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SUMMARY

In railway operations,  a  timetable is  established to  determine the departure and arrival 
times for the trains or other rolling stock at the different stations or relevant points inside 
the rail network or a subset of this network. The elaboration of this timetable is done to 
respond to the commercial requirements for both passenger and freight traffic, but also it 
must respect a set of security and capacity constraints associated with the railway network, 
rolling stock and legislation. Combining these requirements and constraints, as well as the 
important  number of  trains  and schedules  to  plan,  makes  the preparation of a  feasible 
timetable a complex and time-consuming process, that normally takes several months to be 
completed.  This  article  addresses the problem of  generating periodic timetables,  which 
means  that  the  involved  trains  operate  in  a  recurrent  pattern.  For  instance,  the  trains 
belonging to the same train line, depart from some station every 15 minutes or one hour. To 
tackle the problem, we present a constraint-based model suitable for this kind of problem. 
Then, we propose a genetic algorithm, allowing  a rapid generation of feasible periodic 
timetables. Finally, two case studies are presented, the first,  describing a sub-set of the 
Netherlands  rail  network,  and  the  second  a  large  portion  of  the  Nord-pas-de-Calais 
regional rail network, both of them are then solved using our algorithm and the results are 
presented and discussed.   

1. INTRODUCTION

A timetable defines the departure and arrival times for  all trains at their scheduled stop 
stations or other relevant points in the rail network. The commercial requirements, i.e. the 
number of train lines and their frequency are defined by the train operating companies, for 
both  passenger  and freight traffic.  The timetables have to respond to these commercial 
needs, but also, and in order to be feasible or viable, the timetable must observe a set of 
security and capacity constraints e.g. to respect the minimum distance (or headway time) 
between two trains running on the same direction on the same railway. These constraints 
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are often called hard constraints, which means that they can not be violated under any 
circumstance.  There is another type of constraints, the so-called soft constraints,  which 
deal with some specific requirements for the timetable, e.g. to establish particular itinerary 
connections between two passenger train lines, the violation of these is allowed, however, 
it often leads to inefficiency, additional costs or financial loses.

Furthermore, some of the commercial requirements can enter in conflict with each other, or 
with capacity constraints or even with maintenance activities, these conflicts should  be 
rapidly  identified  because,  in  most  cases,  negotiations  need to  take  place  between the 
operating companies and the infrastructure manager companies in order to solve them.  

The timetabling problem represents only the first step of an even larger and more complex 
process, which is the yearly rail service planning. As its name suggests it, it consists of the 
definition of the plan, and the allocation of resources to provide the annual train services, 
i.e., timetables, crew schedules and rolling stock usage. The process is described in Fig. 1 
and will be shortly described.

Fig. 1 – Yearly Rail Service Planning Process

Once a feasible timetable is obtained and the preliminary conflicts are solved, a route plan 
has to be designed. This is known as the routing and platforming problems, and consists of 
the allocation of platforms, inbound and outbound routes for the scheduled trains into the 
stations. At this point, some new conflicts may arise, e.g. one station has 3 trains scheduled 
to stop at a given time, but it only has one platform, consequently it is necessary to step 
back, and generate a new timetable. In some cases, many iterations are required to finally 
obtain  a  feasible  timetable  with  its  viable  route  plan.  Ideally,  the  platforming and  the 
timetabling problem should be tackled at the same time, however, real-size problems are 
too large and have thousands of constraints. 
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The other steps of the process are: rolling stock planning, which specifies among other 
things,  what engines and carriages will be used for each scheduled train of the timetable. 
Finally, the crew schedule, which defines the working plan for each person (role) involved 
in the train operations, e.g. drivers, controllers, etc. Of course, at these steps, new conflicts 
may be identified, which will require to step back and change the previously generated 
plans.  In  this  paper,  we  focus  on  the  timetabling  problem,  i.e.,  generating  a  feasible 
timetable. Therefore the platforming and routing plans are not further discussed, and also, 
we assume that each station has enough platforms to accommodate the trains that will stop 
in it.

It is also important to note that in each of the steps previously described, an optimization 
process can be carried out, e.g. optimize a timetable by reducing the total number of rolling 
stock  required,  or  by  minimizing  the  overall  waiting  time  for  passengers  during 
connections. 

