
HAL Id: hal-01086542
https://hal.science/hal-01086542v1

Submitted on 24 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving the Periodic Timetabling Problem using a
Genetic Algorithm

Luis Diego Arenas Pimentel, Rémy Chevrier, Said Hanafi, Joaquin Rodriguez

To cite this version:
Luis Diego Arenas Pimentel, Rémy Chevrier, Said Hanafi, Joaquin Rodriguez. Solving the Periodic
Timetabling Problem using a Genetic Algorithm. XVIII Congreso Panamericano de Ingeniería de
Transito, Transporte y Logistica (PANAM 2014), Jun 2014, Santander, Spain. �hal-01086542�

https://hal.science/hal-01086542v1
https://hal.archives-ouvertes.fr

 .

Solving the Periodic Timetabling Problem using a Genetic
Algorithm

Diego Arenas
Phd. Student, UVHC-IFSTTAR, France

Rémy Chevrier
Researcher, IFSTTAR, France

Saïd Hanafi
Professor, UVHC, France

Joaquin Rodriguez
Researcher, IFSTTAR, France

SUMMARY

In railway operations, a timetable is established to determine the departure and arrival
times for the trains or other rolling stock at the different stations or relevant points inside
the rail network or a subset of this network. The elaboration of this timetable is done to
respond to the commercial requirements for both passenger and freight traffic, but also it
must respect a set of security and capacity constraints associated with the railway network,
rolling stock and legislation. Combining these requirements and constraints, as well as the
important number of trains and schedules to plan, makes the preparation of a feasible
timetable a complex and time-consuming process, that normally takes several months to be
completed. This article addresses the problem of generating periodic timetables, which
means that the involved trains operate in a recurrent pattern. For instance, the trains
belonging to the same train line, depart from some station every 15 minutes or one hour. To
tackle the problem, we present a constraint-based model suitable for this kind of problem.
Then, we propose a genetic algorithm, allowing a rapid generation of feasible periodic
timetables. Finally, two case studies are presented, the first, describing a sub-set of the
Netherlands rail network, and the second a large portion of the Nord-pas-de-Calais
regional rail network, both of them are then solved using our algorithm and the results are
presented and discussed.

1. INTRODUCTION

A timetable defines the departure and arrival times for all trains at their scheduled stop
stations or other relevant points in the rail network. The commercial requirements, i.e. the
number of train lines and their frequency are defined by the train operating companies, for
both passenger and freight traffic. The timetables have to respond to these commercial
needs, but also, and in order to be feasible or viable, the timetable must observe a set of
security and capacity constraints e.g. to respect the minimum distance (or headway time)
between two trains running on the same direction on the same railway. These constraints

 .

are often called hard constraints, which means that they can not be violated under any
circumstance. There is another type of constraints, the so-called soft constraints, which
deal with some specific requirements for the timetable, e.g. to establish particular itinerary
connections between two passenger train lines, the violation of these is allowed, however,
it often leads to inefficiency, additional costs or financial loses.

Furthermore, some of the commercial requirements can enter in conflict with each other, or
with capacity constraints or even with maintenance activities, these conflicts should be
rapidly identified because, in most cases, negotiations need to take place between the
operating companies and the infrastructure manager companies in order to solve them.

The timetabling problem represents only the first step of an even larger and more complex
process, which is the yearly rail service planning. As its name suggests it, it consists of the
definition of the plan, and the allocation of resources to provide the annual train services,
i.e., timetables, crew schedules and rolling stock usage. The process is described in Fig. 1
and will be shortly described.

Fig. 1 – Yearly Rail Service Planning Process

Once a feasible timetable is obtained and the preliminary conflicts are solved, a route plan
has to be designed. This is known as the routing and platforming problems, and consists of
the allocation of platforms, inbound and outbound routes for the scheduled trains into the
stations. At this point, some new conflicts may arise, e.g. one station has 3 trains scheduled
to stop at a given time, but it only has one platform, consequently it is necessary to step
back, and generate a new timetable. In some cases, many iterations are required to finally
obtain a feasible timetable with its viable route plan. Ideally, the platforming and the
timetabling problem should be tackled at the same time, however, real-size problems are
too large and have thousands of constraints.

