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cUniversité Lyon 1, CNRS, UMR5558 LBBE, France

Abstract

In this paper, we study some average properties of hypergraphs and the average com-
plexity of algorithms applied to hypergraphs under different probabilistic models. Our
approach is both theoretical and experimental since our goal is to obtain a random
model that is able to capture the real-data complexity. Starting from a model that
generalizes the Erdös-Renyi model [9, 10], we obtain asymptotic estimations on the
average number of transversals, minimals and minimal transversals in a random hy-
pergraph. We use those results to obtain an upper bound on the average complexity
of algorithms to generate the minimal transversals of an hypergraph. Then we make
our random model more complex in order bring it closer to real-data and identify
cases where the average number of minimal tranversals is at most polynomial, quasi-
polynomial or exponential.

1. Introduction

A hypergraph is a pair H = (V, E) where V = {1, 2, . . . , n} is the set of
vertices and E = (E1, . . . , Em) is the collection of hyperedges with Ei ⊆ V for
all i.

A transversal is a set of vertices that intersects all the hyperedges. A set
of vertices X is said to be irredundant if for all vertex i ∈ X, there exists a
hyperedge H such that H ∩X = {i}. X is called a minimal transversal when
it transversal and none of its subset is transversal. This is equivalent to being
both irredundant and transversal.

Given a hypergraph H, the set of all its minimal transversals forms a hyper-
graph called the transversal hypergraph.

The Transversal Hypergraph Generation problem (for short, THG-problem)
consists in computing the transversal hypergraph of a given hypergraph. In the
same way, the associated decision problem (in short, THD-problem) consists
in deciding if a first hypergraph H1 is the transversal hypergraph of a second
one H2. This problem is known to be equivalent to the famous dualization of
monotone boolean functions problem (see [7]). The Transversal Hypergraph
Generation problem appears in very different domains: Artificial Intelligence
and Logic [5, 6], Biology [2], Datamining and Machine Learning [12], mobile
communications [20], etc. We refer to [13] for a more complete list of applica-
tions.
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Since a hypergraph may have an exponential number of minimal transver-
sals, the THG-problem does not belong to the class of polynomial problems.
However, a long standing question is to decide whether there exists an algo-
rithm to solve THG whose running time is a polynomial on the size of the
hypergraph and on the number of minimal transversal. Such an algorithm is
called an output–polynomial time algorithm.

The complexity of the THG-problem is closely related to its associated deci-
sion problem THD. Precisely, if an output–polynomial algorithm solves THG,
then THD can be solved in polynomial time. In addition, THD is clearly in the
class of co-NP problems but there is no evidence of its co-NP-completeness. If
THD is co-NP-complete, then no output polynomial algorithm is likely to exist
for the generation problem THG (unless P=co-NP) [5].

The best known algorithm to generate the transversal hypergraph is quasi-
polynomial and is due to Fredman and Khachiyan in [11]. Its running time is
of the form No(logN) with N the size of the input plus the output. Neverthe-
less, this algorithm is not efficient for practical applications. Other algorith-
mic solutions were proposed and a list of them can be found in [8]. In this
article, we focus on the MTMiner algorithm defined by Hébert, Bretto and
Crémilleux [14]. MTMiner is closely related to the mining of the frequent
patterns in data mining and is clearly output–exponential in the worst-case.
We will study both average complexity and generic-case [15] output–sensitive
complexity of the algorithm.

In the previous quoted results, the complexity of the THG–problem and
associated algorithms were mostly studied with the worst–case point of view.
Indeed, very specific entries were exhibited in order to obtain worst-case lower
or upper bounds on the behavior of the algorithms. But these entries do not
generally occur in practice, and the existing worst–case analyses are then not
sufficient to understand the practical complexity of THG. In this article, we
adopt a probabilistic point of view. Though analytic combinatorics is often used
to conduct an average study, the symbolic method does not seem to be relevant
in our case, as it cannot be used to describe the patterns we are interested in.

The study of random hypergraphs under various distributions is quite com-
mon and one of the most popular is the uniform distribution on k-uniform hy-
pergraphs [1, 4, 17] (in which all hyperedges have the same cardinal k). In [21],
the authors prove that under the uniform distribution over all the simple hyper-
graphs with n vertices, the THG problem is output-polynomial with probability
close to 1. In fact under this distribution, the size of the transversal hypergraph
is with high probability exponential in n and even the naive algorithm that goes
through the whole search space is almost surely output–polynomial. To the best
of our knowledge, this is the only study on the average complexity of the THG
problem.

In this paper, we consider two random models in which the number n of
vertices and the number m of hyperedges are given and suppose that m is
a polynomial in n. The results we obtain are original and do not intersect
with [21].

