
HAL Id: hal-01086576
https://hal.science/hal-01086576v1

Submitted on 24 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A general framework for the realistic analysis of sorting
and searching algorithms. Application to some popular

algorithms
Julien Clément, Thu Hien Nguyen Thi, Brigitte Vallée

To cite this version:
Julien Clément, Thu Hien Nguyen Thi, Brigitte Vallée. A general framework for the realistic analysis
of sorting and searching algorithms. Application to some popular algorithms. 30th International
Symposium on Theoretical Aspects of Computer Science (STACS 2013), Feb 2013, Kiel, Germany.
�hal-01086576�

https://hal.science/hal-01086576v1
https://hal.archives-ouvertes.fr

2 J. CLÉMENT, T.H. NGUYEN THI, AND B. VALLÉE

as a sequence of symbols, is essential in text algorithms. Hence, for basic algorithms of the
first class (sorting, searching), the unit operation is the comparison between keys, whereas
for text algorithms of the second class, comparisons between symbols are considered.

There exist two important drawbacks to this usual point of view. First, it is difficult
to compare algorithms belonging to these two different classes, since they are analyzed
with respect to different costs. Second, when the keys are complex items, not reduced
to single machine words, it is not realistic to consider the total cost of their comparison
as unitary. This is why Sedgewick proposed in 1998 to analyze basic algorithms (sorting
and searching) when dealing with words rather than with “atomic” keys; in this case, the
realistic cost for comparing two words is the number of symbols comparisons needed to
distinguish them in the lexicographic order and is closely related to the length of their
longest common prefix, called here the coincidence. There are two factors which influence
the efficiency of such an algorithm: the strategy of the algorithm itself (which words are
compared?) and the mechanism which produces words, called the source (what makes two
words distinguishable?).

The first results in the area are due to Fill and Janson [5], Fill and Nakama [6], who
dealt with data composed of random uniform bits. Then, in the paper [19], a general frame-
work towards a realistic analysis based on the number of symbol comparisons is provided,
when the source which emits symbols is (almost completely) general. Furthermore, these
principles are applied to two algorithms, QuickSort and QuickSelect. Later on, a study of
the distribution of the complexity was performed in the same framework [7, 8].

Main results. The present paper follows the lines of the article [19], and works within
the same general framework, with four specific aims:

(a) The general method has been already described in [19]: it was shown that a Dirichlet
series denoted by ̟(s) characterizes the behavior of an algorithm with respect to the source.
We wish here to highlight the main principles, in order to make easier its application to
various algorithms. As it is often the case in analytical combinatorics, there are two main
phases in the method, a first phase where the series ̟(s) is built, and a second phase where
it is analyzed. We explain here how the first phase may be performed in an “automatic”
way. For such an example, see Proposition of Appendix B.1.

(b) We apply the method to three other popular algorithms: InsertionSort, BubbleSort
and SelectionMinimum, respectively denoted in the sequel by the short names InsSort,
BubSort, SelMin are succinctly described in Appendix A (see for instance the book [16]
for a thorough description of these algorithms). With this approach we also easily recover
the results about algorithms QuickSort and QuickMin already obtained in [19]. Thus we
provide an unified framework for the analysis of these five algorithms in Section 2.2.

(c) We exhibit in each case the probabilistic features of the source which play a role
in the analysis: each algorithm of interest is related to a particular constant of the source,
which describes the interplay between the algorithm and the source, and explains how the
efficiency of the algorithm depends on the source, via various notions of coincidence between
words (See Proposition 5). This type of coincidence provides a good characterization of the
algorithm, and our study is a tool for a better understanding of the algorithmic strategy.

(d) We discuss the robustness of the algorithms, i.e., the possible changes in the com-
plexity behaviors, due to the change in the complexity measure, from the number of key
comparisons to the number of symbol comparisons (see Discussion p. 11).

REALISTIC ANALYSIS OF ALGORITHMS 3

Plan of the paper. Section 1 first presents the general method, with its main steps. Then,
Section 2 states the main results. Finally, Appendices A and B are devoted to the proofs.

1. Main steps for the “realistic” analysis of a sorting algorithm

Here, we describe our general framework, already provided in [19]. We insist on the
main steps, and the notions developed here are somewhat different from the previous paper.
We first characterize in Section 1.1 the strategy of the algorithm (which keys are compared?
with which probability?), then we describe the source, and the central notion of coincidence
(Sections 1.2 and 1.3). We obtain an exact formula for the mean number of symbol com-
parisons, which involves the mixed Dirichlet series ̟(s) (depending on the source and the
algorithm) introduced in Section 1.4 and 1.5. In order to obtain asymptotic estimates, we
deal with tameness properties of the source, which entail tameness for the series ̟(s), and
finally the asymptotic estimates (Sections 1.6 and 1.7).

1.1. The classical probabilistic model: permutations and arrival times

Consider a totally ordered set of keys U = {U1 < U2 < · · · < Un} and any algorithm
A which only performs comparisons and exchanges between keys. The initial input is the
sequence (V1, V2, . . . , Vn) defined from U by the permutation σ ∈ Sn via the equalities
Vi = Uσ(i). The execution of the algorithm does not actually depend on the input sequence,
but only on the permutation σ which defines the input sequence from the final (ordered)
sequence. Then, the permutation σ is the actual input of the algorithm and the set of all
possible inputs is the set Sn (usually endowed with the uniform distribution).

There is another point of view, given by the arrival times. The arrival time of Ui,
denoted by τ(Ui) is the position of Ui in the input array. Of course, there is a simple
relation between the two points of view since τ(Ui) = j if and only if Vj = Ui (meaning also
σ(j) = i since there is a bijection between arrival times and permutations).

The strategy of the algorithm A defines, for each pair (i, j), with 1 ≤ i < j ≤ n, the
subset of Sn which gathers the permutations σ (or the arrival times) for which Ui and Uj

are compared by the algorithm A, when the input sequence is (Uσ(1), Uσ(2), . . . , Uσ(n)). For
efficient algorithms, the two keys Ui and Uj are compared only once, but there exist other
algorithms (the BubSort algorithm for instance) where Ui and Uj may be compared several
times. In all cases, π(i, j) denotes the mean number of comparisons between Ui and Uj . The
computation of π(i, j) is the first step, described in Section 2.1, and proven in Appendix A.

There are two types of comparisons between two keys Ui and Uj: the positive compar-
isons which occur when Ui and Uj arrive in the good order in the initial array (τ(Ui) <
τ(Uj)), and the negative comparisons which occur when Ui and Uj arrive in the wrong order
(τ(Ui) > τ(Uj)). The mean number of positive and negative comparisons between two keys
Ui and Uj is denoted respectively by π+(i, j) and π−(i, j). These mean numbers π±(i, j)
are often computed in a separate way, with direct probabilistic arguments dealing with the
arrival times. A remarkable feature is that the expectations π±(i, j) are always expressed as
sums of rational functions depending on i, j or j− i. The mean number of key comparisons
is π(i, j) = π+(i, j) + π−(i, j).

4 J. CLÉMENT, T.H. NGUYEN THI, AND B. VALLÉE

1.2. General sources

Here, we consider that the keys are words produced by a general source.

Definition 1.1. Let Σ be a totally ordered alphabet of cardinality r. A general source
produces infinite words of ΣN, and is specified by the set {pw, w ∈ Σ⋆} of fundamental
probabilities pw, where pw is the probability that an infinite word begins with the finite
prefix w. It is (only) assumed that sup{pw : w ∈ Σk} tends to 0, as k →∞.

For any prefix w ∈ Σ⋆, we denote by |w| the length of w (i.e., the number of the symbols
that it contains) and aw, bw, pw the probabilities that a word produced by the source begins
with a prefix α of the same length as w, which satisfies α < w, α ≤ w, or α = w, meaning

aw :=
∑

α,|α|=|w|,
α<w

pα, bw :=
∑

α,|α|=|w|,
α≤w

pα, pw = bw − aw. (1.1)

Denote by L(S) the set of (infinite) words produced by the source S, ordered via the
lexicographic order. Given an infinite word X ∈ L(S), denote by wk its prefix of length
k. The sequence (awk

) is increasing, the sequence (bwk
) is decreasing, and bwk

− awk
= pwk

tends to 0. Thus a unique real P (X) ∈ [0, 1] is defined as the common limit of (awk
)

and (bwk
), and P (X) can be viewed as the probability that an infinite word Y be smaller

than X. The mapping P : L(S) → [0, 1] is strictly increasing outside the exceptional set
formed with words of L(S) which end with an infinite sequence of the smallest symbol or
with an infinite sequence of the largest symbol.

