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Abstract Self-propelled particle (SPP) systems are intrinsically out of equi-
librium systems, where each individual particle converts energy into work to
move in a dissipative medium. When interacting through a velocity alignment
mechanism, and with the medium acting as a momentum sink, even momen-
tum is not conserved. In this scenario, a mapping into an equilibrium system
seems unlikely. Here, we show that an entropy functional can be derived for
SPPs with velocity alignment and density-dependent speed, at least in the
(orientationally) disordered phase. This non-trivial result has important phys-
ical consequences. The study of the entropy functional reveals that the system
can undergo phase separation before the orientational-order phase transition
known to occur in SPP systems with velocity alignment. Moreover, we indi-
cate that the spinodal line is a function of the alignment sensitivity and show
that density fluctuations as well as the critical spatial diffusion, that leads to
phase separation, dramatically increase as the orientational-order transition is
approached.
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1 Introduction

Examples of biological interacting self-propelled particle (SPP) systems in-
clude animal groups [1,2], insect swarms [3,4], bacteria [5,6,7], and, at the
microcellular scale, microtubules driven by molecular motors [8]. Even though
most examples of SPPs come from biology, there exist non-living SPP sys-
tems. There are several ways of fabricating artificial SPPs. The self-propulsion
of such particles typically requires an asymmetry in the particle: two dis-
tinct friction coefficients [9,10,11], light absorption coefficients [12,13,14,15],
or catalytic properties [16,17,18,19,20] depending on whether energy injection
is done through vibration, light emission, or chemical reaction, respectively.
Interestingly, this asymmetry does not need to be an intrinsic particle prop-
erty. Self-propelled Quincke rollers [21] as well as actively moving drops [22]
are remarkable examples where the asymmetry results from a spontaneous
symmetry breaking that sets the particle to move in a given direction.

At a theoretical level, we have learned in the recent years that the large-
scale properties of SPP systems depend on few microscopic details. The sym-
metry associated to the self-propulsion mechanism of the particles, which can
be either polar [23,24,25] or apolar [27], as well as the symmetry of the particle-
particle interactions, that often occur via a velocity alignment mechanism,
which can be either ferromagnetic [23,24] or nematic [27,25,26], play a funda-
mental role in the resulting self-organized patterns. Equally important is the
dimension of the space where particles move, whether this space is continuous
(off-lattice) [23,24,27,25] or discrete (on lattice) [28,29,30,31], and whether
particles move on a homogeneous or heterogeneous medium [32,33,34,35].

Another aspect of key importance, and central to the present study, is
whether there exists a coupling between the speed and the density of the SP
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Valrose, F-06108 Nice Cedex 02, France



3

particles. Notice that the importance lies on the existence of such coupling
and not on the mere fact that the speed may fluctuate. In the context of SPPs
with a velocity alignment, it has been shown first with a lattice model [36]
and later on with an off-lattice model [38] that such a coupling induces spon-
taneous phase separation and a zoology of complex patterns. The most evident
physical mechanism that can introduce a coupling between speed and density
is simple volume exclusion as showed with simple lattice models by adding ex-
clusion process rules in the absence of particle-particle alignment in [37] and
with alignment in [36], and with an off-lattice model of self-propelled disks
interacting by a soft-core repulsion [41]. The observed non-equilibrium phase
separation can be traced back to the non-equilibrium Motility Induced Phase

Separation (MIPS) introduced in the context of interacting run-and-tumble
particles by J. Tailleur and M.E. Cates in [39,40]. In absence of an alignment
mechanism, MIPS is a generic feature of active particles interacting by vol-
ume exclusion as shown in simulations with self-propelled disks [41,42,43] and
spheres [44,45], and argued theoretically in [37,46,47]. One exciting aspect
of the MIPS, as first pointed out in [37,39,40], is the remarkable similarity
with equilibrium phase-separation, which allows the mapping between these
non-equilibrium active systems with the analogous equilibrium systems.

