two positive streaks which are characterized by lower
amplitudes and present a weak dependence on the streamwise direction, reaching at
x ≈ 170 values of the deviation from the mean up to u(x, y) ≈ 0.07 for Re = 235, 300, and
u(x, y) ≈ 0.02 for Re = 170. This is consistent with previous experimental results (White
& Ergin 2003; Fransson et al. 2004) showing that, downstream of the roughness element,
the three-dimensional flow evolves gradually into a quasi-parallel streaky structure. The
distance from the bump at which the streaks become quasi-parallel may depend on the
configuration parameters. However, in our computations, as well as in the results by Piot
et al. (2008) and Joslin & Grosch (1995), quasi-parallel streaks are observed at about
100 length units downstream of the roughness location. It is noteworthy that, even if
in the vicinity of the bump the flow presents strong modifications with respect to the
undisturbed boundary-layer flow, in the downstream zone, where the effect of the wake is
weakened, the amplitudes of the streaks do not exceed the threshold value for secondary
instability (u′ ≈ 0.23, see Andersson et al. (2001)).

3.2. Optimal perturbations

3.2.1. The optimal energy gain

Direct-adjoint optimizations have been performed for all of the base flows described
above. Figures 4 (a), (b), and (c) provide the value of the optimal energy gain versus the
target time for the Blasius base flow (dotted lines), and for the base flows in the presence
of the bumps of different heights obtained at Re = 170, Re = 235, and Re = 300,
respectively, in the reference computational domain. One can observe that, in the presence
of the roughness element, the energy gain is always larger than the one obtained for
the Blasius base flow, although for small roughness heights (k < 1) the differences are
negligible. For k > 1, a non negligible increment in the energy gain is observed, which
grows substantially with the bump height, overtaking the energy of the Blasius case up to
two orders of magnitude, for k = 1.5 and T = 100. It is noteworthy that in all cases the
largest differences are observed at small times, indicating that a strong transient growth
mechanism exists, acting very fast in time. Since Figures 4 (a), (b), and (c) show that the
energy gain always increases with k, one can infer that the larger the streak amplitude in
the base flow, the stronger the transient growth of the energy. However, a strong increase
of the energy gain is also observed increasing the Reynolds number at given k. Since in
these cases, very similar shape and values of the steady streaks are observed (see Figure
3), we can infer that not only the streak amplitude, but also the streamwise position of
the roughness element is an important parameter of the transient growth mechanism.

3.2.2. The effect of the bump height

The differences in the energy gain values correspond to different shapes and local-
izations of the initial optimal perturbations. Figures 5 (a)-(d) show the iso-surfaces of
the spanwise velocity component of the initial optimal perturbation for the Blasius flow
(k = 0) and for k = 0.5, 1.0, 1.5, respectively, at a small target time, T = 50, and
Re = 235. For the Blasius flow, as already found by the global optimizations by Cherubini
et al. (2010b) and Monokrousos et al. (2010), the initial optimal perturbation is composed
of upstream-inclined vortices, aligned with the x−axis, alternated in the streamwise and
spanwise direction. Since the Blasius flow is homogeneous in the spanwise direction, the
result of the optimization contains only one spanwise wavenumber, β. At T = 50, the
spanwise wavenumber of the optimal perturbation is β = 0.87 and is found to decrease
for larger target times, reaching at the optimal target time (i.e., the time at which the
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Figure 4. Optimal energy gain versus target time for the Blasius base flow (dotted line) and in
the presence of the bumps of different heights (increasing bump height following the arrow), for
Re = 170 (a), Re = 235 (b), and Re = 300 (c). The symbols correspond to: k = 0.5 (squares),
k = 0.75 (gradients), k = 1 (deltas), k = 1.25 (diamonds), and k = 1.5 (circles).
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maximum amplification is reached) a value which is close to the optimal wave number
computed locally by Corbett & Bottaro (2000), namely, β = 0.6. In the presence of the
roughness element, the base flow is not homogeneous in the spanwise direction, there-
fore the optimal perturbation does not show only one wavenumber β. Indeed, for all of
the bump heights, the optimal disturbance is localized in the spanwise direction, being
composed of pairs of upstream-inclined vortices, aligned with the x−axis, alternated in
the spanwise and streamwise direction, and characterized by a dominant spanwise wave-
length which is slightly larger than that of the Blasius flow. For increasing bump height,
the spanwise wavelength of the initial vortices increases, and the perturbation appears to
be more flat and spatially localized, moving upstream towards the top of the roughness
element. This indicates that the fast transient growth observed for large bump heights at
small target times is mostly linked to the wake of the bump, rather than to the streaks
generated downstream. The structure of the optimal perturbation for small bump height
is very similar to the optimal one recovered for the Blasius flow (see Cherubini et al.

