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Introduction

The idea of dispersion is fundamental to statistics and with different terminology, such as potential, entropy, information and capacity, stretches over a wide area. The variance and standard deviation are the most prevalent for a univariate distribution, and Wilks generalised variance is the term usually reserved for the determinant of the covariance matrix, V , of a multivariate distribution. Many other measures of dispersion have been introduced and a rich area comprises those that are orderpreserving with respect to a dispersion ordering; see [START_REF] Shaked | Dispersive ordering of distributions[END_REF][START_REF] Oja | Descriptive statistics for multivariate distributions[END_REF][START_REF] Giovagnoli | Multivariate dispersion orderings[END_REF]. These are sometimes referred to as measures of peakness and peakness ordering, and are related to the large literature on dispersion measures which grew out of the Gini coefficient, used to measure income inequality [START_REF] Gini | Measurement of inequality of incomes[END_REF] and diversity in biology, see [START_REF] Rao | Diversity and dissimilarity coefficients: a unified approach[END_REF], which we will discuss briefly below.

In the definitions there are typically two kinds of dispersion, those measuring some kind of mean distance, or squared distance, from a central value, such as in the usual definition of variance, and those based on the expected distance, or squared distance, between two independent copies from the same distribution, such as the Gini coefficient. It is this second type that will concern us here and we will generalise the idea in several ways by replacing distance by volumes of simplices formed by k independent copies and by transforming the distance, both inside the expectation and outside.

The area of optimal experimental design is another which has provided a range of dispersion measures. Good designs, it is suggested, are those whose parameter estimates have low dispersion. Typically, this means that the design measure, the spread of the observation sites, maximises a measure of dispersion and we shall study this problem.

We think of a dispersion measure as a functional directly on the distribution. The basic functional is an integral, such as a moment. The property we shall stress for such functionals most is concavity: that a functional does not decrease under mixing of the distributions. A fundamental theorem in Bayesian learning is that we expect concave functionals to decrease through taking of observations, see Section 2.2 below.

Our central result (Section 3) is an identity for the mean squared volume of simplices of dimension k, formed by k+1 independent copies, in terms of the eigenvalues of the covariance matrices or equivalently in terms of sums of the determinants of k-marginal covariance matrices. Second, we note that after an appropriate (exterior) power transformation the functional becomes concave. We can thus (i) derive properties of measures that maximise this functional (Section 4.1), (ii) use this functional to measure the dispersion of parameter estimates in regression problems, and hence design optimal experiments which minimise this measure of dispersion (Section 4.2).

Dispersion measures 2.1 Concave and homogeneous functionals

Let X be a compact subset of R d , M be the set of all probability measures on the Borel subsets of X and φ : M -→ R + be a functional defined on M . We will be interested in the functionals φ(•) that are (see Appendix for precise definitions) (a) shift-invariant, (b) positively homogeneous of a given degree q, and (c) concave: φ[(1 -α)µ 1 + αµ 2 ] ≥ (1 -α)φ(µ 1 ) + αφ(µ 2 ) for any α ∈ (0, 1) and any two measures µ 1 , µ 2 in M .

For d = 1, a common example of a functional satisfying the above properties, with q = 2 in (b), is the variance

σ 2 (µ) = E (2) µ -E 2 µ = 1 2 (x 1 -x 2 ) 2 µ(dx 1 ) µ(dx 2 )
,

where

E µ = E µ (x) = x µ(dx) and E (2) µ = x 2 µ(dx). Concavity follows from linearity of E (2) µ , that is, E (2) (1-α)µ1+αµ2 = (1-α)E (2) µ1 +αE (2)
µ2 , and Jensen's inequality which implies

E 2 (1-α)µ1+αµ2 ≤ (1 -α)E 2 µ1 + αE 2 µ2
. Any moment of µ ∈ M is a homogeneous functional of a suitable degree. However, the variance is the only moment which satisfies (a) and (c). Indeed, the shift-invariance implies that the moment should be central, but the variance is the only concave functional among the central moments, see Appendix. In this sense, one of the aims of this paper is a generalisation of the concept of variance.

In the general case d ≥ 1, the double variance 2σ 2 (µ) generalises to

φ(µ) = x 1 -x 2 2 µ(dx 1 ) µ(dx 2 ) = 2 x -E µ 2 µ(dx) = 2 trace(V µ ) , (2.1)
where • is the L 2 -norm in R d and V µ is the covariance matrix of µ. This functional, like the variance, satisfies the conditions (a)-(c) with q = 2. The functional (2.1) is the double integral of the squared distance between two random points distributed according to the measure µ. Our main interest will be concentrated around the general class of functionals defined by

φ(µ) = φ [k],δ,τ (µ) = . . . V δ k (x 1 , . . . , x k+1 ) µ(dx 1 ) . . . µ(dx k+1 ) τ , k ≥ 2 (2.
2) for some δ and τ in R + , where V k (x 1 , . . . , x k+1 ) is the volume of the k-dimensional simplex (its area when k = 2) formed by the k + 1 vertices x 1 , . . . , x k+1 in R d , with k = d as a special case. Property (a) for the functionals (2.2) is then a straightforward consequence of the shift-invariance of V k , and positive homogeneity of degree q = k δτ directly follows from the positive homogeneity of V k with degree k. Concavity will be proved to hold for δ = 2 and τ ≤ 1/k in Section 3. There, we show that this case can be considered as a natural extension of (2.1) (which corresponds to k = 1), with φ [k],2,τ (µ) being expressed as a function of V µ , the covariance matrix of µ. The concavity for k = τ = 1 and all 0 < δ ≤ 2, follows from the Schoenberg theory, which will be discussed briefly below. The functionals (2.2) with δ = 2 and τ > 0, 1 ≤ k ≤ d, can be used to define a family of criteria for optimal experimental design, concave for τ ≤ 1/k, for which an equivalence theorem can be formulated.

