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Augmenting Bayes filters with the Relevance Vector Machine

for time-varying context-dependent observation distribution

Alexandre Ravet1,2, Simon Lacroix1,3 and Gautier Hattenberger4

Abstract— Bayesian filtering often relies on a reduced system
state relating to robot internal variables only. The exogenous
variables and their effects on the measurement process are then
encompassed within a global observation noise model. Even if
Bayes filters proved to be robust to such approximations, special
care has to be taken to handle some of these exogenous effects,
usually by introducing complex observation distributions or
rejection rules. No matter how complex these models are,
they often fail in dealing with contextual incidence which
can hardly be explicitly encoded. This article shows how
contextual information can be introduced within the Bayesian
filtering framework by coupling a filter with classification
and regression probabilistic models. The classification model
provides an efficient context-dependent measurement selection
mechanism and is specifically trained with respect to the
filter estimation performance. This first component is enhanced
by the introduction of context-dependent observation noise
provided by the regression model. The performance of this
is approach is evaluated and compared with other methods in
the context of altitude estimation for a UAV.

I. INTRODUCTION

The issue of understanding and exploiting measurements

provided by different sensors is of major importance in

state estimation. It is commonly accepted that the more

accurate the observation model, the better. However, the

physical measurement process is often too complex to be

fully understood and exactly modeled. In practice, one has

to deal with a whole range of performance alterations going

from the unavoidable average observation noise to com-

pletely unreliable measure values. Instead of trying to explain

the whole measurement set with an accurate observation

model, a common way to cope with unmodelled observation

alterations is to select the measurements which are known

to be positively informative for the estimation process – in

other terms to reject outliers. This yields robustness of the

estimation process with respect to unmodeled effects on the

observations, but at the risk of under-exploiting information.

It is desirable to define an estimation scheme that goes

beyond outlier rejection, introducing context information for

a time varying modeling of measurement contribution.

a) Related work: Most approaches for solving the

estimation problem rely on the framework of Bayesian

filtering which proved to be robust and highly reliable.

Any implementation of a Bayes filter is based on two key

components, the state transition model, and the observation
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model. The optimal observation model should describe how

sensor measurements are generated in the current system

state. In the Bayesian filtering framework, this model is

described as a conditional distribution p(zt|xt) where zt
is the set of measurements at time t and xt is the state

of the system. As the underlying physics explaining the

process of measurement formation is often too complex to

be perfectly described by the observation model, contex-

tual information (i.e. information about exogenous effects

required to explain the formation of measurements) is usually

not included in the state xt. Such information should also

account for effects stemming from the unpredictability of

dynamic environments, resulting for example in unexpected

occlusions. All the unmodeled effects are usually represented

through the observation noise, by making the assumption

that they are similar to random effects. This is a strong

assumption that often has to be compensated, for example

through the introduction of outlier rejection methods [1],

or through the derivation of complex observation pseudo-

densities modeling sensor specific behaviors, such as the

well known beam model described in [2]. These approaches

suffer from over-simplification as they rely on a subjective

understanding of the sensor characteristics, and also remain

self-contained systems that implicitly accommodate all the

context influence in a single static model. A direct conse-

quence of this implicitness is that these systems are quite

likely to diverge [3].

As deriving an accurate model by hand is too complex,

learning algorithms have been applied in order to build,

at first, parametric models [4], and more recently non-

parametric models [5]. By learning an observation model

without introducing any prior knowledge over the sensor be-

havior, the latter approach proved to be very efficient, and has

been extended to a fully state-dependent observation model

through the introduction of heteroscedastic noise (meaning

the observation noise is state-dependent), whereas usual

models make the assumption of homoscedastic (constant)

noise. The resulting model is of the form zt = f(xt)+ ǫ(xt)
where f and ǫ are represented by Gaussian processes (GP).

Still, all these attempts to learn a precise model rely on a

system oriented reduced state, and are consequently unable

to model contextual influence over the measurement process.