Conversely, almost everywhere, except on the set {aw, w ∈ Σ⋆}, there is a mapping M
which associates, to a number u of the interval I := [0, 1], a word M(u) ∈ L(S). Hence the
probability that a word Y be smaller than M(u) equals u. The lexicographic order on words
is then compatible with the natural order on the interval I. The interval Iw := [aw, bw], of
length pw, gathers (up to a denumerable set) all the reals u for which M(u) begins with the
finite prefix w. This is the fundamental interval of the prefix w.

1.3. Coincidence

Here, we are interested by a more realistic cost related to the number of symbol com-
parisons performed by these algorithms, when the keys are words independently produced
by the same source. The words are ordered with respect to the lexicographic order, and the
cost for comparing two words (measured as the number of symbol comparisons needed) is
closely related to the coincidence, defined as follows.

Definition 1.2. The coincidence function γ(u, t) is the length of the largest common prefix
of M(u) and M(t).

More precisely, the realistic cost of the comparison between M(u) and M(t) equals
γ(u, t) + 1. The coincidence γ(u, t) is at least ℓ if and only if M(u) and M(t) have the
same common prefix w of length ℓ, so that the parameters u and t belong to the same
fundamental interval Iw relative to a prefix w of length ℓ. We thus introduce the triangles

T := {(u, t) : 0 ≤ u ≤ t ≤ 1}, Tw = (Iw × Iw) ∩ T = {(u, t) : aw ≤ u ≤ t ≤ bw}. (1.2)

Using the two relations

T ∩ [γ ≥ ℓ] =
⋃

w∈Σℓ

Tw,
∑

ℓ≥0

1[γ≥ℓ] =
∑

ℓ≥0

(ℓ+ 1)1[γ=ℓ],

REALISTIC ANALYSIS OF ALGORITHMS 5

the following equality holds, for any integrable function g on the unit triangle T , and will
be extensively used in the sequel,∫

T
[γ(u, t) + 1]g(u, t) du dt =

∑

w∈Σ⋆

∫

Tw

g(u, t) du dt. (1.3)

1.4. Average-case analysis – various models

The purpose of average–case analysis of structures (or algorithms) is to characterize
the mean value of their parameters under a well-defined probabilistic model that describes
the initial distribution of its inputs.

Here, we adopt the following general model for the set of inputs: we consider a finite
sequence V = (V1, . . . , Vn) of infinite words independently produced by the same source S.
Such a sequence V is obtained by n independent drawings v1, v2, . . . , vn in the interval I
via the mapping M , and we set Vi := M(vi). We assume moreover that V contains two
given words M(u) and M(t), with u < t. The variables N[0,u[, N[0,t[respectively denote
the number of words of V strictly less than M(u), strictly less than M(t). These variables
define the ranks of M(u) and M(t) inside the set V, via the relations, valid for u < t,

RankM(u) = N[0,u[+ 1,RankM(t) = N[0,t[+ 2,

where the respective translations of 1 and 2 express that M(u) and M(t) belong to V.
We first consider the number of key comparisons between M(u) and M(t), and deal

with the mean number π̂(u, t) of key comparisons performed by the algorithm between
M(u) and M(t), where the mean is taken with respect to all the permutations of V. The
mean number π̂(u, t) is related to the mean number π(i, j) via the equality

π̂(u, t) = π(N[0,u[+ 1, N[0,t[+ 2). (1.4)

In our framework, expressions obtained for π(i, j) ensure that π̂(u, t) is always a sum of
rational functions in variables N[0,u[, N[0,t[and N[u,t[, (with the relation N[0,t[= N[0,u[+
N]u,t[+ 1).

When the cardinality n of V is fixed, and words Vi ∈ V are independently emitted by
the source S, this is the Bernoulli model denoted by (Bn,S). However, it proves technically
convenient to consider that the sequence V has a variable number N of elements that obeys
a Poisson law of rate Z,

Pr{N = k} = e−Z Zk

k!
. (1.5)

In this model, called the Poisson model of rate Z, the rate Z plays a role much similar to
the cardinality of V. When it is relative to probabilistic source S, the model, denoted by
(PZ ,S), is composed with two main steps:

(a) The number N of words is drawn according to the Poisson law of rate Z;
(b) Then, the N words are independently drawn from the source S.

Note that, in the Poisson model, the variables N[0,u[, N]u,t[are themselves independent
Poisson variables of parameters Zu and Z(t− u) (respectively). The expectation π̂(u, t) is
itself a random variable which involves these variables.

6 J. CLÉMENT, T.H. NGUYEN THI, AND B. VALLÉE

1.5. Exact formula for the mean number of symbol comparisons

The density of the algorithm in the Poisson model, denoted by φZ(u, t) and defined as

φZ(u, t) du dt = Z2 · EZ [π̂(u, t)] du dt = (Z du) · (Z dt) · EZ [π̂(u, t)],

is the mean number of key comparisons between two words M(u′) and M(t′) for u′ ∈
[u− du, u] and t′ ∈ [t, t+ dt]. In the model (PZ ,S), this is a main tool for computing, not
only the mean number of key comparisons KZ performed by the algorithm, but also the
mean number of symbol comparisons SZ via the formulae

KZ =

∫

T
φZ(u, t) du dt, SZ =

∫

T
[γ(u, t) + 1]φZ(u, t) du dt.

To return to the Bernoulli model (Bn,S), the coefficients ϕ(n, u, t) in the series expansion
of φZ(u, t) defined as

ϕ(n, u, t) := (−1)n n![Zn]φZ(u, t), (1.6)

are computed in an “automatic way” from the probabilities π̂(u, t), themselves closely re-
lated to π(i, j). This is the second step precisely described in Appendix B.1 leading to
results in Table 1 p. 12. Using Eq. (1.3), the sequence ϕ(n) is now defined for any n ≥ 2,

ϕ(n) :=

∫

T
(γ(u, t) + 1)ϕ(n, u, t) du dt =

∑

w∈Σ⋆

∫

Tw

ϕ(n, u, t) du dt, (1.7)

and is easy to obtain via computations of the integral of ϕ(n, u, t) on the triangles Tw. Now,
the mean number S(n) of symbol comparisons used by the algorithm when it deals with n
words independently drawn from the same source is related to ϕ(n) by the equality

S(n) =
n∑

k=2

(−1)k
(
n

k

)
ϕ(k), (1.8)

which provides an exact formula for S(n), described in Section 2.2. The expression of S(n)
is obtained in an “automatic” way, from the expectations π(i, j).

1.6. Asymptotic estimates for the mean number of symbol comparisons

However, the previous formula does not give an easy or straightforward access to the
asymptotic behaviour of S(n) (when n → ∞). In order to get asymptotic estimates, we
first need an analytic lifting ̟(s, u, t) of the coefficients ϕ(k, u, t), that is an analytic func-
tion ̟(s, u, t) which coincides with ϕ(k, u, t) at integer values s = k in the summation of
Eq. (1.8). This analytic lifting gives rise to the mixed Dirichlet series itself,

̟(s) :=

∫

T
[γ(u, t) + 1]̟(s, u, t) du dt =

∑

w∈Σ⋆

∫

Tw

̟(s, u, t) du dt,

which depends both on the algorithm (via ̟(s, u, t)) and the source (via the fundamental
triangles Tw). For each algorithm, the existence of this analytic lifting is granted in a domain
ℜs > σ0. However, the value of σ0 depends on the algorithm. One has σ0 = 1, except for
the algorithms InsSort and BubSort where σ0 equals 2. This is due to constant term 1/2
appearing in the expectation π(i, j), as seen in Table 1 p. 12 (see also Section 2.2).

REALISTIC ANALYSIS OF ALGORITHMS 7

The Rice Formula [13, 14] transforms a binomial sum into an integral in the complex
plane. For any real σ1 ∈]σ0, σ0 + 1[, one has

T (n) :=

n∑

k=1+σ0

(−1)k
(
n

k

)
̟(k) =

(−1)n+1

2iπ

∫

ℜs=σ1

G(s) ds, with G(s) :=
n!̟(s)

s(s− 1) . . . (s− n)
.

