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Abstract

Landau damping is a fundamental phenomenon in plasma physics, which also
plays an important role in astrophysics, and sometimes under different names,
in fluid dynamics and other fields. Its theoretical discussion in the framework of
the Vlasov equation often assumes that the reference stationary state is homoge-
neous in space. However, Landau damping around an inhomogeneous reference
stationary state, a natural setting in astrophysics for instance, induces new
mathematical difficulties and physical phenomena. The goal of this article is
provide an introduction to these problems and the questions they raise.

1. Introduction

Vlasov equation and Landau damping have been an active subject of re-
search since 70 years, and have been encountered at some point in their career
by most physicists. The purpose of this article is to provide an introduction
to the specificities of Landau damping close to a stationary state of the Vlasov
equation which is not homogeneous in space. This situation is in particular
relevant for astrophysical applications of the Vlasov equation, but it is striking
that a phenomenology similar to the one we will describe here is encountered
in very different physical systems: fluids described by Euler equation [1], Ku-
ramoto model for oscillators synchronization [2], sound propagation in bubbly
fluids [3]. . . For self-consistency, we will first recall some basic facts about Vlasov
equation and standard Landau damping as it was first introduced in plasma
physics, close to an homogeneous in space stationary state.

2. The Vlasov equation

When one tries to describe the positions and velocities of a large number
of interacting particles by a density in phase space, different situations may
occur: if the interactions between particles are strong and rare, so that they
involve only two particles each time, one expects a Boltzmann-like equation; if
on the contrary one particle feels the effect of many others, the individual effect
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of each one being weak, one enters the realm of Vlasov equation. This scaling
limit, sometimes called mean-field limit, appears in many areas of physics, the
two main examples being: particles in Coulombian interaction, and particles in
Newtonian interaction. In the plasma physics context, it was indeed introduced
by Vlasov [4]; in the astrophysical context, the Vlasov equation is usually called
“collisionless Boltzmann equation”. We write down the equation in Hamiltonian
form:

∂tf + {f, h} = 0, (1)

where f(x,v, t) is the density in phase space, normalized to 1, {f, g} is the
Poisson bracket

{f, g} =
1

M
(∇xf · ∇vg −∇vf · ∇xg) (2)

M is the particles’ mass and h(x,v, t) the Hamiltonian

h(x,v, t) =
Mv2

2
+ φ(x, t). (3)

The potential φ(x, t) is created by f . For Coulomb or Newton interaction, φ is
related to the spatial density ρ =

∫
fdv through the Poisson equation:

∆φ = Cρ (4)

where C = 4πG for Newton with G the gravitational constant, and −4πe2/M
for Coulomb interaction. More generally, φ may be given by the convolution of
the density ρ and a kernel K:

φ(x) =

∫
K(x− y)ρ(y)dy. (5)

For instance, K is proportional to 1/|x| for Coulomb (resp. −1/|x| for Newton)
interaction in 3D. Physically, Vlasov equation is simply a transport equation,
meaning that each particle moves in the field that all particles create. Hereafter
we set M = 1 for simplicity.

The convergence of the discrete dynamics of N particles towards the contin-
uous Vlasov equation has been rigorously proved [5, 6], but under the hypothesis
that the kernel K is regular enough. In particular, this excludes the Coulomb
and Newton cases!

3. Stationary states and their stability

The Vlasov equation (1) admits an infinite number of stationary states. In-
deed, any function f = ϕ(h(x,v)) that depends on the phase space coordinates
only through the Hamiltonian h is a stationary solution. An easy special case is
provided by a function f that depends only on v2 (this implies that f is homoge-
neous in space), with a vanishing self-consistent potential. Space inhomogeneous
stationary solutions, needed for instance to describe self-gravitating systems, are

2



more difficult to construct, since one needs to solve the self-consistent equation
(4) for the potential.

