
HAL Id: hal-01086208
https://hal.science/hal-01086208

Submitted on 23 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improved Filters for the Approximate Suffix-Prefix
Overlap Problem

Gregory Kucherov, Dekel Tsur

To cite this version:
Gregory Kucherov, Dekel Tsur. Improved Filters for the Approximate Suffix-Prefix Overlap Prob-
lem. SPIRE 2014, Oct 2014, Ouro Preto, Brazil. pp.139-148, �10.1007/978-3-319-11918-2_14�. �hal-
01086208�

https://hal.science/hal-01086208
https://hal.archives-ouvertes.fr

Improved filters for the approximate suffix-prefix

overlap problem

Gregory Kucherov12 and Dekel Tsur2

1 CNRS/LIGM, Université Paris-Est Marne-la-Vallée, France
2 Department of Computer Science, Ben-Gurion University of the Negev, Israel

Abstract. Computing suffix-prefix overlaps for a large collection of strings
is a fundamental building block for the analysis of genomic next-generation
sequencing data. The approximate suffix-prefix overlap problem is to find
all pairs of strings from a given set such that a prefix of one string is
similar to a suffix of the other. Välimäki et al. (Information and Com-
putation, 2012) gave a solution to this problem based on suffix filters. In
this work, we propose two improvements to the method of Välimäki et
al. that reduce the running time of the computation.

1 Introduction

Genomic sequences are deciphered by reading short overlapping fragments. Mod-
ern next-generation sequencing technologies, can produce, in a single run, tens
or hundreds of millions of such fragments, called reads, each of the order of a
hundred of letters. Dealing with these gigabytes of sequence data raises a number
of algorithmic challenges.

A basic operation on a collection of genomic reads is the computation of over-
laps: we need to be able to quickly retrieve reads which have a significant overlap
with a given read. This operation is a prerequisite for many algorithms dealing
with reads, and most prominently for genome assembly algorithms which follow
the so-called overlap-layout-consensus paradigm [6]. These algorithms are based
on overlap graphs (also called string graphs or assembly graphs) that represent
all significant overlaps between reads. A recent example is provided by SGA
assembler [12]. Earlier, this approach was taken by several “first-generation”
methods of genome assembly, such as Celera assembler [8] used to assemble one
of the first versions of the human genome.

The goal of this work is to propose an efficient way of computing significant
approximate suffix-prefix overlaps of a set of strings. Previously, several solu-
tions have been proposed to compute all exact suffix-prefix overlaps [2, 11, 12].
However, in practice, we are interested in the approximate case when strings can
overlap within a certain number of errors.

Most practical methods for computing approximate string similarities are
based on the filtering approach, when the search is done in two steps: at the
first step, candidate regions are identified that potentially correspond to sought
matches, and at the second step, those candidates are checked to actually verify

the desired matching condition. Filtering algorithms usually do not yield inter-
esting theoretical time bounds but are often very efficient in practice. As an
example, spaced seeds [1, 7] constitute one of the filtering techniques that has
been successfully used for DNA sequence comparison, e.g. [7, 10].

To compute approximate suffix-prefix overlap, the above-mentioned SGA as-
sembler [12] uses a basic substring filtering. Välimäki et al. [13] proposed to
apply a modified version of suffix filters earlier proposed by Kärkkäinen and
Na [3]. Suffix filter provide a more selective filtering criterion and therefore a
more efficient algorithm.

In this paper, we show how the method of [13] can be further improved.
We propose two improvements that reduce the search space and therefore the
running time of the algorithm: a new family of suffix filters and a new parti-
tioning scheme. We report on estimations on random datasets that support the
superiority of our schemes.

Throughout the paper, we present our method for the Hamming distance
between strings, although it can be generalized to the edit distance, similar
to [3, 13]. This, however, would entail additional technical details and a more
involved presentation that we wanted to avoid.

2 Preliminaries

2.1 Notation

For a sequence of integers A, let PrefixSum(A) be a sequence of integers of the

same length as A in which PrefixSum(A)[i] =
∑i

j=1
A[j]. For two sequences of

integers A and B of the same length, we define A ≤ B iff A[i] ≤ B[i] for all i.
The Hamming distance between strings A and B of the same length, denoted

Ham(A,B), is the number of indices i for which A[i] 6= B[i]. If Ham(A,B) ≤ k,
we say that A and B k-match.