Quadratic entropy and learning

In a series of papers [START_REF] Rao | Diversity and dissimilarity coefficients: a unified approach[END_REF][START_REF] Rao | Diversity: Its measurement, decomposition, apportionment and analysis[END_REF][START_REF] Rao | Convexity properties of entropy functions and analysis of diversity[END_REF] C.R. Rao and co-workers have introduced a quadratic entropy which is a generalised version of the k = 2 functional of this section but with a general kernel K(x 1 , x 2 ) in R d :

Q R = K(x 1 , x 2 )µ(dx 1 )µ(dx 2 ) . (2.3) 
For the discrete version

Q R = N i=1 N j=1 K(x i , x j ) p i p j ,
Rao and co-workers developed a version of the Analysis of Variance (ANOVA), which they called Anaysis of Quadratic Entropy (ANOQE). The Gini coefficient, also used in the continuous and discrete form is a special case with d = 1 and

K(x 1 , x 2 ) = |x 1 -x 2 |.
As pointed in [START_REF] Rao | Convexity properties of entropy functions and analysis of diversity[END_REF]Chap. 3], a necessary and sufficient condition for the functional Q R to be concave is

K(x 1 , x 2 )ν(dx 1 )ν(dx 2 ) ≤ 0 (2.4)
for all measures ν with ν(dx) = 0. The discrete version of this is

N i=1 N j=1 K(x i , x j ) q i q j ≤ 0
for any choice of real numbers q 1 , . . . , q N such that N i=1 q i = 0. Schoenberg [START_REF] Schoenberg | Metric spaces and positive definite functions[END_REF] solves the general problem of finding for what class of functions B(•) on x 1 -x 2 2 does the kernel K(x 1 , x 2 ) = B x 1 -x 2 2 satisfy (2.4). The solution is that B must be a so-called Bernstein function, see [START_REF] Schilling | Bernstein Functions: Theory and Applications[END_REF]. We do not develop these ideas here, but note that B(λ) = λ α is a Bernstein function for all 0 < α ≤ 1. This is the reason that, above, we can claim concavity for k = 1 and all 0 < δ ≤ 2 in (2.2).

Hainy et al [START_REF] Hainy | Learning functions and approximate bayesian computation design: ABCD[END_REF] discuss the link to embedding and review some basic results related to Bayesian learning. One asks what is the class of functionals ψ on a distribution µ(θ) of a parameter in the Bayesian statistical learning such that for all µ(θ) and all sampling distributions π(x|θ) one expects to learn, in the preposterior sense: ψ(µ(θ)) ≤ E ν ψ(π(θ|X)), with X ∼ ν. The condition is that ψ is convex, a result which has a history but is usually attributed to De Groot [START_REF] Degroot | Bayes estimation with convex loss[END_REF]. This learning is enough to justify calling such a functional a generalised information functional, or a general learning functional. Shannon information falls in this class, and earlier versions of the result were for Shannon information. It follows that wherever, in this paper, we have a concave functional then its negative is a learning functional.

Functionals based on squared volume

In the rest of the paper we focus our attention on the functional

µ ∈ M -→ ψ k (µ) = φ [k],2,1 (µ) = E µ {V 2 k (x 1 , . . . , x k+1 )} ,
which corresponds to the mean squared volume of simplices of dimension k formed by k + 1 independent samples from µ. For instance,

ψ 2 (µ) = V 2 2 (x 1 , x 2 , x 3 ) µ(dx 1 ) µ(dx 2 ) µ(dx 3 ) , (3.1) 
with V 2 (x 1 , x 2 , x 3 ) the area of the triangle formed by the three points with coordinates x 1 , x 2 and x 3 in R d , d ≥ 2. Functionals φ [k],δ,τ (µ) for δ = 2 will be considered elsewhere, including the case of negative δ and τ in connection with space-filling design for computer experiments. Theorem 3.1 of Section 3.1 indicates how ψ k (µ) can be expressed as a function of V µ , the covariance matrix of µ, and shows that φ [k],2,1/k (•) satisfies properties (a), (b) and (c) of Section 2.1. The special case of k = d was known to Wilks [START_REF] Wilks | Certain generalizations in the analysis of variance[END_REF][START_REF] Wilks | Multidimensional statistical scatter[END_REF] in his introduction of generalised variance, see also [START_REF] Van Der | A note on Wilks' internal scatter[END_REF]. The connection with U-statistics is exploited in Section 3.2, where an unbiased minimum-variance estimator of ψ k (µ) based on a sample x 1 , . . . , x n is expressed in terms of the empirical covariance matrix of the sample.

Expected squared k-simplex volume

Theorem 3.1. Let the x i be i.i.d. with the probability measure µ ∈ M . Then, for any k ∈ {1, . . . , d}, we have

ψ k (µ) = k + 1 k! i1<i2<•••<i k det[{V µ } (i1,...,i k )×(i1,...,i k ) ] (3.2) = k + 1 k! i1<i2<•••<i k λ i1 [V µ ] × • • • × λ i k [V µ ] , (3.3) 
where λ i [V µ ] is the i-th eigenvalue of the covariance matrix V µ and all i j belong to {1, . . . , d}. Moreover, the functional ψ The proof uses the following two lemmas. Lemma 3.1. Let the k + 1 vectors x 1 , . . . , x k+1 of R k be i.i.d. with the probability measure µ, k ≥ 2. For i = 1, . . . , k + 1, denote z i = (x ⊤ i 1) ⊤ . Then

1/k k (•) is shift-invariant,
E µ det k+1 i=1 z i z ⊤ i = (k + 1)! det[V µ ] .
Proof. We have

E µ det k+1 i=1 z i z ⊤ i = (k + 1)! det E µ (x 1 x ⊤ 1 ) E µ E ⊤ µ 1 = (k + 1)! det[V µ ] ,
see for instance [START_REF] Pronzato | On a property of the expected value of a determinant[END_REF]Theorem 1].

Lemma 3.2. The matrix functional µ → V µ is Loewner-concave on M , in the sense that, for any µ 1 , µ 2 in M and any α ∈ (0, 1),

V (1-α)µ1+αµ2 (1 -α)V µ1 + αV µ2 , (3.4) 
where A B means that A -B is nonnegative definite.

Proof. Take any vector z of the same dimension as x.

Then z ⊤ V µ z = var µ (z ⊤ x), which is a concave functional of µ, see Section 2.1. This implies that z ⊤ V (1-α)µ1+αµ2 z = var (1-α)µ1+αµ2 (z ⊤ x) ≥ (1-α)var µ1 (z ⊤ x)+αvar µ2 (z ⊤ x) = (1-α)z ⊤ V µ1 z+αz ⊤ V µ2 z,
for any µ 1 , µ 2 in M and any α ∈ (0, 1) (see Section 2.1 for the concavity of var µ ). Since z is arbitrary, this implies (3.4).