Section 2 is devoted to the average analysis of patterns in a random hy-
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pergraph. In Section 2.1, we study a single-parameter model that generalizes
the Erdös-Renyi model [9, 10] on graphs and obtain asymptotic estimations on
the average number of transversals, irredundants and minimal transversals. In
Section 2.2, we make our random model more complex so that the probability
that each vertex appears in an hyperedge is given by a function. We identify
functions for which the average number of minimal tranversals is at most poly-
nomial, quasi-polynomial or exponential. Section 3 is devoted to algorithms
analysis. We study the average complexity of the MTMiner algorithm and
the generic-case complexity of the THG-problem. The average complexity of
MTMiner is closely related to the average number of irredundants: we obtain
upper bounds on the average complexity for both models. Section 4 is devoted
to experimental results. Using hypergraphs obtained from real datasets, we dis-
cuss the consistency our random models. Conclusion is devoted to perspectives
and indications on a random model that might be interesting for a future work.

2. Pattern analysis

In this section, we study the average properties of hypergraphs under two
probabilistic models. For both models we suppose that:

• The number of hyperedges m is at most polynomial in the number of
vertices n. Some of our results do not require this supposition and can
therefore be extended to cases where m is exponential in n. Moreover,
when m = Θ(2n), most questions we study in this paper become trivial.

• The probability that a given vertex v appears in a given hyperedge is
independent from the probability that a vertex u appears in the same
hyperedge or from the probability that v appears in another hyperedge.

• An hypergraph with n vertices and m hyperedges can be seen as a binary
matrix M(H) = (mi,j(H))i=1..m,j=1..n. Each row in the matrix encodes
an hyperedge. The value mi,j at line i and column j is equal to 1 if the
vertex j belongs to the hyperedge encoded in row i, mi,j = 0 otherwise.

2.1. The Single-Parameter Model

Definition 1. HG(n,m,p) random model. The HG(n,m, p) model supposes
that the family of random variables (mi,j)i=1..m,j=1..n forms an independent and
identically distributed family of random variables following the same Bernoulli
law of parameter p (0 < p < 1).

In this model and in the following results, the reader can consider that p
is a constant but announced results are also valid for p depending on n and
p > 1− e− 1

lnn . This bound will be useful in the multiparametric model.

3
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2.1.1. On the average number of transversals.

In the following, Tj is the number of transversals of size j on a given hyper-
graph. Recall that, a given subset X ⊆ V of vertices is a transversal if for all
hyperedges H of the hypergraph, there exists at least one vertex v ∈ X such
that v ∈ H. We note q = 1 − p, the probability that a vertex does not appear
in a hyperedge and that m is the number of hyperedges in a hypergraph. The
probability for a subset X of size j to be a transversal is therefore:

P(X is a transversal) = (1− qj)m.

The following results results are obtained by calculations on this probability.

{1, . . . , n}

∅

logm+ ω(1)

logm− ω(1)

E[Tj ] = Θ(
(
n
j

)
)

E[Tj ] = o(
(
n
j

)
)

E[Tj ] ∼
(
n
j

)

σ[Tj ] = o(E[Tj ])

log mp
lnn

E[Tj ] = o(1)
log m

logm lnn

Figure 1: We represented the
boolean lattice on the set of ver-
tices. As we will show in the fol-
lowing section, according to the size
of the subsets, we can estimate the
proportion of transversals. Above a
given size, we also have a result on
the standard-deviation.

The first result fixes a bound on the size of transversals. The 1
q in the formula

are the basis of the logs.

Lemma 1. Let jmin = log 1
q

m
log 1

q
m lnn be a value chosen for the purpose of

calculus. In the HG(n,m,p) random model, for all j < jmin, the average
number of transversals E[Tj ] tends to 0.

Proof. The following inequalities holds:

E[Tj ] =

(
n

j

)
(1− qj)m ≤ nje−mqj ≤ ejmin lnn−mqjmin .

Now, the expression in the exponential simplifies into

jmin lnn−mqjmin = − lnn× (log 1
q

log 1
q
m+ log 1

q
lnn)

which tends to −∞. This completes the proof.

The second lemma gives an order of growth for the average number of
transversals whose size is at least logarithmic in m.
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Lemma 2. In the HG(n,m,p) random model, consider j of the form

j = log 1
q
m+ log 1

q
x, x ∈]0,+∞[.

1. if x = Θ(1), only a constant proportion of all sets of j vertices is a
transversal, i.e., E[Tj ] ∼

(
n
j

)
exp(−1/x).

2. if x tends to +∞, almost all sets of j vertices is a transversal, i.e., E[Tj ] ∼(
n
j

) (
1− 1

x

)
.

3. if x tends to 0 with x lower bounded by 1/m, almost no sets of j vertices

is a transversal, i.e., E[Tj ] = o
((
n
j

))
.

