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This paper is a discussion on the coupling strength, the frequency bandwidth and indirect coupling loss factor in statistical energy analysis. The example of coupled oscillators is taken. First, it is shown that the coupling power proportionality is always valid for two coupled oscillators for any strength of coupling as long as the resonant modes are within the frequency band. Then, the case of three coupled oscillators indicated that the apparition of indirect coupling loss factors depends on the coupling strength. Finally, it is shown that modes outside the frequency bandwidth of excitation can lead to invalid the reciprocity relation. Some test cases are presented to illustrate these conclusions.

INTRODUCTION

Statistical energy analysis (SEA) is a well-known statistical theory of vibroacoustics which evaluate energy transfers between subsystems subjected to random forces. The main result is the so-called coupling power proportionality (CPP) which states that the power transmitted between two subsystems is proportional to the difference of their modal energies. The proof of this relation is based on the modal approach of SEA where the modes are viewed as mechanical oscillators. The basic model is composed of two coupled oscillators conservatively coupled and submitted to random and uncorrelated external forces having the power spectral density of a white noise [START_REF] Lyon | Power flow and energy sharing in random vibration[END_REF][START_REF] Lyon | Theory and application of Statistical Energy Analysis[END_REF]. A generalization to an arbitrary number of oscillators has been achieved by Newland (3) but with the additional hypothesis that the coupling is weak. A review of the hypotheses useful in SEA is presented in reference [START_REF] Lafont | Review of statistical energy analysis hypotheses in vibroacoustics[END_REF]. Mace (5) considers two types of systems: the one which fully respect SEA hypotheses and where the CPP applies (proper-SEA) and systems which approach CPP introducing indirect coupling loss factors (quasi-SEA). These indirect coupling loss factors appear, for some cases, in the coupling loss factor matrix even for not physically connected subsystems.

This paper is in the continuation of what has been previously done in (4) and has two objectives. First, studying the coupling power proportionality when the hypothesis of weak coupling is violated. Then, showing what could happen when taking non-resonant modes in the frequency bandwidth of integration. For that a reference calculation which makes a link between the power injected and the total energy is done on the example of three coupled oscillators. Then it is compared to the coupling power proportionality given by SEA.

REFERENCE CALCULATION

In this section, the total energies of each oscillator and the power transmitted between them are calculated. These expressions are useful to be compared with SEA coupling power proportionality.

Motion of three oscillators

Let us consider three oscillators coupled by elastic couplings (Fig 1).

In the Fourier space, the equations of motion of three oscillators coupled by elastic couplings are DX=F where X is the displacement vector, F the force vector and D the dynamic stiffness matrix. The frequency response function H j i is the response of oscillator i when a harmonic force is applied to oscillator j. This is 

H =    m 1 (ω 2 1 -ω 2 + jω∆ 1 ) -K 1 0 -K 1 m 2 (ω 2 2 -ω 2 + jω∆ 2 ) -K 2 0 -K 2 m 3 (ω 2 3 -ω 2 + jω∆ 3 )    -1 (1) 
where

ω i = ((k i + K i )/m i ) 1/2
is the blocked natural angular frequency of oscillator i.

Total energies of oscillators 2.3 Vibrational energies

When the forces are random, stationary and uncorrelated and denoting S j the power spectral density of the random process F j , the expectation of the square of velocity of oscillator i is

< Ẋ2 i >= 1 2π ∫ +∞ -∞ ω 2 ∑ j |H j i | 2 S j dω (2) 
where < . > denotes a probability expectation. Let us consider that the forces have a power spectral density constant (S j = 1) in the bandwidth [ω min , ω max ] and zero elsewhere. The vibrational energy defined as twice the kinetic energy is

< E i >= 1 π ∫ ω max ω min m i ω 2 ( ∑ j |H j i | 2 S j ) dω (3) 
This expression is valid for any combination of random, stationary and uncorrelated forces of power spectral density S j .

Transmitted power

The net power transmitted from oscillator i to oscillator j when the force is applied to oscillator k is

< P i j >= 1 2 K i j (< X i Ẋj > -< X j Ẋi >) = 1 2π ∫ ω max ω min ℜ[iK i j ω ( ∑ k H k * i H k j S k ) ]dω (4) 
where * denotes the complex conjugate and ℜ the real part. Since oscillators 1 and 3 are not directly connected < P 13 >= 0.