Moreover the global performance of the filter can strongly

depend on the algorithm that utilizes the model [2].

b) Approach: This paper aims at showing that the joint

set of sensor measurement values zt, potentially extended

with any relevant contextual information it (i.e. other sensor

measurements, or other internal data), provides a succinct



Fig. 1. Principle of mRVM classification based measurement selection for
Bayesian filtering (contextual information it is not represented for clarity)

yet rich representation of the perception context that can be

used as the input of a context-dependent observation model.

Intuitively, we can see this joint set of measurement values

as the minimum information relating the influence of the

current context over sensor performance. As shown in [5],

[6], one intuitive way to learn an observation model is to

apply a direct regression method. However, we rely on a

different approach for the two following reasons:

• In our case the contextual information is not part of the

system state. It is an additional set of variables ct =
{zt, it}. Therefore learning a direct mapping from the

context information to the measurement is irrelevant, as

the output of the system is contained in the input.

• It is legitimately more appealing to optimize the ob-

servation model with respect to the ultimate system

output performance (the state estimate accuracy) rather

than learning a direct observation model which can be

seen as an intermediate goal (explaining at best the

mapping between state and context to measurements),

but which does not provide any guarantee in term of

global performance.

The core component of our model is used to encode

a high-level knowledge over measurement validity which,

conversely to other approaches, is learned with respect to the

only goal of helping the system to provide the best estimate.

Learning such knowledge implies to take into account the

whole prediction-update process in the optimization and

requires to examine each filter algorithm separately. A simple

way to achieve this with classical learning methods, and

without any consideration regarding the type of filter, is to

view the observation function as a selector over measurement

values. The function is then context-dependent in the sense

that the actual subset of measurement values used for the

estimation process change over time. Practically, this is

done by running at first a group of different filters, all of

these filters using a distinct yet combinatorially exhaustive

subset of measurement values from a training set D =
〈X,C〉, where X is a vector of ground truth states and

C a vector containing measurements ct = {zt, it} made

at state xt. We then apply the Relevance Vector Machine

(RVM) classification technique in order to learn a discrete

mapping from the context space (ct) to the most accurate

filter at time t. This provides a context-dependent observation

function based on a classifier optimized with respect to the

global performance of the system (measured w.r.t X). This

work is thus closely related to the bank of filter approach

[4] [3], if we consider a bank of filters differing only in

the subset of measurement values they are using. However,

we enhance this first classification model by learning a

context-dependent (heteroscedastic) observation noise model

for each sensor with RVM regression. The classification and

regression models are then combined to obtain what can be

seen as a fully context-dependent observation model.

c) Outline: The next section provide background de-

tails of RVM. We then present the specific implementation

for learning context-dependent observation function (Section

III), and observation noise (Section IV). Finally, we provide

experimental results and comparison to existing approaches.

II. BACKGROUND ON SPARSE BAYESIAN LEARNING

In the past decade, machine learning has seen the emer-

gence of sparse Bayesian methods, a specialisation of which

being known as the Relevance Vector Machine (RVM) [7].

In this work, RVM is chosen for the regression and classifi-

cation task for two main reasons. First, as a nonparametric

model, RVM introduces no assumption over the functional

form underlying the mapping from the context to the ap-

propriate measurement subset, or from the context to the

current observation noise. It then provides a generic approach

for different robot configurations. Secondly, RVM training

naturally provides sparsity thanks to the automatic relevance

determination mechanism. It is a considerable feature in the

context of real-time Bayesian filtering, since inference over

the model is fast. This is in contrast with GP, widely used for

enhancing Bayes filters and for the task of heteroscedastic

regression [5], [8], [9], [10], which require to turn to more

complex sparse GP techniques when the system is intended

to be used in real time.