The goal of the present study is to look at MIPS in the context of SPPs
with a velocity alignment mechanism. Specifically, we want to understand the
role played by the alignment mechanism in the phase separation process. Let us
recall that SPP systems with a velocity alignment mechanism exhibit a phase
transition from a disordered to an ordered phase. In the disordered phase, the
large-scale behavior of the particles is diffusive as occurs for SPPs without
a velocity alignment. Thus, we may hope that a mapping to an equilibrium
scenario, as the one performed in [39,40], remains possible. We push for such
an analogy as far as possible. To be exact, to the onset of the ordered phase.

Before starting, let us review briefly some of the most relevant theoretical
results for (dried) SPP systems with velocity alignment and in the absence
of density-dependent speed. The first hydrodynamical equations were derived
based on symmetry arguments and contained all allowed terms by symme-
try [48,49]. These initial studies provided a theoretical basis to understand
the emergence of long-range order (LRO) in two dimensional systems with
continuum symmetry as well as the presence of giant number fluctuations in
the ordered phase. The drawback of these initial approaches is the impossibil-
ity of connecting the parameters of the hydrodynamic equations with those of
the microscopic models. In [50], the macroscopic equations were derived from
given microscopic equations. Such an approach revealed that the “parameters”
of the hydrodynamic theory are in fact non-linear functions of the density. This
has allowed to understand the emergence of macroscopic structures, such as
bands, in this type of SPP systems [51,52]. For a detailed review, we refer the
reader to [53]. Here, we just mention that macroscopic equations have been
derived for ferromagnetic [48,49,50,53] and nematic velocity alignment [54] in
the dilute approximation and close to the order-disorder transition, with the
exception of [55] and [56]. Even though we have now a fairly good qualitative
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understanding of the hydrodynamics of SPP systems (in homogeneous media),
many open questions and fundamental problems remain unsolved.

The paper is organized as follows: we start by introducing the microscopic
model we are interested in. The following sections are devoted to the rather
long computation which starts from the microscopic model and ends with the
entropy functional describing the spatial density in the system. The main steps
of the computation are outlined at the beginning of the third section. Finally,
we draw some physical conclusions from the derived coarse-grained equations.

2 Model

We consider a system of N active particles, i = 1, . . . , N , moving in a two-
dimensional space. The position of the i-th particle is given by xi = (xi, yi)
and what we refer to as its active velocity (AV) by v(ni)u(θi), where u(θi) ≡
(cos(θi), sin(θi)) defines the direction of the AV and v(ni) ≡ v0ṽ(ni) its norm,
with v0 a constant and ṽ(ni) a function that depends on ni. The term ni

refers to the local density around the i-th particle. More specifically, ni =∑N

j=1 g(|xi − xj |/R) where the function g(∆/R), with ∆ = |xi − xj | defines
the interaction range. Finally, we consider an over-damped dynamics for the
evolution of the xi = (xi, yi) and θi such that the equations of motion of the
i-th particle take the form:

ẋi = v(ni)u(θi) +
√
2Dxσi(t) (1)

θ̇i = − γ

ni

N∑

j=1

g(|xi − xj |/R) sin(θi − θj) +
√
2Dθηi(t) . (2)

σi(t) = (σx
i (t), σ

y
i (t)) and ηi(t) for i = 1, . . . , N are white, gaussian and un-

correlated noises with unit covariance. These noises represents a “bath” with
very short time correlations or memory. The alignment sensitivity γ is not
directly related to the fluctuation amplitude Dθ through an Einstein relation.
A suitable option for the function g is to take g(∆/R) = 1 for ∆/R ≤ 1
and 0 otherwise, definition by which R defines the interaction range. Notice
that the model definition, in particular v(ni), implies a mesoscale description;
i.e., we assume that there is a microscopic physical mechanism that leads to
v(ni). Furthermore, we require v(x) to be a differentiable function, which is
not necessary applicable to lattice models with strict exclusion rules [57].