 .

The other steps of the process are: rolling stock planning, which specifies among other
things, what engines and carriages will be used for each scheduled train of the timetable.
Finally, the crew schedule, which defines the working plan for each person (role) involved
in the train operations, e.g. drivers, controllers, etc. Of course, at these steps, new conflicts
may be identified, which will require to step back and change the previously generated
plans. In this paper, we focus on the timetabling problem, i.e., generating a feasible
timetable. Therefore the platforming and routing plans are not further discussed, and also,
we assume that each station has enough platforms to accommodate the trains that will stop
in it.

It is also important to note that in each of the steps previously described, an optimization
process can be carried out, e.g. optimize a timetable by reducing the total number of rolling
stock required, or by minimizing the overall waiting time for passengers during
connections.

Traditionally, the timetabling problem is solved based on the experience and expertise of
the involved railway planners. But at the early nineties it was recognized within the rail
community that the application of models and techniques for supporting the solution
process of these problems is truly advantageous. It not only leads to better solutions, but it
also conducts to a considerable reduction of the time needed for the planning process.

There are mainly two types of timetables, periodic and non-periodic. The difference
between them is the following. On the one hand, non-periodic timetables are designed
based only on a set of requests for trips in the network, i.e., set the departure and arrival
times as close as possible to their corresponding required departure and arrival times for a
particular trip. On the other hand, periodic timetables are built in function of a cycle time
T, such that a timetable pattern is created for this period where all trips are scheduled.

Then, this pattern is repeated {kT , kT +1, kT+2,... ,(k+1)T } . This means that each line

of passenger trains is operated in a regular recurrent way, e.g., the trains of the same line
run every 30, 60 or 120 minutes (see Table 1 for an example of a periodic timetable).
Periodic timetables are largely used in European countries while non-periodic timetables
are often used in America and Australia.

From To Departure Arrival

Paris Nord Lille Flandres 8:46 9:48

Paris Nord Lille Europe 9:46 10:45

Paris Nord Lille Flandres 10:46 11:48

Paris Nord Lille Europe 11:46 12:45
Table 1 – Periodic Timetable for two TGV (High Speed Train) lines connecting the
cities of Paris and Lille (France).

 .

One advantage of a periodic timetable is that passengers can easily remember and adequate
to their routine the departure time of their train at their station. However, a drawback is that
these kinds of timetables are not very flexible, and it is difficult to offer a large number of
direct connections. Another disadvantage, is the fact that a completely periodic timetable
may be rather inefficient (Borndörfer and Liebchen, 2007), trains might have to be
operated even at some specific times of a day with only a small number of passengers.
Therefore, in practice there are usually exceptions to the completely periodic timetable. For
example, additional trains are added during rush hours, and some other trains are canceled
during late evening hours (Kroon et al. , 2007). In this paper we discuss only the
generation of periodic timetables.

The rest of this paper follows the next structure. Section 2 reviews some popular
approaches that address this problem. Section 3 presents the formulation used in our
approach. Section 4 describes how we use a genetic algorithm to solve the train periodic
timetable generation problem. Section 5 presents the case studies and discusses the
obtained results using our technique. Finally, Section 6 concludes the paper and presents
some perspectives for further works.

2. LITERATURE REVIEW

Several authors have developed different techniques to address scheduling problems and
specifically the train timetabling problem, a review of these can be found on (Lusby et al.
2011) and (Cacchiani and Toth 2012). In this section we will briefly discuss some of the
most relevant works that deal with this topic.

Introduced by Serafini and Ukovich (1989), the Periodic Event Scheduling Problem
(PESP) is a framework for scheduling periodic activities. The PESP is proven to be an
exceptionally rich model that can be used in many applications, e.g., airline scheduling,
traffic light scheduling and of course, train scheduling, among others. Odijk (1996)
proposes the PCG (PESP Cut Generation) algorithm to generate timetables for train
operations using a mathematical model consisting of periodic time window constraints as
input. His model is based on the definition of constraints applied on a mathematical
formulation to solve the problem.