Proof. Consider a set of vertices X of size j. The probability that X intersects
an hyperedge is (1− qj) so that, X is a transversal with probability

P(X is a transversal) = (1− qj)m =

(
1− 1

mx

)m

for j as in the lemma. If x = Θ(1), we have the equivalence
(

1− 1

mx

)m
= exp

(
− m

mx
+O(

1

mx
)

)
∼ exp

(
− 1

x

)
.

If x tends to +∞, the previous equivalence remains true and e−1/x ∼ 1− (1/x).
To conclude if x tends to 0, we have

(
1− 1

mx

)m
≤ exp

(
− m

mx

)
= exp

(
− 1

x

)

which tends to 0.

When j is sufficiently large, the next lemma shows that the standard de-
viation of Tj is negligible compared to its mean. Combined with the Markov
inequality, this proves that the number of tranversals of size j is almost surely
equivalent to the mean number. This result will be fundamental to obtain an
almost sure lower bound on the number of minimal transversals.

Lemma 3. In the HG(n,m,p) random model, the standard deviation of the
number of transversals of size j with j > log 1

q

mp
lnn satisfies

σ[Tj ] = O
(
E[Tj ]

lnn√
n

)
.

Proof. For any set of vertices X, χX denotes the random equals to 1 if X is a
transversal and 0 otherwise.
Consider j ≥ 1. The variance of Tj is by definition

V(Tj) =
∑

X,Y ⊂ V
|X| = |Y | = j

P[χXχY = 1]− P[χX = 1]P[χY = 1].

5
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If X and Y are disjoint, the random variables χX and χY are independent and
the associated term in the previous sum is zero. We are then led to study non
disjoint subsets of vertices. If X and Y are non disjoint, we define I, J and K
as

K = X ∩ Y, I = X\Y, J = Y \X,
Note that if X and Y have the same cardinality, then the same is true for I
and J . Therefore we note |K| = k and |I| = |J | = j − k. The support of
K, noted E ′ ⊆ E , is the set of hyperedges that intersect K. If X and Y are
transversals, then I and J intersects all the hyperedges of E\E ′. For a fixed set
E ′, the probability to be K’s support is qk·(m−|E

′|)(1− qk)|E
′|. The probability

that I and J intersects all the hyperedges of E\E ′ is (1− qj−k)m−|E
′|. Summing

over all the possible cardinalities for E ′, we obtain

P[χX = χY = 1] =

m∑

`=0

(
m

`

)
(1− qk)`qk(m−`)(1− qj−k)2(m−`)

= (1− 2qj + q2j−k)m

For fixed j and k, there are
(

n
k,j−k,j−k

)
possible choices for the sets I, J and K.

The probability that X (or Y ) is a transversal is (1− qj)m, and summing over
all the possible k, we obtain

V(Tj) =

j∑

k=1

(
n

k, j − k, j − k

)[
(1− 2qj + q2j−k)m − (1− qj)2m

]
.

Various cases are now possible.
Case (i). j > log 1

q
mn. Then

(1− 2qj + q2j−k)m − (1− qj)2m = O
(

1

n

)

where the constant term in O only depends on n and not on j. In addition,

j∑

k=0

(
n

k, j − k, j − k

)
=

(
n

j

)2

so that the variance satisfies

V(Tj) =

(
1

n

(
n

j

)2
)

= O
(

1

n
En[Tj ]

2

)

and the random variable Tj is concentrated.

6
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Case (ii). If log 1
q

mp
lnn ≤ j ≤ log 1

q
mn. The variance satisfies the upper

bounds

V(Tj) ≤
j∑

k=1

(
n

k, j − k, j − k

)
(1− 2qj + q2j−k)m

≤
j∑

k=1

(
n

k, j − k, j − k

)
exp(−2mqj +mq2j−k).

Let αk denotes the k-th term of this sum. The ratio of two consecutive αk is
upper bounded by

αk+1

αk
≤ j2

2(n− 2j + 2)
empq

2j ≤ log2mn

2(n− 2 logmn+ 2)
empq

log 1
q

( mplnn )
2

≤ e
lnm
mp log2mn

2(n− 2 log2mn+ 2)
= O

(
ln2 n

n

)

The variance satisfies V(Tj) ∼ α1 since jα2 = o(α1), for log 1
q

mp
ln lnn ≤ j ≤

log 1
q
mn. Now, we have

V(Tj) ∼ e−2mq
j n2j−1

(j − 1)!2
∼ j2

n
E[Tj ]

2.

The result follows for case (ii) and the proof is complete.