It is convenient to write the equations of motion in adimensional form.
Calling L the box size, we write xi = Lx̃i, yi = Lỹi. We also rescale the time
t = t̃/Dθ, and adopt v0 as the velocity scale. By using σi(t̃/Dθ) =

√
Dθσi(t̃)

and ηi(t̃/Dθ) =
√
Dθηi(t̃), we arrive to:

dx̃i

dt̃
= ǫṽ(ni)u(θi) + ǫ

√
2D̃xσi(t̃) (3)

dθi

dt̃
= − γ̄

ni

N∑

j=1

g((x̃i − x̃j)/α) sin(θi − θj) +
√
2 ηi(t̃) , (4)



5

where we have introduced the dimensionless parameters γ̄ = γ/Dθ, α = R/L,

ε = v0/(LDθ), and D̃x = DxDθ/v
2
0 , and so ni =

∑N

j=1 g((x̃i − x̃j)/α). We

notice that D̃x = DxDθ/v
2
0 is the ratio between the passive (Dx) and active

(v20/[2Dθ]) diffusion coefficient, which we consider to be of order ε0. From now
on, we work with the adimensional equations and drop the ˜ to simplify the
notation. In the following, we will assume α → 0.

3 Main computation

As is clear from the scaling introduced through the parameter ε, we are in-
terested in the situation where the dynamics over the angles θi is fast with
respect to the spatial dynamics. Furthermore, we want to study the density
of particles and their local mean orientation over large length scales. Our ul-
timate goal is to obtain a static large deviation principle yielding an entropy
functional, which describes the fluctuations of the spatial empirical density,
along the lines of [39,40], but accounting for the existence of a velocity align-
ment mechanism. To make the forthcoming computations easier to follow, we
outline here the general scheme:

1. Write an effective equation for the phase space empirical density (that is
in the variables x, y and θ), keeping the finite N fluctuations. This leads
to a stochastic PDE with a noise term of order 1/

√
N .

2. Take advantage of the time-scale separation to obtain a closed effective
dynamics for the empirical density of the slow spatial variables x, y.

3. Write a functional Fokker-Planck equation for the macroscopic density field
ρ.

4. Look for the stationary probability density of the macroscopic field ρ, under
the asymptotic form eNS[ρ] and solve for S at leading order in N .

3.1 Dynamical equation for the phase space empirical density

We assume that N is large, but finite, and denote by fd(x, θ, t) the empirical
density of particles in the 3D space given but [x, y, θ]. The temporal evolution
of fd(x, θ, t) is expressed in terms of the following stochastic partial differential
equation:

∂fd
∂t

= −ε∇. (v(ρ(x, t)))u(θ)fd(x, θ, t)) +
γ̄

ρ(x, t)

∂

∂θ

(
fd(x, θ, t)

∫
dθ′sin(θ − θ′)fd(x, θ

′, t)

)

+
∂2fd
∂θ2

+ ε2Dx∇2fd +

√
2

N

∂

∂θ

(
η(x, θ, t)

√
fd

)

+ε

√
2Dx√
N

∇ ·
(
σ(x, θ, t)

√
fd

)
, (5)
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where η(x, θ, t) and σ(x, θ, t) are gaussian noises, delta-correlated in time and
space, and ρ(x, t) is the empirical spatial density defined by:

ρ(x, t) =

∫
dθfd(x, θ, t). (6)

This can be shown at a formal level by following [58].

3.2 Averaging step - Time scale separation

We now take Fourier components of fd of increasing order, stopping the expan-
sion as soon as possible. This is a standard strategy, see e.g. [50]. Notice that
finite N fluctuations are taken into account. We use the following notations:
P = (Px, Py), with

P(x, t) =

∫
dθu(θ)fd(x, y, θ, t) . (7)

Integrating Eq. (5) respectively over dθ, cos θdθ and sin θdθ, we obtain:

∂ρ

∂t
= −ε∇.(vP) + ε2Dx∇2ρ+ ε

√
2Dx√
N

∇ · (ξ(x, y, t)) (8)