Studying the Vlasov dynamics close to a stationary solution proved a difficult
endeavor, with surprises even at the linear level. When the linearized Vlasov
operator has an eigenvalue with positive real part, the corresponding stationary
state is clearly unstable. Futhermore, it is easy to realize that the spectrum of
the linearized operator is symmetric with respect to the imaginary axis; hence,
if there is an eigenvalue with negative real part, there is also one with positive
real part, and the corresponding stationary state is also unstable. Thus, stable
stationary states are only marginally stable, the spectrum being included in the
imaginary axis. Yet, a perturbation around a stable stationary state may decay
in some sense exponentially, with a well defined rate: this is the well-known
Landau damping phenomenon, first described in 1946 [7]. In the following, we
consider such damping of a perturbation δf around a stable stationary state f0.

4. Landau damping, homogeneous case

We start with a simple setting, 1D and periodic in space, and consider a
homogeneous in space stationary solution f0(v). The linearized Vlasov equation
around f0 for a small perturbation δf reads:

∂tδf + v∂xδf − f ′0∂xδφ = 0 (6)

δφ(x) =

∫
K(x− y)δρ(y)dy (7)

where δρ and δφ are the density and potential perturbations respectively.
To understand the basic mechanism of Landau damping, we start by for-

getting the interaction, keeping only the free transport: each particle moves
with constant velocity v. Velocities of initially close particles are different; this
shear develops finer and finer structures in the (x, v) phase space; any initial
spatial organization is thus damped by this phase mixing process: see an il-
lustration Fig. 1. Introducing the interaction term does not modify much this
basic physical mechanism, but has an important effect on the type of damping.

The standard mathematical treatment of (6)-(7) is as follows. After a Fourier
transform in space and a Laplace transform in time, which is defined for the
function u(x, t) as

û(k, ω) =

∫
e−ikx

(∫
∞

0

eiωtu(x, t)dt

)
dx, (8)

the linearized Vlasov equation (6)-(7) is reduced to a diagonalized algebraic
equation and is solved formally. Simple manipulations give the Fourier-Laplace
component as

δ̂φ(k, ω) =
G(k, ω)

D(k, ω)
, (9)
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Figure 1: Damping of an initial spatial structure by free transport (periodic spatial boundary
condition are used). Left = initial condition; Center and Right: the shear in phase space
creates finer and finer structures. After integration over the v variable, the spatial structure
damps.

where

D(k, ω) = 1−Kk

∫
kf ′0(v)

kv − ω
dv, G(k, ω) = −iKk

∫
f̃ini(k, v)

kv − ω
dv, (10)

and Kk and f̃ini are the Fourier transforms of K(x) and the initial distribution
respectively. The time evolution of the kth Fourier component of the potential

δ̂φ(k, ω) is then given by an inverse Laplace transform.
The asymptotic behavior of a time-dependent function is intimately related

to the regularity of its Laplace transform: the more singular is the Laplace
trasnform, the slower is the decay at large times. Thus to understand the large
time behavior of δφ, we have to study the singularities of the D and G functions
(10), or rather the singularities of their analytic continuation. Although they
are not eigenvalues of the linearized operator (6)-(7), roots of the continued D
function yield an exponential damping of δφ: this is Landau damping.

We remark that an algebraic damping may happen if the stable stationary
state f0 or perturbation δf is not analytic [8]. In the next section, we show that
the algebraic damping is actually unavoidable in the inhomogeneous case even
if f0 and δf are analytic.

5. Landau damping, inhomogeneous case

In astrophysics, the analog of Landau damping takes place, and is considered
a standard mechanism in the relaxation of stellar structures, see [9] for a text-
book reference. However, it is remarkable that actual computations of Landau
damping rates for self-gravitating structures are very rare; indeed, we are only
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aware of one instance of such a computation[10, 11]1. Clearly, the reason lies
in the technical difficulty, as will become clear later. Inhomogeneous stationary
states are also a common feature in plasma physics; in this context, Landau
damping has been studied in the limit of vanishing velocity dispersion[12]. We
feel that this situation calls for a more precise study of Landau damping close
to inhomogeneous stationary states.