(2010b)), although the perturbation is spanwise-localized. It is also noteworthy that, as
in the case of the boundary layer (see Luchini (2000); Cherubini et al. (2010b)), at the
initial time, the streamwise component of the perturbation is the smallest one, and the
spanwise component is the largest. The amplitudes and the shape of the perturbation
change for the case of the larger bumps, since the initial perturbation is characterized
by large values of the streamwise component of velocity, and slightly smaller values of
the spanwise and wall-normal ones. Moreover, the vortices have a larger inclination with
respect to the streamwise direction. It is noteworthy that such an optimal disturbance
presents some similarities with respect to the non-linear optimal perturbation found for
the boundary-layer flow concerning the inclination of the vortices and the large initial
amplitude of the streamwise perturbation, see Cherubini et al. (2010a, 2011). This in-
dicates that, in the presence of a three-dimensional flow induced by a large roughness
element, the amplification mechanisms producing a transient growth in a boundary-layer
remarkably change.
An insight in such amplification mechanisms can be achieved by analyzing the shape

of the optimal perturbations at the target time of the optimization (T = 50). Figures 6
(a)-(d) show the streamwise velocity component of the optimal perturbation at the target
time for k = 0, 0.5, 1, 1.5, respectively, with Re = 235. For the Blasius flow (Figure 6 (a)),
the optimal perturbation is composed of streaky structures alternated in the streamwise
and spanwise directions, preserving the same wavelength found at t = 0 (compare with
Figure 5), although such structures change their streamwise inclination. In fact, the
perturbation tilts downstream via the Orr mechanism (Orr 1907) and is amplified by
means of the lift-up effect (Butler & Farrell 1992; Schmid & Henningson 2001).
The optimal perturbation for the case of small bumps (see Figure 6 (b)-(c)), is similar
to that obtained for a Blasius flow, although three main differences can be noticed: i)
the perturbation moves upstream with respect to the Blasius case; ii) the perturbation
localizes in the spanwise direction in a narrow zone close to the bump location; iii) the
vortices are not aligned with the x−axis, showing a slight inclination with respect to the
streamwise direction, and form an arrow-shaped wave packet.
For the case of the larger bump (k = 1.5, see Figure 6 (d)), the structure of the

perturbation at target time is characterized by the presence of ”arches” at the center of
the wave-packet. This perturbation has a stronger spanwise and streamwise localization
with respect to the smaller bump case, with a larger inclination with respect to the
streamwise direction. Moreover, one can clearly observe a varicose symmetry (see Schmid
& Henningson (2001)) with respect to the central negative streak.
The shape of such optimal perturbations is quasi-invariant with respect to the domain
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Figure 5. Iso-surfaces of the spanwise component of velocity (dark grey, blue online, and light
grey, yellow online, for negative and positive values, respectively) for the initial optimal pertur-
bations obtained at T = 50 with Re = 235 and k = 0 (a), k = 0.5 (b), k = 1 (c), and k = 1.5
(d).

lengths (for long enough domains and short enough target times), whereas the associate
value of the energy gain may change remarkably. Figure 7 (a) shows that, for a too short
streamwise length (Lx = 108, half of the reference one), the energy gain is lower with
respect to the reference domain (Lx = 216) and suddenly drops, whereas it increases
for a larger domain (Lx = 324). This is due to the convective nature of the transient
growth mechanism. For larger Reynolds numbers and bump heights, changing the domain
induces smaller differences in the amplification values at short target times, as shown in
Figure 7 (b) for Re = 300 and two different bump heights, k = 0.75 and k = 1.5. This
is clearly due to the stronger localization of the optimal perturbation close to the bump.
Finally, as provided in Figure 7 (c), the energy gain values is slightly dependent on the
spanwise domain length, due to the strong localization of the optimal perturbation in
the spanwise direction.

3.2.3. The effect of the target time

In the previous subsection, we have shown that optimal perturbations are strongly
dependent on the bump height. In particular, we have identified two different types
of optimal disturbances: i) the wave packet of quasi-streamwise vortices, not localized
on the bump, shown in Figure 5 (b) for Re = 235, k = 0.5 and T = 50, which for
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Figure 6. Iso-surfaces of the streamwise component of velocity (light grey, green online, and
dark grey, red online, for negative and positive values, respectively) for the optimal perturbations
at target time T = 50 with Re = 235, k = 0 (a), k = 0.5 (b), k = 1 (c), and k = 1.5 (d).
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Figure 7. Optimal energy gain versus target time obtained with: (a) Re = 170 and k = 0.75,
for three values of the streamwise domain length, namely, Lx = 108, Lx = 216 (the reference
one), and Lx = 324; (b) Re = 300, k = 0.75 and k = 1.5, for two values of the streamwise
domain length, namely, Lx = 108, 216; (c) Re = 300, k = 0.75 and k = 1.5, for two values of
the spanwise domain length, namely, Lz = 48, Lz = 72 (the reference one).

brevity will be thereafter referred to as ”wave-packet perturbations” (WP); ii) the optimal
perturbations having a more localized shape, above the roughness element, and presenting
a varicose structure, such as the one in Figure 5 (d), which will be referred to as ”varicose
perturbations” (VP). In this subsection, we will investigate how the target time of the
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(a) (b)

Figure 8. Iso-surfaces of the spanwise component of velocity (dark grey, blue online, and light
grey, yellow online, for negative and positive values, respectively), and of the streamwise com-
ponent of velocity (light grey, green online, and dark grey, red online, for negative and positive
values, respectively) for the optimal perturbation at t = 0 (a) and t = T (b) obtained at
Re = 235, T = 200 and k = 1.5.