∂P

∂t
= −1

2
ε∇ (vρ) +

( γ̄
2
− 1
)
P+ ε2Dx∇2P+

√
2

N
η(x, y, t) +O(

ε√
N

)(9)

where the noises are defined by

ηx(x, y, t) =

∫
dθ sin θ

√
fd η(x, y, θ, t) (10)

ηy(x, y, t) = −
∫

dθ cos θ
√

fd η(x, y, θ, t) (11)

ξ(x, y, t) =

∫
dθ
√

fd σ(x, y, θ, t) . (12)

By construction, the noises are gaussian, delta-correlated in time and space.
Furthermore

〈ηx(x, y, t)ηx(x′, y′, t′)〉 ≃ δ(x− x′)δ(y − y′)δ(t− t′)
1

2
ρ(x, y, t) (13)

〈ηy(x, y, t)ηy(x′, y′, t′)〉 ≃ δ(x− x′)δ(y − y′)δ(t− t′)
1

2
ρ(x, y, t) (14)

〈ηx(x, y, t)ηy(x′, y′, t′)〉 ≃ 0 (15)

〈ξ(x, y, t)ξ(x′, y′, t′)〉〉 = δ(x− x′)δ(y − y′)δ(t− t′)ρ(x, y, t) . (16)

Consistently with our approximation, we have dropped in the noise correlation
all Fourier coefficients beyond the first. Notice that in Eq. (9) we have neglected
higher order Fourier coefficients since we are interested in characterizing the
system dynamics in the disordered phase – i.e. when collective motion is not
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observed. This implies that our approximation is only valid below the onset
of collective motion. Moreover, without higher Fourier components, Eq. (9)
predicts that |P| grows unboundedly for γ̄ > 2. To obtain a system of equations
that is physically well-behaved in the ordered phase, we have to go at least
one component further in Fourier. Such extra Fourier component is connected
to the nematic order, while P to polar order. To understand the disordered
phase, which is our objective here, we insist that it is enough to develop up
to polar order. Furthermore, we stress that Eq. (9) is consistent with a small
ε expansion.

If γ̄ smaller than 2 and not too close to 2, P very quickly reaches its
stationary value and remains small: particle motion is locally disordered, since
the interaction promoting alignment is not strong enough to create a local
orientational order. In this regime, we can take the l.h.s. of Eq. (9) to be 0 in
order to determine the stationary value of P. Neglecting terms of order ε2 and
ε/
√
N , we obtain:

P = ε
−1

2(1− γ̄
2 )

∇(v(ρ)ρ) +

√
2

N

1

1− γ̄
2

η (17)

These computations are formal, and could in general lead to incorrect results:
one should in particular be cautious about the meaning of the noise term,
which is multiplicative. However, since we will eventually take a small noise
limit (large N), this formal approach will correctly yield the leading order in
N . We insert Eq.(17) into (8) and look for the long-time behavior of ρ by
introducing a new time-scale t̃ = ε2t:

∂ρ

∂t
=

1

2
∇ ·
(

v

1− γ̄
2

∇[v(ρ)ρ]

)
+Dx∇2ρ

+

√
2Dx√
N

∇ · (ξ(r, t)) +
√

2

N
∇ ·
(

v

1− γ̄
2

η

)
, (18)

where again we have dropped the ˜ and replace η by −η. Notice that due to
the involved change of time-scale, all ǫ’s have disappeared of the final equa-
tion, and both noise terms give a contribution. The expansion in powers of
ε is formally consistent, in the sense that further Fourier components would
contribute terms which are formally of higher order. This means that one can
hope that Eq. (18) is in some sense exact in the limit N → ∞ , ε → 0.

Eq. (18) can be expressed in a more compact notation in the following way:

∂ρ

∂t
= U [ρ](x) +

1√
N

ν(x, t) (19)

where

U [ρ](x) =
1

2
∇ ·
(

v(ρ)

1− γ̄
2

∇[v(ρ)ρ]

)
+Dx∇2ρ (20)
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and 〈ν(x, y, t)ν(x′, y′, t′)〉 = D[ρ](x,x′)δ(t − t′) with

D[ρ](x,x′) = ∂x∂x′ [b[ρ](x)δ(x− x′)] + ∂y∂y′ [b[ρ](x)δ(x− x′)] (21)

where

b[ρ] = 2Dxρ+
ρv2(ρ)

(1 − γ̄
2 )

2

We have combined here the two independent gaussian noise terms into a single
one.