Kroon et al. (2007a) separate the problem in two parts: the generation of the
departure/arrival times and the selection of the routes through the stations. The first part
describes a mathematical formulation based on the PESP to solve the scheduling problem,
the authors define a set of different types of constraints and then use them as an input to the
PESP solver, obtaining a timetable that will be used as an input to the second part: the
routing. Additionally, Kroon et al. (2007b) presents an optimization model used to
minimize the average delays of trains.

 .

Liebchen’s (2008) work is also based on the PESP, however two optimization variants are
presented and discussed: The Max-T-Pesp, and a heuristic method called Cut-Heuristic.
Then, these two techniques are applied to solve an optimization problem on a real scenario:
the subway system of Berlin.

Caprara et al. (2002) concentrate on the problem of a single, one-way track linking two
major stations, with a number of intermediate stations in between. They use a directed
multigraph in which nodes correspond to departures and arrivals at certain station at a
given time instant. Then, they use this formulation to derive an integer linear programming
model which is relaxed in a Lagrangian way. The objective is to maximize the sum of the
”profits” of the scheduled trains, the profit achieved for each train depends on: the ”shift”
defined as the absolute difference between the departure times from a given station in the
ideal and actual timetables; and on the ”stretch” defined as the non-negative difference
between the running times in the actual and ideal timetables. Although their model is not
applied to create a periodic timetable, it is highly flexible and it can be extended to the
PESP model and then used to generate periodic timetables.

Other relevant techniques based on the PESP are Kroon and Peeters (2003), Caimi et al.
(2007) and Liebchen and Peeters (2002). Moreover, some authors use evolutionary
techniques such as genetic algorithms to completely or partially address the problem. As
discussed by Liebchen et al. (2008), Genetic Algorithms are proven to be a solid method to
deal with the periodic timetabling problem, and their behavior is more stable than other
techniques when used both in small and big instances of the problem.

As an instance of partial use of genetic algorithms, Semet and Schoenauer (2005) focus on
the reconstruction of a timetable following a small perturbation. They try to minimize the
total accumulated delay by adapting the departure and arrival times for each train and
allocation of resources. They use a permutation-based evolutionary algorithm to gradually
reconstruct the schedule. The railway network can be seen as a graph where nodes are
stations or switches and where interconnecting edges eventually hold several tracks for
trains to use. Their objective function consists in minimizing the total accumulated delay
(for all trains at all nodes). The algorithm is ah hybrid algorithm, in the sense that it
combines an evolutionary engine with a mathematical programming tool, the ILOG
CPLEX. The evolutionary part of the algorithm is used to quickly obtain a good but
suboptimal solution, which is fed to CPLEX as an initial solution which will search for the
global optimum.

An example of complete use of genetic algorithms to address the problem has been
proposed by Kwan and Mistry (2003), who use a co-evolutionary algorithm for the
automatic generation of train timetables. The objectives are: first, to allocate as many
capacity requests as possible, and second: to discover the conflicts that have to be solved
by the train operating companies. They assign some penalty weights to each type of

 .

constraint violation, thus the objective function is to minimize the weighted sum of
violations. They use three types of populations which are evolved one after another:
”departing times”, ”running times” and ”resources options”. The combination of three
individuals, i.e., one of each population, result on a timetable. Within each step of the
evolution, a timetable is generated and evaluated. Once the termination condition is
achieved, the algorithm is stopped and the best timetable is given as result.

3. PROBLEM FORMULATION

In this section, we give the model for our solution. We define the data and the variables,
then the objective function, and finally, we describe the constraints that our model takes
into account.

3.1. Definition of data and variables
Table 2 and Table 3 give a definition of the main symbols used in our model for data and
variables respectively.

Symbol Definition

T Period for one cycle.

i , j Trains.

s ,t Consecutive stations.