For simplicity, let us stick to a 1D setting with periodic boundary conditions,
and consider an inhomogeneous stationary state of the Vlasov equation, of the
form f0(x, v) = ϕ(h(x, v)).

In the inhomogeneous case, the derivative with respect to v survives in the
linearized Vlasov equation, and this prevents us from obtaining an algebraic
equation. A solution of this problem is to introduce the angle-action variables
(θ, J) associated with the Hamiltonian h, which is always integrable, since we
stick to 1D and f0 (and thus h) is stationary. The angle-action variables elim-
inate the derivative with respect to J , and the Fourier transform with respect
to θ yields an algebraic equation just as in the homogeneous case. However,
in the inhomogeneous case, the Fourier bases for x, eikx, and for θ, eimθ, are
not orthogonal, and the algebraic equation is not diagonalized: all modes are
mixed. Thus, in general, the algebraic equation is described by using an infinite
size matrix D whose (l,m)-element is denoted by D(l,m, ω) and an infinite size
vector G. The Fourier-Laplace component of potential is expressed in the form

̂δφ(l, ω) =
∑

m

D−1(l,m, ω)G(m,ω), (11)

where D−1(l,m, ω) is the (l,m)-element of the inverse matrix D−1. Each ele-
ment of D and G has a similar form as in the homogeneous case, it reads as an
integral:

F (ω) =

∫
ψ(J)

Ω(J)− ω/m
dJ (12)

where Ω(J) = (dh/dJ)(J). This solution “in matrix form” was introduced in
the 70’s [13, 14]. Let us discuss the singularities of the function F , since we
know they control the asymptotic behavior of the potential.

Formally, the roots of the determinant of D correspond to poles of δ̂φ, and
these poles yield exponential dampings just as in the homogeneous case [15].

Poles are not the only singularities in the inhomogeneous case. Indeed the
integration range for the action has a minimum value Jv, whereas the integration
range for the velocity in (10) was R. As a result, a logarithmic singularity
appears on the real axis of ω. A simple example helps to understand the creation
mechanism of the new singularity. Suppose m = 1 and ψ(J) = 1, and Ω(J) is
expanded around Jv as

Ω(J) = Ω(Jv) + a(J − Jv) + · · · . (13)

1Computing instability rates is easier, since it does not require any analytic continuation
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The F function is then expressed as

F (ω) =

∫
∞

0

dJ

aJ − (ω − Ω(Jv))
+ · · · , (14)

and it is clear that a logarithmic singularity appears at ω = ωv ≡ Ω(Jv). This
singularity lies on the real axis, since the function Ω is real, and gives rise to a
branch cut when viewed in the complex plane; hence the analytic continuation
of the function F is multi-valued. In the homogeneous case, the integral runs
over the whole real line, see (10), hence the singularities on the real axis cancel:
integrals on the left and the right of the singularity diverge in the same way,
with opposite sign. Formally, the mechanism is that analytic continuation turns
the integrals in the D and the G functions into principal values. Existence of
the minimum point Jv prevents us from applying the cancellation mechanism
to the inhomogeneous case.

We stress that this logarithmic singularity comes from the inhomogeneous
nature of the stable stationary state f0. Thus, the singularity is unavoidable,
and shows up even when the reference state f0 and the initial perturbation are
perfectly smooth.

Another type of singularity arises when Ω(J) has a local extremum. Gener-
ically, detailed computations reveal that the singular part of F is [16, 17]

F sing(ω) = C1(ω − ω)ν ln |ω − ωv|+ C2(ω − ω)µH(ω − ωv) (15)

where H(x) is the Heaviside step function, and a non-negative integer ν and a
positive real value µ + 1 come from the leading powers in the expansion of ψ

at J = Jv. Known singularities of the Laplace transform δ̂φ are summarized in
Table 1.

Singularity Asymptotic Damping Homogeneous Inhomogeneous
Pole Exponential X X

Log. branch point Algebraic X

Heaviside step Algebraic X

Table 1: Singularities of the Laplace transform of the potential for an analytic stable stationary
state f0 and perturbation δf with induced asymptotic dampings. The checkmarks signal the
presence of the singularities.