optimization affects the shape and structure of such optimal perturbations.
For small bumps (k < 1), when the target time is increased, the optimal WP maintains
its shape and structure. In particular, the wavepacket of quasi-streamwise vortices moves
upstream, as a consequence of the larger amount of time available for amplifying the
energy, reaching the bump location for T > 250. Moreover, its main wavelength increases
(as also observed in the Blasius case), leading also to an increase of the spanwise extention
of the wave packet. On the other hand, for larger bumps, an increase of the target time
is shown to induce remarkable differences in the structure of the optimal perturbation.
Figure 8 (a) provides the iso-surfaces of the spanwise velocity component of the initial
optimal perturbations obtained for Re = 235 with T = 200 and k = 1.5. We can
observe that at the initial time the vortices are very elongated and alternated in the
wall-normal direction. The spanwise component of the velocity perturbation appears to
be symmetric with respect to the x − y plane cutting the bump at its center, whereas
at T = 50 it was antisymmetric with respect to this plane (see Figure 5). Moreover,
the largest component of the perturbation velocity at initial time is not the streamwise
one, as in the VP case, but the spanwise one. At target time, the optimal perturbation
(Figure 8 (b)) is an arrow-shaped wave-packet composed of spanwise-alternated streaky
structures being characterized by a finite inclination with respect to the streamwise
direction. The ”arch” structures observed at smaller target time (see Figure 6 (d)) are
not found in the present case, and the streamwise component of the velocity perturbation
is antisymmetric with respect to the x− y plane cutting the bump at its center (whereas
it was symmetric with respect to such a plane for a smaller target time). It appears
that the optimal disturbance obtained for T = 200 in the case of the large bump at
Re = 235 is a perturbation characterized by sinuous symmetry (see Schmid & Henningson
(2001)), whereas for T = 50 it was a varicose perturbation. The different shape of the
perturbation is linked to the drop of the energy gain observed in Figure 4 (b) for values of
the target time between 100 and 150. The differences between the optimal disturbances
for Re = 235 and k = 1.5 at ”small” (T 6 100) and ”large” (T > 100) target time can be
better observed in Figures 9 (a)-(b), which provide the streamwise velocity component
and the cross-stream vectors for the initial optimal disturbances obtained at T = 100
and T = 150, respectively, on the plane x = 77.5. Despite the fact that the two target
times are close to each other, the optimal disturbances change strongly in shape, showing:



14 S. Cherubini, M. D. De Tullio, P. De Palma, G. Pascazio

Z

Y

20 25 30 35 40 45 500

2

4

6

8 0.0006
0.0005
0.0004
0.0003

-0.0002
-0.0003
-0.0004
-0.0005
-0.0006
-0.0007
-0.0008
-0.0009

Z

Y

20 25 30 35 40 45 500

2

4

6

8

(a)

Z

Y

20 25 30 35 40 45 500

2

4

6

8 0.0006
0.0005
0.0004
0.0003

-0.0002
-0.0003
-0.0004
-0.0005
-0.0006
-0.0007
-0.0008
-0.0009

(b)

Figure 9. Cross-stream vectors and streamwise velocity component contours in the plane at
x = 77.5 for the initial optimal perturbation obtained at T = 100 (a) and T = 150 (b) for
Re = 235 and k = 1.5. The spanwise and wall-normal axis are not on the same scale.

i) an ”arch” structure for T = 100, with wall-normal alternated patches of streamwise
disturbance characterized by a varicose symmetry, and two vortices on the sides of the
bump; ii) a flat structure for T = 150, with spanwise-alternated patches of streamwise
disturbance characterized by a sinuous symmetry, a main vortex on the top of the bump
and two weaker vortices on its sides. Similar differences are recovered at target time, as
shown in Figure 10 (a)-(b) on two x−constant planes (x = 135 for T = 100 and x = 165
for T = 150). However, the two perturbations also show some similarities, since they both
have their maximum values in the zones of maximum shear of the base flow, represented
in the figure by the solid contours of the streamwise component of velocity. Moreover, in
both cases, the streamwise component of velocity is the most amplified, and its amplitudes
are found to be similar both at t = 0 and at t = T , although the optimal energy gain
for T = 150 is smaller than the one obtained for T = 100. Such features closely recall
the varicose and sinuous (respectively) local optimal perturbations found in Hoepffner
et al. (2005) for a base flow composed of parallel saturated streaks. However, in such a
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parallel case, sinuous perturbations always provided the largest energy growth, whereas
in the three-dimensional case considered here, varicose perturbations are found to be
optimal for smaller target times, and sinuous perturbations for larger target times. The
reason of this symmetry-change can be explained by observing that the base flow itself is
characterized by a varicose symmetry in the near field downstream of the bump, whereas,
further downstream, it turns into a nearly-parallel streaky flow (see the right frames of
Figure 3). Thus, at small target times the optimal disturbances are strongly affected
by the varicose structure of the base flow, inducing a varicose non-normal instability,
whereas they turn into sinuous ones when they reach the nearly parallel streaky flow
far from the bump. The fact that, for a high enough bump, the largest energy growth
is obtained for a varicose perturbation, is an important result with respect to the well-
known result of the secondary instability of boundary layer streaks, assessing that the
primary instability of a streaky flow is of sinuous type (Andersson et al. 2001). In fact, we
have shown that in a realistic case in which streaks are generated by a smooth roughness
element, the three-dimensionality of the flow is able to trigger a strong mechanism of
transient amplification which can by-pass the asymptotical secondary instability of the
streaks.