3.3 Functional Fokker-Planck equation

From Eq. (19), one can write a functional Fokker-Planck equation (see for
details [59]) for the probability distribution of the density field µt [ρ]:

∂µt

∂t
= −

∫
dx

δ

δρ(x)
(U [ρ](x)µt)

+
1

2N

∫
dx

δ

δρ(x)

{∫
dx′D[ρ](x,x′)

δ

δρ(x′)
µt

}
(22)

Note that we have here assumed an interpretation of the noise ν corresponding
to Ito’s convention. This has no consequence at leading order in N . We look
for a stationary solution taking the asymptotic form

µ [ρ] ∼ eNS[ρ] (23)

and compute S at leading order in N . The drift U and the noise correlation
D depend on ρ. However, we see that the relevant terms at leading order in
N are obtained when the functional derivatives with respect to ρ act on µt

rather than on U or D. This leads to the following equation for S:

∫
U [ρ](x)

δS

δρ(x)
dx =

1

2

{∫
dx

[
∂x

δS

δρ(x)

∫
dx′∂x′ (b[ρ](x′)δ(x− x′))

δS

δρ(x′)

]

+

∫
dx

[
∂y

δS

δρ(x)

∫
dx′∂y′ (b[ρ](x′)δ(x − x′))

δS

δρ(x′)

]}

= −1

2

∫
dx∇ ·

(
b[ρ](x)∇ δS

δρ(x)

)
δS

δρ(x)
(24)

By comparison and using the expression (20) for U , one sees that a sufficient
condition to find S is to solve the equation

1

2
b[ρ]∇ δS

δρ(x)
= −1

2

v(ρ)

1− γ̄
2

∇(ρv(ρ)) −Dx∇ρ (25)

Formally, it can be shown that this expression represents the equilibrium con-
dition for µ [ρ], that is the condition for a zero-flux solution of the functional
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Fokker-Planck equation, Eq. (22). Equivalently, this corresponds to the re-
versibility of the dynamics given by Eq. (19) with respect to the density µ[ρ].
We look for a solution S, which is a local functional of ρ, and of the form:

S[ρ] =

∫
dxs(ρ(x)) (26)

where the entropy density s is a real function to be determined. One finds

s”(ρ) = −
(
v2(ρ) + ρv(ρ)v′(ρ)(

1− γ̄
2

)
b[ρ]

+
2Dx

b[ρ]

)
(27)

When the integration of Eq. (27) is possible, the function s can be explicitly
retrieved. This is the main result of this article. In the absence of alignment,
i.e. γ̄ = 0, Eq. (27) leads to the same results derived in [40]. For instance, it is
straightforward to see that if in addition we make Dx = 0, the spinodal line
is given by the condition dv/dρ = −v/ρ as explained in [39,40].

Notice that the procedure followed to arrive to the free energy, consisted
in deriving a stochastic equation for the empirical density, and using Ito’s
calculus to obtain an expression for the density field µ, in turn connected to
the free energy S. We stress that the described procedure is fundamentally
different from recent approaches [47] used to describe phase separation in
non-aligning active particles, where a free energy is obtained by deriving first
a non-fluctuating BBGKY hierarchy of equations, performing a perturbation
expansion, and making a direct analogy between the derived equation for the
density field at second leading order and the Cahn-Hilliard equation, whose
free energy is well known. Our derivation, on the contrary, contains finite
N fluctuations, going beyond mean-field, and allows us to obtain directly a
free-energy-like functional form, which is not necessary a Cahn-Hilliard free
energy with a local cubic term as in [47]. In the following section, we discuss
the physical meaning of equations here derived.