Injected power

The power injected into oscillator i is,

< P i in j >=< F i Ẋi >= 1 2π ℜ ∫ ω max ω min iωH i i S i dω (5) 
A simpler expression of the injected power is obtained by Gersch [START_REF] Gersch | Average power and power exchange in oscillators[END_REF]. For a white noise excitation (S i = 1 over an infinite frequency band), the injected power i is inversely proportional to the mass m i .

< P i in j >= S i 2m i (6) 

SEA CALCULATION

In this section, the expression of the coupling power proportionality and notably the expression of beta factor are shown.

Direct SEA approach: the coupling power proportionality

Assuming that the coupling between two oscillators is conservative and that the external forces are uncorrelated white noises it is proved by Lyon and Maidanik (1), Lyon and Sharton [START_REF] Scharton | Power flow and energy sharing in random vibration[END_REF] and Lotz and Crandall (8) that the power transmitted is proportional to the difference of the total energies. The coupling power proportionality between oscillators i and j can then be written

P i j = η i j ω c (E i -E j ) (7) 
Where the coefficient η i j ω c is, for an elastic coupling given by

η i j ω c = K 2 i (∆ 1 + ∆ 2 ) m i m j [(ω 2 i -ω 2 j ) 2 + (∆ i + ∆ j )(∆ i ω 2 j -∆ j ω 2 i )] (8) 
where ∆ i = λ i /m i is the half power bandwidth, λ i the viscous damping coefficient, m i the mass, K i the cou- pling stiffness and ω i the natural frequency of oscillator i. The coupling loss factors verify the reciprocity relationship,

η i j ω c = η ji ω c (9) 
and will be referred to as consistency condition. In the case of three coupled oscillators the SEA system traducing the CPP is

   P 1 in j P 2 in j P 3 in j    = ω c    η 1 + η 12 -η 21 0 -η 12 η 2 + η 21 + η 23 -η 32 0 -η 23 η 3 + η 32       E 1 E 2 E 3    (10) 
Such a system is called proper-SEA system. The conditions of conservation of energy and consistency are verified and the indirect coupling loss factors (η 13 and η 31 ) are null.

ENERGY INFLUENCE COEFFICIENT

The energy influence coefficient method introduced by Guyader (9, 10) is used to compute the indirect coupling loss factors. The oscillators are excited one after another by uncorrelated forces. Three systems are obtained for each excitation giving the total energies of each oscillator. Let us call E j i the vibrational energy of oscillator i when the excitation concerns oscillator j. Superposing each equations allows to build a matrix system which has the form F = Eη where F is the power injected vector, E the matrix composed of vibrational energies E j i and η the vector which contains the damping loss factors, the coupling loss factors and the indirect coupling loss factors. For three oscillators the matrix system writes,

                P 1 in j 0 0 0 P 2 in j 0 0 0 P 3 in j                 = ω c                 E 1 1 E 1 1 E 1 1 -E 1 2 0 0 -E 1 3 0 0 0 -E 1 1 0 E 1 2 E 1 2 E 1 2 0 -E 1 3 0 0 0 -E 1 1 0 0 -E 1 2 E 1 3 E 1 3 E 1 3 E 2 1 E 2 1 E 2 1 -E 2 2 0 0 -E 2 3 0 0 0 -E 2 1 0 E 2 2 E 2 2 E 2 2 0 -E 2 3 0 0 0 -E 2 1 0 0 -E 2 2 E 2 3 E 2 3 E 2 3 E 3 1 E 3 1 E 3 1 -E 3 2 0 0 -E 3 3 0 0 0 -E 3 1 0 E 3 2 E 3 2 E 3 2 0 -E 3 3 0 0 0 -E 3 1 0 0 -E 3 2 E 3 3 E 3 3 E 3 3                                 η 1 η 12 η 13 η 21 η 2 η 23 η 31 η 32 η 3                 (11) 

RESULTS AND DISCUSSION

Influence of the coupling strength

Let us consider the oscillators having characteristics as shown in Table 1. The computation of the total energies follows Eq (3). The coupling stiffness denoted K 1 = K 2 vary from 98E -5 N/m to 98E + 5 N/m. The forces have a power spectral density constant (S i = 1) in the time-frequency bandwidth [ω min , ω max ] and zero elsewhere. All modes are resonant (natural frequency within [ω min , ω max ]).