Let A be a string that has a partition A = A1A2 · · ·Ak into k disjoint parts.
Let B be a string with the same length as A. The partition of A induces a
partition B = B1B2 · · ·Bk of B in which |Bi| = |Ai| for all i. The partition
distance between A and B, denoted pd(A,B), is a sequence of integers of length
k in which pd(A,B)[i] = Ham(Ai, Bi). The accumulated partition distance be-
tween A and B, denoted apd(A,B), is the sequence PrefixSum(pd(A,B)). That
is, apd(A,B)[i] is the total number of mismatches between the first i parts of A
and B.

2.2 Suffix filters

For the problem of approximate pattern matching with q errors, the most basic
filtering method, called PEX in [9], consists in splitting the pattern into k = q+1
parts and searching for those parts independently. Once one of the parts is found,
it provides a candidate location for the whole pattern. Kärkkäinen and Na [3]
proposed an interesting extension of this principle called suffix filters. Suffix

filters have been shown to generate many fewer candidates than substring filters,
and therefore to be much more efficient. Since the present work builds on this
idea, we briefly explain it here.

We still split pattern P into k = q + 1 parts P = P1P2 · · ·Pk, but instead
of searching for substrings Pi, we will be searching for suffixes PiPi+1 · · ·Pk for
i = 1, . . . , k allowing errors distributed according to a specific pattern

filterk,i = 01 · · · (k − i).

This means that for every i, we are searching for stringsB such that apd(Pi · · ·Pk, B) ≤
filterk,i. The key observation of [3] is that this scheme detects all possible occur-
rences of P within q errors.

For example, let q = 2, namely, we want to find the substrings of the text
that 2-match to P = P1P2P3. All such substrings are detected using three filters,
denoted by sequences 012, 01, and 0. Filter 012 detects substrings B such that
apd(P1P2P3, B) ≤ 012. That is, B = B1B2B3, such that |Bi| = |Pi| for all
i, B1 = P1, Ham(B2, P2) ≤ 1, and Ham(B2B3, P2P3) ≤ 2. By a slight abuse of
language, the set of all such strings B will be said to be enumerated by the filter.
Similarly, filter 01 detects substrings B = B2B3 such that B2 = P2 and B3 is
within one error from P3. Each such string is a suffix of a candidate approximate
occurrence of P . Finally, filter 0 detects substrings B3 with B3 = P3, which
provides again a suffix of a candidate occurrence of P .

Observe that there are 9 cases for the partition distance between P and B
— 011, 101, 110, 002, 020, 200, 100, 010, and 001 — which are all covered by
suffix filters 012, 01 and 0. Indeed, filter 012 covers cases 011, 002, 010, and 001,
filter 01 covers cases 101, 200 and 100, and filter 0 covers cases 020 and 110.

The set of strings enumerated by a filter can be naturally represented by a
trie (see Figure 1), where branching nodes correspond to positions where the
filter allows a possible mismatch to occur. The number of nodes in the tries of
all the filters is a crucial parameter for the efficiency of a filtering scheme.

2.3 Suffix filters and full-text indexes

One of the advantages of suffix filters (as opposed e.g. to spaced seeds) is that
they can be naturally implemented using full-text indexes that support incre-
mental string matching. Those indexes include classical indexes such as suffix
trees, but also succinct indexes such as FM-index and its variants [14]. These
indexes allow reading a pattern left-to-right3 and quickly updating the index
point after each letter, so that all occurrences of the prefix read so far can be
retrieved efficiently.

Implementing suffix filters on a full-text index can be done simply by enumer-
ating all “approximate suffixes” of the pattern detected by a filter, and reporting
the occurrences of all these strings in the text, thus generating the candidate set.

3 For some indexes, such as FM-index, matching is performed right-to-left, in which
case we can just assume that the indexed sequences are reversed. On the other hand,
FM-index can also be modified to perform matching left-to-right, see [5].