Proof of Theorem 3.1. When k = 1, the results follow from ψ 1 (µ) = 2 trace(V µ ), see (2.1). Using Binet-Cauchy formula, see, e.g., [3, vol. 1, p. 9], we obtain

V 2 k (x 1 , . . . , x k+1 ) = 1 (k!) 2 det           (x 2 -x 1 ) ⊤ (x 3 -x 1 ) ⊤ . . . (x k+1 -x 1 ) ⊤      [(x 2 -x 1 ) (x 3 -x 1 ) • • • (x k+1 -x 1 )]      = 1 (k!) 2 i1<i2<•••<i k det 2    {x 2 -x 1 } i1 • • • {x k+1 -x 1 } i1 . . . . . . . . . {x 2 -x 1 } i k • • • {x k+1 -x 1 } i k    = 1 (k!) 2 i1<i2<•••<i k det 2      {x 1 } i1 • • • {x k+1 } i1 . . . . . . . . . {x 1 } i k • • • {x k+1 } i k 1 • • • 1      ,
where {x} i denotes the i-th component of vector x. Also, for all

i 1 < i 2 < • • • < i k , det 2      {x 1 } i1 • • • {x k+1 } i1 . . . . . . . . . {x 1 } i k • • • {x k+1 } i k 1 • • • 1      = det   k+1 j=1 z j z ⊤ j  
where we have denoted by z j the k+1-dimensional vector with components {x j } i ℓ , ℓ = 1, . . . , k, and 1. When the x i are i.i.d. with the probability measure µ, using Lemma 3.1 we obtain (3.2), (3.3). Therefore

ψ k (µ) = Ψ k [V µ ] = k + 1 k! E k {λ 1 [V µ ], . . . , λ d [V µ ]} , (3.5) with E k {λ 1 [V µ ], . . . , λ d [V µ ]
} the elementary symmetric function of degree k of the d eigenvalues of V µ , see, e.g., [11, p. 10]. Note that

E k [V µ ] = E k {λ 1 [V µ ], . . . , λ d [V µ ]} = (-1) k a d-k ,
with a d-k the coefficient of the monomial of degree d -k of the characteristic polynomial of V µ ; see, e.g., [11, p. 21]. We have in particular

E 1 [V µ ] = trace[V µ ] and E d [V µ)] = det[V µ ].
The shift-invariance and homogeneity of degree 2 of ψ [11, p. 116] (take p = k in eq. [START_REF] Macdonald | Symmetric functions and Hall polynomials[END_REF], with E 0 = 1). From [START_REF] López-Fidalgo | Characteristic polynomial criteria in optimal experimental design[END_REF], the Ψ 1/k k (•) are also Loewner-increasing, so that from Lemma 3.2, for any µ 1 , µ 2 in M and any α ∈ (0, 1), From the well-known expression of the coefficients of the characteristic polynomial of a matrix V , we have

1/k k (•) follow from the shift-invariance and positive homogeneity of V k with degree k. Con- cavity of Ψ 1/k k (•) follows from
ψ 1/k k [(1 -α)µ 1 + αµ 2 ] = Ψ 1/k k {V (1-α)µ1+αµ2 } ≥ Ψ 1/k k [(1 -α)V µ1 + αV µ2 ] ≥ (1 -α)Ψ 1/k k [V µ1 ] + αΨ 1/k k [V µ2 ] = (1 -α)ψ 1/k k (µ 1 ) + αψ 1/k k (µ 2 ) . The functionals µ -→ φ [k],2,τ (µ) = ψ τ k (µ) are thus concave for 0 < τ ≤ 1/k, with τ = 1/k yielding positive homogeneity of degree 2. The functional ψ 1 (µ) is a quadratic entropy Q R , see (2.3), ψ d (µ)
Ψ k (V ) = k + 1 k! E k (V ) (3.6) = k + 1 (k!) 2 det       trace(V ) k -1 0 • • • trace(V 2 ) trace(V ) k -2 • • • • • • • • • • • • • • • trace(V k-1 ) trace(V k-2 ) • • • 1 trace(V k ) trace(V k-1 ) • • • trace(V )       ,
see, e.g., [10, p. 28], and the E k (V ) satisfy the recurrence relations (Newton identities):

E k (V ) = 1 k k i=1 (-1) i-1 E k-i (V ) E 1 (V i ) , (3.7) 
see, e.g., [3, Vol. 1, p. 88] and [START_REF] López-Fidalgo | Characteristic polynomial criteria in optimal experimental design[END_REF]. Particular forms of ψ k (•) are

k = 1 : ψ 1 (µ) = 2 trace(V µ ) , k = 2 : ψ 2 (µ) = 3 4 [trace 2 (V µ ) -trace(V 2 µ )] , k = 3 : ψ 3 (µ) = 1 9 [trace 3 (V µ ) -3 trace(V 2 µ )trace(V µ ) + 2 trace(V 3 µ )] , k = d : ψ d (µ) = d + 1 d! det(V µ ) .

The empirical version and unbiased estimates

Let x 1 , . . . , x n be a sample of n vectors of R d , i.i.d. with the measure µ. This sample can be used to obtain an empirical estimate ( ψ 1 ) n of ψ k (µ), through the consideration of the n k+1 k-dimensional simplices that can be constructed with the x i . Below we show how a much simpler (and still unbiased) estimation of ψ k (µ) can be obtained through the empirical variance-covariance matrix of the sample. See also [START_REF] Wilks | Certain generalizations in the analysis of variance[END_REF][START_REF] Wilks | Multidimensional statistical scatter[END_REF]. Denote

x n = 1 n n i=1 x i , V n = 1 n -1 n i=1 (x i -x n )(x i -x n ) ⊤ = 1 n(n -1) i<j (x i -x j )(x i -x j ) ⊤ ,
respectively the empirical mean and variance-covariance matrix of x 1 . Note that both are unbiased. We thus have

( ψ 1 ) n = 2 n(n -1) i<j x i -x j 2 = 2 trace[ V n ] = Ψ 1 ( V n ) = ψ 1 (µ n ) ,
with µ n the empirical measure of the sample, and the estimator ( ψ 1 ) n is unbiased. More generally, for k ≥ 1 we have the following.

Theorem 3.2. For x 1 , . . . , x n a sample of n vectors of R d , i.i.d. with the measure µ, and for any k ∈ {1, . . . , d}, the quantity

( ψ k ) n = (n -k -1)!(n -1) k (n -1)! Ψ k ( V n ) = (n -k -1)!(n -1) k (n -1)! ψ k (µ n ) , (3.8) 
forms an unbiased estimator of ψ k (µ) and has minimum variance among all unbiased estimators.

Proof. Denote

( ψ k ) n = n k + 1 -1 j1<j2<•••<j k+1 V 2 k (x j1 , . . . , x j k+1 ) . (3.9) 
It forms a U-statistics for the estimation of ψ k (µ) and is thus unbiased and has minimum variance, see, e.g., [START_REF] Serfling | Approximation Theorems of Mathematical Statistics[END_REF]Chap. 5]. We only need to show that it can be written as (3.8). We can write

( ψ k ) n = n k + 1 -1 × j1<j2<•••<j k+1 1 (k!) 2 i1<i2<•••<i k det 2      {x j1 } i1 • • • {x j k+1 } i1 . . . . . . . . . {x j1 } i k • • • {x j k+1 } i k 1 • • • 1      , = n k + 1 -1 1 (k!) 2 i1<i2<•••<i k det   n j=1 {z j } i1,...,i k {z j } ⊤ i1,...,i k   ,
where we have used Binet-Cauchy formula and where {z j } i1,...,i k denotes the k + 1 dimensional vector with components {x j } i ℓ , ℓ = 1, . . . , k, and 1. This gives

( ψ k ) n = n k + 1 -1 n k+1 (k!) 2 i1<i2<•••<i k det   1 n n j=1 {z j } i1,...,i k {z j } ⊤ i1,...,i k   , = n k + 1 -1 n k+1 (k!) 2 × i1<i2<•••<i k det (1/n){ n j=1 x j x ⊤ j } (i1,...,i k )×(i1,...,i k ) { x n } i1,...,i k { x n } ⊤ i1,...,i k 1 , = n k + 1 -1 n k+1 (k!) 2 i1<i2<•••<i k det n -1 n { V n } (i1,...,i k )×(i1,...,i k ) ,
and thus (3.8).