A. RVM principle

Based on the probabilistic Bayesian framework, RVM

provides a powerful solution to the problem of supervised

learning, i.e. learning a mapping model between a set of input

vectors {xn}
N

n=1
and corresponding target values {tn}

N

n=1

considered as noisy outputs of an underlying noise free

function y(xn). RVM can be seen as the equivalent prob-

abilistic treatment of the Support Vector Machine (SVM),

whilst avoiding most of its limitations. The shared principal

characteristic of these methods is that they both base their

predictions upon a function y(x) defined as a weighted sum

of basis functions given by kernels K, with one kernel

defined for each input of the training set:

y(x,w) =

N
∑

i=1

wiK(x,xi) + w0 (1)



where w0 is a bias parameter and w = {w1, . . . , wN} are

the weights. The most appealing aspect of the RVM is

that the obtained prediction model is sparse (most of wi

parameters are close to zero), while still providing excellent

generalisation performance for new input values as long

as they remain in the implicit boundaries defined by the

exploited training set.

A widely used kernel function is the Gaussian kernel

defined as

K(xm, xn) = exp(−
1

r2
‖ xm − xn ‖2) (2)

where r is called the width parameter and can be easily tuned

during the learning process. By experience this function

provides good results for our application. However the use

of a different kernel function may improve drastically the

performance of the learned model, for example if we prefer

to use a different width parameter along the different input

dimensions.

Training and inference over the model are done within the

Bayesian framework. By lack of space we will not derive

equations for training and predicting, but all details can

be found in [7]. The RVM classification method originally

introduced by Tipping is however designed for binary classi-

fication, and requires adaptations for the multiclass case. This

is why we prefer to rely on the multiclass Relevance Vector

Machine (mRVM) introduced in [11] which naturally handles

the multiclass setting and achieve better sparsification.

III. LEARNING CONTEXT-DEPENDENT OBSERVATION

FUNCTION

In many cases deriving the noise free component f of the

observation model zt = f(xt)+ǫ is not the most problematic

task, as it can be obtained directly through deterministic

physics rules. In next sections we assume that these functions

are known, and then alleviate the rest of the system which

can focus on capturing the remaining unmodeled aspects

of the observation model. We now detail the procedure for

learning the context-dependent selection scheme and give an

illustration of its application on simulated data.

A. Goal-oriented learning

The complete observation vector zt is composed of N

measurements {zn
t
}. Based on pre-defined noise free com-

ponent of the observation model for each of these mea-

surements {zn
t
}, we are able to derive the combinatorially

exhaustive set of possible observation functions. As these

functions correspond to different contexts, we note them fc
where c ∈ {1, ..., C} with C the total amount of distinct

functions. We then train a RVM model such that, at each

filter iteration, the model selects the most appropriate subset

of measurements {zn
t
}n∈c in the complete measurement

vector zt according to the current context, i.e. we use the

corresponding observation function fc(xt):

[

{zn
t
}n∈c ⊆ zt

]

= fc(xt)

1) Defining the training data: The definition of the train-

ing data is a crucial step in this approach. The idea is to

form an alternative training set based on the original data

D = 〈X,C〉 in order to explicitly introduce the requirements

in terms of global system performance. Thus we run C

Bayes filter, each of which based on a different function fc,

and save the corresponding state estimates and uncertainty.

Then, each sample of D is associated with an activation

vector At – e.g. At = {0, 0, 1, 0, ..., 0}T , which means

that the best estimate output at time t was provided by

the filter based on the observation function fc=3. It should

be noted that the definition of the ’best’ output requires

the evaluation of a performance metric which represents

the expected requirements to the system behavior. In this

paper, we evaluate the output distribution of each filter at the

corresponding ground truth value xt (given by N (xt|x̂
c

t
, σc)

where x̂c

t
and σc are the output mean and variance of the filter

based the observation function fc). Choosing the highest

value among all filters is then equivalent to selecting the filter

with the lowest estimation error and uncertainty. However,

other requirements may be easily introduced through the

evaluation of different metrics or the addition of penalty

terms.

A new training set D′ = 〈C,A〉 is formed, and is readily

used for training a mRVM classifier with C class labels.