Lx ,Ux Lower and Upper value bounds for constraint type x.

x Type of constraint, can acquire one of the following values: r,h,s,c.
Corresponding respectively to: Running-time, Headway, Single-track and
Connection.

Table 2 – Symbols used to represent data in the model.

Symbol Definition

Di , s Departure time of train i from station s.

A i , s Arrival time of train i at station s.

e , e ' Represents events, an event is either the departure or arrival of a train from a
station.

Qe ,e ' Binary value. If the events e and e' take place on the same period T the value
of this variable is 0, otherwise, is 1.

Table 3 – Symbols used to represent variables in the model.

3.2. Objective Function

The objective function is defined as the minimization of the weighted sum of constraint
violations. The weight for each type of constraint violation depends on the importance of

 .

the constraint, e.g., violating a headway constraint is much more serious than violating a
connection constraint:

Minimize [(W r⋅V r)+(W d⋅V d)+(W h⋅V h)+(W s⋅V s)+(W c⋅Vc)] (1)

Minimize∑ (W x ⋅V x) (2)

where W x is the weight value corresponding to a violation of a constraint type x, and

V x represents the constraint violation count of type x.

3.3. Constraints

Running Time
This constraint will ensure that the travel time for some train i departing from station s and
arriving at station t, is between the specified limits Lr and Ur (Lower Running Time and
Upper Running Time, respectively) previously calculated. It is defined as follows:

Lr i ,s , t≤A i ,t−Di , s+T⋅Qarri , t ,depi , s
≤Uri , s ,t (3)

where Lr i ,s , t and Uri , s ,t are determined from the details of the infrastructure between

the stations s and t, the safety rules and the running and braking time of the involved
rolling stock.

Dwelling Time
This constraint will guarantee that the stopping time of train i at station s is between the Ld
and Ud limits. (Lower Dwelling Time and Upper Dwelling Time, respectively):

Ldi , s≤D i, s−A i ,s+T⋅Qdepi , s, arr i, s
≤Udi , s (4)

where Ld i, s and Udi , s are predefined values guaranteeing that there is enough time for

passenger to board and alight the train i. Also, if the train i has a connection at station s,
this dwelling time should be large enough to accommodate the connection.

Headway Time
Two trains i,j departing from station s, must have a headway time between them limited by
Lh and Uh (Lower Headway Time and Upper Headway Time, respectively):

Lhi , j ,s≤Di ,s−D j , s+T⋅Qdepi, s ,dep j , s
≤Uhi , j , s (5)

where Lhi , j ,s and Uhi , j , s are calculated values based on the train types, their running

times, and their proper basic headway time. The basic headway time is the minimum time
that a train following another must observe. This constraint prevents the generation of

schedules in which some train overtake another on the railway. The lower bound Lhi , j ,s

is defined as the difference between the minimum running times for trains i and j departing
from station s to the next station t, plus the maximum basic headway time of train i. The

upper bound Uhi , j , s is the difference between the cycle T and the basic headway time for

train j.

 .

Single Track - Opposite Trains
Similar to the headway constraint, it is used when there is only one track connecting two
stations and there is a train i going from station s to t, and another train j, departing from t
and arriving at s . The time between the departure of train i and the arrival of train j from/at
station s must be within limits Ls and Us, this constraint is defined as follows:

Lsi , j , s≤Di , s−A j ,s+T⋅Qdepi , s , arr j, s
≤Usi , j ,s (6)

where Lsi , j , s is two times the minimum running time from the station s to the station t

plus the basic headway time for the train i. The value of Usi , j ,s is the difference between

cycle time T and the minimum headway for the train j.

Connections
This type of constraint allows the connections between trains and the passenger transfers.
The time between the arrival of train i and the departure of train j must be within the limits
of Lc and Uc (Lower Connection Time and Upper connection time, respectively):

Lci , j , s≤D j ,s−A i , s+T⋅Qdep j , s , arr i, s
≤Uci , j , s (7)

where Lci , j , s and Uci , j , s are defined as the estimated necessary time for a passenger

arriving on train i at station s, to alight, find the connection platform and board the train j.
Larger stations normally require longer connections times.