3.2.4. The effect of the Reynolds number

We have shown that, for different Reynolds numbers and the same bump height, the
base flows are rather similar to each other (compare the top, middle and bottom frames
of Figure 3). However, the remarkable increase of the value of the energy gain with the
Reynolds number (especially in the case of large bump heights) indicates that large dif-
ferences in the optimal perturbations should exist. Thus, the optimal perturbations for
all of the considered Reynolds numbers, target times, and bump heights have been ana-
lyzed. All of the perturbations have been found to show a shape similar to that analyzed
in the previous subsection, so that they can be roughly categorized as ”wave packet per-
turbation” (WP), ”varicose perturbation” (VP), and ”sinuous perturbation” (SP). The
complete result map is shown in table 2, where the subscript indicates the values of Re
(where no subscript is given, the result is valid for all Re), and bold indicates the optimal
target time. As one can observe, for bump heights lower than k = 1, for all values of the
Reynolds numbers, the optimal perturbations are of the ”wave packet” type, inducing an
energy gain only slightly larger than that found for the Blasius flow (see Figures 4 (a)-
(b)-(c)). On the other hand, for larger bump heights the situation changes, since sinuous
and varicous perturbations are found for most values of the target time and Reynolds
number. In particular, for the lowest Reynolds number considered here, i.e., Re = 170,
the VP is never observed, and the WP is observed up to larger bump heights (k = 1.25).
Moreover, for k = 1.5 the optimal perturbation is a SP indipendently of the target time.
Thus, it appears that for a too low Reynolds number, the transient instability of the
wake linked to varicose optimal perturbations cannot be triggered, probably because the
three-dimensionality of the flow is too weak. On the other hand, for Re = 235, 300, the
shape and structure of the optimal perturbations for each value of T and k are the same,
characterized, for k > 1, by a varicous/sinuous symmetry at small/large target times.
This could be anticipated since the base flows at these two Reynolds numbers are very
close to each other, although they are characterized by different values of Rek (see ta-
ble 1). This indicates that the structure of the optimal perturbation does not depend
on Rek, but rather on the particular three-dimensional shape of the flow. On the other
hand, the energy gain increases dramatically with the Reynolds number for target times
and bump heights related to varicose perturbations, even when the base flows are very
similar to each other (for instance, compare the middle and bottom frames in Figure
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Figure 10. Shaded contours of the streamwise velocity component of the optimal perturbation
at target time T = 100 (a) and T = 150 (b) in the planes x = 135 (a) and x = 165 (b) with
Re = 235 and k = 1.5. The solid contours represent the streamwise component of the base flow
velocity in the range [0.1, 0.9]. Axis are not on the same scale.

4). This means that, even if the shape of the initial optimal disturbance does not de-
pend on Rek, the energy gain does. Thus, the transient instability induced by this type
of perturbations becomes much stronger when the Reynolds number and the roughness
height is increased, meaning that for large enough bumps such effect might overtake the
stabilizing effect operated on the Tollmienn-Schlichting waves.

3.2.5. The linear amplification mechanisms

In this section we will analyze in detail the amplification mechanisms related to the
sinuous and varicose optimal perturbations. To this end, we choose two optimal per-
turbations, obtained for the same Reynolds number and roughness height (Re = 300,
k = 1.5), for two different target times: T = 50 for the VP, and T = 200 for the SP (see
table 2). For brevity, in what follows we will refer to these two perturbations simply as
VP∗ and SP∗.
Figure 11 shows the evolution of VP∗, extracted at different times from a linearized
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Figure 11. Evolution in time of the linear optimal perturbation obtained for Re = 300, k = 1.5,
T = 50, with initial energy E0 = 10−9: streamwise component of the base flow velocity (flat
light blue surface for U = 0.2); streamwise vorticity perturbation (white and black surfaces for
ωx = ±0.001) at t = 0 (a) and t = 25 (b), streamwise velocity perturbation (light grey, green
online, and dark grey, red online, for uprime = ±0.00002) at t = 50 (c) and t = 100 (d).

Figure 12. Evolution in time of the linear optimal perturbation obtained for Re = 300, k = 1.5,
T = 200, with initial energy E0 = 10−9: streamwise component of the base flow velocity (flat
light blue surface for U = 0.2); streamwise vorticity perturbation (white and black surfaces for
ωx = ±0.00001) at t = 0 (a) and t = 100 (b), streamwise velocity perturbation (light grey, green
online, and dark grey, red online, for u′ = ±0.00001) at t = 200 (c) and t = 300 (d).
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T = 50 T = 100 T = 150 T = 200 T = 250 T = 300

k = 0.50 WP WP WP WP WP WP

k = 0.75 WP WP WP WP WP WP

k = 1.00 SP170 WP WP WP WP WP
VP235,300

k = 1.25 SP170 WP170 WP170 WP SP SP
VP235,300 VP235,300 VP235,300

k = 1.50 SP170 SP170 SP170 SP SP SP
VP235,300 VP235,300 VP235,300

Table 2. Optimal perturbations obtained for all of the base flows (WP meaning ”wave packet
perturbation”, SP meaning ”sinuous perturbation”). The subscripts indicate the Reynolds num-
ber; where no subscript is given the results are the same for all Re. Bold fonts indicate the optimal
target time.