0

0

0

1

1

0 1 0 1

0

0

1

0 1

1
0

0 0 1

1
0

0

1

(a) 012

0

1

1

0
1

0

0

(b) 01

1

0

(c) 0

Fig. 1. The tries of the filters 012, 01, and 0 applied on the pattern P = 000110,
for binary alphabet and q = 2 errors. The pattern P is partitioned into 3 parts P =
P1P2P3 where P1 = 00, P2 = 01, and P3 = 10. The filter 012 enumerates the strings
corresponding to the leaves of the tries in Figure (a), namely 000110, 000111, . . . ,
001100. The filter 01 enumerates the strings 0110, 0111, and 0100, and the filter 0
enumerates the string 10.

More precisely, for each of the tries that correspond to the filters, the algorithm
traverses the trie in depth-first search order, and updates the index point after
each descend in the trie. When reaching a node in the trie whose corresponding
string does not appear in the index, the search does not continue to the descen-
dants of this node in the trie. When reaching a leaf of the trie, all occurrences of
the string corresponding to the leaf are retrieved from the index, and are added
to the set of candidates.

2.4 Suffix filters applied to suffix-prefix overlap problem

Given a set S of strings, the approximate suffix-prefix overlap problem is to
compute all significant approximate overlaps between pairs of strings of S. “Sig-
nificance” is defined by a lower threshold lmin on the overlap size. Since the
overlap size is variable, imposing a fixed number of errors is not reasonable, and
a relative error rate is specified instead. Formally, given an integer lmin, and
ǫ > 0, we have to find all pairs of strings S, S′ ∈ S such that there is an integer
l ≥ lmin for which the prefix of S of length l and the suffix of S′ of length l
⌈ǫl⌉-match.

In this Section, we explain how suffix filters can be used to solve the ap-
proximate suffix-prefix overlap problem. We proceed by enumerating all strings
S ∈ S. For each S ∈ S and for each l ≥ lmin, we want to identify all strings
S′ ∈ S whose suffix of length l ⌈ǫl⌉-match the prefix S[1..l]. We want to do it
by applying suffix filters designed for patterns of length l and ⌈ǫl⌉ mismatches.
If such a filter applies, then a candidate overlap is generated, which is a triplet
(S, S′, l). At the verification stage, the actual Hamming distance between the
prefix of S of length l and the suffix of S′ of length l is computed, and the
overlap is reported if this distance is no more than ⌈ǫl⌉.

Let us now explain how the filtering algorithm works with the filters of Sec-
tion 2.2. Fix S and a partition S = S1S2 · · · of S into disjoint parts. Fix l ≥ lmin

and let P = S[1..l]. The partition of S induces a partition P = P1 · · ·Pk of P ,
where Pi = Si for i < k and Pk is a prefix of Sk. Suppose that the partition of
S was chosen a way to ensure that k ≥ ⌈ǫl⌉ + 1. This allows us to apply suffix
filters of Section 2.2.

Consider the above filters filterk,1, . . . , filterk,k, where filterk,i = 01 · · · (k− i).
Each filter filterk,i enumerates all strings B such that apd(Pi · · ·Pk, B) ≤ F ,
and B appears as a substring of some string in S. For each such string B, the
algorithm further selects all the strings S′ ∈ S that end with B and adds the
triplets (S, S′, l) to the list of candidates.

The main difficulty in applying suffix filters to the approximate suffix-prefix
overlap problem is that the length l and, consequently, the number of errors are
not fixed. Once the partition of S is defined, our goal is to deal with all values
of l in one left-to-right traversal of S. For each l ≥ lmin, we should be able to
efficiently identify appropriate filters that apply to the corresponding partition
of S[1..l]. We now describe how it is done for the filters of Section 2.2.