The parameters presented in Table 1 are alike giving close natural frequencies ( f 1 =241.77Hz; f 2 =238.75Hz and f 3 =251.64Hz when K i << k i ). For high coupling values, the natural frequency of each oscillator is affected and can increase. Then, in order to detect the resonant mode for each values of coupling the frequency bandwidth of integration is taken sufficiently large [0; 20 kHz].

Case of two coupled oscillators

Let us consider the case of two oscillators taking the coupling stiffness K 2 = 0 between oscillators 2 and 3.

The expression of the proportionality constant η 12 ω c given by SEA (Eq (8)) is called β SEA and is directly compared to the ratio (called β REF ) of the power transmitted given by Eq (4) and the difference of the total energies (Eq (3)): 2 shows the evolution of beta estimated by SEA and beta estimated by the reference calculation versus the coupling strength. A perfect agreement is observed for any strength of coupling illustrating that the coupling power proportionality is always valid for two oscillators.

β REF = P 12 /(E 1 -E 2 ). Figure

Case of three coupled oscillators

Let us consider the case of three oscillators (K 2 ̸ = 0). As before β i j,REF , computed from Eq (3) and ( 4) is compared with the SEA beta factor (Eq (8)) while the couplings K 1 = K 2 vary. Figure 3 presents the evolution of the beta factors. The gap between β i j,REF and β i j,SEA do not have the same rough size compare to their evolutions. That's why results are presented in two scales: linear (Fig. 3 (a)) and logarithmic (Fig. 3 (b)).

For weak couplings (K 1 << k 1 and K 2 << k 2 ), β i j,REF are equal to β i j,SEA in particular until K 1 =K 2 =98E -1 N/m. For stronger couplings (K 1 ≥ 98E + 1 N/m) it is shown (Fig. 3 a) that β i j,REF and β i j,SEA do not fit traducing that the coupling power proportionality is no longer valid.

In Figure 4, energy influence coefficient method has been used to compute the damping loss factor (DLF), the coupling loss factors (CLF) and the possible indirect coupling loss factors (CLFi) when the couplings K 1 and K 2 grows. Table 2 gives each element of vector η (Eq (11)).

The first observation is that reciprocity relations holds whatever the couplings values are. Indeed, η 12 Figure 3 -Evolution of β i j,REF and β i j,SEA for three oscillators when oscillator 1 is excited versus the coupling strength

K 1 = K 2 .
Figure 4 -Evolution of the CLF, DLF and CLFi versus the couplings stiffness K 1 =K 2 with large bandwidth. = η 21 ; η 23 = η 32 . The second observation is that the damping loss factors are well estimated compared to the prescribed values (see Table 1). The third observation is that, for weak couplings, indirect coupling loss factors values are very low compared to the coupling loss factor values (η ik << η i j << η i ) and thus can be neglected. Conversely, they appear when the couplings are strong (above K 1 =K 2 =98E -1 N/m) and cannot be neglected anymore.

K 98E -5 98E -3 98E -1 98E + 1 98E + 3 98E + 5

Study of the influence of a non resonant mode

In this section, the influence of a non resonant mode is viewed. For that, oscillator's parameters are fixed in such a way that the natural frequency of oscillator 2 is outside the frequency band. Then, the mass of oscillator 2 is adjusted to get closer to the bandwidth of integration. The margin between the natural frequency of oscillator 2 and the bandwidth is evaluated by a simple difference: f 2f min . Three cases are observed :

• f 2 is outside the bandwidth with f 2 < f min . The mode of oscillator 2 is denoted non-resonant low frequency. • f 2 is within the bandwidth with f min < f 2 < f max . The mode of oscillator 2 is resonant.