To sum up the results on the average number of transversals:

1. almost no subset of size less than log 1
q

m
log 1

q
m lnn are transversal,

2. if the size is log 1
q
m − ω(1), then the number of tranversals is negligible

compared to the number of subsets,

3. if the size is equivalent to log 1
q
m (up to an additive constant), then almost

surely a constant proportion of subsets are transversals.

4. if the size is log 1
q
m+ ω(1), then almost all subsets are transversals.

Intuitively, the set of minimal transversals will mostly be included in cases
2 and 3. Indeed, in case 4, the probability that a given transversal does not
contain a subset of case 3 which is also transversal, will intuitively be low.

2.1.2. Average number of irredundants.

A subset X is irredundant if for all vertex i ∈ X, there exists and an hyper-
edge H such that H ∩X = {i}. For fixed X of cardinal j , fixed i and H, the
probability that H ∩X = {i} is pqj−1. For fixed X and H, the probability that
@i ∈ X such that H ∩X = {i} is equal to 1− jpqj−1. If X is a irredundant then

7
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there exists a tuple (k1, . . . , kj) of positive value where ki is the number of hy-
peredges H such that H ∩X = {i} and the probability that X is a irredundant
set is equal to:

∑

∀i ≤ j, ki ≥ 1
k1 + . . . + kj = `

j ≤ ` ≤ m

(
m

k1, . . . , kj

)
(pqj−1)` · (1− jpqj−1)m−`

The next theorem states that the average number of irredundants is quasi-
polynomial.

Theorem 1. The average number of irredundants in a random model HG(n,m,p)
is

O
(

(mn
p

q2
log 1

q

√
nm)

1
4 (log 1

q
nm−logq p−log 1

q
log 1

q

√
nm)+1

)

Proof. We study a function that bounds the number of irredundants by consid-
ering the following necessary condition: let X = {x1, . . . , xk}, a selection is a
set {E1, . . . , Ek} of hyperedges such that Ei ∩ X = {xi} for all i ≤ k. X is a
irredundant set if and only if there exists a selection in the hypergraph.

For each of the
(
n
j

)
subsets of size j, if one can find j hyperedges amongst

m such that each hyperedge contains one vertex and not the others (the order
on hyperedges is not specified), then the condition is satisfied. This occurs with

probability
(
pqj−1

)j
. The average number of irredundants of size j is therefore

bounded by the function

f(j) =

(
n

j

)
m!

(m− j)!
(
pqj−1

)j
,

We study the value j for which f(j) is maximal.

f(j + 1)

f(j)
=

(m− j)(n− j)
j + 1

pq2j .

This ratio is decreasing with j. The maximum of h(j) is given by the first
integer value of j such that the ratio is smaller than 1.

⇐⇒ q2j =
1

(m− j)(n− j)p (j + 1)

⇐⇒ j =
1

2

(
log 1

q
(m− j)(n− j) + log 1

q
p− log 1

q
(j + 1)

)

It can be proved that with p constant (or p > 1− e− 1
lnn ) and m large enough,

we have
log 1

q
(m)− 1 < log 1

q
(m− j) ≤ log 1

q
(m).

The same goes for log 1
q
(n− j). We bootstrap and simplify:

j ∼ 1

2

(
log 1

q
mn− logq p− log 1

q
log 1

q
nm
)

8
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The maximum of the function f is reached for dje. We obtain the announced re-
sult by computing f(j) (using Stirling’s formula) and multiply by n (all possible
values for j).

2.1.3. Average number of minimal transversals

In the sequel, MT (resp. MTj) is the random variable equal to the number
of minimal transversals (resp. of size j). It is known that in the worst case,
the number of minimal transversals may be exponential with respect to the
size of the input hypergraph. However, for the “naive” uniform distribution
on hypergraphs, the number of minimal transversal is almost surely at most
output linear. As far as we know, the HG(n,m,p) model leads to the first non
trivial bound on the average number of minimal transversals, as announced by
the next theorem.

Theorem 2. Consider the random model HG(n,m,p) with m = βnα, β > 0
and α > 0. There exist a positive constant c := c(α, β, p) such that the average
number of minimal transversals is

O
(
n
d(α) log 1

q
m+c ln lnm

)
,

with d(α) = 1 if α ≤ 1 and d(α) = (α+1)2

4α otherwise.

Proof. We consider once again a function that bounds the number of minimal
transversals. A set X is a minimal transversal if and only if:

1. there exist a selection E ′ for X,

2. for all F ∈ E\E ′, |F ∩X| ≥ 1.

The probability that Condition 1 holds is (pqj−1)j whereas the probability
that Condition 2 holds is (1 − qj)m−j . There are

(
n
j

)
sets of vertices of size j

and each of them have m!
(m−j)! possible selections. Then, the average number of

minimal transversals of size j is bounded by h(j) with

h(j) =

(
n

j

)
m!

(m− j)! (pq
j−1)j(1− qj)m−j .