This classifier is then used at runtime to select the most

appropriate subset of measurements according to the context

ct = {zt, it}. This process is illustrated in Fig.1.

The training method of the selection model can be seen

as a case of discriminative training, analogous to the one

suggested in [12]. This is due to the optimization of the RVM

model done with respect to the ultimate filter performance,

while the observation model is usually optimized through

generative training, i.e in order to maximize the observation

likelihood p(zt|xt) over the training set. A strong benefit of

this specific training approach is the subsequent model im-

plicit capability in compensating for mis-modeled aspects of

the real system. Discriminative training has then been chosen

here as it serves the common purpose of compensating for

Bayes filter model inaccuracies. Note that, alternatively, the

RVM model could however be trained generatively.

B. Illustration

We demonstrate here the capabilities of the selection

approach on a simulated dataset. For this test case the

original training set D contains 6000 samples of the sim-

ulated altitude ground truth of a UAV and the corre-

sponding altitude measurements provided by three sen-

sors (Fig.2) presenting some realistic characteristics, such

as maximum range threshold and outliers occurrences

– section V deals with real data. From these 3 sen-

sors, seven observation functions fc are built in or-

der to cover the exhaustive measurement combinations:

{[z1], [z2], [z3], [z1z2], [z1z3], [z2z3], [z1z2z3]}. These ob-

servation functions are used within a simple Kalman filter

with constant velocity transition model. The examination of

the function activation frequencies provided by the classifier
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Fig. 2. Altitude measurement provided by three sensors. Sensor 1
reproduces typical ultrasonic measures, low observation noise, outliers
occurrences and maximum range threshold. Sensor 2 permanently provides
measures with high observation noise. Sensor 3 does not provide relevant
measures below 2 meters.
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Uncertainty Boundaries

Context Dependent Altitude Estimation

Altitude Truth

Fig. 3. Final estimation and associated uncertainty on validation set.

on the training set then provides useful insights on the

relevant sensor combinations: some functions may appear

to be rarely used and therefore can be removed from the

initial set before re-training a refined classifier. This process

can simplify the classification problem and directly reduce

the computational cost of the model at runtime. Once the

classifier is trained, it is evaluated on a validation data set.

The final estimate value is shown Fig.3. Clearly, the

classifier recognizes all different contexts which for sensor

measurements could alter the estimation, while combining

the maximum of reliable data so as to provide a low esti-

mation uncertainty. In practice, this means that the classifier

behavior consists in activating as often as possible the obser-

vation functions corresponding to combined measurements.

The effect of measurement rejection over the final estimate

uncertainty are well illustrated for the highest altitudes where

sensor 1 does not provide any useful information and hence

is not used. As a consequence the estimation uncertainty is

slightly increased.

IV. LEARNING CONTEXT-DEPENDENT OBSERVATION

NOISE MODEL

In practice, the core component described in the previous

section is a powerful mechanism which is also capable of

compensating further inaccuracies made in the estimation

model. This is a simple consequence of the fact that the

selection function has been trained to choose the appro-

priate measurement combination such as obtaining the best

estimate output, no matter how well tuned the observation

and transition models are. As explained in section III, the

parameters of the observation function f are not the most

complex to obtain, but the observation noise can be difficult

to estimate. Moreover, introducing an accurate and realistic

noise model in the filter helps in tempering the rejection

scheme operated by the classifier. Indeed, and as shown in

[5], the use of heteroscedastic observation noise models can

greatly improve the estimation precision while providing a

more realistic estimation uncertainty. When combined with

the selection scheme described in the previous section, the

use of such noise models results in a better exploitation of

each filter by extending their domain of ’reliability’.

An elegant approach to learn input dependent noise models

in the context of regression was introduced in [10]. A key

idea of this method is to introduce a second regression

model dedicated to modeling the empirical ’observation’

standard deviation for each sample. In a similar approach

we form again N new dataset D′′i = 〈C, Si〉 where

Si

t
= log[

√

(zi
t
− f(xt))2]. This value provides an empirical

estimation of (the logarithm of) the observation noise level

for the measurement zi at time t. N RVM regression models

are then trained on these different training sets.