(1.9)
Then, along general principles in analytic combinatorics [10, 11], the integration line can be
pushed to the left, as soon as G(s) (closely related to ̟(s)) has good analytic properties: we
need a region R on the left of ℜs = σ0, where ̟(s) is of polynomial growth (for ℑs→∞)
and meromorphic. With a good knowledge of its poles, we finally obtain a residue formula

T (n) = (−1)n+1

[
∑

s

Res [G(s)] +
1

2iπ

∫

C2

G(s) ds

]
,

where C2 is a curve of class C1 enclosed in R and the sum is extended to all poles s of G(s)
inside the domain delimited by the vertical line ℜs = σ1 and the curve C2.

The dominant singularities of G(s) provide the asymptotic behaviour of T (n), and the
remainder integral is estimated using the polynomial growth of G(s) when |ℑ(s)| → ∞.
According to Eq. (1.8) and(1.9), and in the cases where σ0 = 2, we have to add to T (n) the
term corresponding to the index k = 2, where the analytical lifting ̟ does not coincides
with ϕ. For algorithms BubSort and InsSort, the additional term is of the form ϕ(2)

(n
2

)
.

1.7. Tameness of sources

We first describe three cases of possible regions R where good properties of ̟(s) will
make possible such a shifting to the left in the Rice formula.

Definition 1.3. A function ̟(s) is tame at σ0 if one of the three following properties holds:

(a) [S–shape] (shorthand for Strip shape) there exists a vertical strip ℜ(s) > σ0− δ for
some δ > 0 where ̟(s) is meromorphic, has only a pole (of order k0 ≥ 0) at s = σ0 and is
of polynomial growth as |ℑs| → +∞.

(b) [H–shape] (shorthand for Hyperbolic shape) there exists an hyperbolic region R,
defined as, for some A,B, ρ > 0

R := {s = σ + it; |t| ≥ B, σ > σ0 −
A

tρ
}
⋃
{s = σ + it; σ > σ0 −

A

Bρ
, |t| ≤ B},

where ̟(s) is meromorphic, with an only pole (of order k0 ≥ 0) at s = σ0 and is of
polynomial growth in R as |ℑs| → +∞.

(c) [P–shape] (shorthand for Periodic shape) there exists a vertical strip ℜ(s) > σ0 − δ
for some δ > 0 where ̟(s) is meromorphic, has only a pole (of order k0 ≥ 0) at s = σ0 and
a family (sk) (for k ∈ Z, k 6= 0) of simple poles at points sk = σ0 + 2kiπt with t 6= 0, and is
of polynomial growth as |ℑs| → +∞1.

There are three parameters relative to the tameness: the integer k0 is the order, and,
when they exist, the real δ is the abscissa, and the real ρ is the exponent.

1More precisely, this means that ̟(s) is of polynomial growth on a family of horizontal lines t = tk with
tk → ∞, and on vertical lines ℜ(s) = σ0 − δ′ with some δ′ < δ.

8 J. CLÉMENT, T.H. NGUYEN THI, AND B. VALLÉE

Here, the main Dirichlet series ̟(s) of interest are closely related to the Dirichlet series
of the source, which involve the fundamental probabilities pw, and the ends aw, bw of the
fundamental intervals (see Section 1.1), via a function F : [0, 1]2 → R

+ of class C1,

Λ[F](s) :=
∑

w∈Σ⋆

F (aw, bw) p
s
w, Λk[F](s) :=

∑

w∈Σk

F (aw, bw) p
s
w. (1.10)

For F ≡ 1, we omit the reference to F , and we let Λ := Λ[1]. These series satisfy, for
ℜs > 1, the relation2 |Λ(F, s)| ≤ ‖F‖Λ(σ). Since the equality Λk(1) = 1 holds for all k,
the series Λ(s) is divergent at s = 1, and many probabilistic properties of the source can be
expressed in terms of the behavior of Λ(s), when ℜs is close to 1. For instance, the entropy
h(S) of the source S is defined as the limit (if it exists),

h(S) := lim
k→∞

−1

k

∑

w∈Σk

pw log pw = lim
k→∞

−1

k

d

ds
Λk(s)|s=1

. (1.11)

Two types of properties of the source may entail tameness for the mixed series ̟(s).

Definition 1.4. [Tameness of Sources.]
(a) A source is weakly tame if the function s 7→ Λ(s) is analytic on ℜs > 1, and of

polynomial growth when ℑs→∞ on any ℜs ≥ σ1 > 1
(b) Denote by F the set of functions F : [0, 1]2 → R

+ of class C1. A source is Λ–tame
if Λ(s) admits at s = 1 a simple pole, with a residue equal to 1/h(S), (where h(S) is the
entropy of the source)3 and if one of the following conditions is fulfilled:

(1) [S–shape] for any F ∈ F , the series Λ[F](s) is tame at s = 1 with a S–shape;
(2) [H–shape] for any F ∈ F , the series Λ[F](s) is tame at s = 1 with a H–shape;
(3) [P–shape] for any F ∈ F , the series Λ[F](s) is tame at s = 1, with a P–shape for

F ≡ 1. For F 6≡ 1, Λ[F](s) has either a S–shape, or a P–shape.

This definition is in fact very natural, since it describes various possible behaviors of
classical sources. “Most of the time”, the simple sources (memoryless sources or aperiodic
Markov chains) are Λ–tame. They never have a S–shape, but they may have a H–shape or
a P–shape, according to arithmetic properties of their probabilities [9]. Dynamical sources,
introduced by Vallée and defined in [18], may have a P–shape only if they are “similar”
to simple sources. Adapting deep results of Dolgopyat [3, 4], it is possible to prove that
dynamical sources are “most of the time” Λ–tame with a S–shape [1], but they may also
have a H–shape [15]. See the cited papers for more details, where all these facts, here
described in a informal way, are stated in a formal way and proven.

This definition is also well-adapted to our framework since it describes situations where
the mixed series ̟(s) may be proven tame. Then, the contour of the Rice integral may be
shifted to the left, providing an asymptotic expansion for the mean number S(n).

The weak tameness of the source is sufficient to entail the tameness at s = 1 (with a
S–shape, and an exponent k0 = 0) of series ̟(s) related to selection algorithms (namely
QuickMin and SelMin). The Λ–tameness of the source is central in the analysis of sorting

2The norm ‖·‖ is the sup-norm on [0, 1]× [0, 1].
3Then, (as we prove it in Appendix B.2), any series Λ[F](s) for any F ∈ F , F > 0, admits at s = 1 a

simple pole, with a residue equal to
1

h(S)

∫
1

0

F (x, x)dx.

REALISTIC ANALYSIS OF ALGORITHMS 9

algorithms, as it ensures the tameness of ̟(s) related to algorithms QuickSort, InsSort
and BubSort); moreover, the tameness shape ̟(s) is inherited from the one of the source.

2. Summary of our results.

We recall the main steps of the method.
Step 1. Computation of probabilities π(i, j).
Step 2. Automatic derivation of ̟(s, u, t); determination of the abscissa σ0.
Step 3. Expression for the mixed Dirichlet series ̟(s), and description of the main term
of the singular expression of ̟(s)/(s − σ0). Interpretation of the “dominant” constants.
Step 4. Relation between tameness of the source and tameness of the mixed series ̟(s).
Application of the Rice Formula. Statement of the final results.

This Section presents the results with three tables (found at the end), five propositions
and a theorem. Section 2.1 summarizes Steps 1 and 2 with Propositions 2.1 and 2.2,
and Table 1. Section 2.2 summarizes Step 3 with Propositions 2.3, 2.4, 2.5, and Table 2.
Finally, Section 2.3 states the final result (Theorem 2.6) with Table 3. The proofs are given
in Appendix A for Step 1, and in Appendix B for the other steps.

2.1. Summary of the results for Step 1 and 2

We present in the leftmost part of Table 1 the expressions for the mean number π(i, j)
of key comparisons between Ui and Uj , for each algorithm of interest. The proof of these
estimates is found in Appendix A. With these expressions, it is easy to recover the estimates
for the mean number K(n) of key comparisons (recalled in the third column).

Proposition 2.1. Consider the permutation model described in Section 1.1, and denote by
π(i, j) the mean number of comparisons between the keys of rank i and j, with i ≤ j. Then,
for any of the five algorithms, the mean numbers π(i, j) admit the expressions described in
the second column of Table 1 p. 12.