A key point here is that the enumeration processes for different values of
l are connected. Let kl denote the number of parts in the partition of S[1..l]
that is induced by the partition of S. Let BS,i,l be the set of strings enumerated
by the filter filterkl,i when it is applied to S[1..l]. That is, BS,i,l are the strings
enumerated by filterkl,i when considering the filtering scheme for the fixed value
of l. Let trieS,i be the trie representing the set BS,i,|S|. We have the following
property: For every l, where lmin ≤ l < |S|, and every i ≤ kl, the prefix of
filterk|S|,i of length kl + 1 − i is equal to filterkl,i. It follows that the set BS,i,l

is equal to the set of strings that correspond to the nodes of trieS,i at depth
l −

∑
j<i |Sj |. Therefore, generation of candidates can be done for all values

of l by the following algorithm. For i = 1, 2, . . . , kS , traverse trieS,i. When the
traversal is at a node that corresponds to a string B, if B ∈ BS,i,l for some
l ≥ lmin, find all the strings S′ ∈ S that ends with B, and for each such S′ add
the triplet (S, S′, |B|+

∑
j<i |Sj |) to the list of candidates.

Checking whether B ∈ BS,i,l is done with the following candidate generation
condition.

Condition 1 B ∈ BS,i,l if and only if

|B|+
∑

j<i

|Sj | ≥ lmin (C1)

2.5 The filtering scheme of Välimäki et al. [13]

Välimäki et al. [13] observed that the filtering procedure of Section 2.4 is very
inefficient. The inefficiency is caused by the filters filterk,k = 0 that has to be
applied, during the search, to short strings including those consisting of a single
letter. Formally, when traversing the trie trieS,i, a node of the trie at depth 1,
whose corresponding single-letter string is B = S[1 +

∑
j<i |Sj |], can generate

candidates if Condition (C1) is satisfied. Since B has length 1, there can be many
strings S′ ∈ S that ends with B, generating many spurious candidates. More

generally, assuming the strings of S are sampled randomly from an i.i.d. source,
the expected number of candidates generated by a string B corresponding to
some node in a trie is m/σ|B|, where m is the number of strings in S, and σ is
the size of the alphabet. Therefore, the total number of candidates is dominated
by the number of candidates generated by nodes of small depth.

The solution of Välimäki et al. to this problem is to drop the filters filterk,k
from the filtering scheme. In order to handle the cases of partition distances that
were covered by this filter, filters filterk,1 = 01 · · · k are modified to filterk,1 =
12 · · · (k + 1). It is shown [13] that with this modification, all combinations of
partition distance are still covered.

Due to the dropping of filters filterk,k, Condition 1 should be modified for
the new filtering scheme. The modified candidate generating condition will now
be as follows.

Condition 2 B ∈ BS,i,l if and only if Condition (C1) is satisfied and

|B| > |Si| (C2)

Clearly, the additional condition (C2) reduces the number of generated candi-
dates.

3 New filtering scheme

In the filtering scheme of Välimäki et al., the filters filterk,1 start with 1 whereas
the other filters start with 0. This has the consequence that the number of nodes
in the trie trieS,1 is much larger than the number of nodes in the tries trieS,i for
i > 1. We now present a new filtering scheme without this property. Our filtering
scheme consists of filters filterk,1, . . . , filterk,k−1, where filterk,i is a sequence of
length k − i + 1 whose first k − i elements are 0, 1, . . . , (k − i − 1), and the
last element is k − i − 1. For example, for k = 4 the filters are filter4,1 = 0122,
filter4,2 = 011, and filter4,3 = 00. Our filtering scheme requires a difference of at
least 2 between the number of parts in the partition of S[1..l] and ⌈ǫl⌉ (recall
that in the scheme of Välimäki et al., the required difference is at least 1). We
show the correctness of this scheme in the following lemma.

Lemma 1. For every k ≥ 2 and every sequence of integers M of length k whose
sum is at most k−2, there is an integer i such that PrefixSum(M [i..k]) ≤ filterk,i.