4. A GENETIC ALGORITHM BASED SOLVING METHOD

Our proposal to address this problem is to develop a genetic algorithm inspired by the
models of Kwan and Mistry (2003) and Semet and Schoenauer (2005). A comprehensive
description about genetic algorithms can be found in Goldberg (1989) and Holland (1992).

Our model takes into account the objective function (2) and constraints (3) to (7) described
in Section 3 and it performs the generation of periodic train timetables. The two main
components are detailed below.

4.1. Data Representation
To represent a timetable, we use one vector of integer values. The length of the vector is

equal to the sum of two times the trips count for all trains, i.e. ∑
i∈Trains

2×trips count(i) .

The vector is divided into small sections, each section corresponding to a train, inside one
section, the first element represents the departure time of the train at its first station, the

possible values accepted are defined as [0...(T−1)] . The rest of the elements in the

section represent the running and dwelling times for all trips and scheduled stops of the
train. Figure 2 gives an example of a section. Each element representing a running time,
will only allow values between those defined by its respective running constraint, the same
is applied to the elements representing dwelling times. This will ensure that every
timetable generated will automatically respect all running and dwelling time constraints.

 .

Fig. 2 – Data representation, a train as a vector.

 4.2. The algorithm
The main algorithm is described in Algorithm 1. The essential components are briefly
described next:

Variation operators are necessary to evolve the population. The main operators we use at
the evolution stage are crossover and mutation. Extra operators can be easily added if
necessary.

Algorithm: Solving the Periodic Timetable Generation Problem

1: Generate a random population P
2: while Termination condition is not met do
3: for each individual i of P do
4: Generate a timetable using individual i
5: Evaluate the generated timetable using the fitness function
6: end for
7: Apply variation operators
8: Generate a new population P
9: end while
Algorithm 1. – Solving the Periodic Timetable Problem

In order to calculate the fitness value of an individual, a timetable must be generated. For
this, the values in the individual (vector) are used to calculate all arrival and departure
times. After the timetable is generated, it is evaluated using a slightly simplified version of
the objective function described in Section 3. Indeed running and dwelling constraints
violations do not need to be evaluated since the individuals structure do not allow invalid
values for both running and dwelling times.

 .

The fitness function consists in minimizing the total weighted sum of constraints violations
for the timetable.

5. EXPERIMENTAL ANALYSIS

For experimenting and validating our work, we propose two case studies. After describing
them, a set of results is presented and discussed. The specifications of the computer used to
solve both case studies are: Processor Intel Core i7 @2.9 GHz x4, 3.5 GB of RAM
memory and running Ubuntu-64 v12.10 as operating system.

5.1. Description of the instances

5.1.1. Case Study 1
We consider a subnetwork of the Netherlands rail system. This case study is obtained from
Meester and Muns (2007). Mainly, it comprehends 4 train lines: 8 trains in total, 10
stations and the topology of the network is presented in Figure 3. As relevant information,
the time period T was established to 60 minutes, and there are 7 connection constraints,
giving us a total of 65 constraints. The details regarding the line itineraries, their running,
dwelling and connection times are detailed in the referenced paper.

Fig. 3 – Case Study 1: Subset of the Netherlands railway network

5.1.2. Case Study 2
It represents a simplified version of the Nord-Pas-de-Calais regional rail network, it means
that only the main stations are taken into account (Figure 4). The data was collected from
the different current timetables available to download from the SNCF website (2013). The
time period T was established to 60 minutes, the simplified network comprehends 26
stations and 24 train lines, i.e., a total of 48 trains to be scheduled. Additionally, 14
connection constraints are defined, and this gives us a total of 452 constraints.

 .

5.2. Results

5.2.1. Case Study 1
For the experimentation, we use three sizes of population: 300, 600 and 900 individuals.
Additionally, we set as stop-criteria, that either an optimal solution is found or an
evaluation count limit is reached. The evaluation count represents the number of times a
fitness value is calculated, in our case, how many timetables are generated. The evaluation
count limits were set to: 10K, 20K, 30K, 200K, 1M and 5M. For each permutation of
population with the evaluation count limits, the algorithm was executed 50 times, the
results are shown in Table 4.