We now determine the j that maximizes h(j). The ratio h(j+1)
h(j) satisfies

h(j + 1)

h(j)
=

(m− j)(n− j)
j + 1

p

1− qj q
2j

(
1 +

pqj

1− qj
)m−j−1

As in the previous section, this ratio is also decreasing. Two cases are now
possible according to the value of α.
Case α ≤ 1. h(j) is maximized by jmin with:

• jmin = log 1
q

m(1−α)
p lnm when α < 1,

9
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• jmin = log 1
q

mp
ln lnm when α = 1.

Precisely, for some real x > 0 (resp. x < 0), the ratio h(jmin+1+x)/h(jmin+x)
tends to 0 (resp. +∞) when n grows so that the average number of minimal
transversals satisfies

E[M ] ≤
n∑

j=1

h(j) = O(h(jmin + 1)).

Now, asymptotic computations give

h(jmin) = exp
(

lnn log 1
q
m+O(lnm ln lnm)

)

which completes the proof in case α ≤ 1.
Case α > 1. Consider jmin = 1

2 log 1
q
mn− 1

2 log 1
q

lnm. Note that jmin may not

maximize h(j) but if x tends to +∞ (resp. −∞) with |x| = O(ln ln lnm), the
ratio h(jmin + 1 + x)/h(jmin + x) tends to 0 (resp. +∞). Then, the average
number of minimal transversals satisfies

E[M ] ≤
n∑

j=1

h(j) ∼
jmin+ln ln lnm∑

j=jmin−ln ln lnm

h(j)

= O

(
ln ln lnm max

|j−jmin|≤ln ln lnm
h(j)

)
.

The result follows from the fact that

max
|j−jmin|≤ln ln lnm

h(j) = exp
(
d(α)lnn log 1

q
m+O(lnm ln lnm)

)
.

2.1.4. Almost sure lower bound for the number of minimal transversals

A generic lower bound of a random variable (i.e. a lower bound which is true
with probability close to 1) is often obtained by studying the moments of higher
order or the variance. We did not succeed in studying the higher moments of
the number of minimal transversals. However, we relate the number of minimal
transversals to the number of transversals and use the concentration property
given in Lemma 3.

The number MT of minimal transversals is lower bounded by Mj , the num-
ber of minimal transversals of size j. Among the Tj transversals of cardinal j,
MTj are irredundant and Tj −MTj are supersets of transversals of cardinal
j − 1. By definition, there are Tj−1 transversals with cardinal j − 1 and each of
these transversals can be completed in at most n− j+ 1 transversals of cardinal
j. We deduce the inequalities

MT ≥MTj and Tj − (n− j + 1)Tj−1 ≤MTj ≤ Tj . (1)

10
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The lower bound entails that for all 0 < ε < 1,

P(MTj ≤ εE[Tj ]) ≤ P(Tj − (n− j + 1)Tj−1 ≤ εE[Tj ])

P(MTj < εE[Tj ]) ≤ P(Tj−1 < εE[Tj−1])+P (Tj < ε(E[Tj ] + (n− j + 1)E[Tj−1])) .

Consider l = log 1
q

mp
lnn + 1 (in order to use Lemma 3) . We have

E[Tl] + (n− l + 1)E[Tl−1] = E[Tl]

(
1 +O

(
lnn

n

))

and the Bienaymé-Tchebychev Inequality with Lemma 3 lead to the following
proposition.

Proposition 1. Consider ε with 0 < ε < 1. In the random model HG(n,m,p),
the number MT of minimal transversals satisfies

P(MT < εE[Tl]) = O

(
ln2mn

(1− ε)2n

)

where Tl is the set of transversals of size l = log 1
q
m− log 1

q
lnn+ log 1

q

p
q .

Corollary 1. In the random model HG(n,m,p), the number of minimal transver-
sals is almost surely greater than

n
log 1

q
m+O(ln lnm)

Proof. The idea is to compute E[Tl] and use Lemma 3.

2.2. Multiparametric Model
In this section, we no longer consider that the vertices occur in an hyperedge

with the same probability. As we will show in Section 4, this is much more
consistent with real–case datasets.

Definition 2 (HG(n,m, g) random model). A hypergraph H with n hyperedges
and m vertices is seen as a binary matrix M(H) = (mi,j(H))i=1..m,j=1..n. The
HG(n,m, g) model supposes that the family of random variables (mi,j)i=1..m,j=1..n

forms an independent family of random variables. In addition, for all i, j,
the random variable mi,j follows a Bernoulli law of parameter pi = g(i) (and
qi = 1− g(i)) with g : N→ [0, 1]}.

We partition the set V into 3 subsets:

• The set U of ubiquitous vertices. Let x be a fixed constant. For all vertices
u ∈ U , we have that qu <

x
m with qu = 1− pu.