Proof. The proof is by induction of k. The base of the induction k = 2 is
trivial since in this case M = 00 and therefore PrefixSum(M) ≤ filterk,k−1.
Now consider k > 2. Let M be a sequence of length k whose sum is at most
k − 2. If PrefixSum(M) ≤ filterk,1 we are done. Otherwise, there is an index
i such that PrefixSum(M)[i] > filterk,1[i]. Since PrefixSum(M)[i] ≤ k − 2 and
filterk,1[j] = k−2 for j > k−2, it follows that i ≤ k−2. Therefore filterk,1[i] = i−1
and PrefixSum(M)[i] ≥ i. Let M ′ = M [i + 1..k]. The length of M ′ is k − i and
the sum of M ′ is at most k− 2− PrefixSum(M)[i] ≤ k− 2− i. By the induction

hypothesis, there is an index i′ such that PrefixSum(M ′[i′..k − i]) ≤ filterk−i,i′ .
The lemma follows since M ′[i′..k − i] = M [i+ i′..k] and filterk−i,i′ = filterk,i+i′ .

⊓⊔

To illustrate Lemma 1, observe that the three above-mentioned filters filter4,i,
i = 1, 2, 3 cover all possible partition distances for the case of 4 parts and 2
errors. Indeed, filter 0122 cover cases 0020, 0002, 0101 and 0110, filter 011 cover
cases 0011, 1001 and 1010, and finally filter 00 covers cases 2000, 0200 and 1100.

In addition to reducing the number of nodes in the tries, our filtering scheme
also reduces the number of generated candidates. In the filtering scheme of
Välimäki et al., filterk,i is a prefix of filterk′,i for all k < k′ and i. Our filter-
ing scheme does not have this property. Therefore, we need a new condition for
checking whether B ∈ BS,i,l.

Condition 3 B ∈ BS,i,l if and only if conditions (C1) and (C2) are satisfied
and

apd(S′, B) ≤ filterk,i (C3)

where S′ is the prefix of SiSi+1 · · · of length |B| and k is the number of parts in
the partition of S′ induced by the partition of S.

Observe that in the filtering scheme of Välimäki et al., every node of trieS,i with
depth |Si|+1 generated candidates. However, in our new scheme, only the node
whose corresponding string B is equal to S′ generates candidates among the
nodes of depth |Si| + 1 (for every other node, apd(S′, B) = 01 and therefore
Condition (C3) is not satisfied). The same is true for depths |Si|+ 2, . . . , |Si|+
|Si+1|.

Our scheme can be generalized by introducing a parameter s ≥ 2. The filters
for a given value of s are filterk,i = 01 · · · (k − i − s)(k − i − s + 1)s for i =
1, . . . , k − s + 1. This scheme requires a difference of at least s between the
number of parts in the partition of S[1..l] and ⌈ǫl⌉.

4 Partition schemes

The efficiency of the algorithm of the previous section depends on the sizes of the
parts in the partition of S: having larger parts reduces the number of trie nodes
and the number of candidates. For correctness of the algorithm, the partitioning
of a string S must satisfy the following property.

(P1) For every l ≥ lmin, the number of parts in the partition of S[1..l] induced by
the partition of S is at least ⌈ǫl⌉+ s, where s = 1 for the filtering scheme of
Välimäki et al. and s = 2 for our new scheme (or some fixed value of s for
our extended scheme).

Välimäki et al. used a partition of S into equal sized parts of size p, except for
the last part whose size is at most p. The value of p is chosen to be the maximum
integer for which Property (P1) is satisfied.

We propose a partitioning scheme in which most parts are larger than those of
the equal sized parts partitioning. Since the efficiency of the filtering approach
depends on the sizes of the parts, the new partitioning scheme gives better
performance.

Let S be a string to be partitioned. Let l0 < l1 < · · · < lq be all the indices
in the range lmin, . . . , |S| for which ⌈ǫ(l − 1)⌉ < ⌈ǫl⌉, and let lq+1 = |S|+ 1. Let
k = ⌈ǫl0⌉ + s − 1. We partition S as follows. The sizes of the first k parts are
chosen in order to satisfy the following properties.

1. The total length of the first k parts is l0 − 1.
2. The length of the k-th part is at least l0 − lmin.

We can set for example the length of the k-th part to be L = max(⌈(l0 −
1)/k⌉, l0 − lmin), and set the lengths of the first k − 1 parts to be p or p +
1, where p = ⌊(l0 − 1 − L)/(k − 1)⌋. The lengths of the remaining parts in
the partition are l1 − l0, l2 − l1, . . . , lq+1 − lq. We now show that this partition
satisfies Property (P1). Moreover, the partitioning is optimal in the sense that
the inequalities of Property (P1) are satisfied with equality.