Fig. 4 – Simplified Nord-Pas-de-Calais rail network

Our solution can find a feasible timetable (without any hard constraint violation) in 100%
of cases under 0.91 seconds. However, in average, 0.34 connection constraints are violated,
which means that 66% of solutions generated under 0.91 seconds are feasible and observe
also the connection constraints. Increasing the evaluation count limit allows our solution to
generate better timetables: after 2.16 seconds, 90% of the generated timetables comply all
constraints. It is around 7.26 seconds in average, that our solution is able to generate 100%
of timetables that do not violate any constraint at all.

5.2.2. Case Study 2
For case study 2, the sizes of populations chosen were: 600, 800 and 1000, while the
selected evaluation count limits were: 50K, 150K, 250K, 500K, 1M and 5M. Likewise the
previous experimentation, each permutation of these two parameters was executed 50
times. The results are summarized in Table 5.

 .

Max
Evaluations

Avg. Hard
C. Violations

Avg. Soft C.
Violations

Avg.
Feasible (%)

Avg. Feasible +
Connections (%)

Avg. Processing
Time (s)

10 K 0 0.34 100 66 0.91

20 K 0 0.25 100 75.33 1.19

30 K 0 0.20 100 80 1.27

200 K 0 0.10 100 90 2.16

1 M 0 0.04 100 96 3.52

5 M 0 0 100 100 7.26
Table 4 – Results of experimentation, Case Study 1.

As expected, this case study requires a larger number of evolutions in order to achieve an
acceptable percentage of feasible timetables generated. 92.67% of the timetables generated
after an average of 34.55 seconds were feasible, but only 46.67% of them respect all
connection constraints. It is around 124.56 seconds in average that 99.33% of the generated
timetables are not only feasible but also they observe all connection constraints. It is
important to note that, even if the average elapsed time seems elevated, this is caused by
those runs in which the solution must reach the limit of evaluations in order to stop. In
many cases, when the optimal solution is found, i.e. zero constraints violated, the
processing time is considerably lower than the average showed in the results.

Max
Evaluations

Avg. Hard
C. Violations

Avg. Soft C.
Violations

Avg.
Feasible (%)

Avg. Feasible +
Connections (%)

Avg. Processing
Time (s)

50 K 0.47 2.98 58 1.33 16.77

150 K 0.07 0.66 92.67 46.67 34.55

250 K 0.05 0.47 95.33 58 46.88

500 K 0.03 0.18 97.33 80 62.51

1 M 0 0.11 100 88.67 77.84

5 M 0 0.01 100 99.33 124.56
Table 5 – Results of experimentation, Case Study 2.

6. CONCLUSION AND PERSPECTIVES

The periodic train timetable design represents a complex research subject for which there
are many different ways to address, model and solve the problem. The results of these may
improve the current train timetable design system in the countries exploiting periodic
timetables.

The results of our implementation to solve the periodic train timetable generation problem
are very encouraging. Indeed, even though it represents a hard and complex problem, the
performance of the genetic algorithm is very satisfactory. Our solution not only can rapidly

 .

find a feasible timetable for the problem, but it also offers a flexible platform in which we
can easily add, remove or modify the constraints in order to satisfy some other criteria. For
example, it can be easily turned into a solution that focuses on the reduction of the overall
waiting time for passengers. Also, by modifying the weight values of the constraint
violations, we can focus on the improvement of a particular type of constraints, for
example by optimizing the connections between lines in the rail network.

However, our current solution does not deal with a very important issue in the train
timetable design, which is the planning of resources such as the track layout inside the
stations, the number of platforms or the available rolling stock. Thus, further improvements
to our approach should extend our model allowing it to handle this kind of resources in
order to offer a more realistic solution.