• The set R of rare events. For all vertices r ∈ R, we have that pr <
1− e− 1

lnn . Note that this implies that pr <
1

lnn . The latter bound slowly
tends to zero and is relevant on experimental data (see Section 4), the
former simplifies calculus.

• The set O of other events, that is O = V \ {U ∪R}.
We mainly use this decomposition to study the average number of minimal

transversals in the HG(n,m, g) model.

11
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2.2.1. A lower bound on the average number of transversals

In the HG(n,m, g) model, let µ the average value of the random variables
qi . In other words:

µ =

n∑

i=1

qi
n

Lemma 4. In the HG(n,m, g) model, the average number of transversals is
Ω (2n −m(1 + µ)n).

Proof. The average number of transversals is given by the following formula:

E[T ] =

n∑

j=0

∑

X⊂V
|X|=j

(1−
∏

i∈X
qi)

m.

Using the Bernoulli inequality, we have:

E[T ] ≥
n∑

j=0

∑

X⊂V
|X|=j

(1−m
∏

i∈X
qi) ≥ 2n −m

n∑

j=0

∑

X⊂V
|X|=j

∏

i∈X
qi = 2n −m

n∏

i=1

(1 + qi)

Then, according to the geometric inequality we have

n∏

i=1

(1 + qi) ≤
(

n∑

i=1

1 + qi
n

)n

and therefore
E[T ] ≥ 2n −m(1 + µ)n

which concludes the proof.

Corollary 2. The average number of irredundants (and then minimal transver-
sals) is bounded by O(mn(1 + µ)n).

Proof. From Lemma 4 we obtain an upper bound on the average number of
subset that are not transversals, that is to say O(m(1 +µ)n). In the worst case,
all those sets are irredundant and if we add any vertex to one of those subsets,
it becomes a minimal transversal.

Although this is not precise, it has a certain advantage: starting from a
complex model with a large number of parameters, we now have an estimation
that relies on only 3 parameters. It can also be easily interpreted: if µ tends
to 0 then almost all vertices appears in almost all hyperedges, hyperedges are
all similar. In this case, there is few minimal transversals. If µ tends to 1 then
almost each vertex appears in few hyperedges, hyperedges are all really different,
that is to say the pairwise intersection of hyperedges is always small and there
is an exponential number of minimal transversals.

12
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2.2.2. On the average number of irredundants

Lemma 5. The average number of irredundants containing only vertices in
O ∪ U is

O((nm ln
√
nm)

1
4 lnn(lnnm−2 ln lnn−ln ln

√
mn))

Proof. In order to obtain an upper bound, we use the result in Theorem 1. In
the HG(n,m, p) model, the upper bound on the average number of irredundants
decreases as p increases. Recall that for all vertices a ∈ O∪U , we have pa ≥ 1−
e−

1
ln . The average number of irredundants in theHG(n,m, 1−e− 1

ln ) model is an
upper bound of the average number of irredundants containing only vertices in
O. If q = e−

1
lnn , for all y we have log1/q y = ln y×lnn. Using this simplification,

we obtain the announced upper bound.

Let Irrj,l be the number of irredundants of size j containing exactly l rare
vertices. We have:

Irrj,l ≤ Irrj−l,0 × Irrl,l
where Irrj−l,0 is exactly the number of irredundants containing only vertices
in O ∪ U and Irrl,l is the number of irredundants containing only vertices in
R. Note that Lemma 5 gives an upper bound on Irrj−l,0. We obtain a bound
on Irrl,l by adapting the function f(j) from Section 2.1.2. Since for all vertices

r ∈ R, we have p < 1− e− 1
lnn < 1

lnn , we have:

Irrj,l ≤
(|R|
l

)
m!

(m− l)!

(
1

lnn

)l
Irrj−l,0

Now we obtain an upper bound on the average number of irredundant in the
HG(n,m, g) model.

Irrj =

min{j,|R|}∑

l=0

(|R|
l

)( m

lnn

)l
Irrj−l,0

From this formula, it can be deduced that if |R| is not to large in the size of
n, then the average number of irredundants is at most quasi-polynomial.

Lemma 6. In the HG(n,m, g) model, if |R| = O((lnn)c) where c is a constant,
then the number of irredundants is quasi-polynomial.

Proof. From Lemma 5, we know that Irrj−l,0 is at most quasi-polynomial. Since

l = O(|R|) = O((lnn)c), it is clear that
(|R|
l

) (
m
lnn

)l
is also quasi-polynomial.

Lemma 7. In the HG(n,m, g) model, the probability to have a polynomial
number of irredundants containing ubiquitous vertices tends to 1.