DNS. The initial antisymmetrically-alternated vortices (black and white surfaces) are
tilted in the streamwise direction. At t = 25 (Fig. 11 (b)), the vortices increase their
amplitude and their extension in the spanwise direction, starting to generate streamwise
perturbations by transporting the base flow shear (Fig. 11 (c) for t = 50). At t = 100,
the streamwise perturbation has increased its amplitude and extention, assuming an
arrow shape with the formation of little arches connecting the symmetric patches of
perturbation. A similar picture is obtained for SP∗, with important differences in the
symmetry of the structures. Figure 12 (a) shows that the initial vortices are symmetric
with respect to the streamwise direction and alternated in the wall-normal direction. They
are tilted in the streamwise direction and inclined in the spanwise one, assuming an arrow
shape at t = 100 (Fig. 12 (b)). The streamwise perturbation generated by transport of
the base flow has a similar shape, but the alternated streaky structures are antisymmetric
with respect to the streamwise direction (Fig. 12 (c) and (d)). We can observe that, in
both cases, tilting downstream the disturbance extracts energy from the mean shear due
to the conservation of the circulation. This non-modal amplification mechanism is called
Orr mechanism (Orr (1907); Butler & Farrell (1992)), and is the only one present in
a linear framework in the case of spanwise-independent perturbations in a shear flow.
However, since the maximum growth is not attained when the disturbance is aligned in
the wall-normal direction (Butler & Farrell 1992), other mechanisms should be active
to induce the strong amplification observed here. In order to identify the mechanisms
inducing such a growth, we can use the Reynolds-Orr equations (Schmid & Henningson
2001):

dE

dt
= −

∫

V

uiuj

∂Ui

∂xj

dV −
1

Re

∫

V

∂ui

∂xj

∂ui

∂xj

dV (3.1)
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Figure 13. Perturbation kinetic energy time derivative, and production and dissipation terms
versus time extracted by a linearized DNS initialized by the VP∗ (a) and the SP∗ (b).

where the Cartesian tensor notation with the convention of summation over identical
indices has been used for brevity, ui and Ui being the perturbation and base flow velocity
components, respectively, and xi being the spatial coordinates x, y, z. The two terms on
the right hand side of equation (3.1) represent the exchange of energy with the base
flow and the energy dissipation due to viscous effects, respectively. Since the largest
component of the base flow is the streamwise one, the main production terms would be
those with densities Tx = −uu∂U

∂x
, Ty = −uv ∂U

∂y
, and Tz = −uw ∂U

∂z
. Figure 13 (a) and

(b) show the time evolutions of these terms, integrated in the whole domain, along with
the dissipation term and the variation of the kinetic energy, obtained by a linearized
DNS initialized by VP∗ and SP∗, respectively. In both cases we have verified that the
production terms associated with Vx,y,z and Wx,y,z are negligible with respect to Tx,
Ty, and Tz. In the case of the VP, the production term associated with the wall-normal
shear is the largest one. This term is always positive, in contrast to what is observed in
the growth of varicose perturbations on a parallel streaky flow (compare with Fig. 6 (b)
in Hoepffner et al. (2005)), where Ty is the largest one at short times, but it is rapidly
overtaken by the Tz term. In both cases at very short times (t < 15 in the case considered
here) the Orr mechanism contributes to the growth of the Ty term, but it gives a negative
contribution for larger times (t > 15), when the perturbation is tilted downstream, so
the main mechanism inducing a large energy growth should be a different one. Figure 13
(a) shows that Ty peaks at t ≈ 80, when the perturbation has been advected beyond the
wake region, and enters in the quasi-parallel zone observed at x > 140. This confirms that
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(a) (b)

Figure 14. Base flow shear (grey, blue online), streamwise vorticity perturbation (white and
black for ωx = ±0.001) at t = 0 (a) and streamwise velocity perturbation (dark grey, red online,
and light grey, green online, for u′ = ±10−5) at t = 25 (b) for the optimal perturbation obtained
for Re = 300, k = 1.5, T = 50.

(a) (b)

Figure 15. Base flow shear (grey, blue online), streamwise vorticity perturbation (white and
black for ωx = ±0.001) at t = 0 (a) and streamwise velocity perturbation (dark grey, red online,
and light grey, green online, for u′ = ±10−5) at t = 25 (b) for the optimal perturbation obtained
for Re = 300, k = 1.5, T = 200.

the amplification mechanism for a varicose optimal perturbation is closely related to the
wake past the bump. As shown in Fig. 14 (a), the alternated vortices (black and white)
trasport the strong wall-normal shear (blue surfaces) which is localized in the wake region,
creating patches of streamwise perturbation which grows in amplitude, shown in Fig. 14
(b). This mechanism also explains the large values of the streamwise velocity components
observed in the optimal varicose perturbations for large bump heights. In fact, since the
varicose perturbation should grow very fast to exploit the wall-normal shear of the wake,
large initial values of u would allow a rapid growth of the Ty production term without
waiting for u to reach finite values as a result of the transport of the base flow streamwise
velocity.
Concerning the SP, the amplification values are remarkably smaller (compare Figure 13
(a) and (b)), and the amplification mechanism is very different, being mainly related to
the production term Tz. As one can observe in Figure 13 (b), the Ty term is the largest one
at very short times, due to the combined effect of the Orr mechanism and a small amount
of transport of the low-momentum wake flow upwards in the boundary layer. However,
such an amplifying effect is rapidly overtaken by the influence of the production term Tz,
which grows in time up to t ≈ 150 (consistent with the typical time at which the optimal
perturbation drift from a varicose towards a sinuous shape). As shown in Figure 15 (a),
the initial vortices (black and white), alternated in the wall-normal direction, transport
the streamwise-elongated spanwise shear of the base flow (blue surfaces). This induces
the formation, on the flanks of the initial vortices, of patches of streamwise disturbance
with a growing amplitude, shown in Figure 15 (b). Being the spanwise base flow shear
more extended in the streamwise direction, since it has its maximum in the interaction
zone between streaks, the transient instability has more time to develop with respect to
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Figure 16. Energy gain versus time extracted by a DNS initialized by the optimal perturbation
obtained for Re = 300, k = 1.5, T = 50 (VP∗, left frame) and T = 200 (SP∗, right frame) with
the initial energies indicated within the figure. The black dots indicate the optimal energy gain
obtained at target time by the linear optimization.

