
HAL Id: hal-01086246
https://hal.science/hal-01086246

Submitted on 24 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SignalPU: A programming model for DSP applications
on parallel and heterogeneous clusters
Farouk Mansouri, Sylvain Huet, Dominique Houzet

To cite this version:
Farouk Mansouri, Sylvain Huet, Dominique Houzet. SignalPU: A programming model for DSP appli-
cations on parallel and heterogeneous clusters. IEEE International Conference on High Performance
Computing and Communications, Aug 2014, Paris, France. pp.8. �hal-01086246�

https://hal.science/hal-01086246
https://hal.archives-ouvertes.fr

SignalPU: A programming model for DSP

applications on parallel and heterogeneous clusters

Farouk Mansouri, Sylvain Huet, Dominique Houzet

GIPSA-lab

UMR 5216 CNRS/INPG/UJF/Universite Stendhal

F-38402 GRENOBLE CEDEX, France

Email: firstname.lastname@gipsa-lab.grenoble-inp.fr

Abstract—The biomedical imagery, the numeric communica-
tions, the acoustic signal processing and many others digital signal
processing (DSP) applications are present more and more in
the numeric world. They process growing data volume which
is represented with more and more accuracy, and use complex
algorithms with time constraints to satisfying. Consequently, a
high requirement of computing power characterize them.

To satisfy this need, it’s inevitable today to use parallel and
heterogeneous architectures in order to speedup the processing,
where the best examples are today’s supercomputers like ”Tianhe-
2” and ”Titan” of Top500 ranking. These architectures with their
multi-core nodes supported by many-core accelerators offer a
good response to this problem. However, they are still hard
to program to make performance because of many reasons:
Parallelism expression, task synchronization, memory manage-
ment, hardware specifications handling, load balancing . . . In
the present work, we are characterizing DSP applications and
propose a programming model based on their distinctiveness in
order to implement them easily and efficiently on heterogeneous
clusters.

I. INTRODUCTION

The digital signal processing applications like computer
vision, medical imagery or acoustic signal processing take a
real place in many domains. Also, cause of sensors technology
evolution, they process increased data volume (data length)
like the high definition imagery which reach ten or so of Go.
Also the data unit is represented more and more precisely
(data floating point encoding) from single precision to 32
digits to quadruple precision to 128 digits. From the other
side, the DSP applications use complex algorithms (time
complexity) in linear, quadratic or exponential time. And are
usually constrained with latency or throughput. Because of all
this reason, we can sayy that DSP applications need a big
computing power.

To satisfy this need, it’s recommended today to focus
on parallel and heterogeneous hardware architectures which
include generalist multi-core processors (Intel Xeon or AMD
Opteron), supported by many-core accelerators (GPU, Xeon
phi, Cell, FPGA, DSP) and structured in the form of a cluster
of connected nodes with a high bandwidth network. The best
examples are the supercomputers like ”Tianhe-2” or ”Titan”
related in the Top500 list.

Certainly, these architectures can get high performance
computing to satisfy DSP applications requirements. How-
ever, they present some difficulties of use. In fact, to make
performance with that last, the programmer has to deal with

heterogeneous computation units using different languages or
API, he has to manage synchronization, memory allocation,
data transfers and the load balance between the processors.
Thus, programming models are necessary to hide all this
hardware specifications, and produce easily and efficiently the
desired performance.

In the present work, we present first (Section II) the state
of the art of models of programming and their classification.
Afterwards, we describe in the section III the digital sig-
nal processing applications and highlight their characteristics.
Then, we give the features to efficiently implement them in
the next section (Section IV). In the section V we propose a
programming model and explain its conception parts. Finely
in the section VI we present experimentations and results of
applying our model of programming (MOP) on a real world
application.