Traditionally, the timetabling problem is solved based on the experience and expertise of 
the involved railway planners. But at the early nineties it was recognized within the rail 
community  that  the  application  of  models  and  techniques  for  supporting  the  solution 
process of these problems is truly advantageous. It not only leads to better solutions, but it 
also conducts to a considerable reduction of the time needed for the planning process.

There  are  mainly  two  types  of  timetables,  periodic  and  non-periodic.  The  difference 
between them is  the following. On the one hand, non-periodic timetables are designed 
based only on a set of requests for trips in the network, i.e.,  set the departure and arrival 
times as close as possible to their corresponding required departure and arrival times for a 
particular trip. On the other hand, periodic timetables are built in function of a cycle time 
T,  such that  a timetable pattern is created for this period where all trips are scheduled. 

Then, this pattern is repeated {kT , kT +1, kT+2,... ,(k+1)T } . This means that each line 

of passenger trains is operated in a regular recurrent way, e.g., the trains of the same line 
run every 30, 60 or 120 minutes  (see Table 1 for an example of a periodic timetable). 
Periodic timetables are largely used  in European countries while non-periodic timetables 
are often used in America and Australia.

From To Departure Arrival

Paris Nord Lille Flandres 8:46 9:48

Paris Nord Lille Europe 9:46 10:45

Paris Nord Lille Flandres 10:46 11:48

Paris Nord Lille Europe 11:46 12:45
Table 1 – Periodic Timetable for two TGV (High Speed Train) lines connecting the 
cities of Paris and Lille (France).



 . 

One advantage of a periodic timetable is that passengers can easily remember and adequate 
to their routine the departure time of their train at their station. However, a drawback is that 
these kinds of timetables are not very flexible, and it is difficult to offer a large number of 
direct connections. Another disadvantage, is the fact that a completely periodic timetable 
may  be  rather  inefficient  (Borndörfer  and  Liebchen,  2007),  trains  might  have  to  be 
operated even at some specific times of a day with only a small number of passengers. 
Therefore, in practice there are usually exceptions to the completely periodic timetable. For 
example, additional trains are added during rush hours, and some other trains are canceled 
during  late  evening  hours  (Kroon  et  al.  ,  2007).  In  this  paper  we  discuss  only  the 
generation of periodic timetables.

The  rest  of  this  paper  follows  the  next  structure.  Section  2  reviews  some  popular 
approaches  that  address  this  problem.  Section  3  presents  the  formulation  used  in  our 
approach. Section 4 describes how we use a genetic algorithm to solve the train periodic 
timetable  generation  problem.  Section  5  presents  the  case  studies  and  discusses  the 
obtained results using our technique. Finally,  Section 6 concludes the paper and presents 
some perspectives for further works.

2. LITERATURE REVIEW

Several  authors  have developed different techniques to address scheduling problems and 
specifically the train timetabling problem, a review of these can be found on (Lusby et al. 
2011) and (Cacchiani and Toth 2012).  In this section we will briefly discuss some of the 
most relevant works that deal with this topic.

Introduced  by  Serafini  and  Ukovich  (1989),  the  Periodic  Event  Scheduling  Problem 
(PESP) is a framework for scheduling periodic activities. The PESP is proven to be an 
exceptionally rich model that can be used in many applications, e.g., airline scheduling, 
traffic  light  scheduling  and  of  course,  train  scheduling,  among  others.  Odijk  (1996) 
proposes  the  PCG  (PESP Cut  Generation)  algorithm  to  generate  timetables  for  train 
operations using a mathematical model consisting of periodic time window constraints as 
input.  His  model  is  based  on  the  definition  of  constraints  applied  on  a  mathematical 
formulation to solve the problem.

Kroon  et  al.  (2007a)  separate  the  problem  in  two  parts:  the  generation  of  the 
departure/arrival times and the selection of the routes through the stations. The  first part 
describes a mathematical formulation based on the PESP to solve the scheduling problem, 
the authors define a set of different types of constraints and then use them as an input to the 
PESP solver, obtaining a timetable that will be used as an input to the second part:  the 
routing. Additionally,  Kroon  et  al.  (2007b)  presents  an  optimization  model used  to 
minimize the average delays of trains. 
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Liebchen’s (2008) work is also based on the PESP, however two optimization variants are 
presented and discussed: The Max-T-Pesp, and a heuristic method called Cut-Heuristic. 
Then, these two techniques are applied to solve an optimization problem on a real scenario: 
the subway system of Berlin. 