Using the notation of Theorem 3.1, since

E k (V ) = (-1) k a d-k (V ), with a d-k (V ) the coefficient of the monomial of degree d -k of the characteristic polynomial of V , for a nonsingular V we obtain E k (V ) = det(V ) E d-k (V -1 ) , (3.10) 
see also [START_REF] López-Fidalgo | Characteristic polynomial criteria in optimal experimental design[END_REF]Eq. 4.2]. Therefore, we also have

( ψ d-k ) n = (n -d + k -1)!(n -1) d-k (n -1)! (d -k + 1)k! (k + 1)(d -k)! det( V n ) Ψ k ( V -1 n ) , (3.11) 
which forms an unbiased and minimum-variance estimator of ψ d-k (µ). Note that the estimation of ψ k (µ) is much simpler through (3.8) or (3.11) than using the direct construction (3.9). One may notice that ψ 1 (µ n ) is clearly unbiased due to the linearity of Ψ 1 (•), but it is remarkable that ψ k (µ n ) becomes unbiased after a suitable scaling, see (3.8). Since Ψ k (•) is highly nonlinear for k > 1, this property would not hold if V n were replaced by another unbiased estimator of V µ .

The value of ( ψ k ) n only depend on V n , with E{( ψ k ) n } = ψ k (V µ ), but its variance depends on the distribution itself. From [20, Lemma A, p. 183], the variance of (

ψ k ) n satisfies var[( ψ k ) n ] = (k + 1) 2 n ω + O(n -2 ) ,
where

ω = var[h(x)], with h(x) = E{V 2 k (x 1 , x 2 , . . . , x k+1 )|x 1 = x}.
Obviously, E[h(x)] = ψ k (µ) and calculations similar to those in the proof of Theorem 3.1 give

ω = 1 (k!) 2 I,J det[{V µ } I×I ] det[{V µ } J×J ] (3.12) × E (E µ -x) ⊤ I {V µ } -1 I×I (E µ -x) I (E µ -x) ⊤ J {V µ } -1 J×J (E µ -x) J -k 2
, where I and J respectively denote two sets of indices i

1 < i 2 < • • • i k and j 1 < j 2 < • • • j k in {1, .
. . , k + 1}, the summation being over all possible such sets. Simplifications occur in some particular cases. For instance, when µ is a normal measure, then

ω = 2 (k!) 2 I,J det[{V µ } I×I ] det[{V µ } J×J ] × trace {V µ } -1 J×J {V µ } J×I {V µ } -1 I×I {V µ } I×J .
If, moreover, V µ is the diagonal matrix diag{λ 1 , . . . , λ d }, then

ω = 2 (k!) 2 I,J β(I, J) I λ i J λ j ,
with β(I, J) denoting the number of coincident indices between I and J (i.e., the size of I ∩ J). When µ is such that the components of x are i.d.d. with variance σ 2 , then V µ = σ 2 I d , with I d the d-dimensional identity matrix, and

E (E µ -x) ⊤ I {V µ } -1 I×I (E µ -x) I (E µ -x) ⊤ J {V µ } -1 J×J (E µ -x) J = E    i∈I z 2 i   j∈J z 2 j      ,
where the z i = {x -E µ } i /σ are i.i.d. with mean 0 and variance 1. We then obtain

ω = σ 4k (k!) 2 (E{z 4 i } -1) β d,k ,
where

β d,k = I,J β(I, J) = k i=1 i d i d -i k -i d -i -(k -i) k -i = (d -k + 1) 2 d d k -1 2 .
Example 1 We generate 1, 000 independent samples of n points for different measures µ. Figure 1 presents a box-plot of the ratios ( ψ k ) n /ψ k (µ) for various values of k and n = 100 (left), n = 1, 000 (right), when µ = µ 1 uniform in [0, 1] 10 . Figure 2 presents the same information when µ = µ 2 which corresponds to the normal distribution N (0, I 10 /12) in R 10 . Note that V µ1 = V µ2 but the dispersions are different in the two figures. Table 1 gives (10 3 ×) the values of E{( ψ k ) n }/ψ k (µ)-1 for µ = µ 1 , µ 2 and the same series of values for k, with E{( ψ k ) n } denoting the empirical mean over the 1,000 independent repetitions. In particular, ( ψ k ) n is asymptotically normal N (ψ k (µ), (k + 1) 2 ω/n), with ω given by (3.12). This is illustrated in Figure 3-left below for µ uniform in [0, 1] 10 , with n = 1, 000 and k = 3. The distribution is already reasonably close to normality for small values of n, see Figure 3-right for which n = 20. 

1: δ(n, k) = 10 3 ×[ E{( ψ k )n}/ψ k (µ)-1] for different values of n and k; µ1 is uniform in [0, 1] 10 , µ2 is normal N (0, I10/12). k 1 2 3 d -3 d -2 d -1 d µ1 n = 100 0.

Maximum-entropy measures and optimal designs

In this section we consider two types of optimisation problems on M related to the functions Ψ k (•) introduced in Theorem 3.1. First, in Section 4.1, we are interested in the characterisation and construction of maximum-entropy measures; that is, measures µ * k ∈ M which maximize ψ k (µ) = Ψ k (V µ ). The existence of an optimal measure follows from the compactness of X and continuity of V k (x 1 , . . . , x k+1 ) in each x i , see [1, Th. 1]; the concavity and differentiability of the functional ψ 1/k k (•) allow us to derive a necessary and sufficient condition for optimality.

In Section 4.2 we consider the problem of optimal design of experiments, where the covariance matrix V is the inverse of the information matrix M (ξ) for some regression model.

Maximum-entropy measures

Necessary and sufficient condition

Since the functionals ψ 1/k k (•) are concave and differentiable, for all k = 1, . . . , d, we can easily derive a necessary and sufficient condition for a probability measure µ * k on X to maximise ψ k (µ), in the spirit of the celebrated Equivalence Theorem of Kiefer and Wolfowitz [START_REF] Kiefer | The equivalence of two extremum problems[END_REF].