II. STATE OF THE ART OF PROGRAMMING MODELS

A programming model is a programming concept providing
some abstractions to mask (hide) hardware specificities of
parallel and heterogeneous architectures in order to easily and
efficiently express high level applications. In other words, it’s
an interface between the hardware complexity and the software
features which represent a base for the high level program.
Thus, they increase productivity, portability and performance.
They exist in the form of languages, language extension or
library. Below, we present their classification under three axis:

A. Classification according to abstraction level

One of the important purposes of MOP is to make easier
the implementation of high level applications on a complex
architecture. That is possible by bridging between the hard-
ware functionalities like the memory management, the tasks
scheduling, the data copy and the basis stand of the high
level algorithm. Therefore, a good programming model has
to abstract the architecture details for the programmer. Thus,
we distinguish two abstraction levels for today’s MoP :

Low level abstraction: In this kind, the programmer
has to handle manually a lot the hardware functionalities like
allocation and freeing of memory, creation, submission and
synchronization of tasks, data transfer, load balance. . . Thus,
this proximity of architecture gives him more control to tune
the execution but reduce productivity.

High level abstraction: By contrast, in this kind, the
programmer is freed of several of these constraints because the
programming model does this for him.

B. Classification according to the communication model

In this classification we focus on the communication sorts
used by models of programming in order to synchronize or to
copy data between the tasks executed on several computing
units composing the cluster. Here, we distinguish also two
kinds :

Shared memory communication: In this case, the
programming model assumes the data copy and the synchro-
nization of tasks on parallel architectures which are based on
shared memory like multi-core or many-core computing units.

Message passing communication (Distributed mem-
ory): This kind of MOP assumes the data copy and the task
synchronization onto the distributed architectures by exchange
messages between the tasks through the network connecting
nodes of the cluster.

C. Classification according to the parallelism and heterogene-
ity expression

To deal with the parallel and heterogeneous architecture,
the programmer has to express the part of the code which will
be executed in parallel or on the accelerator by programming
it inside the application. However, thanks to programming
models, he can do that with more easier manners. For ex-
ample, by function calls in the API, by directive insertion for
language extension or by compilator’s options added for some
languages. We propose to classify this kind of expressions
under two sorts:

Explicit expression: In this case, the programmer has
to explicitly express the part of the program to be executed in
parallel by adding at the portion of code inside. For example,
insert some directives or call functions from an API.

Implicit expression: Unlike the previous case, here,
the expression of the parallelism or heterogeneity is implicitly
made by the programmer. For example, by giving the task
graph of the application or by adding some compilation
options.

In the figure Fig.1, we present some programming lan-
guages, extension of language and API, representing software
aspects of programming models and their characteristics clas-
sified according to two axis:the communication model and the
abstraction level.

1) Languages:

CUDA [1](Compute Unified Device Architecture): Is
a proprietary programming model invented by NVIDIA to
implement programs in their graphical processing unit (GPU).
It’s proposed in the form of a language inspired from C that
the programmers can insert on their C/C++ code to offload in
generally the SIMD portion. It’s a low level abstraction MOP,
and support only the shared memory architecture.

Fig. 1: Architecture and models of programming

OpenCL [2](Open Computing Language): Unlike
CUDA, it’s an open standard language based on C99 with
some limitations and additions. It allows for the programmers
to address heterogeneous platforms consisting of CPUs, GPUs,
DSPs, FPGA, and others processors. Also, this MOP offers
a low level abstraction and is designed for shared memory
architectures but allows the both task and data parallelism.

PGAS [3](partitioned global address space): Is a par-
allel programming model which assumes a global memory
address space for distributed architectures that is logically
partitioned. Each portion of it is locally affected to each
process or thread. It is a base for many programming languages
like Chapel [4] developed by Cray, X10 by IBM [5], Fortress
[6] by Sun or Unified parallel C [7] by UPC consortium.

StreamIt [8]: Is a programming language and a com-
pilation infrastructure, specifically engineered for streaming
systems. It is designed to facilitate the programming of large
streaming applications, as well as their efficient mapping to a
wide variety of target architectures like CPUs, GPUs, DSPs
and FPGA.

2) Extension of language:

OpenMP [9](Open Multi-Processing): Is a high level
abstraction MOP in the form of a set of directives and
environment variables that allow for programmers to model
his algorithms for data parallelism or task parallelism on a
shared memory architecture. The programmer has to annotate
his code by inserting some extensions (directives) which are
identified at compilation time to generate supplementary code
and executed on both hardware, CPUs and accelerators.

OpenAcc [10]: Like OpenMP, it’s a programming
standard for parallel computing based on PRAGMA directive
but more oriented to data parallelism on shared memory
architectures containing accelerators.