Caprara et al. (2002) concentrate on the problem of a single, one-way track linking two 
major stations, with a number of intermediate stations in between. They use a directed 
multigraph in which nodes correspond to departures and arrivals at  certain station at  a 
given time instant. Then, they use this formulation to derive an integer linear programming 
model which is relaxed in a Lagrangian way. The objective is to maximize the sum of the 
”profits” of the scheduled trains, the profit achieved for each train depends on: the ”shift” 
defined as the absolute difference between the departure times from a given station in the 
ideal and actual timetables; and on the ”stretch” defined as the non-negative difference 
between the running times in the actual and ideal timetables. Although their model is not 
applied to create a periodic timetable, it is highly flexible and it can be extended to the 
PESP model and then used to generate periodic timetables.

Other  relevant  techniques based on the PESP are Kroon and Peeters (2003),  Caimi et al. 
(2007)  and  Liebchen  and  Peeters  (2002).  Moreover,  some  authors  use  evolutionary 
techniques such as genetic algorithms to completely or partially address the problem. As 
discussed by Liebchen et al. (2008), Genetic Algorithms are proven to be a solid method to 
deal with the periodic timetabling problem, and their behavior is more stable than other 
techniques when used both in small and big instances of the problem. 

As an instance of partial use of genetic algorithms, Semet and Schoenauer (2005) focus on 
the reconstruction of a timetable following a small perturbation. They try to minimize the 
total  accumulated delay by adapting the departure and arrival  times for each train and 
allocation of resources. They use a permutation-based evolutionary algorithm to gradually 
reconstruct the schedule. The railway network can be seen as a graph where nodes are 
stations or switches and where interconnecting edges eventually hold several tracks for 
trains to use. Their objective function consists in minimizing the total accumulated delay 
(for  all  trains  at  all  nodes).  The algorithm is  ah hybrid algorithm,  in  the  sense  that  it 
combines  an  evolutionary  engine  with  a  mathematical  programming  tool,  the  ILOG 
CPLEX.  The evolutionary  part  of  the  algorithm is  used  to  quickly  obtain  a  good but 
suboptimal solution, which is fed to CPLEX as an initial solution which will search for the 
global optimum. 

An  example  of  complete  use  of  genetic  algorithms  to  address  the  problem  has  been 
proposed  by Kwan  and  Mistry  (2003), who  use  a  co-evolutionary  algorithm  for  the 
automatic  generation  of  train  timetables.  The objectives  are:  first,  to  allocate  as  many 
capacity requests as possible, and second: to discover the conflicts that have to be solved 
by  the  train  operating  companies.  They  assign  some  penalty  weights  to  each  type  of 
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constraint  violation,  thus  the  objective  function  is  to  minimize  the  weighted  sum  of 
violations.  They  use  three  types  of  populations  which  are  evolved  one  after  another: 
”departing  times”,  ”running times”  and ”resources  options”.  The combination  of  three 
individuals,  i.e.,  one of each population,  result  on a timetable.  Within each step of the 
evolution,  a  timetable  is  generated  and  evaluated.  Once  the  termination  condition  is 
achieved, the algorithm is stopped and the best timetable is given as result.

3. PROBLEM FORMULATION

In this section, we give the model for our solution.  We define the data and the variables, 
then  the objective function,  and finally, we describe the constraints that our model takes 
into account.

3.1. Definition of data and variables
Table 2 and Table 3 give a definition of the main symbols used in our model for data and 
variables respectively.

Symbol Definition

T Period for one cycle.

i , j Trains.

s ,t Consecutive stations.

Lx ,Ux Lower and Upper value bounds for constraint type x.

x Type  of  constraint,  can  acquire  one  of  the  following  values:  r,h,s,c.  
Corresponding  respectively to:  Running-time,  Headway,  Single-track  and  
Connection.

Table 2 – Symbols used to represent data in the model. 

Symbol Definition

Di , s Departure time of train i from station s.

A i , s Arrival time of train i at station s.

e , e ' Represents events, an event is either the departure or arrival of a train from  a 
station. 

Qe ,e ' Binary value. If the events e and e' take place on the same period T the value 
of this variable is 0, otherwise, is 1.

Table 3 – Symbols used to represent variables in the model.