13
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Proof. Let Irr(H) denote the set of irredundants of an hypergraph H. For a
fixed vertex e ∈ V , let Irr(H, e) the set of irredundants containing e. Let N(e)
be the set of hyperedges not containing the vertex e. We have:

Irr(H, e) ⊆ {X ∪ {e} | X ∈ Irr(N(e))}.

Hence we have:
|Irr(H, e)| ≤ |Irr(N(e))|,

that is to say the number of irredundants containing a given vertex e is bounded
by the number of irredundants of the hypergraph reduced to the hyperedges that
do not contain e. The number of hyperedges that do not contain an ubiquitous
vertex is bounded by x and using Poisson paradigm we know that in a random
hypergraph an ubiquitous vertex is in at least m−x√x hyperedges with proba-
bility tending to 1. The number of irredundants of an hypergraph with at most
x
√
x hyperedges is polynomial since x is a constant.

2.2.3. On the average number of minimal transversals.

Recall that M denotes the number of minimal tranversals. Since the upper
bounds obtained in Lemma 6, 5 and 7 also holds for minimal transversals, we
obtain the following theorem.

Theorem 3. In the HG(n,m, g) model, we have the following:

• If |O ∪R| = O(lnn), then E[M ] is at most polynomial.

• If |R| = O((lnn)c) where c is a constant, then E[M ] is at most is quasi-
polynomial.

• If |R| = Θ(n) , then E[M ] is at most exponential on |R|.

The first point comes from Lemma 7 and the fact that the number of minimal
transversals of a set of size c lnn is nc.

3. Algorithm analysis

In this section we study the average complexity of the MT-Miner Algorithm.
The worst-case input complexity of this algorithm is a polynomial in n times
the number of irredundants. The analysis we perform and the results we ob-
tain is also valid on any algorithm whose search space is bounded by the set
of irredundants: Apriori, Dong-Li algorithm [3], Kavvadias-Stravropoulos [16],
Uno-Murakami [18]. . .

14
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Input: an hypergraph H with n hyperedges
Output: the minimal tranversals of H
MT := {{v}| v ∈ V, |SuppH({v})| = m}
N1 := {{v}| v ∈ V, n > SuppH({v}) 6= ∅}
j = 1
While Nj 6= ∅ do

for all prefix V with V ∪ {v1} and V ∪ {v2}
in Nj ×Nj do
W = V ∪ {v1} ∪ {v2}
if W is irredundant then

if SuppH(W ) = n then add W to MT
else add W to Nj+1 end if

end if
end for
j=j+1

end While
return MT .

Figure 2: The MTMiner-algorithm. Here SuppH(W ) is the number of hyperedges that
intersect W .

3.1. Average complexity of the MT-Miner Algorithm.

The MTMiner algorithm was described by Hébert, Bretto and Crémilleux
in [14]. The algorithm computes all the minimal transversals of a given hy-
pergraph using a levelwise strategy. Precisely at the jth level, the algorithm
computes the irredundants formed with j vertices. Among the irredundants,
some are minimal tranversals and are stored in a data structure. The others
are not minimal transversals but they might be part of one and they are used
to build irredundants of size j + 1.

Each irredundant of size j can be extended in at most n − j sets of size
j+ 1 and the minimality of each candidate set can be tested in polynomial time
(w.r.t. the input size). MTMiner uses a prefix tree to optimize this generation
step but even with the naive method (generate all the possible extensions),
the complexity of MTMiner is O(Poly(m,n)N) where N is the number of
irredundants.The algorithm is described in Figure 3.1.

A non trivial upper bound on the average complexity of MTMiner follows
from Theorem 1.

Proposition 2. In the HG(n,m, p) model, there exist some positive constant
c such that the average complexity of MTMiner is

O
(

(mn log 1
q

√
nm

p

q2
)

1
4 (log 1

q
nm−logq p−log 1

q
log 1

q

√
nm)+c

)
.

An equivalent result can be obtained in theHG(n,m, g) model using Lemma 6.
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Proposition 3. In the HG(n,m, g) model, if |R| = O((lnn)c) where c is a
constant, then the average input-complexity of MTMiner is at most quasi-
polynomial.

Since MTMiner generates at least all the minimal transversals, its complex-
ity is lower bounded by M . The generic lower bound given by Proposition 2
entails a generic lower bound on the complexity of MTMiner.

3.2. Generic-case complexity of the THG-problem
The notion of generic-case complexity is defined in [15]. The idea is to study

the worst-case complexity of an algorithm on a generic-subset of inputs. In a
given random model, a subset E of inputs is said to be generic if the probability
that a random input is in E tends to 1. The study of generic complexity is
particularly interesting when no polynomial method is known to solve a problem
in the general case (NP -complete problems, undecidable problems [19]), whereas
there seem to be efficient methods in practice. The theoretical complexity of the
THG–problem was discussed in the introduction. In particular, it is not known
whether the problem is output–polynomial in the worst–case. The following
theorem states that with probability that tends to 1 in the single-parameter
model, the algorithm MTMiner is output–polynomial. In other words, the set
of inputs for which the algorithm is output–polynomial is a generic set.