OmpSS [11]: Is another variant of OpenMP extended to
support asynchrony, heterogeneity and data movement for task
parallelism. As OpenMP, it is based on decorating an existing
serial version with compiler directives which are translated into
calls to a runtime system in order to manage the parallelism
extraction and the coherence and the movement of data.

3) Application interface programming (API):

MPI [12] (Message Passing Interface): Is the most
used MOP for distributed memory architecture. It consist

of a specific set of routines (i.e., an API) directly callable
from supported languages (C/C++/Fortran . . .). Using MPI, the
programmers can distribute execution of their code on many
nodes connected through a TCP/IP network.

TBB [13] (Threading Building Blocks): Is a C++ tem-
plate library developed by Intel for writing software programs
under task parallelism model and executing it on multi-core
processor according to the dependency graph. It also schedules
the processing to balance the load.

StarPU [14]: In the same manner, StarPU is a task pro-
gramming library but for hybrid architectures CPU-GPU, and
allows also for programmers to express the data parallelism.
Using some routines and data structures, the programmer
constructs a graph of tasks which are optimally scheduled and
executed on heterogeneous and distributed memory cluster.

III. DIGITAL SIGNAL PROCESSING APPLICATIONS

Nowadays the digital signal processing applications know
a great boom and are present in a lot of domains. They are
a repetitive (iterative) processing of data set of input digital
signal for producing an output signal or a result, as shown in
the figure Fig.2. In the algorithmic aspect, it represents a main
loop which iteratively process all input data units.

Fig. 2: DSP application’s form illustration

The processing part represents the firing of each data unit
composing the input signal using some operators (kernels),
where each operator represents an independent function with
some input and output arguments. In the algorithm, that’s the
function calls inside the main loop. We can model this part
with a data flow graph, where the vertex of the graph represents
the kernels and the edges represent the data trading between
operators in the form of flow. The figure (Fig.3) illustrates
this model. In this work, we limit ourselves to the treatment
of synchronous data flow graph [15], [16].

Fig. 3: Data flow graph (DFG) model of DSP application

In majority of DSP applications, multiple input data units
are processed with the same set of instructions. For example,
in video processing, each input image is processed in the same
manner using the same algorithm. So, it’s possible to run
multiple data flow graph (DFG) in the same time on a parallel
architecture. Also, each unit of data goes through the operators
as input arguments and comes out as output arguments. Thus,
depending on the DFG organization, some operators (kernels)
must be executed in order, but some of them may be executed
separately and in parallel. On the other hand, according to
the data kind and the kernel algorithm, it could be interesting
in some cases to offload execution of certain of kernels on

a massively parallel computation unit (accelerators) like the
GPU, Xeon Phi or Cell in order to enhance performances.

Taking into account these characteristics, it’s possible to
deduce some rules to apply in implementation and execution of
DSP applications on parallel and heterogeneous architectures:

Task parallelism: Using the DFG model, highlight the
dependencies between the tasks and detect the tasks able to be
executed in parallel.

Data parallelism: Identify the tasks according to their
Flynn taxonomy [17]. The MISD (Memory bounds) tasks are
oriented to generalist processors and the SIMD tasks (Compute
bounds) towards the accelerators.

Graph parallelism: In order to optimize the occupancy
of computing units composing the cluster, deal with several
graphs where each of them processes one input data unit.

In the next section (Section IV), based on extracted dis-
tinctiveness and the rules cited above, we focus on the im-
plementation side of the DSP applications, and we discuss on
which programming model is more suitable for programmers
to easily and efficiently porting these applications on parallel
and heterogeneous architectures.