3.2. Objective Function

The objective function is defined as the minimization of the weighted sum of constraint 
violations. The weight for each type of constraint violation depends on the importance of 
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the constraint, e.g., violating a headway constraint is much more serious than violating a 
connection constraint: 

Minimize [(W r⋅V r)+(W d⋅V d)+(W h⋅V h)+(W s⋅V s)+(W c⋅Vc)] (1)

Minimize∑ (W x ⋅V x ) (2)

where W x is the weight value corresponding to a violation of a constraint type  x,  and

V x represents the constraint violation count of type x. 

3.3. Constraints

Running Time 
This constraint will ensure that the travel time for some train i departing from station s and 
arriving at station t, is between the specified limits  Lr and Ur (Lower Running Time and 
Upper Running Time, respectively) previously calculated. It is defined as follows:

Lr i ,s , t≤A i ,t−Di , s+T⋅Qarri , t ,depi , s
≤Uri , s ,t (3)

where Lr i ,s , t and Uri , s ,t are determined  from the details of the infrastructure between 

the stations  s and  t, the safety  rules and the running  and  braking time of the involved 
rolling stock.

Dwelling Time 
This constraint will guarantee that the stopping time of train i at station s is between the Ld 
and Ud limits. (Lower Dwelling Time and Upper Dwelling Time, respectively):

Ldi , s≤D i, s−A i ,s+T⋅Qdepi , s, arr i, s
≤Udi , s (4)

where Ld i, s and Udi , s are predefined values guaranteeing that there is enough time for 

passenger to board and alight the train i. Also, if the train i has a connection at station s, 
this dwelling time should be large enough to accommodate the connection.

Headway Time 
Two trains i,j departing from station s, must have a headway time between them limited by 
Lh and Uh (Lower Headway Time and Upper Headway Time, respectively):

Lhi , j ,s≤Di ,s−D j , s+T⋅Qdepi, s ,dep j , s
≤Uhi , j , s (5)

where Lhi , j ,s and Uhi , j , s are calculated values based on  the train types,  their  running 

times, and their proper basic headway time. The basic headway time is the minimum time 
that a train following  another must  observe.  This constraint  prevents the generation of 

schedules in which some train overtake another on the railway. The lower bound Lhi , j ,s

is defined as the difference between the minimum running times for trains i and j departing 
from station s to the next station t,  plus the maximum basic headway time of train i. The 

upper bound Uhi , j , s is the difference between the cycle T and the basic headway time for 

train j.
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Single Track - Opposite Trains
Similar to the headway constraint, it is used when there is only one track connecting two 
stations and there is a train i going from station s to t, and another train j, departing from t 
and arriving at s . The time between the departure of train i and the arrival of train j from/at 
station s must be within limits Ls and Us, this constraint is defined as follows:

Lsi , j , s≤Di , s−A j ,s+T⋅Qdepi , s , arr j, s
≤Usi , j ,s (6)

where Lsi , j , s is two times the minimum running time from the station s to the station t  

plus the basic headway time for the train i. The value of Usi , j ,s is the difference between 

cycle time T and the minimum headway for the train j.

Connections
This type of constraint allows the connections between trains and the passenger transfers. 
The time between the arrival of train i and the departure of train j must be within the limits 
of Lc and Uc (Lower Connection Time and Upper connection time, respectively):

Lci , j , s≤D j ,s−A i , s+T⋅Qdep j , s , arr i, s
≤Uci , j , s (7)

where Lci , j , s and Uci , j , s are  defined as the estimated necessary time for a passenger 

arriving on train i at station s, to alight, find the connection platform and board the train j. 
Larger stations normally require longer connections times.

4. A GENETIC ALGORITHM BASED SOLVING METHOD

Our proposal to address this problem is to develop a genetic algorithm inspired by the 
models of Kwan and Mistry (2003) and Semet and Schoenauer (2005). A comprehensive 
description about genetic algorithms can be found in Goldberg (1989) and Holland (1992).

Our model takes into account the objective function (2) and constraints (3) to (7) described 
in Section  3  and it  performs the generation of periodic train timetables.  The two main 
components are detailed below.

4.1. Data Representation
To represent a timetable, we use one vector of integer values. The length of the vector is 

equal to the sum of two times the trips count for all trains, i.e. ∑
i∈Trains

2×trips count(i) . 