Theorem 4. Consider the random model HG(n,m,p) with m = βnα, β > 0
and α > 0. Under this model, the generic complexity of the THG–problem is
output-polynomial. Precisely, there exist an algorithm (MTMiner) such that
for all ε > 0, the algorithm computes the minimal tranversals of an input hyper-

graph in time M ε+
(α+1)2

4α with probability asymptotically 1 and where M is the
number of minimal transversals.

Proof. To simplify the notations, we write γ = ε+ (α+1)2

4α and a = 1
2E[Tj ] with

j as in Proposition 1. We have

P(D > Mγ)

= P([D > Mγ ] ∩ [M < a]) + P([D > Mγ ] ∩ [M ≥ a])

≤ P(M < a) + P(D ≥ aγ)

= O

(
ln2mn

n

)
+

E[D]

aγ

Alternative expressions for aγ and E[D] are

E[D] = n
(α+1)2

4α log 1
q
m+O(ln lnm)

,

aγ = n
(ε+

(α+1)2

4α ) log 1
q
m+O(ln lnm)

.

In particular, E[D]/aγ is O(n
− ε2 log 1

q
m

) when γ > ε + (α+1)2

4α and the O-term
tends to 0. This completes the proof.

�
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4. Comparison with real data

The following benchmark were made using datasets from the Frequent Item-
set Mining Dataset Repository1, that are often used by the datamining commu-
nity. The experimental results that we exhibit might therefore be well known
by specialists. The objective of this section is to exhibit the links between real
datasets and our probabilistic models.

We only present a selection of experimental results, that is already able to
capture the diversity of hypergraphs in various contexts. It is important to note
that for each example presented in this paper, one can find several datasets
satisfying the same properties.

From Figure 3 to Figure 6, the histograms on the left side represent the num-
ber of hyperedges in which each vertex appears. Vertices are sorted according
to the decreasing order of the number of hyperedges in which they appear. His-
tograms on the right side represents the size of hyperedges in each hypergraph.

• mushroom.dat: contains a few ubiquitous vertices and a few rare vertices.
All the hyperedges have the same size. Those kinds of datasets validate
the choice of most study to focus on k-uniform hypergraphs.

• accident.dat: contains a few ubiquitous vertices and a lot of rare vertices.
The size of hyperedges seems to follow a Gaussian distribution.

• pumsbstar.dat: does not contain ubiquitous vertices and most vertices are
rare.

• T10I4D100K.dat: all vertices are rare. Again, the size of hyperedges seems
to follow a Gaussian distribution.

Our probability models seem to be more appropriate on the second and
the fourth example, as the size of the hyperedges seems to follow a Gaussian
distribution.

In our experiments, the generation of the minimal transversals were efficient
on databases that have similar distribution to mushroom.dat. This result com-
forts us in the belief that the presence of rare events is the main parameter
(by opposition to being just an important parameter amongst others) to decide
whether the number of the minimal transversals is going to explode. Figure 7
shows the distribution of the minimal transversals in mushroom.dat. As we can
see, the number of minimal transversals Tmin,j of a given size j is maximal when
j = 16 and Tmin,16 ∼ 6× 106. Using the model H(n,m, g) and Theorem 3, we
could foretell that in cases accidents.dat, pumsbstar.dat, T10I4D100K.dat the
number of minimal transversals explodes, which seems indeed to be the case.
Even after a long time execution (more than a week) on a regular computer,
only a small proportion of the search space had been visited, whereas the num-
ber of minimal transversals was tremendously huge. We also tried to write the

1http://fimi.ua.ac.be/data/
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Figure 3: mushroom.dat (119 vertices, 8124 hyperedges)
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Figure 4: accidents.dat (468 vertices, 340183 hyperedges)
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Figure 5: pumsbstar.dat (7116 vertices, 49046 hyperedges)
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Figure 6: T10I4D100K.dat (999 vertices, 100000 hyperedges)

minimal transversals in a file: within a day, the program stopped because our
500 Go hard drive was full.
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Figure 7: Minimal Transversals of mushroom.dat

5. Conclusion

The models we have studied already give a partial information on the average
number of minimal transversals in real context and on the average complexity
of the algorithms. Indeed, our models predict the order of growth of the size
of minimal transversals. Hence, we are able to tell whether the computation
can be made in reasonable time and space. Though, the upper bounds we have
obtained on the number of minimal transversals still seems too large compared
to real-data examples.
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