IV. IMPLEMENTATION OF DSP APPLICATIONS

As presented in the preceding section (Section III), the
DSP applications have some characteristics, that the program-
mers must exploit in order to take advantage of targeted
heterogeneous and parallel architectures. First: To highlight
the kernels able to be executed in parallel (task parallelism),
they have to express their algorithm in the form of a set
of tasks using threads or process technologies. They have to
manage these threads for communicating between them or to
be synchronized according to the application’s dependencies
on the both shared and distributed memory architectures. In
addition, to profit from the accelerator’s capacity to speedup
the SIMD processing (data parallelism), the user has to offload
a part of their task towards these compute units. To do this, he
has to deal with memory allocation on accelerators, copy-in the
input data, lunch the execution, copy-out the results and finally
freedom the used memory zone. Also, the DSP applications
are mostly iterative, so it’s a good idea to unroll the main
loop of the application and therefore process a number of
data units in the same time (graph parallelism) in order to
increase the occupancy of computing units. To do that, the
code writers must duplicate the process (thread) in charge of
executing the main loop taking care to guarantee the data
coherence by restricting some variables or sharing others.
All this implementation features are necessary for porting
DSP applications on heterogeneous clusters but not enough to
optimize productivity of the hardware. In fact, the programmer
must cope with others difficulties like communication cost
which must be masked by overlap it with the computation,
or the load balancing between the computational units which
must be assumed by a good scheduling of tasks.

Applying all these implementation rules is very hard. The
programmer has to combine the handling of some API, lan-
guage or extension of language which are low level for certain
or restricted to specific hardware for others. For example,
the programmer has to use Pthread , TBB or OpenMP to

generate threads and express task parallelism on each node
of the cluster (shared memory architecture), but also the MPI
or PGAS model to manage them by creating processes onto
many nodes (distributed memory architectures). He has to use
CUDA or OpenCL to address accelerators like the GPU, Cell
or Xeon-Phi and offload a part of a SIMD work on it. In
the other case, the higher level tools like OpenACC, OmpSS
or StarPU which are based on the low level tools, must be
the solution. They offer more abstraction of the hardware
and can target the complete cluster. But some of them are
restricted to a particular model of programming, for example
OpenAcc express only the data parallelism. Others of them like
OmpSS are rather oriented to decorating an existing sequential
code by inserting some PRAGMA directive and transforming
it at compilation time into a parallel code. The rest, based
on API like StarPU is, in our opinion, the most adapted
programming models to implement high level applications on
heterogeneous cluster. It offers an interface based on a large
routines and structures which the programmers can use to
design their applications, and in addition proposes a runtime
which manages the tasks, their dependencies and dynamically
schedule their executions on the architecture. However, it’s
not adapted (specified) to DSP applications as characterized
in the section III with their iterative and repetitive form, and
also it’s still complicated to handle because of the number of
routines and data structures proposed to the user as interface
to implement their applications. Because of these reasons, we
propose in the next section, a programming model based on a
data flow graph model to make easier the application modeling
and automatize the generation of the directional acyclic graph
of tasks (DAG) in order to adapt StarPU to the implementing
of DSP applications on heterogeneous cluster.

V. OUR MODEL OF PROGRAMMING

In this section we propose a programming model as an
extension of StarPU’s application programming interface (API)
[14], which allows for programmers to express easily and
efficiently DSP applications on parallel and heterogeneous
cluster. In comparison with the state of the art classification
described in section II, our MOP is a high level abstraction
concept. The programmers don’t have to worry about several
architecture specificities, like memory management, task cre-
ation, computing units profiling etc. . . They can design their
algorithms for tasks and data parallelisms. Also, because it’s
based on StarPU, our MOP take in charge the both shared and
distributed memory architectures, and deal with many-node
cluster using the messages passing interface (MPI). Finally,
it’s implicit parallelism and heterogeneity expression. In fact,
thanks to the DFG application design, the programmer is free
to specify in the code which tasks will be executed in parallel
and on accelerators.

Fig. 4: SignalPU design : Three levels of processing

We present our MOP in 3 steps of treatment as shown in

the figure (Fig.4). First level: the DFG-XML interface with
which the programmer can describe his application in the
form of DFG, he can specify the operators composing the
processing (function, arguments, architecture kind) and the
data flow information (size, type, link). Thus, he is saved to
manipulate the StarPU’s API for creating tasks, for managing
buffers between each couple of task, or for submitting jobs
onto the corresponding computation unit. Second level: the
application design. In this step, the DFG is transformed into a
directional acyclic graph (DAG) of task using graphs unfolding
techniques [18], where tasks are linked according to data
dependencies. Also here, the user doesn’t have to deal with the
API to unroll the main loop. Third level: the StarPU runtime
is used to physically manage the set of tasks and execute them
on the cluster according to an optimal dynamic scheduling.