Denote by ∇ Ψ k [V ] the gradient of Ψ k (•) at matrix V (a matrix of the same size as V ) and by F ψ k (µ; ν) the directional derivative of ψ k (•) at µ in the direction ν;

F ψ k (µ; ν) = lim α→0 + ψ k [(1 -α)µ + αν] -ψ k (µ) α .
From the expression (3.6) of Ψ k (V ), we have

∇ Ψ k [V ] = k + 1 k! ∇ E k [V ]) ,
where ∇ E k [V ] denotes the gradient of E k (•) at V , which, using (3.7), can be shown by induction to satisfy

∇ E k [V ] = k-1 i=0 (-1) i E k-i-1 (V ) V i , (4.1) 
see [START_REF] López-Fidalgo | Characteristic polynomial criteria in optimal experimental design[END_REF]. We thus obtain in particular

k = 1 : ∇ Ψ1 [V ] = 2 I d , k = 2 : ∇ Ψ2 [V ] = 3 2 [trace(V ) I d -V ] , k = 3 : ∇ Ψ3 [V ] = 1 3 [trace 2 (V ) -trace(V 2 )] I d - 2 3 trace(V ) V + 2 3 V 2 , k = d : ∇ Ψ d [V ] = d + 1 d! det(V ) V -1 .
Using the differentiability of Ψ k (•), direct calculation gives

F ψ k (µ; ν) = trace ∇ Ψ k [V µ ] dV (1-α)µ+αν dα α=0 , with dV (1-α)µ+αν dα α=0 = [xx ⊤ -(E µ x ⊤ +xE ⊤ µ )] ν(dx)-xx ⊤ µ(dx)+2E µ E ⊤ µ . (4.2)
Notice that dV (1-α)µ+αν /dα α=0 is linear in ν.

Then, from the concavity of ψ

1/k k (•), µ * k maximises ψ k (µ) with respect to µ ∈ M if and only if ψ k (µ * k ) > 0 and F ψ k (µ * k ; ν) ≤ 0 for all ν ∈ M , that is trace ∇ Ψ k [V µ * k ] dV (1-α)µ * k +αν dα α=0 ≤ 0 , ∀ν ∈ M . (4.3)
We obtain the following.

Theorem 4.1. The probability measure µ * k such that ψ k (µ * k ) > 0 is ψ k -optimal, that is, maximises ψ k (µ) with respect to µ ∈ M , k ∈ {1, . . . , d}, if and only if

max x∈X (x -E µ * k ) ⊤ ∇ Ψ k [V µ * k ] Ψ k (V µ * k ) (x -E µ * k ) ≤ k . (4.4)
Moreover,

(x -E µ * k ) ⊤ ∇ Ψ k [V µ * k ] Ψ k (V µ * k ) (x -E µ * k ) = k (4.5)
for all x in the support of µ * k . Proof. First note that the Newton equations (3.7) and the recurrence (4.1) for

∇ E k [•] imply that trace(V ∇ Ψ k [V ]) = kΨ k (V ) for all k = 1, . . . , d.
The condition (4.4) is sufficient. Indeed, suppose that µ * k such that ψ k (µ * k ) > 0 satisfies (4.4). We obtain

(x -E µ * k ) ⊤ ∇ Ψ k [V µ * k ](x -E µ * k ) ν(dx) ≤ trace V µ * k ∇ Ψ k [V µ * k ]
for any ν ∈ M , which gives (4.3) when we use (4.2). The condition is also necessary since (4.3) must be true in particular for δ x , the delta measure at any x ∈ X , which gives (4.4). The property (4.5) on the support of µ * k follows from the observation that (x

-E µ * k ) ⊤ ∇ Ψ k [V µ * k ](x -E µ * k ) µ * k (dx) = trace V µ * k ∇ Ψ k [V µ * k ] . Note that for k < d, the covariance matrix V µ * k of a ψ k -optimal measure µ * k
is not necessarily unique and may be singular; see, e.g., Example 1 below. Also, ψ k (µ) > 0 implies that ψ k-1 (µ) > 0, k = 2, . . . , d.

Remark 4.1. As a natural extension of the concept of potential in case of ordertwo interactions (k = 1), we call P k,µ (x) = ψ k (µ, . . . , µ, δ x ) the potential of µ at x, where

ψ k (µ 1 , . . . , µ k+1 ) = . . . V 2 k (x 1 , . . . , x k+1 ) µ 1 (dx 1 ) . . . µ k+1 (dx k+1 ) .
This yields

F ψ k (µ; ν) = (k + 1) [ψ k (µ, . . . , µ, ν) -ψ k (µ)]
, where µ appears k times in ψ k (µ, . . . , µ, ν). Therefore, Theorem 4.4 states that µ * k is ψ k -optimal if and only if

ψ k (µ * k , . . . , µ * k , ν) ≤ ψ k (µ * k ) for any ν ∈ M , or equivalently P k,µ * k (x) ≤ ψ k (µ * k ) for all x ∈ X .
Remark 4.2. Consider Kiefer's Φ p -class of orthogonally invariant criteria and their associated functional ϕ p (•), defined by

ϕ p (µ) = Φ p (V µ ) =        λ max (V µ ) for p = ∞ , { 1 d trace(V p µ )} 1/d for p = 0, ±∞ , det 1/d (V µ ) for p = 0 , λ min (V µ ) for p = -∞ ,
where V µ is a d × d matrix; see, e.g., [START_REF] Pukelsheim | Optimal Experimental Design[END_REF]Chap. 6]. From a result in [START_REF] Harman | Lower bounds on efficiency ratios based on φ p -optimal designs[END_REF], if a measure µ p optimal for some ϕ p (•) with p ∈ (-∞, 1] is such that V µp is proportional to the identity matrix I d , then µ p is simultaneously optimal for all orthogonally invariant criteria. A measure µ p having this property is therefore ψ k -optimal for all k = 1, . . . , d. Notice that ψ 1 (•) and ψ 

Ψ k (V ) = (k + 1)(d -k)! (d -k + 1)k! det(V ) Ψ d-k (V -1 )
which implies that maximising Ψ k (V ) is equivalent to maximising log det(V ) + log Ψ d-k (V -1 ). Therefore, Theorem 4.4 can be reformulated as:

µ * k maximises ψ k (µ) if and only if max x∈X (x -E µ * k ) ⊤ V -1 µ * k -V -1 µ * k ∇ Ψ d-k [V -1 µ * k ] Ψ d-k (V -1 µ * k ) V -1 µ * k (x -E µ * k ) ≤ d -k ,
with equality for x in the support of µ * k . When k is large (and d -k is small), one may thus check the optimality of µ * k without using the complicated expressions of

Ψ k (V ) and ∇ Ψ k [V ].

A duality property

The characterisation of maximum-entropy measures can also be approached from the point of view of duality theory.

When k = 1, the determination of a ψ 1 -optimal measure µ * 1 is equivalent to the dual problem of constructing the minimum-volume ball B * d containing X . If this ball has radius ρ, then ψ 1 (µ * 1 ) = 2ρ 2 , and the support points of µ * 1 are the points of contact between X and B * d ; see [START_REF] Björck | Distributions of positive mass, which maximize a certain generalized energy integral[END_REF]Th. 6]. Moreover, there exists an optimal measure with no more than d + 1 points.