the varicose case. This also explains why the streamwise perturbation at initial time is
smaller than in the varicose case, since it has more time to grow, induced by the initial
vortices. It is worth to notice that the evolution of the Tz term for the sinuous case is
similar to the one obtained by an optimal disturbance of a parallel streaky flow (compare
with Fig. 6 (a) in Hoepffner et al. (2005)). However, some differences are observed: in the
present case, the Ty term achieves half of the Tz peak values at t = 75, wherease, in the
parallel flow case (Hoepffner et al. 2005), its maximum values is only one tenth of the Tz

peak. As discussed before, such large initial values of Ty are linked to the presence of a
large wall-normall shear in the wake region.

3.2.6. The route to transition

In the above section we have identified the main terms inducing energy growth in
the case of varicose and sinuous optimal disturbances, for the base flow at Re = 300 and
k = 1.5. We will now analyze how this linear mechanisms can induce transition. Thus, we
use the VP∗ and SP∗ to initialize several DNSs and we increase their energy in order to
achieve transition. For the VP, Figure 16 (a) shows that the energy gain follows the linear
behaviour up to E(0) = 10−5, when the energy gain begins to increase with respect to
the linear case, but transition is still not observed. For larger initial energies, transition is
triggered, as verified by computing the skin friction coefficient downstream of the bump.
Concerning the SP, since the linear energy growth is smaller than that induced by the
VP, transition is observed for larger values of the initial energy. In particular, as shown
in Figure 16 (b), an initial energy of order E(0) = 10−3 is needed to induce transition,
which is one order of magnitude larger than that needed by the VP. Considering that
both perturbations are localized on the bump and show a similar extention in all of the
directions, a larger amplitude of the velocity components is needed for the SP to induce
transition. This indicates that the VP are much more dangerous for the considered flow.
Figure 17 shows the contours of the instantaneous streamwise velocity component and

of the streamwise vorticity perturbation extracted from the DNS initialized by the VP
with initial energy E0 = 0.001. The first two frames (at t = 0 and t = 25) show the
tilting due to the Orr mechanism; then the vortices continue to increase in amplitude
and start to change their initial shape and inclination. This is due to the fact that the



22 S. Cherubini, M. D. De Tullio, P. De Palma, G. Pascazio

Figure 17. Contours of the instantaneous streamwise velocity at y = 2 and surfaces of the
streamwise vorticity perturbation (white and black) extracted by a DNS initialized by the op-
timal perturbation obtained for Re = 300, k = 1.5, T = 50 with initial energy E0 = 0.001 at
t = 0 (surfaces for ωx = ±0.005, first frame), t = 25 (surfaces for ωx = ±0.03, second frame),
t = 75 and t = 150 (surfaces for ωx = ±0.08, third and fourth frames, respectively).

Figure 18. Contours of the instantaneous streamwise velocity at y = 2 and surfaces of the
streamwise vorticity perturbation (white and black) extracted by a DNS initialized by the op-
timal perturbation obtained for Re = 300, k = 1.5, T = 200 with initial energy E0 = 0.01 at
t = 0, t = 25 (surfaces for ωx = ±0.015, first and second frame, respectively), t = 75 and t = 150
(surfaces for ωx = ±0.1, third and fourth frame, respectively).

streamwise disturbance induced by trasport of the mean flow reaches amplitudes which
are comparable with the base flow, thus inducing modifications on the original streaks.
Such base flow modifications, which are also responsible for the change of inclination
of the vortices, can be observed in Figure 17 starting from the third frame. Since the
streamwise perturbation has a varicose symmetry, the base flow streaks experience vari-
cose oscillation (see the narrowing and enlargment of the streaks in the third frame of
Figure 17, around x ≈ 140). At t = 150 (fourth frame) the streaks are broken down,
and the vortices are split up in smaller ones. For t > 150 the transitional wave packet is
advected downstream, increasing its size in the spanwise and streamwise direction.
A different behaviour is observed during the evolution of the optimal SP, having initial
energy E0 = 0.01. The first two frames of Figure 18 show that the initial vortices are
tilted in the streamwise direction and advected downstream. Then, the vortices begin
to show a finite spanwise inclination with respect to the streamwise direction, creating
inclined patches of streamwise disturbance that induce modifications of the base flow.
In particular, the streaks present sinuous oscillations, which are clearly visible in the
third frame of the Fig. 18, for t = 75. At t = 150 (fourth frame) the vortices are broken
into smaller patches of vorticity, and the streaks have experienced breakdown. Then, the
transitional wave packet is advected downstream, increasing its size in the spanwise and
streamwise direction.
The two scenarios of transition observed here reflect the main features of the varicose
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Figure 19. Surface of the instantaneous streamwise velocity u = −0.2 and of the Q-criterion
(light gray for Q = 100) extracted by a DNS initialized by the optimal perturbation obtained
for Re = 300, k = 1.5, T = 50 with initial energy E0 = 0.001 at t = 50 (a), t = 100 (b), t = 150
(c.)

and sinuous transition mechanisms for a parallel streaky flow, although in this case the
most amplified perturbations are the varicose, not the sinuous ones. The main vortical
structures recovered in the flow are shown in Figure 19 (a), (b), and (c) for VP∗. The
time sequence shows the generation of a small hairpin vortices at t = 50, which is typi-
cally associated with streaks oscillations of varicose type. Such a vortical structure grows
in size at t = 100 and t = 150, maintaing its main structure and further generating a
train of hairpin vortices (Adrian 2007), which are often observed past roughness elements
(see Acalar & Smith (1987)). Concerning the evolution of SP∗, no hairpin structure is
observed. This confirms the different dynamics between the two transition scenarios and
points out the importance of varicose optimal disturbances in a streaky flow induced by
a smooth roughness element.