Below, we describe with more details and through a syn-
thetic application example the 3 steps of our programming
model :

A. Level 1: SignalPU DFG-XML interface

Let’s take the synthetic application described in the algo-
rithm 1

Algorithm 1 Synthetic DSP application

Input: Number of iterations (Nbr). Input data set (Datain).
Output: Output data set (Dataout).

1: for each Dataunit in Datain do
2: V ar1 ← Producer(Dataunit)
3: V ar2 ← kernel1(V ar1)
4: V ar31 ← Kernel2(V ar2)
5: V ar32 ← Kernel3(V ar2)
6: V ar4 ← Kernel4(V ar31 , V ar32)
7: V ar5 ← Kernel5(V ar4, V ar′

4
)

8: V ar′
4
← V ar4

9: Consumer(V ar5)
10: end for

/// Dataunit may be an image or a sample ///

In this step, the programmer has to express his application
using the DFG-XML interface description. First, he has to
describe each kernel (functions) in the algorithm in the form of
graph node (vertex) using the given XML structure. He has to
put the number of input and output arguments, the architecture
kind corresponding to the kernel (CPU, GPU, Cell, Xeon Phi
. . .). Second, he has to describe, using an XML structure, the
data flows between the kernels in the form of graph edges
with a weight corresponding to the type and size of the data
which is traded between kernels. As result, a data flow graph
of application is produced as shown in the figure Fig.5.

Fig. 5: The DFG-XML of the synthetic DSP application

B. Level 2: SignalPU application design

In this step, using the graph unfolding techniques, a DFG
of task is iteratively produced from the result of previous
processing level (DFG-XML model of application). This DFG
represents a set of independent tasks linked by several kinds of
data dependencies (Fork-join, producer-consumer, inter-graph
producer-consumer).

a) Tasks generation: First, the set of tasks is iteratively
created when each task represents the execution of each kernel
of DFG with one data unit (One iteration). The characteristics
of task (Number of input arguments, the number of output
arguments, function identifier, architecture kind) are imported
from the XML structure defining the corresponding kernel in
the DFG-XML model.

b) Tasks linking: Second, the links between each couple
of tasks are putted according to the edges defined in the
XML data flow graph. A link represents a buffer of memory
which serves to stock the data produced by output argument
from predecessor task and consumed as input argument in
the successor task. Also here, the characteristics of buffers (
Data type, data size, input argument , output argument, input
vertex, output vertex) are found in the XML structure of the
corresponding edge.

This level’s part of our programming model is described
by the algorithm 2. We present in the figure Fig.6 the DSP
of task of the synthetic DSP application obtained by applying
the algorithm 2 over 4 iterations.

Algorithm 2 DAG of tasks creation

Input: XML data flow graph (DFGxml). Number of itera-
tions (Nbr)

Output: DAG of tasks (DAG)
1: for each iteration in (Nbr) do
2: for each node in (DFGxml) do
3: Tset ← Createtask()
4: end for
5: for each edge in (DFGxml) do
6: Tset ← Linktask()
7: end for
8: DAG← Submittasks(Tset)
9: end for

C. Level 3: StarPu runtime

In this step, we use StarPU runtime to manage the DAG
of tasks generated in the previous level and to dynamically
schedule them taking into account the dependencies between
the tasks in order to guarantee the data coherence. The figure
below (Fig.7) show how StarPU runtime does that:

At runtime, all the submitted tasks are stored on a stack,
each task has an affected status (ready to be executed, waiting
some things, in firing, terminated . . .). StarPU runtime piles
up the ”ready to execute” tasks on another task list which rep-
resents the input set of tasks for scheduler, which dynamically
affects them to be executed on the appropriate computation
unit using some heuristic algorithms in order to determine
the best time for each task. One of these algorithms is the
Work Stealing (WS) [14] is based on estimated transfer times

Fig. 6: The DAG of tasks of synthetic DSP application

of task’s data to predict which compute unit will be the best
for each task. Another policy like the Heterogeneous Earliest
Finish Time (HEFT) [19] uses in addition, the estimation of
execution times of each task on each device in order to produce
more efficient scheduling.

With these three steps of our proposed MOP, the program-
mer can easily implement his DSP application and applies
the optimizations: Tasks parallelism (TP) by extracting the
tasks in the DFG which be able to be executed in the same
time. Data parallelism (DP) by off-loading some tasks on
(SIMD) accelerators. Graph parallelism (GP) by overlapping
the processing of some graphs. And the load balance tanks to
dynamic scheduling using StarPU runtime.