We then obtain the expressions for the analytic lifting ̟(s, u, t), via an “automatic”
derivation further described in Appendix B.1.

Proposition 2.2. Denote by ̟(s, u, t) the function which provides an analytical lifting of
the sequence ϕ(n, u, t) defined in Eq. (1.6), and by σ0 the integer which defines the domain
ℜs > σ0 of validity of this lifting. Then, for any of the five algorithms, the functions
̟(s, u, t) admit the expressions described in the fifth column of Table 1 p. 12.

2.2. Summary of the results for Step 3 – the mixed Dirichlet series

Proposition 2.3. Consider any general source, assumed to be weakly tame, together with
the fundamental intervals [aw, bw] defined in (1.1) and its Dirichlet series defined in Eq.
(1.10). Then, for any of the five algorithms, the mixed Dirichlet series ̟(s) (defined in
Section 1.6) admit in the domain ℜs > σ0, the expressions displayed in the second column
of Table 2, together with the values of σ0 in the third column. Depending on the value of σ0
the mean number S(n) of symbol comparisons is

S(n) =

n∑

k=2

(−1)k
(
n

k

)
̟(k) (if σ0 = 1), S(n) =

(
n

2

)
Λ(2)

2
+

n∑

k=3

(−1)k
(
n

k

)
̟(k) (if σ0 = 2).

10 J. CLÉMENT, T.H. NGUYEN THI, AND B. VALLÉE

We now study the relation between tameness of the source and tameness of the mixed
Dirichlet series.

Proposition 2.4. Assume the source S to be weakly tame. Then, the mixed Dirichlet series
̟(s) relative to selection algorithms satisfy the following:

(a) [QuickMin] ̟(s) is Λ–tame at σ0 = 1 with order k0 = 0 with an abscissa δ ≥ 1/3.
(b) [SelMin] ̟(s) is Λ–tame at σ0 = 1 with order k0 = 0 with an abscissa δ which

depends on the exponent a defined in (B.10).

Assume the source S to be Λ–tame. Then, the mixed Dirichlet series ̟(s) relative to sorting
algorithms satisfy the following:

(a) [QuickSort] ̟(s) is Λ–tame at σ0 = 1 with order k0 = 2.
(b) [InsSort] ̟(s) is Λ–tame at σ0 = 2 (order k0 = 1) and at σ0 = 1 (order k0 = 1).
(c) [BubSort] ̟(s) is Λ–tame at σ0 = 2 with order k0 = 1.

Moreover, the source S gives its shape of tameness to the series ̟(s).

We finally describe the main term of the singular expression of ̟(s)/(s−σ0) at s = σ0.

Proposition 2.5. The constants of interest which intervene in the main terms displayed
in the last column of Table 2 p. 12 are:

(i) The entropy h(S) of the source.
(ii) The coincidence c(S), namely the mean number of symbols needed to compare two

random words produced by the source.
(iii) The min–coincidence a(S): this is the mean number of symbols needed to compare

a uniform random word and the smallest word of the source.
(iv) The logarithmic coincidence b(S): this is the mean number of symbols needed to

compare two words X and Y randomly chosen as follows: the word X is uniformly
drawn from the source, and Y is drawn with Y ≥ X, according to density 1/t.

The entropy is defined in (1.11). The constants a(S), b(S), c(S) satisfy the inequalities
a(S) < b(S), c(S) < 2b(S) and are defined as follows

a(S) =
∑

ℓ≥0

qℓ, b(S) =
∑

w∈Σ⋆

∫

Tw

1

t
du dt c(S) = 2

∑

w∈Σ⋆

∫

Tw

du dt =
∑

w∈Σ⋆

p2w = Λ(2).

Here qℓ is the probability of the prefix of length ℓ of the smallest word of the source, Tw is
the fundamental triangle defined in (1.2) and Λ(s) is defined in (1.10).

The constants a(S), c(S) and h(S) are easy to compute for any memoryless source. For
the unbiased sourceMr, or for the source Bp on the alphabet {0, 1}, with p := p0, one has:

a(Mr) = c(Mr) =
r

r − 1
, h(Mr) = log r,

a(Bp) =
1

1− p
, c(Bp) =

1

2p(1− p)
, h(Bp) = −p log p− (1− p) log(1− p).

The constant b(S) is more difficult to compute even in the memoryless case. But, for the
sourceMr, one has (see [12] for details)

b(Mr) =
∑

ℓ≥0

1 +

1

rℓ

rℓ−1∑

k=1

log
k

rℓ

 , b(M2)

.
= 2.639689120.

REALISTIC ANALYSIS OF ALGORITHMS 11

2.3. Final step

Theorem 2.6. Consider a general source S. For selection algorithms QuickMin, SelMin,
we assume the source to be weakly–tame, and, for sorting algorithms QuickSort, InsSort,
BubSort, we assume the source to be Λ–tame. Then, the mean number S(n) of symbol com-
parisons performed by each algorithm on a sequence of n words independently drawn from
the same source S admits the asymptotic behaviour described in Table 3. Here, the constants
κi in the subdominant terms4 involve the Euler constant γ together with the subdominant
constant of the source5 d(S):

κ0 =
2

h(S)
(γ − 2) + 2d(S), κ1 =

1

8h(S)
(2γ − 3) +

d(S)

4
.

The errors terms E(n), F (n) are not of the same type for sorting algorithms and selection
algorithms.

For selection algorithms, still assuming the source is weakly tame. The error term F (n)
is of order O(n1−δ), with δ = 1/3 for QuickMin. For SelMin, the constant δ depends on
the exponent a (if it exists) defined in (B.10).

For sorting algorithms, assuming a Λ–tame source with a given shape, we have

– if the source has a S–shape with abscissa δ, then E(n) = O(n1−δ);
– if the source has a H–shape with exponent ρ, then E(n) = n · O (exp[−(log n)ρ]);
– if the source has a P–shape with abscissa δ, then E(n) = n · Φ(n) +O(n1−δ) where
n · Φ(n) is the expansion given by the family of imaginary poles (sk).

Discussion. We now compare the asymptotic estimates for the two mean numbers, the mean
number K(n) of key–comparisons (column 2 of Table 3) and the mean number S(n) (column 3 of
Table 3). There are two types of algorithms

(a) The “robust” algorithms for which K(n) and S(n) are of the same order. This is the case for
three algorithms: InsSort, QuickMin and SelMin. Of course, the constants are different for K(n)
and S(n), and the ratios S(n)/K(n) involve coincidences of various types always between two words,
respectively uniform coincidence c(S), logarithmic-coincidence b(S), or min-coincidence a(S).

(b) The algorithms for which S(n) and K(n) are not of the same order, here QuickSort and
BubSort. In both cases, the ratio S(n)/K(n) satisfies

S(n)

K(n)
∼

1

2
D(n), with D(n) =

1

h(S)
logn.

As it is proven6 in [2] for a Λ–tame source, the factor nD(n) is asymptotic to the mean path length of

a trie built on n words independently drawn from the source. This coincides with the mean number

of symbol comparisons needed to completely distinguish these n words. Then D(n) is the expected

depth of the complete trie built on these n words. The surprise comes from the factor 1/2; this

suggests that the complete trie is not necessary to distinguish pairs of words which will be compared

in QuickSort and BubSort: define the “lazy” trie as the trie which is built in a “lazy” way, only

when the algorithm asks the comparison between two words. Then the “lazy” trie has an expected

depth equal to the half of the expected depth of the “complete” trie.

4The constant κ2 is not computed here. Note that the computation of the subdominant term for InsSort
needs the singular expansion of ̟(s)/(s− 1) at s = 1.