Lemma 2. For every l ≥ lmin, the number of parts in the partition of S[1..l]
induced by the partition of S is ⌈ǫl⌉+ s.

Proof. For lmin ≤ l < l0 (assuming l0 > lmin) we have by construction that the
number of parts in the partition of S[1..l] is k = ⌈ǫl0⌉+ s− 1. By the definition
of l0, ⌈ǫl⌉ = ⌈ǫl0⌉ − 1, so the equality of the lemma is satisfied. Similarly, if
li ≤ l < li+1 then the number of parts in the partition of S[1..l] is k + 1 + i.
Moreover, ⌈ǫl⌉ = ⌈ǫl0⌉+ i. Therefore, the lemma follows. ⊓⊔

As an example, consider partitioning a string of length 200 with the parame-
ters lmin = 40 and ǫ = 0.1. If s = 1, the equal sized partition uses parts of size 8.
In our new partitioning scheme, the first 5 parts have size 8, and the remaining
parts have size 10.

5 Experimental results

In this Section, we compare the performance of 4 filtering schemes:

(1) the filtering scheme of Välimäki et al. [13] using partitioning into equal parts,
(2) the filtering scheme of Välimäki et al. combined with our new partitioning

scheme (Section 4),
(3) our new filtering scheme (Sections 3-4), and
(4) our extended filtering scheme (see end of Section 3), with s = 3.

For our filtering scheme (3), string partitioning is done with our new partition-
ing scheme. The comparisons have been done using the technique described in
Kucherov et al. [4]. In this analysis, we assume that characters of the strings of S
are randomly chosen uniformly and independently from the alphabet. Under this
assumption, we analytically estimate the expected number of nodes in the tries

Table 1. Expected performance of the filtering scheme of Välimäki et al. [13] and our
filtering schemes. It is assumed that S contains m random strings of length 300 over
an alphabet of size 4. For each scheme, the first column shows the expected number
of nodes in the tries trieS,i for all i (for a single S ∈ S), and the second column is the
expected number of candidates generated for S.

m lmin ǫ method of [13] [13] with un-
equal parts

our scheme our scheme ex-
tended for s = 3

106 20 0.1 31257 18950 11782 144 8582 341 20026 95
107 20 0.1 64201 189506 22161 1449 13219 3412 46662 952
106 40 0.1 10416 839 8260 65 6912 28 8868 0.5
107 40 0.1 14391 8391 11138 651 8921 280 12916 4
107 40 0.15 207504 857318 71271 82559 40671 18842 82164 116

trieS,i and the expected number of generated candidates, following the method
developed in [4]. The results are summarized in Table 1. Columns 2 to 5 of the
Table correspond to schemes (1) to (4) above, respectively.

Note that for different parameters, the bottleneck of the computation can be
either the size of traversed tries, or the number of generated candidates. In all
cases, we observe a significant decrease of both these measures compared to the
original method of Välimäki et al. [13]. When the threshold lmin is small (in our
experiments, 20 for the sequence length 300), the filters of [13] combined with our
partitioning scheme presents a trade-off with our filtering scheme: our scheme
yields a smaller number of traversed trie nodes but a larger number of generated
candidates. However, when lmin is large enough (in our experiments, 40 for the
sequence length 300), our scheme outperforms the one of Välimäki et al. in both
the number of nodes in the tries and the number of generated candidates. The
extended scheme with s = 3 yields a smaller number of candidates, but at the
cost of increased number of traversed trie nodes.

6 Conclusions

In this paper, we proposed an improved filtering scheme for the approximate
suffix-prefix overlap problem directly raised by bioinformatics applications. Two
improvements are proposed: we provide a more efficient filtering scheme as well
as new way of partitioning the query string. We show, through analytical estima-
tions, the superiority of our scheme in terms of the size of the search space (size
of traversed tries) as well as the selectivity (number of generated candidates).