Fig. 7: StarPU runtime’s levels

VI. EXPERIMENTATIONS AND RESULTS

In this section we present you the real world experimen-
tations in order to validate our approach and demonstrate
the interest of its usage. We use the saliency application
to process a set of images on the heterogeneous CPU-GPU
architecture. First, we describe the saliency application and
give its algorithm. Then, we explain its implementation using
our programming model. And finally, we give the results and
discuss their impacts.

Retinal filteringRetinal filtering

input
image

Cortical-like filtersCortical-like filters

InteractionsInteractions

NormalizationsNormalizations

SummationSummation

static
saliency
map

Fig. 8: The static pathway of the visual saliency application

A. The saliency application

Based on the primate’s retina, the visual saliency model is
used to locate regions of interest, i.e. the capability of human
vision to focus on particular places in a visual scene. The
implementation that we use is the one proposed by [20] as
shown in figure Fig.8. His algorithm (Algorithm 3) is: First, the
input image (r-im) is filtered by a Hanning function to reduce
intensity at the edges. In the frequency domain,(cf -fim) is
processed with a 2-D Gabor filter bank using six orientations
and four frequency bands. The 24 partial maps (cf -maps[i; j])
are moved in the spatial domain (c-maps[i; j]). Short interac-
tions inhibit or excite the pixels, depending on the orientation
and frequency band of partial maps. The resulting values are
normalized between a dynamic range before applying Itti’s
method for normalization, and suppressing values lower than a
certain threshold. Finally, all the partial maps are accumulated
into a single map that is the saliency map of the static pathway.

Algorithm 3 Static pathway of visual model

Input: An image r im of size w · l
Output: The saliency map

1: r fim← Hanningfilter(r im)
2: cf fim← FFT (r fim)
3: for i← 1 to orientations do
4: for j ← 1 to frequencies do
5: cf maps[i, j]← GaborF ilter(cf fim, i, j)
6: c maps[i, j]← IFFT (cf maps[i, j])
7: r maps[i, j]← Interactions(c maps[i, j])
8: r normaps[i, j]← Normalizations(r maps[i, j])
9: end for

10: end for
11: saliency map← Summation(r normaps[i, j])

B. The SignalPU implementation

To implement the application with our programming
model, the first step is to model its algorithm (Algorithm
3) given before in the form of DFG-XML using the Sig-
nalPU interface. For this, we represent each of all func-
tions (Hanningfilter(), FFT (), GaborF ilter(), IFFT (),
Interactions(), Normalizations(), Summation()) with a
node in the graph including the characteristics of each of them

(architecture kind, input arguments, output arguments). Then,
we represent the data flow between each twice kernels with
an edge in the graph including its characteristics (data type,
data size). In the figure (Fig.9) we present the DFG resulting
of this step.

Fig. 9: The DFG-XML model of the visual saliency
application

At runtime, the XML-DFG description of the saliency
application is analyzed and a DAG of independent tasks is
iteratively generated, where each task represents the execution
of each kernel’s code (function’s code) for each image on
the corresponding computation unit (CPU,GPU). Thus, we
haven’t to use the StarPU’s API for describing the application’s
tasks. Also, we have not to manage the buffer’s allocating and
freeing. We haven’t written the main loop which processes the
set of input images, and don’t have to unroll it. The StarPU’s
API is almost entirely masked.

C. The results

In this subsection, we present results of two experimen-
tations where we show the performance provided by the
implementation with our programming model using the op-
timizations which we propose (graph unfolding + dynamic
scheduling), compared to the same implementation with a
static scheduling, and without graph unfolding. The aim is
to give you an indication of the performance gained using
our model of execution compared to another classical im-
plementation. The architecture used for experimentations is a
heterogeneous CPU-GPU node composed of a 4 cores CPU
(intel-i7 core) and 3 GPU (1 NVIDIA GeForce GT 610, 1
NVIDIA Quadro 4000, 1 NVIDIA GeForce GTX TITAN).
Note that the GPU devices are ordered from the lowest to the
highest powerful. For all experimentations, we decide to put 2

tasks per device as a static scheduling. That’s not the optimally
placement, but the goal is to compare a dynamic scheduling
to a naive user placement without profiling device’s power.