4 Physical discussion and final remarks

Let us review the results we obtained. The equations of motion (1) and (2)
were our starting point. We required v(x) to be a differentiable function, which
implies that our derivation is, in principle, not adequate to describe sharp
interfaces as the ones observed in lattice models with strict exclusion rules [57].
Under these assumptions, we derived an equation for the empirical density,
Eq. (5), following [58]. This equation becomes an exact description only in
the limit of infinite N and infinite densities. Thus, for finite but large N ,
Eq. (5) should provide a good description for the particle density of a system
whose microscopic dynamics is given by Eqs. (1) and (2). Our goal has been to
derive an entropy-like functional for the particle density. In order to do that,
we made an expansion in Fourier of Eq. (5), given by Eqs. (8) and (9), up to
polar order P, and made use of the fast relaxation of P with respect of the
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γ / Dθ

0

D
xsp Order

MIPS

Homogeneous

Disorder

Fig. 1 Sketch of phase diagram: DSP
x vs. γ̄ = γ/Dθ at fixed density. The figure indicates

that the transition between the (orientationally) disordered and ordered phase is controlled
by the ratio γ̄ = γ/Dθ. In the disordered phase, the red dashed curve represents the spinodal
line that diverges (according to our approximation) as the onset of orientational order is
approached. As we come close to the disorder-order transition density fluctuations also
diverge (see text). Above the red curve there is only one homogeneous phase, while below
the system phase separates, i.e., the homogeneous phase is no longer stable. It has been
shown that the ordered phase can exhibit a zoo of patterns, see [36,38]. In the sketch we have
assumed that v(ρ) = exp(−λρ), with λ large enough to allow MIPS. Notice that in absence
of alignment interactions, Dsp

x is a constant, whose value corresponds to γ̄ = γ/Dθ = 0 in
the figure. We remind the reader that Dsp

x is a dimensionless parameter, which means that
for non-aligning particles the spinodal is given by DxDθ/v

2

0
= Dsp

x (γ̄ = 0).

temporal evolution of ρ, to express P as function of ρ and its gradients. Such
expansion up to polar order, as well as the separation of time-scales between
the temporal evolution of P and ρ, are exclusively valid in the disordered
phase. From Eq. (9), we can easily see that the onset of local (orientational)
order occurs for γ̄/2 − 1 > 0, that is, when the angular diffusion Dθ is such
that Dθ < γ/2. This means that the entropy functional, given by Eqs. (26)
and (27), is valid for Dθ > γ/2, see solid vertical line in Fig. 1.

To understand the physical meaning of the derived equations, let us adopt
a concrete functional form for v(ρ), e.g. v(ρ) = exp(−λρ). Notice that the
qualitative features discussed below do not depend on the precise functional
form for v(ρ), provided it is decreasing. Phase separation occurs below the
binodal line defined by the double tangent construction on the s(ρ) curve.
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γ/Dθ=1.5
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ρ

0

0.005

0.01

0.015

0.02

0.025

D
x

γ/Dθ = 0

γ/Dθ = 0.2

γ/Dθ= 0.9

MIPS

homogeneous
 phase

(a) (b)

Fig. 2 Phase separation in the disordered phase is controlled by the interplay between
γ̄ = γ/Dθ and Dx. (a) Entropy s(ρ), derived from Eq. (27), for various values of γ̄ = γ/Dθ .
(b) Phase diagram Dx vs. ρ for various values of γ̄ = γ/Dθ , see Eq. (28). While below each
curve DSP

x (ρ), the system is motility-induced phase separated (MIPS), above DSP
x (ρ) the

system remains homogeneous (between the binodal and spinodal lines, the homogeneous
phase is only metastable). This phase diagram is the counterpart of the classical gas-liquid
phase diagram T − ρ. The critical point, defined by (ρc, Dcrit

x ), see black dots and text,
marks the value of Dx above which there is no more phase transition. In the figure we have
assumed that v(ρ) = exp(−λρ). The curves in (a) and (b) correspond to λ = 1.