5This constant, defined as the constant term in the singular expansion of Λ(s) at s = 1, is easy to compute
for any source Bp: d(Bp) = (1/h(Bp))

2(p log2 p+ (1− p) log2(1− p)).
6The paper [2] extends the result already known for simple sources [17] to dynamical sources, but the

proof is easily adapted for a general Λ–tame source

12 J. CLÉMENT, T.H. NGUYEN THI, AND B. VALLÉE

Algorithms π(i, j) K(n) σ0 ̟(s, u, t), ℜs > σ0

QuickSort
2

j − i+ 1
2n logn 1 2(t− u)s−2

InsSort
1

2
+

1

(j − i + 1)(j − i)

n2

4
2 (s− 1)(t− u)s−2

BubSort
1

2
+

1

(j − i + 1)(j − i)
+

n2

2
2 (s− 1)(t− u)s−3[t− (s− 1)u]

+
2(i− 1)

(j − i+ 2)(j − i+ 1)(j − i)

QuickMin
2

j
2n 1 2ts−2

SelMin
1

i(i+ 1)
+

1

j(j − 1)
n 1 (s− 1)[us−2 + ts−2]

(a) Table 1: results for Steps 1 and 2 (Section 2.1)

Algorithms ̟(s) σ0 Main term of ̟(s)/(s− σ0)

QuickSort
2Λ(s)

s(s− 1)
1

2

h(S)

1

(s− 1)3

InsSort
Λ(s)

s
2

c(S)

2

1

(s− 2)

BubSort −Λ[F0](s− 1) = −
∑

w∈Σ⋆

awp
s−1
w 2 −

1

2h(S)

1

(s− 2)2

QuickMin 2
∑

w∈Σ⋆

∫
bw

aw

(t− aw)t
s−2dt 1 2b(S)

1

s− 1

SelMin (s− 1)
∑

w∈Σ⋆

(bw − aw)

∫
bw

aw

us−2du 1 a(S)
1

s− 1

(b) Table 2: results for Step 3 (Section 2.2)

Algorithms K(n) Dominant term for S(n) Subdominant terms Remainder term

QuickSort 2n logn
1

h(S)
n log2 n κ0n logn + κ2n E(n)

InsSort
n2

4

c(S)

4
n2 1

h(S)
n logn +

(
κ0 −

c(S)

4

)
n E(n)

BubSort
n2

2

1

4h(S)
n2 logn

(
κ1 +

c(S)

4

)
n2 nE(n)

QuickMin 2n 2b(S)n F (n)

SelMin n a(S)n F (n)

(c) Table 3: results for Theorem 1 (Section 2.3)

Figure 1. Tables summarizing results.

REALISTIC ANALYSIS OF ALGORITHMS 13

Conclusion. We show here the applicability of the method which has been described in
the paper [19]. We describe a new point of view on the basic algorithms, and their analysis,
which can be (partially) automatized. Our dream is to revisit all standard algorithms from
a student book, with this point of view, and perform their realistic analysis.

Acknowledgements. This paper greatly benefited from many discussions we had with
Philippe Flajolet, on the topics of the Rice formula and the tameness of sources. For these,
we are truly grateful.

References

[1] Cesaratto, E. and Vallée, B. Gaussian distribution of trie depth for dynamical sources,
submitted.

[2] Clément, J., Flajolet, P., and Vallée, B. Dynamical sources in information theory: A
general analysis of trie structures. Algorithmica 29, 1/2 (2001), 307–369.

[3] Dolgopyat, D. On decay of correlations in Anosov flows, Ann. of Math. 147 (1998) 357-390.
[4] Dolgopyat, D. Prevalence of rapid mixing (I) Ergodic Theory and Dynamical Systems 18

(1998) 1097-1114.
[5] Fill, J. A., and Janson, S. The number of bit comparisons used by Quicksort: An average-

case analysis. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA04)
(2001), pp. 293–300, long version Electronic Journal of Probability 17, Article 43, 1-22 (2012).

[6] Fill, J. A., and Nakama, T. Analysis of the expected number of bit comparisons required
by Quickselect. Algorithmica 58:730-769 (2010).

[7] Fill, J. A. Distributional convergence for the number of symbol comparisons
used by QuickSort, Annals of Applied Probability (2012), to appear, available from
http://www.ams.jhu.edu/~fill.

[8] Fill, J. A., and Nakama, T. Distributional Convergence for the Number of Symbol Com-
parisons Used by QuickSelect. Submitted 2012.

[9] Flajolet, P., Roux, M. and Vallée, B. Digital trees and memoryless sources: from arith-
metics to analysis Proceedings of AofA’10, DMTCS, proc AM, pp 231–258 (2010)

[10] Flajolet, P., and Sedgewick, R. Mellin transforms and asymptotics: finite differences and
Rice’s integrals. Theoretical Computer Science 144, 1–2 (June 1995), 101–124.

[11] Flajolet, P., and Sedgewick, R. Analytic Combinatorics. Cambridge University Press,
2008.

[12] Grabner, P., and Prodinger, H. On a constant arising in the analysis of bit comparisons
in Quickselect. Quaest. Math. 31, (2008), 303–306.

[13] Nörlund, N. E. Leçons sur les équations linéaires aux différences finies. In Collection de
monographies sur la théorie des fonctions. Gauthier-Villars, Paris, 1929.

[14] Nörlund, N. E. Vorlesungen über Differenzenrechnung. Chelsea Publishing Company, New
York, 1954.

[15] Roux, M. and Vallée, B. Information theory: Sources, Dirichlet series, and realistic analysis
of data structures, Proceedings of Words, 11, Electronic Proceedings of Theoretical Computer
Science, Volume 63, pp 199-214 (2011)

[16] Sedgewick, R. Algorithms in C, Parts 1–4, third ed. Addison–Wesley, Reading, Mass., 1998.
[17] Szpankowski, W. Average-Case Analysis of Algorithms on Sequences. John Wiley, 2001.
[18] Vallée, B. Dynamical sources in information theory: Fundamental intervals and word prefixes.

Algorithmica 29, 1/2 (2001), 262–306.
[19] Vallée, B., Clément, J., Fill, J. A., and Flajolet, P. The number of symbol compar-

isons in QuickSort and QuickSelect. In ICALP 2009, Part I (2009), S. A. et al., Ed., vol. 5555
of Lecture Notes in Computer Science, Springer-Verlag, pp. 750–763. Proceedings of the 36th
International Colloquium on Automata, Languages and Programming.

14 J. CLÉMENT, T.H. NGUYEN THI, AND B. VALLÉE

Appendix A. Probabilistic study of key–comparisons. Proofs for Step 1.

The present appendix aims at describing proofs for Proposition 2.1 that provides ex-
pressions for expectations π(i, j). We will see that the event “Ui and Uj are compared” is
generally “similar” to an event of the type “The arrival times of the keys Ui and Uj into a
given subset U of keys are the first two (resp. the last two)”. For a subset U of cardinality ℓ,
the probability of such an event is 1/ℓ(ℓ−1). Moreover, the subset U is often a subset U[x,y]

which gathers all the keys whose rank belongs to the interval [x, y], with three main cases,
according to the algorithms: [x, y] = [1, i], [x, y] = [1, j], or [x, y] = [i, j], which entails that
ℓ belongs to {i, j, j − i+ 1}.

Then, the mean numbers π±(i, j), and their analogs π̂(u, t) admit a general form which
will makes easy the sequel of the computations, namely the automatic transfer obtained in
Appendix B.1.

We first briefly recall in Figure 2 five algorithms (for precisions, see [16]).

QuickSort algorithm

Input: An array V [1..n]
Result: The sorted array V [1..n]
pivot←− V [1];

(V −, V +)←− Partition(pivot, V);

QuickSort(V−);

QuickSort(V+);

QuickMin algorithm

Input: An array V [1..n]
Output: The minimum key of

V [1..n]
pivot←− V [1];

(V −, V +)←− Partition(pivot, V);

if V − = ∅ then
return pivot

else return QuickMin(V−);

InsSort algorithm

Input: An array V [1..n]
Result: The sorted array V [1..n]
for i from 2 to n do

for j from i downto 2 do

if V [j − 1] ≥ V [j] then
swap(V [j], V [j − 1])

BubSort algorithm

Input: An array V [1..n]
Result: The sorted array V [1..n]
for i from 1 to n− 1 do

for j from n downto i+ 1 do

if V [j − 1] > V [j] then
swap(V [j − 1], V [j])

SelMin algorithm

Input: An array V [1..n]
Output: The minimum key of

V [1..n]
Min←− V [1];

for i from 2 to n do
if V [i] < Min then Min = V [i]

return Min

Figure 2. Five basic algorithms: QuickSort, QuickMin, InsSort, BubSort, SelMin.

REALISTIC ANALYSIS OF ALGORITHMS 15

A.1. Algorithms QuickSort and QuickMin

These algorithms are based on the “Divide and Conquer” principle. All the keys are
compared to the first key of the array that is used as a pivot. During the Partition

stage, the keys that are smaller than the pivot are placed on its left (in the sub–array V −),
whereas the keys that are greater are placed on its right (in the subarray V +). After this
partitioning, the pivot is at the right place.