The determination of an optimal measure µ * d is also dual to a simple geometrical problem: it corresponds to the determination of the minimum-volume ellipsoid E * d containing X . This is equivalent to a D-optimal design problem in R d+1 for the estimation of β = (β 0 , β ⊤ 1 ) ⊤ , β 1 ∈ R d , in the linear regression model with intercept β 0 + β ⊤ 1 x, x ∈ X , see [START_REF] Titterington | Optimal design: some geometrical espects of D-optimality[END_REF]. Indeed, denote

W µ = X (1 x ⊤ ) ⊤ (1 x ⊤ ) µ(dx)
.

Then E * d+1 = {z ∈ R d+1 : z ⊤ W -1 µ * d z ≤ d + 1}, with µ * d maximising det(W µ )
, is the minimum-volume ellipsoid centered at the origin and containing the set {z ∈ R d+1 : z = (1 x ⊤ ) ⊤ , x ∈ X }. Moreover, E * d corresponds to the intersection between E * d+1 and the hyperplane {z} 1 = 1; see, e.g., [START_REF] Shor | New algorithms for constructing optimal circumscribed and inscribed ellipsoids[END_REF]. This gives

ψ d (µ * d ) = (d + 1)/d! det(W µ * d ).
The support points of µ * d are the points of contact between X and E * d , there exists an optimal measure with no more than d(d + 3)/2 + 1 points, see [START_REF] Titterington | Optimal design: some geometrical espects of D-optimality[END_REF].

The property below generalises this duality property to any k ∈ {1, . . . , d}.

Theorem 4.2.

max µ∈M Ψ 1/k k (V µ ) = min M,c: X ⊂E (M,c) 1 φ ∞ k (M )
,

where

E (M, c) denotes the ellipsoid E (M, c) = {x ∈ R d : (x -c) ⊤ M (x -c) ≤ 1} and φ ∞ k (M ) is the polar function φ ∞ k (M ) = inf V 0: trace(MV )=1 1 Ψ 1/k k (V ) . ( 4.6) 
The proof is given in Appendix. The polar function φ ∞ k (•) possesses the properties of what is called an information function in [START_REF] Pukelsheim | Optimal Experimental Design[END_REF]Chap. 5]; in particular, it is concave on the set of symmetric non-negative definite matrices. This duality property has the following consequence.

1) d+1 /[d d (d!) 2 ]. We also have V µ d = ρ 2 I d /d,
so that µ d is ψ d -optimal too. In view of Remark 4.2, µ 0 and µ d are ψ k -optimal for all k in {1, . . . , d}.

Let now µ k be the measure that allocates mass 1/(k + 1) at each vertex of a k regular simplex P k , centered at the origin, with its vertices on S d (0, ρ). The squared volume of

P k equals ρ 2k (k+1) k+1 /[k k (k!) 2 ]
. Without any loss of generality, we can choose the orientation of the space such that V µ k is diagonal, with its first k diagonal elements equal to ρ 2 /k and the other equal to zero. Note that ψ k ′ (µ k ) = 0 for k ′ > k. Direct calculations based on (3.6) give

ψ k (µ k ) = k + 1 k! ρ 2k k k ≤ ψ k (µ 0 ) = k + 1 k! d k ρ 2k d k ,
with equality for k = 1 and k = d, the inequality being strict otherwise. Figure 4 presents the efficiency [ψ k (µ k )/ψ k (µ 0 )] 1/k as a function of k when d = 20. 

Optimal design in regression models

In this section we consider the case when V = M -1 (ξ), where M (ξ) is the information matrix

M (ξ) = T f (t)f ⊤ (t) ξ(dt)
in a regression model Y j = θ ⊤ f (t j ) + ε j with parameters θ ∈ R d , for a design measure ξ ∈ Ξ. Here Ξ denotes the set of probability measures on a set T such that {f (t) : t ∈ T} is compact, and M -1 (ξ) is the (asymptotic) covariance matrix of an estimator θ of θ when the design variables t are distributed according to ξ.

The value ψ k (µ) of Theorem 3.1 defines a measure of dispersion for θ, that depends on ξ through V µ = M -1 (ξ). The design problem we consider consists in choosing ξ that minimises this dispersion, as measured by Ψ k [M -1 (ξ)], or equivalently that maximises Ψ -1 k [M -1 (ξ)].

Properties

It is customary in optimal design theory to maximise a concave and Loewnerincreasing function of M (ξ), see [START_REF] Pukelsheim | Optimal Experimental Design[END_REF]Chap. 5] for desirable properties of optimal design criteria. Here we have the following. 

(M -1 ) = k + 1 k! -1/k det 1/k (M ) E 1/k d-k (M ) (4.8)
which is a concave function of M , see Eq. ( 10) of [11, p. 116]. Since Ψ k (•) is Loewner-increasing, see [START_REF] López-Fidalgo | Characteristic polynomial criteria in optimal experimental design[END_REF], the function

M -→ Ψ -1/k k (M -1
) is Loewner-increasing too. Its orthogonal invariance follows from the fact that it is defined in terms of the eigenvalues of M .

Note that Theorems 3.1 and 4.3 imply that the functions M -→ -log Ψ k (M ) and M -→ log Ψ k (M -1 ) are convex for all k = 1, . . . , d, a question which was left open in [START_REF] López-Fidalgo | Characteristic polynomial criteria in optimal experimental design[END_REF].

As a consequence of Theorem 4.3, we can derive a necessary and sufficient condition for a design measure ξ * k to maximise Ψ

-1/k k [M -1 (ξ)] with respect to ξ ∈ Ξ, for k = 1, . . . , d. Theorem 4.4. The design measure ξ * k such that M (ξ * k ) ∈ M + maximises ψk (ξ) = Ψ -1/k k [M -1 (ξ)] with respect to ξ ∈ Ξ if and only if max t∈T f ⊤ (t)M -1 (ξ * k ) ∇ Ψ k [M -1 (ξ * k )] Ψ k [M -1 (ξ * k )] M -1 (ξ * k )f (t) ≤ k (4.9)
or, equivalently,

max t∈T f ⊤ (t)M -1 (ξ * k )f (t) -f ⊤ (t) ∇ Ψ d-k [M (ξ * k )] Ψ d-k [M (ξ * k )] f (t) ≤ d -k . (4.10)
Moreover, there is equality in (4.9) and (4.10) for all t in the support of ξ * k .