Fig. 10: The performance as a function of number of
processed images with static scheduling

Fig. 11: The performance as a function of number of
processed images with dynamic scheduling

For the first experimentation, we present first in the figure
Fig.10 the evolution of the performance (Time of execution)
as a function of number of processed images (iterations) in a
static scheduling context. In the green curve (marked with ’x’),
we show the evolution of execution time (in second) necessary
to process each set of images using our programming model
with graph unfolding which allow to process several graphs in
the same times. In the blue curve (marked with ’*’), we show
the same result of implementation but without graph unfolding
techniques. The comparison between them is represented on
the dotted black curve as speedup obtained between both
results which reach and is stabilized on 1.04 x. In the figure
Fig.11, we present the same experimentation (evolution of time
of execution) as a function of number of processed images
(iterations)) but here, we combine the dynamic scheduling
and the graph unfolding optimizations. So, here the speedup
obtained between both results reach 3.5 x.

We explain this variance of performance gains in both parts
of this first experimentation by the increasing of the number
of tasks executed in parallel. In fact, the present application is
completely sequential as shown in the figure Fig.10, but thanks
for the graph unfolding, it’s possible to process a number of
data flow graphs and several images are executed at the same
time. However, in the first part of this experiment (Fig.11),
the tasks are statically putted on the architecture and each
kernel of the DFG model of the application is associated with
a computing unit. Therefore, each compute unit processes all
the time the same size of the task, consequently, one of them
(which processes the biggest tasks) creates a bottleneck, and
it delays the processing. In contrast, with using the dynamic
scheduling, it’s possible to more take advantage of vacancy of
all computation units and enhance the processing.

In the second experiment, we process a fixed number
of images (100 images) but we vary its size (height and
width). The figure Fig.12 shows the evolution of execution
time in tow implementations: with dynamic scheduling, and
with static scheduling. Also here, the green curve (marked with
’x’) represents the evolution of execution time of the set of
images processed by the application with dynamic scheduling
but without graph unfolding, as function of image size. And
in the blue curve (marked with ’*’), we present the same
result obtained by applying static scheduling. The difference
between both results is shown in the black dotted line as a
speedup that we get by using our programming model which
reach only 1.19 x. The figure Fig.13 represent the second
part of experimentation, shows the same result where we add
the graph unfolding optimization to dynamic scheduling in
the the green curve (marked with ’x’), and keep the second
implementation (marked with ’*’) in static scheduling and
without graph unfolding. Also here, the difference between
both results is shown in the black dotted line as a speedup
which grows-up to 2 x in this case.

The explanation of the performance increasing (from 1.19x
to 2x) we can give is: In the first part of the experimentation
(Fig.12), the use of dynamic scheduling without graph un-
folding restrict the performance because there is not enough
tasks to process inside each iteration of the main loop, in order
to optimally occupy all computing units. In fact, by using the
graph unfolding in the second part of experimentation (Fig.13),
it’s possible to overlap the processing of several iterations
(graphs), so the runtime continually distribute works, and
optimally takes advantage of hardware availability. In addition,
we note that the dynamic scheduling is more efficient when
data is bigger. That’s due to the reduction of the overhead time
compared to execution and communication times of processed
tasks.

From this result, we can say that it’s it’s profitable to
use graph unfolding techniques combined with a dynamic
scheduling to process the DSP applications as we propose in
our programming model in order to better take advantage of
computation unit availability.

VII. CONCLUSION

This paper presents our proposed programming model for
parallel and heterogeneous architecture, which allows a high
level abstraction from the hardware specificities, and at the

Fig. 12: The performance as a function of size of processed
images without graph unfolding

Fig. 13: The performance as a function of size of processed
images with graph unfolding

same time increases the performance of the implemented
application. First, we presented the state of the art of MOP
and classified them according to different axis. We described
the DSP applications and specified their characteristics in
order to implement their with optimal manner. For that, we
proposed an Xml interface to easily describe DSP applications
in the form of a DFG model. Also, we proposed a strategy
based on unfolding graph techniques to construct a directional
acyclic graph (DAG) of tasks which we process using StarPU
on a heterogeneous and parallel architecture with a dynamic
scheduling. Finally, we experimented our MOP on the real-
world saliency application and shown that’s easier to use
our programming model to design it, but at the same time,
it’s possible to optimally take advantage of architecture’s
power to speed up the execution using the optimizations: Task
parallelism, data parallelism, graph parallelism, and dynamic
scheduling.