Easier to detect and compute is the spinodal line, below which an homogeneous
phase cannot be stable. The spinodal can be found solving s′′(ρ) = 0, using
expression Eq. (27). One finds

e−2λρ(λρ− 1)

2− γ̄
= Dsp

x (ρ) (28)

For ρ, λ such that λρ > 1, Eq. (28) is represented by the red dashed line in
Fig. 1. Above this line, the homogeneous solution is stable; below it, spinodal
decomposition (Motility-Induced Phase Separation) occurs. Notice that this
line, which corresponds to a dynamical instability, can also be obtained by
linearizing Eq. (19), without noise, around a spatially homogeneous solution.
Eq. (27) also gives access to the metastable regions around the spinodal line.
Figure 1 shows that the critical spatial diffusion Dsp

x below which the homo-
geneous solution is unstable strongly depends on γ̄ = γ/Dθ: the divergence of
Dsp

x in our approximation is connected to the term in 1/(1− γ̄/2) in Eq. (20).
This high sensitivity of the spinodal line to the alignment strength, i.e. γ, is
consistent with results obtained in simulations [36]. As expected, the entropy
s(ρ) is also affected by γ̄ as shown in Fig. 2(a).

Thus, our results indicate that MIPS as described in [39,40] also occurs in
the presence of alignment interactions in the disordered phase, with γ̄ affecting
the spinodal (as well as binodal) line as shown in Fig. 2(b). Notice that Eq. (28)
allows us to draw the phase diagram Dx − ρ, which is the counterpart of the
classical gas-liquid phase diagram T−ρ. From this expression we can obtain the
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so-called critical point (ρc, D
crit
x ), with ρc = 3/(2λ) and Dcrit

x ≃ 0.0249/(2−γ̄)
for the chosen functional form of v(ρ). For Dx > Dcrit

x (γ̄), Eq. (28) has no
solution, which implies that in this case, the homogeneous phase is stable for
any density and value of λ. In short, MIPS has disappeared above Dcrit

x (γ̄).
Hence, the critical value of the spatial diffusion needed to destroy the MIPS
strongly increases when the alignment interactions increase. Moreover, in the
current approximation, it diverges as order-disorder transition is approached,
which suggests that there is no critical point in the ordered phase.

Finally, we stress that at this level of approximation, Dx (i.e., the original,
dimensional, spatial diffusion constant) does not affect the orientational order
transition point (more precisely the instability of the homogeneous disordered
phase), while γ and Dθ play a role on both, the disordered and ordered phase.
Now, let us turn to the analysis of density fluctuations related to the noise
term present in Eq. (19). From Eq. (27), we learn that in the homogeneous
phase, an alignment interaction γ > 0 makes s′′ smaller in absolute value,
and thus it increases the density fluctuations. Notice that density fluctuations
diverge for s′′ → 0. This occurs on the spinodal line, as well as in the MIPS
phase, as we approach the instability of the (homogeneous) disordered phase,
i.e. γ → 2Dθ. It is worth noticing that for Dx = 0, γ has no influence on the
phase diagram shown in Fig. 1, while it still has on the density fluctuations.
A note of caution is in order here. According to the proposed approach, Dsp

x ,
Dcrit

x , as well as density fluctuations diverge as the disorder-order transition
is approached. As explained above, our approximation is not valid in the limit
of γ → 2Dθ. While we can be sure that Dsp

x , Dcrit
x and density fluctuation

increase as we approach the onset of collective motion, we cannot ensure that
the system behavior at the disorder-order transition or in its vicinity is as
predicted by the present approach.

In summary, our calculations indicate that phase separation can occur in
the disorder phase with the alignment strength – more specifically with the
“distance” to the instability of the (homogeneous) disordered phase – control-
ling the position of the spinodal line involved in the MIPS as well as the size
of density fluctuations. In short, we have generalized the approach of [39,40]
in order to account for the presence of a velocity alignment mechanism. While
the nature of the described phase separation remains a MIPS as observed in
non-aligning systems [41,42,43,44,45,46,47], this does not exclude that in the
orientationally ordered phase, phase separation can be of a different nature as
suggested in [60].
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