Used along with the different functions fc these models

notably prevents the different filters from diverging during

the performance evaluation step preceding the classifier

training. Note that the RVM model provides Gaussian pre-

diction distribution over the noise level. In a fully Bayesian

approach, evaluation of the final observation distribution

p(zt|xt) would require to marginalize over (integrate) the

noise distribution. However, this integral is analytically in-

tractable and then requires to turn to approximation methods.

For computational efficiency, the integral is then replace

by the most likely approximation, meaning that the noise

level is approximated by a point estimate corresponding to

the maximum of the prediction distribution (its mean). At

runtime, computation time can be saved by only predicting

noise values for the subset of measurements required by

the active function fc. These functions associated with the

classification and regression models then define a complete

context-dependent observation model whose performance is

illustrated in the next section.

V. EXPERIMENTS

Experiments on real data are performed in the context

of altitude estimation for a quadrotor UAV. The paparazzi

platform [13] was used to collect sensor measurements

provided by an ultrasonic sensor and a barometer, along with

other UAV internal data. The altitude ground truth is provided



by a motion capture system and its data is synchronized

at 50Hz with the UAV telemetry. All data is collected by

manually flying the UAV such as covering the practicable

space with different dynamic behaviors (smooth and more

aggressive motions). The different datasets all contain around

6000 samples.

We aim at evaluating the benefits of introducing context-

dependency over the estimation process. The proposed ap-

proach is then compared with the GP-PF algorithm defined

in [5]. This state-of-the-art algorithm is based on a GP

modeling the whole observation model p(zt|xt). Both filters

instantiations are trained on a common dataset similar to the

one shown in Fig.4. For all datasets, the ultrasonic sensor

measurements show frequent occurrences of strong outliers

that we intuitively know to be caused by perturbations

originating from the actuation of the 4 motors. We how-

ever never made deeper investigations on the nature of the

perturbations and thus train the RVM-based filter by learning

observation noise and measurement selection for a total of 3
measurement combinations: one filter based on the ultrasonic

measurement, an other one based on the barometer, and a

last one based on both ultrasonic and barometer sensors.

The context data ct contains both sensor measurements

and the motor thrust command which, according to our

intuition about ultrasonic sensor perturbation, may provide

useful information for the selection task. The GP-PF is

trained on the raw dataset containing the ground truth and

the measurements. A Kalman filter with 3 sigma rejection

scheme on all measurements is also evaluated on the common

validation set. All tested filters share a common constant

velocity prediction model with identical parameters.

The final estimation error for all filters is shown in Fig.5.

As can be seen, the GP-PF diverged in many situations.

Analysis of the trained observation GP shows that it failed

to model the occurrence of outliers in the ultrasonic mea-

surements. For some cases outliers are ignored, while for

frequent occurrences phases the observation model tends to

converge to the outlier values. Less importantly, one can

notice that fluctuations of the barometer measurements when

the motors are turned on (noticeable on the thrust command

from Fig.4) are also not generalizing well on the validation

set. The Kalman filter provides a lower estimation error

thanks to the rejection scheme, but still shows some cases of

strong divergences, especially for the high dynamic parts of

the flight. Finally the RVM-based filter shows a noticeable

improvement in both terms of error amplitude and frequency.

Clearly, both Kalman filter and GP-PF reveals the need

for a context-dependent knowledge during the estimation

process. While the Kalman filter manages to get rid of most

outliers, the rejection mechanism can not handle some spe-

cific configurations. For example this is the case for the part

of the dataset contained between samples 3000 and 4000 cor-

responding to the highest observed vertical speed variations.