Then, the QuickSort algorithm recursively sorts the two sub-arrays, V − and V +. While
the pivot does not belong to the subset U[i,j], this set is not separated by the pivot. When
the pivot belongs to the subset U[i,j], the keys Ui and Uj may be compared only if Ui or Uj

is a pivot. This event coincides with the event “Ui or Uj is the first key-in inside the subset
U[i,j]”. After such a comparison, the keys are separated and no longer compared. Then, the
probability π(i, j) equals 2/(j − i+ 1).

The algorithm QuickMin is a particular case (for m = 1) of the QuickSelect(m) algo-
rithm which returns the key of rank m. The QuickMin algorithm also uses the first key of
the array as a pivot and performs the partition operation. If V − is not empty, the minimum
belongs to V −. Otherwise the pivot is the minimum. In the QuickMin algorithm, as in the
QuickSort algorithm, the keys Ui and Uj are compared only if Ui or Uj is a pivot. This
event coincides with the event “Ui or Uj is the first key-in inside the subset U[1,j]”. Then,
the probability π(i, j) equals 2/j.

A.2. Algorithm InsSort

There are n− 1 phases in the algorithm. During the i-th phase, the key Vi of the array
is inserted into the left sub-array which contains an already sorted sequence built on the
set {V1, V2, . . . , Vi−1}.

First case. Ui and Uj arrive in the wrong order in the initial array (τ(Ui) > τ(Uj)).
In the phase when Ui is inserted into the left sub-array, this sub–array already contains Uj

with Uj > Ui, and the key Ui is always compared and exchanged with Uj. This event is
defined as “Inside the two keys set {Ui, Uj}, Uj is the first–in key, and Ui is the second–in
key” and the probability of such an event is π−(i, j) = 1/2.

Second case. Ui and Uj arrive in the good order in the initial array (τ(Ui) < τ(Uj)).
The comparison does not always occur. In the phase when Uj is inserted into the left sub–
array, this left sub–array already contains the key Ui. If this left sub-array contains one of
the keys of the subset U[i,j[, then Uj “meets” (i.e., is compared to) this key before meeting
Ui and remains on its right. Finally, the comparison between Ui and Uj occurs only if the
subset U]i,j[arrives after Uj . This defines the event “Ui is the first–in key and Uj is the
second–in key inside the set U[i,j]”. The probability of such an event is

π+(i, j) =
1

(j − i+ 1)(j − i)
.

A.3. Algorithm BubSort

As its name says, the algorithm pushes the smallest keys to the left of the array as the
air bubbles on to the surface of a liquid. The algorithm performs n − 1 phases. During
each phase, the algorithm steps through the array, compares each pair of adjacent keys and

16 J. CLÉMENT, T.H. NGUYEN THI, AND B. VALLÉE

swaps them if they are in the wrong order. The i-th phase aims at finding the key of rank
i and place it in the position i of the array. After the i-th phase, the keys of U[1..i] are at
their right places. The BubSort algorithm may perform several comparisons between two
keys Ui and Uj. We are now interested in the first comparison between Ui and Uj and we
distinguish two cases:

First case. Ui and Uj arrive in the right order in the initial array (τ(Ui) < τ(Uj)). If
there is one key of U]i,j[which arrives after Ui and before Uj , it will stay between Ui and
Uj in the array thereafter, and will prevent Ui and Uj from meeting each other. If it arrives
after Uj , it will eventually come between Ui and Uj in the array before these two keys meet
each other. Hence, there is a comparison between Ui and Uj only if all the keys of the
subset U]i,j[arrive before both Ui and Uj . This coincides with the event “the key Uj is the
last–in and the key Ui arrived just before inside the subset U[i,j]”. The probability that the
first comparison between Ui and Uj occurs is

1

(j − i+ 1)(j − i)
.

Second case. Ui and Uj arrive in the wrong order in the initial array (τ(Uj) < τ(Ui)).
The first comparison between Ui and Uj occurs just before they are swapped. The proba-
bility of the event “Uj is the first–in key and Uj is the second–in key in {Ui, Uj}” is 1/2.

Subsequent comparisons. There might be subsequent comparisons between two keys.
Note that, in both previous cases, immediately after the first comparison (either positive
or negative) Ui and Uj are in the right order and in consecutive positions. A necessary
condition for having at least one subsequent comparison between Ui and Uj is that all
the keys of U]i,j[are still on the left of Ui after this point (for the same reasons exposed
previously in Case 1). Now we also remark that any key Uℓ with ℓ ∈ [1, i[which arrived
after U]i,j[and before Ui in the first case, and after U]i,j[and before Uj in the second case,
will be the cause of a stop of key Ui during some latter phases (such a key Uℓ will never be
swapped with Ui because of its smaller value). Also each time a key Ui is stopped during a
phase by a key from U[1,i[, the set of keys from U[1,i[between U]i,j[and Ui decreases by one
during the same phase. After such a phase, as all keys to the right of Ui are in U[j,n], the key
Uj during the next phase will be swapped until reaching Ui (and results in a comparison).
In conclusion the number of subsequent comparisons is exactly the number of keys from
U[1,i[which arrived after U]i,j[and before Ui in the first case and before Uj in the second
case. For any ℓ ∈ [1..i[, the probabilities that Uℓ arrives after U]i,j[and before Ui (and Uj

arrives after Ui – Case 1) or after U]i,j[and before Uj (and Ui arrives after Uj – Case 2)
have the same expression

1

(j − i+ 2)(j − i+ 1)(j − i)
.

Using independence of events for ℓ ∈ [1, i[, this yields that the mean number of subsequent
(positive) comparisons (summing up for both Cases 1 an 2) is

2(i − 1)

(j − i+ 2)(j − i+ 1)(j − i)
.

To conclude, one has

π+(i, j) =
1

(j − i+ 1)(j − i)
+

2(i− 1)

(j − i+ 2)(j − i+ 1)(j − i)
, π−(i, j) =

1

2
.

REALISTIC ANALYSIS OF ALGORITHMS 17

A.4. Algorithm SelMin.

The algorithm SelMin is the first phase of SelectionSort. This is the most natural
strategy for finding the minimum key of an array. The variable called Min is initiated
with the first key V1. While stepping through the array, each key is compared with Min

and replaces it if it is smaller. Then, the variable Min memorises all the possible déjà vus
minima, namely the successive left to right minima of the array. We recall that a left to
right minimum of an array is the smallest key amongst all the keys which are on its left.
If two keys Ui and Uj are compared, the first–in key of the set {Ui, Uj} is a left to right
minimum.

First case. Ui and Uj arrive in the right order (τ(Ui) < τ(Uj)). Then Ui is a left-to-right
minimum, and Uj must arrive before the following left-to-right minimum, namely before all
the keys of U[1,i[. Finally, inside the set U[1,i] ∪ {Uj}, of cardinality i+ 1, the key Ui is the

first–in, and Uj is the second–in. The probability of this event is π+(i, j) = 1/(i(i + 1)).

Second case. Ui and Uj arrive in the wrong order. (τ(Ui) > τ(Uj)). Then Uj is a left-to-
right minimum and Ui is the following left-to-right minimum. This means that all the keys
of the set U[1,i[∪U]i,j[arrived after Ui. Inside the set U[1,j] of cardinality j, Uj is the first–in

key, Ui is the second–in key. The probability of such an event is π−(i, j) = 1/(j(j − 1)).

Appendix B. Proofs for Steps 2 and 3.

This appendix provides elements of proofs for Propositions 2.2, 2.3, 2.4, 2.5. Appen-
dix B.1 focusses on the “automatic” transfer between expectations π(i, j) and coefficients
ϕ(n, u, t) which will entail, together with Proposition 2.1, Proposition 2.2 of Section 2.1.
Then, the sequel of this appendix is devoted to the proofs of Propositions 2.3, 2.4, 2.5.
Appendix B.2 focusses on the case of sorting algorithms, whereas Appendix B.3 describes
the proofs for selection algorithms.

B.1. Automatic transfer from Step 1 to Step 2

We first explain how we transfer the mean number π(i, j) of key–comparisons into the
Dirichlet terms ̟(s, u, t).