REFERENCES

[1] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to

General-Purpose GPU Programming, 1st ed. Addison-Wesley Pro-
fessional, 2010.

[2] A. Munshi, B. Gaster, T. Mattson, and D. Ginsburg, OpenCL

Programming Guide, ser. OpenGL. Pearson Education, 2011.
[Online]. Available: http://books.google.fr/books?id=M-Sve KItQwC

[3] W.-Y. Chen, “Optimizing partitioned global address space
programs for cluster architectures,” Ph.D. dissertation, EECS
Department, University of California, Berkeley, Dec 2007. [Online].
Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-
2007-140.html

[4] B. Chamberlain, D. Callahan, and H. Zima, “Parallel programmability
and the chapel language,” Int. J. High Perform. Comput. Appl.,
vol. 21, no. 3, pp. 291–312, Aug. 2007. [Online]. Available:
http://dx.doi.org/10.1177/1094342007078442

[5] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and D. Grove, “X10
language specification,” IBM, Tech. Rep., January 2012. [Online].
Available: http://x10.sourceforge.net/documentation/languagespec/x10-
222.pdf

[6] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu,
G. L. Steele, and S. Tobin-Hochstadt, “The Fortress Language Spec-
ification,” Sun Microsystems, Inc., Tech. Rep., March 2008, version
1.0.

[7] UPC Consortium, “Upc language specifications, v1.2,” Lawrence
Berkeley National Lab, Tech Report LBNL-59208, 2005. [Online].
Available: http://www.gwu.edu/ upc/publications/LBNL-59208.pdf

[8] M. I. Gordon and S. Adviser-Amarasinghe, “Compiler techniques for
scalable performance of stream programs on multicore architectures,”
2010.

[9] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and
R. Menon, Parallel Programming in OpenMP. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2001.

[10] D. B. Kirk and W.-m. W. Hwu, Programming Massively Parallel

Processors: A Hands-on Approach, 1st ed. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2010.

[11] J. Bueno, L. Martinell, A. Duran, M. Farreras, X. Martorell, R. M.
Badia, E. Ayguade, and J. Labarta, “Productive cluster programming
with ompss,” in Proceedings of the 17th International Conference

on Parallel Processing - Volume Part I, ser. Euro-Par’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 555–566. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2033345.2033405

[12] P. S. Pacheco, Parallel Programming with MPI. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1996.

[13] J. Reinders, Intel threading building blocks - outfitting C++ for multi-

core processor parallelism. O’Reilly, 2007.

[14] C. Augonnet, S. Thibault, and R. Namyst, “StarPU: a Runtime System
for Scheduling Tasks over Accelerator-Based Multicore Machines,”
INRIA, Research Report RR-7240, 2010.

[15] E. Lee and D. Messerschmitt, “Static scheduling of synchronous data
flow programs for digital signal processing,” Computers, IEEE Trans-

actions on, vol. C-36, no. 1, pp. 24–35, Jan 1987.

[16] B. Bhattacharya and S. Bhattacharyya, “Parameterized dataflow
modeling for dsp systems,” Trans. Sig. Proc., vol. 49,
no. 10, pp. 2408–2421, Oct. 2001. [Online]. Available:
http://dx.doi.org/10.1109/78.950795

[17] M. Flynn, “Some computer organizations and their effectiveness,”
Computers, IEEE Transactions on, vol. C-21, no. 9, pp. 948–960, Sept
1972.

[18] K. Parhi and D. Messerschmitt, “Static rate-optimal scheduling of
iterative data-flow programs via optimum unfolding,” Computers, IEEE

Transactions on, vol. 40, no. 2, pp. 178–195, Feb 1991.

[19] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” vol. 13,
no. 3. IEEE, 2002, pp. 260–274.

[20] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual
attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 20, no. 11, pp. 1254–1259, Nov. 1998. [Online]. Available:
http://dx.doi.org/10.1109/34.730558