Here, ultrasonic sensor outliers and barometer measurement

latency become coherent, leading to divergence. Meanwhile,

the GP observation model is trained to fit at best the training

set within which strong measurement variations in the mea-
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Fig. 4. Validation set

0 1000 2000 3000 4000 5000 6000 7000
−1.5

−1

−0.5

0

0.5

1

1.5

2

Sample number

E
s
ti
m

a
ti
o
n
 e

rr
o
r
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Fig. 5. Estimation error for the three filter instantiations

surements are observed for similar state values. Intuitively we

understand that some information is missing when trying to

fit a precise model of measurement generation (note however

that in optimal conditions, this is not the case). This is

were the benefits of the RVM-based approach come into

play: the contextual knowledge compensates for the missing

information and allows recognition of situations where the

Kalman filter was unable to apply the correct rejection. The

estimation output for the RVM-based filter on the validation

set is shown in Fig.6. This figure also illustrates the role of

the heteroscedastic observation noise in the reliability of the

final estimate uncertainty. As can be seen, the noise models

provide realistic and consistent evaluation of the observation

noise such that the altitude truth remains inside the final

uncertainty boundaries. Conversely, as noticed in [5], and as

observed in these experiments, filters using homoscedastic

observation noise such as the GP-PF and the Kalman filter

provide lower and less variable uncertainties, leading to less

consistent estimate output distribution.

VI. CONCLUSION

A. Summary

This article presented a simple approach for introducing

context-dependent knowledge within the observation model

of a Bayes filter. As such, the approach is generic as it
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Fig. 6. RVM-based filter estimation output and associated 3 sigma
uncertainty boundaries

can be directly applied regardless the version of the Bayes

filter. Based on contextual information defined by the current

measurements (and any additional information if required),

a first classification model is trained. Its role consists in

incorporating measurements in the estimation process when

they are known to help in improving the final estimate.

Conjointly, heteroscedastic (in our case context-dependent)

observation noise models are also learned and help the

filter in keeping a realistic estimation uncertainty level.

The approach is evaluated and compared to two standard

and state-of-the-art methods. Evaluation shows that context-

dependency allows the approach to outperform other filters

in both terms of estimation and uncertainty consistency. This

work can be seen as an extension of the approach proposed in

[3], but still offers room for improvement, especially through

the introduction of a dynamic model which could potentially

greatly improve context identification. However, the current

implementation has the advantage of relying on classical

RVM training and inference methods.

B. Discussion

In this work, RVM models have been chosen instead of

GP for computational efficiency reasons. There is a actually

a strong relationship between these two models, as RVM can

be seen as a special case of GP [14]. Both models provide

probabilistic outputs, i.e. each prediction is provided with

an associated uncertainty. This specificity is a key feature

and could be used to protect the system when it enters part

of the input space where too few or no data has been used

for training. Analysis of the prediction uncertainty can then

allow the designer of the system to implement a failsafe

behavior, either by asking the robot to stop, or by switching

to a default standard estimation filter. It should however be

noticed that in this situation, the RVM model is known to

decrease drastically its uncertainty when entering unexplored

parts of the input space [14], while GP behave more logically

by increasing the uncertainty. This specific aspect requires

further investigation about the applicability of such safety

systems.

GP-PF and the RVM-based filter are both based on non-

parametric models capable of representing dense and com-

plex information. However, the principal difference between

both approaches is that the GP-PF is based on a state-

dependent model, where the RVM-based filter only exploits

the contextual information. Introduction of the state value

as an additional contextual information has been tested and

proved to give lower performance for our approach. This is

a direct consequence of the fact that relying on perceptual

information is a much more robust foundation than using

the state value. Clearly, a state-dependent model trained

with the ground truth is more likely to produce erroneous

predictions, as errors on the system state are unavoidable at

runtime (hence differing from values seen in the training set).

Conversely, using the measurement inputs ensures the RVM-

based filter to be more reliable as its prediction capabilities

do not depend on the own filter performance. Especially, one

has to notice that the probabilistic models applied here do

not take into account the possible existence of noise over the

input variables. Investigating the exploitation of such models

[15] might be an interesting direction for future work.
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