• f 2 is outside the bandwidth with f max < f 2 . The mode of oscillator 2 is denoted non-resonant high frequency. Figure 5 illustrates by a drawing the simulation protocol. The damping loss factors are prescribed equal for the three oscillators (see Table 3). The couplings are weak (K 1 = K 2 = 98E -3 N/m) the bandwidth of integration is an octave defined by the central frequency f c = 250 Hz. In this way, the resonance pic of oscillator 2 is within the frequency band from the value f 2f min = 0 to f 2f min = 177 Hz. Energy influence coefficient method is again used to estimate the DLF, the CLF and the CLFi. Figure 6 presents the DLF, the CLF and the CLFi while the natural frequency of oscillator 2 varies. First, it is observed that the DLF η 1 and η 3 are correctly estimated. η 2 grows with the shifting of the natural frequency f 2 but correct values are estimated when the resonance pic is within the bandwidth of integration. The CLF are no more symmetric (η i j ̸ = η ji ) when f 2 -f min is below zero and greater than 177 Hz (the resonance frequency is before or after the bandwidth of integration). Nevertheless, the equality becomes valid (η i j = η ji ) when f 2 is within the bandwidth.

The indirect coupling loss factors are symmetric (η 13 = η 31 ) and can have negative values. Their evolu- tions are small compared to the evolution of the CLF and their values are 10 5 times lower than the CLF, as consequence, they can be neglected.

CONCLUSIONS

It has been shown that the main relation in SEA, the coupling power proportionality, is valid whatever the coupling strength is, provided that the system is limited to two subsystems and the frequency bandwidth of excitation contains the natural frequencies (only resonant modes). For more than two subsystems, the CPP can be verified as long as the couplings are weak (K i << k i is a fair condition) and the modes are resonant. For more than two oscillators, the indirect coupling loss factors appear when the coupling between subsystems is strong but the reciprocity relation always applies.

The frequency bandwidth of excitation is also important. Non-resonant modes (modes outside the frequency bandwidth of excitation) lead to the invalidity of the reciprocity relation and thus pull down the coupling power proportionality relation.

Figure 1 -

 1 Figure 1 -Three oscillators excited by uncorrelated random forces F i coupled by elastic couplings K i .

Figure 2 -

 2 Figure 2 -Evolution of β REF and β SEA for two oscillators when oscillator 1 is excited versus the coupling strength K 1 .

Table 2 -

 2 η 12 3.7E -14 3.7E -10 4.1E -6 0.0018 -0.0194 -0.0288 η 21 3.7E -14 3.7E -10 4.1E -6 0.0018 -0.0194 -0.0288 η 23 2.2E -15 2.2E -11 2.3E -η 13 -2E -26 -2E -18 -2E -10 0.0045 0.7060 0.9692 η 31 -2E -26 -2E -18 -2E -10 0Damping loss factor, coupling loss factor, indirect coupling loss factor values while the couplings K 1 = K 2 vary.

Figure 5 -

 5 Figure 5 -Sketch of the natural frequencies of each oscillator. The resonance frequency of oscillator 2 varies.

Figure 6 -

 6 Figure 6 -Evolution of the DLF and the CLF using inverse SEA. Bandwidth: [176; 353 Hz], weak couplings (K = 98E -3 N/m).

Table 1 -

 1 Oscillator parameters

	Type	Oscillator 1 Oscillator 2 Oscillator 3
	Mass m i (kg)	0.0039	0.0040	0.0036
	Stiffness k i (N/m)	9e3	9e3	9e3
	Damping λ i (S.I)	0.001	0.001	0.001

Table 3 -

 3 Oscillator parameters

	Type	Oscillator 1 Oscillator 2 Oscillator 3
	Mass m i (kg)	0.0039	variable	0.0036
	Stiffness k i (N/m)	9e3	9e3	9e3
	Damping λ i (S.I)	0.001	0.001	0.001

thibault.lafont@cpe.fr

alain.le-bot@ec-lyon.fr

nicolas.totaro@insa-lyon.fr

Inter-noise 2014

ACKNOWLEDGEMENTS

This work was supported by the Labex CeLyA of Universite de Lyon, operated by the French National Research Agency (ANR-10-LABX-0060/ ANR-11-IDEX-0007).