The inverse Laplace transform of the logarithmic and the Heaviside step
singularities in (15) both yield an oscillatory algebraic damping, with exponent
1+ν and 1+µ and frequency ωv respectively. The analysis shown in this section
can be extended to higher dimensional systems [17]. The value of the exponent
ν or µ giving the slowest damping can be obtained by a detailed analysis of the
leading powers around the singular points on J in the reference state f0 and
perturbation δf .

From the discussion of this section, it is clear that the slowest decay is
algebraic, and that it should rule the asymptotic behavior of a perturbation
(assuming of course that the linearization remains valid at large times). Does
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it mean that exponential “Landau damping”, coming from the roots of the
determinant of the matrix D, is irrelevant? Of course not: it turns out that
it often plays an important role at intermediate time scales, before algebraic
damping dominates.

6. Some explicit computations on a simple model

The very small number of explicit computations of Landau damping rates
for self gravitating structures is due to the inherent analytical and numerical
difficulties of the needed analytic continuation; in [10, 11] this part is performed
entirely numerically using Padé approximants, a procedure which is probably
stable only close to the real axis and far from the branch cut singularities dis-
cussed above. If one accepts to give up the realism of 3D 1/|x| potential and
turn to a toy model for gravitation, it becomes possible to perform explicit
computations of the Landau poles. For this purpose, we will use in this section
the Hamiltonian mean-field model [18]. The spatial domain is [0, 2π), and the
interaction kernel is a cosine:

φ(x) =

∫ 2π

0

[1− cos(x− y)]ρ(y)dy. (16)

Hence the self-consistent potential itself is of the form −M cos(x − ϑ). In a
stationary state, M and ϑ are constant, thus the motion of each particle is that
of a simple pendulum. It is well known that all trajectories can then be expressed
in terms of elliptic functions and integrals [15], which can be readily analytically
continued. Analytic continuation of the coefficient appearing in the matrix
method is then relatively easy. Furthermore, thanks to the simple structure of
the interaction kernel (only one Fourier mode is present), the determinant one
has to compute is actually 2×2 and diagonal, rather than infinite in the general
case.

Thanks to these simplifications, it becomes possible to explore all the “Lan-
dau poles” and follow their bifurcations when varying the stationary state. It
is still a delicate task, as the landscape for δ̂φ presents the full complexity of
inhomogeneous stationary states: one should in principle explore an infinity of
Riemann sheets. An example of the poles and branch cut singularities is given
on Fig. 2.

Direct numerical simulations confirm that the dominant pole of the disper-
sion function (closest to the real axis) indeed dominate the dynamics over an
intermediate time scale [15], and the asymptotic algebraic damping as shown
on Fig.3.

7. Conclusion

Although Landau damping around inhomogeneous stationary solutions is of-
ten considered as a direct analog of the much easier homogeneous case, we hope
to have illustrated that spatial inhomogeneity requires a somewhat different
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Figure 2: Left panel: Contour plot of the modulus of the dispersion function Det(D) in
the ω complex plane; the horizontal (vertical) axis is the real (imaginary) part of ω. The
vertical dashed lines are branch cuts, separating different Riemann sheets; the contour levels
are chosen so that the roots are clearly visible. Right panel: the reference stationary state ϕ

around which the dispersion function shown on the left panel is computed. It is represented
here as a function of the variable

√
2h, so that the statistical equilibrium distribution would

be a gaussian.

mathematical structure, which in turn induces important physical differences.
In the present short article, we have restricted to the linearized Vlasov equation,
which is already very rich. The weakly non linear behavior of the Vlasov equa-
tion has also been the subject of many studies, old and new (for a few references
[20, 21, 22, 23, 24, 25]); a similar systematic study close to non homogeneous
stationary state largely remains to be done, and the linear theory will be a
necessary building block. In view of the differences showing up already at the
linear level, surprises may be expected.
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