Proof. From (4.8), the maximisation of ψk (ξ) is equivalent to the maximisation of φk

(ξ) = log det[M (ξ)]-log Ψ d-k [M (ξ)].
The proof is similar to that of Theorem 4.4 and is based on the following expressions for the directional derivatives of these two functionals at ξ in the direction ν ∈ Ξ,

F ψk (ξ; ν) = trace 1 k M -1 (ξ) ∇ Ψ k [M -1 (ξ)] Ψ k [M -1 (ξ)] M -1 (ξ) [M (ν) -M (ξ)]
and

F φk (ξ; ν) = trace M -1 (ξ) - ∇ Ψ d-k [M (ξ)] Ψ d-k [M (ξ)] [M (ν) -M (ξ)] ,
and on the property trace{M ∇ Ψj [M ]} = j Ψ j (M ).

In particular, consider the following special cases for k (note that Ψ 0 (M ) = E 0 (M ) = 1 for any M ).

k = d : ψd (ξ) = log det[M (ξ)] , k = d -1 : ψd-1 (ξ) = log det[M (ξ)] -log trace[M (ξ)] -log 2 , k = d -2 : ψd-2 (ξ) = log det[M (ξ)] -log trace 2 [M (ξ)] -trace[M 2 (ξ)] -log(3/4) .
The necessary and sufficient condition (4.10) then takes the following form:

k = d : max t∈T f ⊤ (t)M -1 (ξ * k )f (t) ≤ d , k = d -1 : max t∈T f ⊤ (t)M -1 (ξ * k )f (t) - f ⊤ (t)f (t) trace[M (ξ * k )] ≤ d -1 , k = d -2 : max t∈T f ⊤ (t)M -1 (ξ * k )f (t) -2 trace[M (ξ * k )]f ⊤ (t)f (t) -f ⊤ (t)M (ξ * k )f (t) trace 2 [M (ξ * k )] -trace[M 2 (ξ * k )] ≤ d -2 .
Also, for k = 1 condition (4.9) gives

max t∈T f ⊤ (t) M -2 (ξ * 1 ) trace[M -1 (ξ * 1 )] f (t) ≤ 1
(which corresponds to A-optimal design), and for k = 2

max t∈T trace[M -1 (ξ * 2 )]f ⊤ (t)M -2 (ξ * 2 )f (t) -f ⊤ (t)M -3 (ξ * 2 )f (t) trace 2 [M -1 (ξ * 2 )] -trace[M -2 (ξ * 2 )] ≤ 1 .
Finally, note that a duality theorem, in the spirit of Theorem 4.2, can be formulated for the maximisation of Ψ [START_REF] Pukelsheim | Optimal Experimental Design[END_REF]Th. 7.12] for the general form a such duality properties in optimal experimental design.

-1/k k [M -1 (ξ)]; see

Examples

Example 4 For the linear regression model on θ 0 + θ 1 x on [-1, 1], the optimal design for ψk (•) with k = d = 2 or k = 1 is

ξ * k = -1 1 1/2 1/2 ,
where the first line corresponds to support points and the second indicates their respective weights.

Example 5 For linear regression with the quadratic polynomial model θ 0 + θ 1 t + θ 2 t 2 on [-1, 1], the optimal designs for ψk (•) have the form .

ξ * k = -1 0 1 w k 1 -2w k w k , with w 3 = 1/3, w 2 = ( √ 33 - 
Table 2 gives the efficiencies Eff k (ξ * j ) for j, k = 1, . . . , d = 3. The design ξ * 2 , optimal for ψ2 (•), appears to make a good compromise between A-optimality (which corresponds to ψ1 (•)) and D-optimality (which corresponds to ψ3 (•)).

Example 6 For linear regression with the cubic polynomial model θ 0 + θ 1 t + θ 2 t 2 + θ 3 t 3 on [-1, 1], the optimal designs for ψk (•) have the form with z = z 3 . For k = d -2 = 2, the numbers z 2 and w 2 are too difficult to express analytically. Table 3 gives the efficiencies Eff k (ξ * j ) for j, k = 1, . . . , d. Here again the design ξ * 2 appears to make a good compromise: it maximises the minimum efficiency min k Eff f (•) among the designs considered. one has ∂ 2 ∆ q [(1 -α)µ 1 + αµ 2 ]/∂α 2 α=0 ≥ 0 for all q ≥ 1.84, the equality being obtained at q = 2 only. Counterexamples are easily constructed for values of q smaller than 1.84. k (V µ ). Note that we do not have an explicit form for φ ∞ k (M ) and that the infimum in (4.6) can be attained at a singular V , not necessarily unique, so that we cannot differentiate φ ∞ k (M ). Also note that compared to the developments in [START_REF] Pukelsheim | Optimal Experimental Design[END_REF]Chap. 7], here we consider covariance matrices instead of moment matrices.

ξ * k = -1 -z k z k 1 w k 1/2 -w k 1/2 -w k w k ,
Consider the maximisation of log φ ∞ k (M ) with respect to M and c such that X ⊂ E (M, c), with Lagrangian

L(M, c, β) = log φ ∞ k (M ) + x∈X β x [1 -(x -c) ⊤ M (x -c)] , β x ≥ 0 for all x in X .
For the sake of simplicity we consider here X to be finite, but 

β
α x (x -c * )(x -c * ) ⊤ = -log Ψ 1/k k (V * k ) ,
where we have denoted γ = x∈X β x and α x = β x /γ for all x. Therefore T * ≤ -log Ψ

1/k k (V * k ), that is, log min M,c: X ⊂E (M,c) 1/φ ∞ k (M ) ≥ log Ψ 1/k k (V * k ).

homogeneous of degree 2

 2 and concave on M .

2 2 3 3

 23 is proportional to Wilks generalised variance, and ψ 1/(µ), see (3.1), and ψ 1/(µ) can be respectively considered as particular versions of cubic and quartic entropies.

Figure 1 :Figure 2 :

 12 Figure 1: Box-plot of ( ψ k ) n /ψ k (µ) for different values of k: µ is uniform in [0, 1] 10 , n = 100 (Left) and n = 1, 000 (Right) -1,000 repetitions; minimum, median and maximum values are indicated, together with 25% and 75% quantiles. Other properties of U-statistics apply to the estimator ( ψ k ) n , including almostsure consistency and the classical law of the iterated logarithm, see [20, Section 5.4].

Table

  

Figure 3 :

 3 Figure 3: Dots: empirical distribution of ( ψ k ) n (histogram for 10,000 independent repetitions); solid line: asymptotic normal distribution N (ψ k (µ), (k + 1) 2 ω/n); µ is uniform in [0, 1] 10 and k = 3; left: n = 1, 000; right: n = 20.

d

  (•) respectively coincide with ϕ 1 (•) and ϕ 0 (•) (up to a multiplicative scalar).

Remark 4 . 3 .

 43 Using (3.10), when V is nonsingular we obtain the property

Figure 4 :

 4 Figure 4: Efficiency [ψ k (µ k )/ψ k (µ 0 )] 1/k as a function of k when d = 20 in Example 3.

Theorem 4 . 3 .