Proposition B.1. The following holds:

(a) Consider a variable X which follows a Poisson law of parameter Z, and, for m ≥ 1,
the variable πm(X) := 1/(X + 1)(X + 2) . . . (X +m). Denote by Fm(Z) the expectation of
the variable πm(X). Then, the two sequences

βm(n, λ) = (−1)nn![Zn]
(
Z2 Fm(λZ)

)
, γm(n, λ) := (−1)nn![Zn]

(
Z3 Fm(λZ)

)
.

admit the following expressions, resp. for n > 1 and n > 2,

βm(n, λ) =
1

(m− 1)!

n(n− 1)

n+m− 2
λn−2, γm(n, λ) =

−1

(m− 1)!

n(n− 1)(n − 2)

n+m− 3
λn−3.

(B.1)

(b) For any of the five algorithms, the random variable π̃(u, t), equal to π̂(u, t) up to the
possible constant term 1/2, can be expressed in the “basis” πm, as displayed in the second
column of the following table.

18 J. CLÉMENT, T.H. NGUYEN THI, AND B. VALLÉE

(c) For any of the five algorithms, there exists an integer σ0, for which the coefficients
ϕ(n, u, t) of the density ΦZ(u, t) can be expressed for n > σ0 as a linear combination of
βm(n, λ) and γm(n, λ) for λ ∈ {u, t, t − u}, as displayed in the third column of the table.
The integer σ0 is displayed in the fourth (and last) column of the table.

Algorithms π̃(u, t) (in the “basis” πi) ϕ(n, u, t) (in the “basis” βi, γj) σ0

QuickSort 2[π1(N[u,t[)− π2(N[u,t[)] 2[β1(n, t− u)− β2(n, t− u)] 1

InsSort π2(N[u,t[) β2(n, t− u) 2

BubSort π2(N[u,t[) + 2N[0,u[· π3(N[u,t[) β2(n, t− u) + 2uγ3(n, t− u) 2

QuickMin 2[π1(N[0,t[)− π2(N[0,t[)] 2[β1(n, t)− β2(s, t)] 1

SelMin π2(N[0,u[) + π2(N[0,t[) β2(n, u) + β2(n, t) 1

Proof. We first compute the coefficients αm(n, λ) of Fm(Z)

αm(n) := (−1)nn![Zn]Fm(Z) =
1

(m− 1)!

1

n+m
. (B.2)

Then, the coefficients βm(n, λ) and γm(n, λ) are related to αm(n), resp. for n > 1 and n > 2

βm(n, λ) = n(n− 1)λn−2αm(n− 2), γm(n, λ) = −n(n− 1)(n − 2)λn−3αm(n− 3),

which proves, with (B.2), the expressions (B.1) of Assertion (a).

Assertion (b). We begin with the expressions of π(i, j) displayed in the Table 1 p. 12,
and we obtain with (1.4) expressions for the random variable π̃(u, t) displayed in the second
column of the table above.

Assertion (c). Now, the third column is obtained from the second one by “taking
the expectations” in the Poisson model, multiply by Z2 and extracting the coefficient of
order n. All the expressions of the second column are linear combinations, except the term
N[0,u[·π3(N]u,t[), which involves the product of two independent variables, whose expectation
is thus the product of expectations, namely

Z2 · EZ(N[0,u[) · EZ

(
π3(N]u,t[)

)
= u · Z3F3(Z(t− u)).

The explicit expressions of ϕ(n, u, t) deduced from the decompositions described in the
third column together with the expressions (B.1) yields expressions for ̟(s, u, t) reported
in the Table 1 p. 12 (for s > σ0). We recall that the link between ϕ(n, u, t) and ̟(s, u, t)
(essentially – but not only – a change of variable n→ s) is given in Section 1.6.

B.2. Analytic Study of the mixed Dirichlet series for sorting algorithms.

In the three cases, the mixed Dirichlet series is closely related to the Dirichlet series
Λ(s) of the source, and the transfer of tameness between Λ(s) and ̟(s) is easy.

In the sequel, σ denotes the real part of s, i.e., σ := ℜs.

REALISTIC ANALYSIS OF ALGORITHMS 19

Case of QuickSort and InsSort. The integral of ̟(s, u, t) = (s − 1)(t − u)s−2 on the
fundamental triangle Tw equals (1/s)psw. This entails the nice formulae for both ̟(s),

̟Q(s) =
Λ(s)

s(s− 1)
, ̟I(s) =

Λ(s)

s
.

Then, the functions s 7→ ̟(s) are tame at s = 1. Moreover, the shape of tameness of ̟(s)
at s = 1 coincides with the shape of Λ–tameness of the source. For InsSort, the function
̟I(s) has a simple dominant pole at s = 1 with a residue equal to 1/h(S), whereas, for
QuickSort, the function ̟I(s) has a dominant pole at s = 1 of order 2. Moreover, the
singular expressions of the functions ̟(s)/(s− 1) can be easily computed from the singular
expression of Λ(s).

Case of BubSort. The integral of ̟(s, u, t) = (s− 1)(t− u)s−3[t− (s− 1)u] on the funda-
mental triangle equals −awpw

s−1. Then, the Dirichlet series ̟(s) admits the expression

̟(s) = −
∑

w∈Σ⋆

awpw
s−1 = −Λ[F0](s− 1),

where F0(x, y) = x. By hypothesis, the series s 7→ Λ[F0](s) is tame at s = 1. Then, the
series ̟(s) is tame at s = 2, with the same shape of tameness as the series s 7→ Λ[F0](s). We
now study its precise behaviour at s = 2. We remark, with the relation Λℓ(1) = Λℓ(1)

2 = 1,
the equality

2Λℓ[F0](1) = 2
∑

w∈Σℓ

awpw = 2
∑

w∈Σℓ

[
∑

w′<w

pw′

]
pw = Λℓ(1)

2−
∑

w∈Σℓ

p2w = Λℓ(1)−Λℓ(2). (B.3)

The series
L(s) :=

∑

ℓ≥0

Lℓ(s) with Lℓ(s) := 2Λℓ[F0](s)− Λℓ(s),

is convergent at s = 1 and satisfies

L(1) =
∑

ℓ≥0

Lℓ(1) = −
∑

ℓ≥0

Λℓ(2) = −Λ(2) = −c(S),

where c(S) is the coincidence of the source defined in Proposition 2.5. Since Λ(s) admits a
simple pole at s = 1 with a residue equal to 1/h(S), then Λ[F0](s) admits a simple pole at
s = 1 with a residue equal to 1/2h(S). More precisely, as the singular expansion of Λ(s) at
s = 1 is

Λ(s) =
1

h(S)

1

s− 1
+ d(S) +O(s− 1),

the singular expansion of ̟(s) at s = 2 is

̟(s) = −
1

2h(S)

1

s− 2
+

1

2
(c(S)− d(S)) +O(s− 2).

Remark that the equation (B.3) can be generalized to any function F of class C1. The
sum of interest can be viewed as a Riemann sum on the fundamental intervals of depth ℓ,
so that
∑

w∈Σℓ

F (aw, bw)pw = I[F]+ρℓ[F], with I[F] :=

∫ 1

0
F (t, t)dt and |ρℓ[F]| ≤ ‖F‖1·Λℓ(2) .

20 J. CLÉMENT, T.H. NGUYEN THI, AND B. VALLÉE

This entails that, for any function F whose integral I[F] is not zero, the Dirichlet series
Λ[F](s) has a residue at s = 1 equal to I[F]/h(S).

B.3. Analytic study of the mixed Dirichlet series for QuickMin and SelMin

In this case, the analytic study of ̟(s) is less easy, because ̟(s) involves not only the
probabilities pw, but also the integral of a function over each fundamental interval [aw, bw].
We first consider the mixed series ̟ℓ(s) of depth ℓ, relative to fundamental intervals of
depth ℓ, and we prove that the series of general term ̟ℓ(s) is normally convergent.

Case of QuickMin. The Dirichlet series of depth ℓ is

̟ℓ(s) := 2
∑

w∈Σℓ

∫ bw

aw

(t− aw)t
s−2dt.

For σ ≥ 2, each term of the series is at most equal to p2w in modulus and the series ̟ℓ(s)
satisfies |̟ℓ(s)| ≤ Λℓ(2).

For σ ∈]0, 2], we consider some real A ∈ [0, 1] (to be fixed later as a function of s and ℓ)
and split the sum into three sums, each of them relative to a subset of prefixes: the prefixes
w for which bw < A, the prefixes w for which aw > A and finally the unique prefix α for

which A ∈ [aα, bα]. These sums are respectively denoted by ̟
(−)
ℓ (s),̟

(+)
ℓ (s),̟

(=)
ℓ (s).