4. Summary

This work aims at describing the three-dimensional instability mechanisms which may
lead the flow over a smooth roughness element to a rapid transition, by-passing the two-
dimensional asymptotical growth of TollmienSchlichting waves. This kind of roughness
elements, which may resemble the imperfections of a flat surface, induce mild variations
on the boundary-layer flow; therefore, the mechanism leading to transition could most
likely be based on transient growth, like that recovered in a Blasius flow. Thus, we have
performed a linear three-dimensional energy optimization analysis, looking for pertur-
bations inducing the largest energy growth at a finite time in a boundary-layer flow in
the presence of roughness elements of smooth axisymmetric shape. To this purpose, we
have coupled the immersed boundary technique, useful to describe complex geometries,
with a Lagrangian optimization in a three-dimensional framework. Smooth roughness el-
ements having the shape of an axisymmetric three-dimensional bump have been studied,
characterized by different heights, k (non-dimensionalized with respect to the Blasius
displacement thickness at the center of the roughness element, δ∗). The influence of the
Reynolds number has also been analyzed. We found that, for small bumps having k < 1,
the deformation of the base flow is weak, so that only negligible differences in the energy
gain are observed with respect to the Blasius flow. In this case, the optimal perturbation
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has the shape of a wave packet with alternated quasi-streamwise vortices, similar to the
one observed in a Blasius boundary layer, but localized in the streamwise and spanwise
direction. For larger bumps (k > 1) and small target times, we found that the optimal en-
ergy gain overtakes the one obtained for a Blasius flow up to several orders of magnitude.
This indicates that, under certain conditions of environmental noise, this kind of bump
may have a destabilizing effect on a short time scale due to non-normal transient growth,
even if it can stabilize the TS waves on a larger time scale (see Piot et al. (2008)) in a
low-noise environment. The optimal perturbations are strongly localized over the bump,
and are characterized by initial vortices alternated in the wall-normal, or in the span-
wise direction, with a sinuous or varicose symmetry, respectively. In particular, for large
bump heights and Reynolds numbers, it appears that the optimal disturbances obtained
for large target times (t > 150) are sinuous perturbation, whereas for smaller target times
(t 6 150) they are characterized by a varicose structure. Moreover, the highest value of
the energy gain is obtained for a varicose perturbation; in particular, we observed that
varicose perturbations are able to induce an energy amplification up to 60 times larger
than the sinuous ones at the same target time, pointing out the strong destabilizing
effect of varicose instabilities for a streaky flow induced by a bump. The difference in
the symmetry obtained for different target times can be explained by observing that the
base flow itself is characterized by a strong shear having a varicose symmetry in the
near field downstream of the bump, whereas, at larger abscissae, it turns into a nearly-
parallel streaky flow. Thus, at small target times the optimal disturbances are strongly
affected by such a varicose structure of the base flow, whereas they turn into sinuous
perturbations when they reach the nearly parallel streaky flow far from the bump. Such
different perturbations lead to different instability mechanisms creating hairpin vortices
in the varicose case and oscillating streaks in the sinuous case. In particular, the varicose
optimal perturbations are found to induce transition at smaller amplitudes and ener-
gies, meaning that they are indeed the most dangerous perturbations in a streaky flow
induced by a bump. These results confirm the importance of taking into account the
three-dimensionality of the base flow using three-dimensional global instability methods,
in order to better understand the most likely scenarios of transition in a flow past a
roughness element. Using global instability analysis will be even more crucial when deal-
ing with non-smooth roughness elements with non-small aspect ratio, inducing stronger
distortions of the boundary-layer base flow. In fact, for non-smooth roughness element
such as cylinders, experimental observations (Tani et al. (1962); White (2002); White &
Ergin (2003); Fransson et al. (2004); Choudhari & Fischer (2005)) have shown that the
flow experiences transition at a given roughness Reynolds number, indicating the onset of
a modal global instability linked to the three-dimensionality of the base flow. However,
such a modal instability will have a different origin from the non-modal amplification
mechanisms investigated here. Thus, the conclusions of the present study cannot be gen-
eralized to any roughness element shape and height, leaving the analysis of non-smooth
roughness elements such as cylindrical ones to a future work.
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Appendix A. Immersed-boundary technique

The IB technique is employed to take into account the presence of a single or multiple
bodies inside the computational domain, while maintaining the use of Cartesian grids