The vector is divided into small sections, each section corresponding to a train, inside one 
section, the first element represents the departure time of the train at its first station,  the 

possible values accepted are defined as  [0...(T−1)] .  The rest of the elements in the 

section represent the running and dwelling times for all trips and  scheduled  stops of the 
train.  Figure 2 gives an example of a section. Each element representing a running time, 
will only allow values between those defined by its respective running constraint, the same 
is  applied  to  the  elements  representing  dwelling  times.  This  will  ensure  that  every 
timetable generated will automatically respect all running and dwelling time constraints.
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Fig. 2 – Data representation, a train as a vector.

 4.2. The algorithm
The main algorithm is  described in  Algorithm 1.  The essential  components are briefly 
described next:

Variation operators are necessary to evolve the population. The main operators we use at 
the evolution stage  are crossover  and mutation.  Extra  operators can be easily  added if 
necessary. 

Algorithm: Solving the Periodic Timetable Generation Problem

1:  Generate a random population P
2:  while Termination condition is not met do
3:      for each individual i of P do
4:         Generate a timetable using individual i
5:         Evaluate the generated timetable using the fitness function
6:      end for  
7:      Apply variation operators
8:      Generate a new population P
9: end while
Algorithm 1. – Solving the Periodic Timetable Problem

In order to calculate the fitness value of an individual, a timetable must be generated. For 
this,  the values  in the individual (vector) are used to calculate all arrival and departure 
times. After the timetable is generated, it is evaluated using a slightly  simplified version of 
the  objective function described in  Section  3.  Indeed  running and dwelling constraints 
violations do not need to be evaluated since the individuals structure do not allow invalid 
values for both running and dwelling times. 
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The fitness function consists in minimizing the total weighted sum of constraints violations 
for the timetable.

5. EXPERIMENTAL ANALYSIS

For experimenting and validating our work, we propose two case studies. After describing 
them, a set of results is presented and discussed. The specifications of the computer used to 
solve  both  case  studies  are:  Processor  Intel  Core  i7  @2.9  GHz x4,  3.5  GB of  RAM 
memory and running Ubuntu-64 v12.10 as operating system.

5.1. Description of the instances

5.1.1. Case Study 1
We consider a subnetwork of the Netherlands rail system. This case study is obtained from 
Meester   and Muns (2007).  Mainly, it  comprehends 4 train  lines: 8  trains  in  total, 10 
stations and the topology of the network is presented in Figure 3. As relevant information, 
the time period  T was established to 60  minutes,  and  there are  7 connection constraints, 
giving us a total of  65 constraints. The details regarding the line itineraries, their running, 
dwelling and connection times are detailed in the referenced paper.

Fig. 3 – Case Study 1: Subset of the Netherlands railway network

5.1.2. Case Study 2
It represents a simplified version of the Nord-Pas-de-Calais regional rail network, it means 
that only the main stations are taken into account (Figure 4). The data was collected from 
the different current timetables available to download from the SNCF website (2013). The 
time  period  T  was established to  60  minutes,  the  simplified  network  comprehends  26 
stations  and  24  train  lines,  i.e.,  a  total  of  48  trains  to  be  scheduled.  Additionally, 14 
connection constraints are defined, and this gives us a total of 452 constraints.  
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5.2. Results

5.2.1. Case Study 1
For the experimentation, we use three sizes of population:  300, 600 and 900 individuals. 
Additionally,  we  set  as  stop-criteria,  that  either  an  optimal  solution  is  found  or  an 
evaluation count limit is reached.  The evaluation count represents the number of times a 
fitness value is calculated, in our case, how many timetables are generated. The evaluation 
count  limits  were set  to: 10K, 20K, 30K, 200K, 1M and 5M.  For each permutation of 
population  with  the  evaluation  count  limits,  the  algorithm was executed  50  times,  the 
results are shown in Table 4.  

Fig. 4 – Simplified Nord-Pas-de-Calais rail network

Our solution can find a feasible timetable (without any hard constraint violation) in 100% 
of cases under 0.91 seconds. However, in average, 0.34 connection constraints are violated, 
which means that 66% of solutions generated under 0.91 seconds are feasible and observe 
also the connection constraints. Increasing the evaluation count limit allows our solution to 
generate better timetables: after 2.16 seconds, 90% of the generated timetables comply all 
constraints. It is around 7.26 seconds in average, that our solution is able to generate 100% 
of timetables that do not violate any constraint at all. 