 43 The functions M -→ Ψ -1/k k (M -1 ), k = 1, . . . , d, are Loewnerincreasing, concave and differentiable on the set M + of d × d symmetric positivedefinite matrices. The functions Ψ k (•) are also orthogonally invariant. Proof. The property (3.10) yields Ψ -1/k k

  1)/16 ≃ 0.2965352 and w 1 = 1/4. Define the efficiency Eff k (ξ) of a design ξ as Eff k (ξ) = ψk (ξ) ψk (ξ * k )

  Proof of Theorem 4.2 (i) The fact that max µ∈M Ψ1/k k (V µ ) ≥ min M,c: X ⊂E (M,c) 1/φ ∞ k (M ) is a consequence of Theorem 4.4. Indeed, the measure µ * k maximises Ψ 1/k k (V µ ) if and only if (x -E µ * k ) ⊤ M * (V µ * k )(x -E µ * k ) ≤ 1 for all x in X . (4.11) Denote M * k = M * (V µ * k ), c * k = E µ * k , and consider the Lagrangian L(V, α; M ) for the maximisation of (1/k) log Ψ k (V ) with respect to V 0 under the constraint trace(M V ) = 1: L(V, α; M ) = (1/k) log Ψ k (V ) -α[trace(M V ) -1] . We have ∂L(V, 1; M * k ) ∂V V =V µ * k = M * k -M * k = 0 and trace(M * k V µ * k ) = 1, with V µ * k 0. Therefore, V µ * k maximises Ψ k (V ) under the constraint trace(M * k V ) = 1,and, moreover, X ⊂ E (M * k , c * k ) from (4.11). This implies Ψ We prove now that min M,c: X ⊂E (M,c) 1/φ ∞ k (M ) ≥ max µ∈M Ψ 1/k

x - 1 .

 1 may denote any positive measure on X otherwise. Denote the optimum by T * = max M,c:X ⊂E (M,c) log φ ∞ k (M ) . It satisfies T * = max M,c min β≥0 L(M, c, β) ≤ min β≥0 max M,c L(M, c, β), and max M,c L(M, c, β) is attained for any c such that M c = M x∈X β x x/( x∈X β x ), that is, in particular for c * = x∈X β x x x∈X β x , and for M * such that 0 ∈ ∂ M L(M, c * , β) M=M * , the subdifferential of L(M, c * , β)with respect to M at M * . This condition can be written asx∈X β x (x -c * )(x -c * ) ⊤ = Ṽ ∈ ∂ log φ ∞ k (M ) M=M * , with ∂ log φ ∞ k (M ) the subdifferential of log φ ∞ k (M ), ∂ log φ ∞ k (M ) = {V 0 : Ψ 1/k k (V )φ ∞ k (M ) = trace(M V ) = 1} , see [14, Th. 7.9]. Since trace(M V ) = 1 for all V ∈ ∂ log φ ∞ k (M ), trace(M * Ṽ ) = 1 and thus x∈X β x (x -c * ) ⊤ M * (x -c * ) = 1 . Also, Ψ 1/k k ( Ṽ ) = 1/φ ∞ k (M * ), which gives L(M * , c * , β) = -log Ψ 1/k k x∈X β x (x -c * )(x -c * ) ⊤ + x∈X β x (x -c * )(x -c * ) ⊤ + γ -log(γ) -1 ,

Table 2 :

 2 Efficiencies Eff k (ξ * j ) for j, k = 1, . . . , d in Example 5.

		Eff1	Eff2	Eff3
	ξ * 1	1	0.9770 0.9449
	ξ * 2	0.9654	1	0.9886
	ξ * 3	0.8889 0.9848	1

Table 3 :

 3 Efficiencies Eff k (ξ *

				j ) for j, k = 1, . . . , d in Example 6.
			Eff1	Eff2	Eff3	Eff4
		ξ * 1	1	0.9785 0.9478 0.9166
		ξ * 2	0.9694	1	0.9804 0.9499
		ξ * 3	0.9180 0.9753	1	0.9897
		ξ * 4	0.8527 0.9213 0.9872	1
	where	z 4 = 1/ z 3 ≃ 0.4350486 , √ 5 ≃ 0.4472136 , z 2 ≃ 0.4240013 , z 1 = 3 √ 7 -6/3 ≃ 0.4639509 , w 1 = (4 -w 4 = 0.25 , w 3 ≃ 0.2149859 , w 2 ≃ 0.1730987 , √ 7)/9 ≃ 0.1504721 ,

with z 3 satisfying the equation 2z 6 -3z 5 -45z 4 + 6z 3 -4z 2 -15z + 3 = 0 and

w 3 = 5 z 6 + 5 z 4 + 5 z 2 + 1 -√ z 12 + 2 z 10 + 3 z 8 + 60 z 6 + 59 z 4 + 58 z 2 + 73 12(z 6 + z 4 + z 2 -3) ,

Corollary 4.1. The determination of a covariance matrix V * k that maximises Ψ k (V µ ) with respect to µ ∈ M is equivalent to the determination of an ellipsoid E (M * k , c * k ) containing X , minimum in the sense that M * k maximizes φ ∞ k (M ). The points of contact between E (M * k , c * k ) and X form the support of µ * k . For any V 0, denote by M * (V ) the matrix

Note that M * (V ) 0, see [START_REF] Pukelsheim | Optimal Experimental Design[END_REF]Lemma 7.5], and that

the optimal ellipsoid is then such that trace 2 (M )/(d -1) -trace(M 2 ) is maximised.

i=1 δ vi , with δ v the Dirac delta measure at v. Then, V µ * = I d /4 and one can easily check that µ * is ψ 1 -optimal. Indeed, E µ * = 1 d /2, with 1 d the d-dimensional vector of ones, and max x∈X (x-

Note that the two-point measure µ

Example 3 Take X = B d (0, ρ), the closed ball of R d centered at the origin 0 with radius ρ. Let µ 0 be the uniform measure on the sphere S d (0, ρ) (the boundary of B d (0, ρ)). Then, V µ0 is proportional to the identity matrix I d , and trace

so that µ 0 is ψ d -optimal from (4.4). Let µ d be the measure that allocates mass 1/(d + 1) at each vertex of a d regular simplex having its d + 1 vertices on S d (0, ρ), with squared volume ρ 2d (d +

Appendix

Shift-invariance and positive homogeneity Denote by M the set of probability measures defined on the Borel subsets of X , a compact subset of R d . For any µ ∈ M , any θ ∈ R d and any λ ∈ R + , respectively denote by T -θ [µ] and H λ -1 [µ] the measures defined by:

The variance is the only concave central moment For q = 2, the q-th central moment ∆ q (µ) =

x -E µ q µ(dx) is shift-invariant and homogeneous of degree q, but it is not concave on M (X ). Indeed, consider for instance the two-point probability measures 201 q-1 -202q + 405 201 q-1 -101q + 102