As stated before, we consider that the algorithm performance solving the timetabling
problem was quite good, but in order to validate and compare it with other approaches, a
benchmarking process is required. It is then, as a next step for us: first to find and use a
benchmark platform used by other authors solving the same type problem, then to modify
and adapt our solution to this benchmark in order to finally make a fair comparison of
performance.

Additionally, we could improve our implementation according to a multi-objective
paradigm, that is, deeply studying and analyzing how some constraints affect the final
timetable. We could produce different kinds of options that would specialize in some
particular interest, like optimization or finding a better connection plan to ensure the
desired connectivity in the network. We believe that it can be done by adding new kinds of
constraints or modifying the existing ones.

Finally, we are also considering to combine our genetic algorithm with other optimization
technique, such as mathematical programming, to create a hybrid method. This can be
made, not only to overcome the limitations of the genetic algorithms, e.g., a tendency to
converge towards local optimal solutions, but also to take advantage of the strengths of
both methods.

REFERENCES

CACCHIANI, V., TOTH, P. (2012). Nominal an robust train timetabling problems.
European Journal of Operational Research, 219(3), pp. 727-737.

CAIMI, G., FUCHSBERGER, M., LAUMANNS, M. and SCHUPBACH, K. Periodic
railway timetabling with event flexibility. Networks, 57(1), pp. 3-18.

CAPRARA, A. , FISCHETTI, M. and TOTH, P. (2002). Modeling and solving the train

 .

timetabling problem. Operations Research, 50(5), pp. 851-861.

GOLDBERG, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

HOLLAND, J. H. (1992). Adaptation in natural and artificial systems. MIT Press,
Cambridge, MA, USA.
KROON, L.G., HUISMAN, D., and MAROTI, G. Railway timetabling from an operations
research. Report No. EI 2007-22. Econometric Institute, Erasmus University Rotterdam,
2007a.

KROON, L., DEKKER, R., and VROMANS, M. (2007b) Cyclic railway timetabling: A
stochastic optimization approach. In: Algorithmic Methods for Railway Optimization,
Springer Berlin Heidelberg, pp. 41-66.

KROON, L.G. and PEETERS, L. (2003). A variable trip time model for cyclic railway
timetabling. Transportation Science, 37(2), pp. 198-212.

KWAN, R. S. K. and MISTRY, P. (2003). A co-evolutionary algorithm for train
timetabling. The IEEE Congress on Evolutionary Computation, 8-12 Dec. 2003, Canberra,
Australia.

LIEBCHEN, C. (2008). The first optimized railway timetable in practice. Transportation
Science, 42(4), pp. 420–435.

LIEBCHEN, C. and PEETERS, L. On cyclic timetabling and cycles in graphs. Report No.
761. Technische Universitat Berlin, Berlin, Germany, 2002

LIEBCHEN, C., PROKSCH, M. and WAGNER, F. H. (2008). Performance of algorithms
for periodic timetable optimization. In: HICKMAN, M., MIRCHANDAI, P. and VOß, S.
(ed.) Computer-aided Systems in Public Transport, volume 600 of Lecture Notes in
Economics and Mathematical Systems. Springer Berlin Heidelberg. pp. 151-180.

LUSBY, R., LARSEN, J., EHRGOTT, M. and RYAN, D. (2011). Railway track allocation:
models and methods. OR Spectrum, 33(4), pp. 843-883.

MEESTER, L. E. and MUNS, S. (2007). Stochastic delay propagation in railway networks
and phase-type distributions. Transportation Research Part B: Methodological 41(2), pp.
218 – 230.

ODIJK, M. A. (1996). A constraint generation algorithm for the construction of periodic
railway timetables. Transportation Research Part B: Methodological 30(6), pp. 455 – 464.

 .

SEMET, Y. and SCHOENAUER, M. (2005). An efficient memetic, permutation-based
evolutionary algorithm for real-world train timetabling. The IEEE Congress on
Evolutionary Computation, 2-5 Sept. 2005, Edinburgh, UK.

SERAFINI, P. and UKOVICH, W. (1989). A mathematical model for periodic scheduling
problems. SIAM Journal on Discrete Mathematics 2(4), pp. 550–581.