5.2.2. Case Study 2
For case study 2,  the sizes of populations chosen were: 600, 800 and 1000, while the 
selected evaluation count limits were: 50K, 150K, 250K, 500K, 1M and 5M. Likewise the 
previous  experimentation,  each  permutation  of  these  two  parameters  was  executed  50 
times. The results are summarized in Table 5.
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Max 
Evaluations

Avg. Hard 
C. Violations

Avg. Soft C. 
Violations

Avg. 
Feasible (%)

Avg. Feasible + 
Connections (%)

Avg. Processing 
Time (s)

10 K 0 0.34 100 66 0.91

20 K 0 0.25 100 75.33 1.19

30 K 0 0.20 100 80 1.27

200 K 0 0.10 100 90 2.16

1 M 0 0.04 100 96 3.52

5 M 0 0 100 100 7.26
Table 4 – Results of experimentation, Case Study 1.

As expected, this case study requires a larger number of evolutions in order to achieve an 
acceptable percentage of feasible timetables generated. 92.67% of the timetables generated 
after  an average of  34.55 seconds were feasible,  but  only  46.67%  of  them respect  all 
connection constraints. It is around 124.56 seconds in average that 99.33% of the generated 
timetables  are not  only  feasible  but  also  they  observe  all  connection  constraints.  It  is 
important to note that, even if the average elapsed time seems elevated, this is caused by 
those  runs in which the solution must reach the limit of evaluations in order to stop.  In 
many  cases,  when  the  optimal  solution  is  found,  i.e.  zero  constraints  violated,  the 
processing time is considerably lower than the average showed in the results.

Max 
Evaluations

Avg. Hard 
C. Violations

Avg. Soft C. 
Violations

Avg. 
Feasible (%)

Avg. Feasible + 
Connections (%)

Avg. Processing 
Time (s)

50 K 0.47 2.98 58 1.33 16.77

150 K 0.07 0.66 92.67 46.67 34.55

250 K 0.05 0.47 95.33 58 46.88

500 K 0.03 0.18 97.33 80 62.51

1 M 0 0.11 100 88.67 77.84

5 M 0 0.01 100 99.33 124.56
Table 5 – Results of experimentation, Case Study 2.

6. CONCLUSION AND PERSPECTIVES

The periodic train timetable design represents a complex research subject for which there 
are many different ways to address, model and solve the problem. The results of these may 
improve  the  current  train  timetable  design  system  in  the  countries  exploiting  periodic 
timetables.

The results of our implementation to solve the periodic train timetable generation problem 
are very encouraging. Indeed, even though it represents a hard and complex problem, the 
performance of the genetic algorithm is very satisfactory. Our solution not only can rapidly 
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find a feasible timetable for the problem, but it also offers a flexible platform in which we 
can easily add, remove or modify the constraints in order to satisfy some other criteria. For 
example, it can be easily turned into a solution that focuses on the reduction of the overall 
waiting  time  for  passengers.  Also,  by  modifying  the  weight  values  of  the  constraint 
violations,  we  can  focus  on  the  improvement  of  a  particular  type  of  constraints,  for 
example by optimizing the connections between lines in the rail network.

However,  our  current  solution  does  not  deal  with  a  very  important  issue  in  the train 
timetable design, which is the planning of resources such as the track layout inside the 
stations, the number of platforms or the available rolling stock. Thus, further improvements 
to our approach should extend our model allowing it to handle this kind of resources in 
order to offer a more realistic solution.

As  stated  before,  we  consider  that  the  algorithm performance  solving  the  timetabling 
problem was quite good, but in order to validate and compare it with other approaches, a 
benchmarking process is required. It is  then,  as a next step for us:  first  to find and use a 
benchmark platform used by other authors solving the same type problem, then to modify 
and adapt our solution to this benchmark in order to finally make a fair comparison of 
performance.

Additionally,  we  could  improve  our  implementation  according  to  a  multi-objective 
paradigm, that  is,  deeply studying and analyzing how some constraints  affect  the final 
timetable.  We could  produce  different  kinds  of  options  that  would  specialize  in  some 
particular  interest,  like  optimization  or  finding  a  better  connection  plan  to  ensure  the 
desired connectivity in the network. We believe that it can be done by adding new kinds of 
constraints or modifying the existing ones.

Finally, we are also considering to combine our genetic algorithm with other optimization 
technique,  such as mathematical programming, to create a hybrid  method. This can be 
made, not only to overcome the limitations of the genetic algorithms, e.g., a tendency to 
converge towards local optimal solutions, but also to take advantage of the strengths of 
both methods.
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