Several directions for future work can be envisaged. We did not compare the
actual performance of the different filtering schemes on real data. However, pre-
vious work [4] provides strong grounds to assume that the better performance
will be supported by real data too. This, however, remains to be verified exper-
imentally. Another direction, already mentioned in Introduction, concerns the
generalization of our results to the case of edit distance. While we don’t expect
significant obstacles in this generalization, it does bring an additional technical
difficulty.

Acknowledgements. GK has been supported by the ABS2NGS grant of the
French government (program Investissement d’Avenir) as well as by a EU Marie-
Curie Intra-European Fellowship for Carrier Development. DT has been sup-
ported by ISF grant 981/11.

References

1. S. Burkhardt and J. Kärkkäinen. Better filtering with gapped q-grams. Funda-
menta Informaticae, 56(1,2):51–70, 2003.

2. D. Gusfield, G. Landau, and B. Schieber. An efficient algorithm for the all pairs
suffix-prefix problem. Inf. Process. Lett., 41(4):181–185, March 1992.

3. J. Kärkkäinen and J. C. Na. Faster filters for approximate string matching. In
Proc. 9th Workshop on Algorithm Engineering and Experiments (ALENEX), pages
84–90, 2007.

4. G. Kucherov, K. Salikhov, and D. Tsur. Approximate string matching using a
bidirectional index. In Proceedings of the 25th Annual Symposium on Combinato-
rial Pattern Matching (CPM), June 16-18, 2014, Moscow (Russia), volume 8486
of Lecture Notes in Computer Science, pages 222–231. Springer, 2014. Full version
at http://arxiv.org/abs/1310.1440.

5. T. W. Lam, R. Li, A. Tam, S. C. K. Wong, E. Wu, and S.-M. Yiu. High through-
put short read alignment via bi-directional BWT. In Proc. IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pages 31–36, 2009.

6. Z. Li, Y. Chen, D. Mu, J. Yuan, Y. Shi, H. Zhang, J. Gan, N. Li, X. Hu, B. Liu,
B. Yang, and W. Fan. Comparison of the two major classes of assembly algorithms:
overlap-layout-consensus and de-Bruijn-graph. Brief Funct Genomics, 11(1):25–37,
Jan 2012.

7. B. Ma, J. Tromp, and M. Li. PatternHunter: Faster and more sensitive homology
search. Bioinformatics, 18(3):440–445, 2002.

8. E. W. Myers, G. G. Sutton, A. L. Delcher, I. M. Dew, D. P. Fasulo, M. J. Flanigan,
S. A. Kravitz, C. M. Mobarry, K. H. Reinert, K. A. Remington, E. L. Anson, R. A.
Bolanos, H. H. Chou, C. M. Jordan, A. L. Halpern, S. Lonardi, E. M. Beasley,
R. C. Brandon, L. Chen, P. J. Dunn, Z. Lai, Y. Liang, D. R. Nusskern, M. Zhan,
Q. Zhang, X. Zheng, G. M. Rubin, M. D. Adams, and J. C. Venter. A whole-genome
assembly of Drosophila. Science, 287(5461):2196–2204, Mar 2000.

9. G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings – Practical
on-line search algorithms for texts and biological sequences. Cambridge University
Press, 2002. ISBN 0-521-81307-7. 280 pages.

10. L. Noé and G. Kucherov. YASS: enhancing the sensitivity of DNA similarity search.
Nucleic Acid Research, 33:W540–W543, 2005.

11. E. Ohlebusch and S. Gog. Efficient algorithms for the all-pairs suffix-prefix prob-
lem and the all-pairs substring-prefix problem. Information Processing Letters,
110(3):123 – 128, 2010.

12. J. T. Simpson and R. Durbin. Efficient de novo assembly of large genomes using
compressed data structures. Genome Res., 22(3):549–556, Mar 2012.

13. N. Välimäki, S. Ladra, and V. Mäkinen. Approximate all-pairs suffix/prefix over-
laps. Information and Computation, 213:49–58, 2012.

14. M. Vyverman, B. De Baets, V. Fack, and P. Dawyndt. Prospects and limitations
of full-text index structures in genome analysis. Nucleic Acids Res., 40(15):6993–
7015, Aug 2012.