For bw ≤ A, we use the inequality
∫ bw

aw

(t− aw)t
σ−2dt ≤

∫ bw

aw

tσ−1dt, so that |̟
(−)
ℓ (s)| ≤ 2

∫ A

0
tσ−1dt =

2

σ
Aσ.

For aw ≥ A, we observe that
∫ bw

aw

(t− aw)t
σ−2dt ≤

1

2
Aσ−2p2w, so that |̟

(+)
ℓ (s)| ≤ Aσ−2Λℓ(2).

We now choose A such that the two previous bounds are equal, namely

A =
(σ
2
Λℓ(2)

)1/2
, so that |̟

(−)
ℓ (s)|+ |̟

(+)
ℓ (s)| ≤ C1(σ)Λℓ(2)

σ/2,

where C1(σ) is bounded for σ ≥ σ2 (for any σ2 > 0). The middle part ̟
(=)
ℓ (s) corresponds

to the fundamental interval [aα, bα] of length pα ≤ Λℓ(2)
1/2, and

|̟
(=)
ℓ (s)| ≤ 2

∫ bα

aα

tσ−1dt ≤
2

σ
(A+ pα)

σ ≤ C2(σ)Λℓ(2)
σ/2,

where C2(σ) is bounded for σ ≥ σ2 (for any σ2 > 0). The well–known log-convexity of the
function s 7→ Λℓ(σ) and the equality Λℓ(1) = 1, imply the inequalities

Λℓ(2)
σ/2 = Λℓ(2)

σ/2 × Λℓ(1)
σ/2 ≤ Λℓ

(
2×

σ

2
+ 1×

σ

2

)
= Λℓ

(
3σ

2

)
, (B.4)

which leads to the final bounds, with C(σ) := max (C1(σ), C2(σ))

|̟ℓ(s)| ≤ C(σ)Λℓ

(
3σ

2

)
, |̟(s)| ≤ C(σ)Λ

(
3σ

2

)
.

When the source is weakly tame, then, the function ̟(s) is tame at σ0 = 1, of order 0,
with a S–shape, related to the vertical strip ℜs ≥ σ1 for any σ1 > 2/3.

REALISTIC ANALYSIS OF ALGORITHMS 21

The value ̟(1), denoted by 2b(S) in Proposition 2.5, is easily computed,

̟(s) :=
∑

w∈Σ⋆

∫

Tw

1

t
du dt .

The set P which gathers all the prefixes of the smallest word emitted by the source is
particular. If qℓ denotes the probability of the prefix of P of depth ℓ, the contribution of
the set P to ̟(s) is

a(S) =
∑

w∈P

pw =
∑

ℓ≥0

qℓ,

whereas the contribution of the set Σ⋆ \ P is equal to

∑

w∈Σ⋆\P

pw

(
1−

aw
pw

log

(
1 +

pw
aw

))
.

Finally,

b(S) = a(S) +
∑

w∈Σ⋆\P

pw

(
1−

aw
pw

log

(
1 +

pw
aw

))
, a(S) =

∑

w∈P

pw =
∑

ℓ≥0

qℓ.

We will see later that the constant a(S) is the constant which occurs in SelMin.

Case of SelMin. The two Dirichlet series of interest are

̟+(s) = (s− 1)
∑

w∈Σ∗

∫ bw

aw

us−2(u− aw)du, ̟−(s) = (s − 1)
∑

w∈Σ∗

∫ bw

aw

us−2(bw − u)du.

Then, the total Dirichlet series is

̟(s) = ̟+(s) +̟−(s) = (s− 1)
∑

w∈Σ∗

(bw − aw)

∫ bw

aw

us−2du.

Under this form, the upper bound, valid for σ ≥ 2,

|̟(s)| ≤ |s− 1|
∑

w∈Σ∗

(bw − aw)

∫ bw

aw

uσ−2du ≤ |s− 1|Λ(2),

proves that ̟(s) is tame for ℜs ≥ 2. The sequel of the proof is devoted to the case σ ≤ 2.
We first consider the Dirichlet series of depth ℓ, namely

̟ℓ(s) = (s− 1)
∑

w∈Σℓ

(bw − aw)

∫ bw

aw

us−2du,

where Σℓ is the set of the prefixes of length ℓ. As in the case of QuickMin, the first term
of the sum which defines ̟ℓ is particular. It is relative to the prefix αℓ of depth ℓ of the
smallest word of the source (whose probability is denoted by qℓ) and equals

(s− 1)qℓ

∫ qℓ

0
us−2du = qsℓ .

We then consider the remainder of the sum

Rℓ(s) =
∑

w∈Σℓ,

w>αℓ

(bw − aw)(b
s−1
w − as−1

w),

22 J. CLÉMENT, T.H. NGUYEN THI, AND B. VALLÉE

and prove that the series of general term Rℓ(s) is normally convergent for ℜs > 1− σ3 for
some σ3 > 0. Then, the sum R(s) of this series defines a tame function at σ0 of abscissa
σ2. And the equality R(1) = 0 holds since on the real axis R(s) is positive for s > 1 and
negative for s < 1. Finally,

̟(1) = a(S) =
∑

ℓ≥0

qℓ, with qℓ := probability of the smallest prefix of length ℓ.

(B.5)

We then study Rℓ(s) for σ ≤ 2. As previously, we consider some real A ∈ [0, 1] (to be
fixed later as a function of s and ℓ) and split the sum into three sums, each of them relative
to a subset of prefixes: the prefixes w for which bw < A, the prefixes w for which aw > A
and finally the unique prefix β for which A ∈ [aβ , bβ]. These sums are respectively denoted

by R
(−)
ℓ (s), R

(+)
ℓ (s), R

(=)
ℓ (s).

When aw > A, we use the mean-value theorem. There exists cw ∈ [aw, bw] for which

|bs−1
w −as−1

w | ≤ |s−1|cσ−2
w (bw−aw) ≤ |s−1|A

σ−2(bw−aw) and |R
(+)
ℓ (s)| ≤ |s−1|Aσ−2Λℓ(2).

(B.6)
There are two cases for the other two sums, according to the position of σ with respect

to 1.

First case: Case when 1 ≤ σ ≤ 2. In this case, when bw < A, we remark

|bs−1
w −as−1

w | ≤ |bs−1
w |+|as−1

w | = bσ−1
w +aσ−1

w ≤ 2Aσ−1, |R
(−)
ℓ (s)| ≤ 2Aσ−1 ·A = 2Aσ. (B.7)

For the sum R
(=)
ℓ (s), we use the upper bound

|bs−1
w − as−1

w | ≤ 2, R
(=)
ℓ (s) ≤ 2 pβ ≤ 2πℓ ≤ 2Λℓ(2)

1/2, (B.8)

which deals with the length pβ of the interval [aβ, bβ]. Finally, with (B.6), (B.7), (B.8), one
obtains in the case 1 ≤ σ < 2,

Rℓ(s) ≤ Aσ−2Λℓ(2) + 2Aσ + 2Λℓ(2)
1/2.

We choose the value of A so that the first two terms are equal, namely

2Aσ = |s− 1|Aσ−2Λℓ(2), i.e., A =

(
|s− 1|

2

)1/2

Λℓ(2)
1/2.

Then, with the log-convexity bound Λℓ(2)
σ/2 ≤ Λℓ(3σ/2), one has

|R
(−)
ℓ (s) +R

(+)
ℓ (s)| ≤ 4

(
|s− 1|

2

)σ/2

Λℓ(2)
σ/2 ≤ 4

(
|s− 1|

2

)σ/2

Λℓ

(
3σ

2

)
.

Finally, if the source is weakly tame, R(s) is analytic and of polynomial growth for ℜ(s) ≥ 1.

Second case: Case when σ ≤ 1. The upper bounds for R
(=)
ℓ (s) and R

(−)
ℓ (s) are

|R
(−)
ℓ (s)| ≤ 2qσ−1

ℓ A, |R
(=)
ℓ (s)| ≤ 2qσ−1

ℓ πℓ, (B.9)

and involve the probability πℓ := max{pw, w ∈ Σℓ}. The upper bound for |R
(+)
ℓ (s)| is the

same as previously (see (B.6)). We choose A such that the bounds, for |R
(−)
ℓ (s)| in (B.9),