Transient growth in the flow past a three-dimensional smooth roughness element 25

that do not need to conform to the geometry surfaces. Being the volume grid (and
therefore its resolution at the wall) independent of the geometry surface discretization,
the surface description focus uniquely on resolving the geometry. In this work, the body
surface is discretized by means of unconnected triangles of size inversely proportional to
the local curvature of the original surface (STL format), with the only requirement that
the object must be a closed manifold. The body surface is overlapped onto the volume
mesh, splitting it in fluid and solid regions, Γ1 and Γ2 (see figure 1). Note that the gray
surface indicated in figure 1 is not a closed geometry. Indeed, in our implementation
of the method, when the body intersects the boundaries of the computational domain,
the domain boundary faces act as closure faces for the body. In order to assign the
computational cells to each zone, a tagging procedure is performed, finding their relative
position with respect to the body. This is done automatically by using a very efficient
ray-tracing technique (O’Rourke (1993)), which consists in casting rays in one Cartesian
direction, spanning from a reference fluid point and counting the intersections with the
body surface. The number of valid intersections will then classify the cells as fluid (even
number of intersections) or solid (odd number of intersections). With reference to figure 1,
in this work the rays are cast in the flow direction, starting for each point laying on the
inlet surface. After the tagging, the fluid points that have at least one neighbor that is
tagged as solid, are tagged as interface points.
At every point of the computational domain Γ1+Γ2, the governing equations (2.1) and

(2.2) are solved. In the present work, the direct forcing of Mohd-Yusof (1997) is employed;
therefore, at interface points a correction on the velocity value is forced at each time
step so as to impose the desired velocity value on the body surface. Following Fadlun
et al. (2000), the velocity at the interface points is obtained by linearly interpolating
the velocity at a second grid point (which is obtained by directly solving the Navier–
Stokes equations) and the velocity at the body surface, which conceptually corresponds
to applying the momentum forcing inside the flow field. For each interface point, the
direction towards the second grid point, i.e., the interpolation direction, is the Cartesian
direction in which the distance with respect to the body is minimum. This also identifies
the body intersections. Concerning the solid points, the zero-velocity forcing is applied
(stationary boundary). It is worth noting that, as checked by Fadlun et al. (2000), for
stationary boundary problems, different treatments inside the solid body do not affect
the external flow. The present IB technique is coupled with the Lagrangian optimization
described in the following.

Appendix B. Direct-adjoint optimization technique

The Lagrange multiplier technique consists in seeking extrema of the augmented func-
tional L, provided in equation (2.4) with respect to every independent variable. Integrat-
ing by parts and setting to zero the first variation of L with respect to u′, v′, w′, p′ leads
to the adjoint equations:

bt = −bxU − (bV )y + cVx − (bW )z +Wxd− ax −
bxx + byy + bzz

Re

ct = −(cU)x − cyV + bUy − (cW )z +Wyd− ay −
cxx + cyy + czz

Re

dt = −(dU)x − (dV )y + Uzb+ Vzc−Wdz − az −
dxx + dyy + dzz

Re

bx + cy + dz = 0

(B 1)
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where q† = (a, b, c, d)T is now identified as the adjoint vector. By using the boundary
conditions of the direct problem, one obtains:

b = 0 , c = 0 , d = 0 , for y = yw and y = Ly

b = 0 , c = 0 , d = 0 , for x = xin and x = xout
(B 2)

where the zero perturbation condition at the wall is imposed by means of the immersed
boundary technique for both the direct and adjoint equations; it is noteworthy that, using
the direct forcing approach, no explicit forcing term appears in the adjoint equations.
Nullifying the terms at t = T one obtains the compatibility conditions (Zuccher et al.

2004):

2u′

E(0)
− b = 0 ,

2v′

E(0)
− c = 0 ,

2w′

E(0)
− d = 0 , for t = T (B 3)

By solving the direct and adjoint equations at each step of the iterative procedure,
the first variation of the augmented functional with respect to q and q† is set to zero.
Moreover, the gradient of L with respect to the initial state q0 has to vanish within a
reasonable number of iterations. In order to achieve convergence efficiently, a conjugate
gradient algorithm is used. The initial state is updated in the steepest ascent direction,
denoted as:

∇q0
L = −2q0

E(T )

E(0)2
+ q†(0) (B 4)

with an adjustable step length α, so that q
(n+1)
0 = qn

0 + αn∇q0
L
n. After the first iter-

ation in the steepest ascent direction, the successive steps are taken along a conjugate
direction, Λq0, which is computed on the basis of the gradient at two consecutive itera-

tions according to Λq
(n+1)
0 = ∇q0

L
(n+1)+β(n+1)Λqn

0 . The value of the parameter β(n+1)

is computed by means of the Polak–Ribière formula (Polak & Ribière 1969). The step
length α has been chosen small enough in order to ensure convergence to the optimal
value.
The optimization procedure for a chosen target time T can be summarized as follows:
(a) An initial guess is taken for the initial condition, q0, at t = 0, with an associated

initial energy E(0).
(b) The direct problem is integrated from t = 0 to t = T .
(c) At t = T , the initial state for the adjoint problem is provided by the compatibility

condition (B 3).
(d) The adjoint problem (B 1) is integrated backward in time from t = T to t = 0,

starting from the initial state of step (c).
(e) At t = 0, the initial direct state is updated in the direction of the conjugate gradient

with step length α and β computed according to the Polak–Ribière formula (β = 0 is
imposed at the first iteration).
(f) The objective function E(T )/E(0) is evaluated; if its increase between two succes-

sive iterations is smaller than a chosen threshold, ǫ = 10−5, the loop is stopped, otherwise
the procedure is continued from step (b).
The performance of the optimization procedure, as well as a detailed convergence study
for the case of the Blasius boundary-layer flow, are provided in Cherubini et al. (2010b,a).
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