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THE HOROFUNCTION COMPACTIFICATION OF
TEICHMULLER SPACES OF SURFACES WITH
BOUNDARY

D. ALESSANDRINI, L. LIU, A. PAPADOPOULOS, AND W. SU

ABSTRACT. The arc metric is an asymmetric metric on the Teichmiiller
space T (S) of a surface S with nonempty boundary. It is the analogue of
Thurston’s metric on the Teichmiiller space of a surface without bound-
ary. In this paper we study the relation between Thurston’s compactifi-
cation and the horofunction compactification of 7(S) endowed with the
arc metric. We prove that there is a natural homeomorphism between
the two compactifications. This generalizes a result of Walsh [20] that
concerns Thurston’s metric.

The final version of this paper will appear in Topology and its Applica-
tions.

AMS Mathematics Subject Classification: 32G15 ; 30F30 ; 30F60.
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1. INTRODUCTION

Let R be an oriented surface of genus g with n punctures and let 7,
be the Teichmiiller space of R. We shall view 7,, as a space of equiva-
lence classes of metrics on R. Thurston introduced a compactification of
Tg.n, which is used in his classification of diffeomorphisms of surfaces [19].
The boundary of this compactification is the space of projective classes of
measured foliations on R. The action of the mapping class group on 7,
extends continuously to Thurston’s boundary.

There is an asymmetric Finsler metric on 7y, defined by Thurston [18].
The geodesics of this metric are families of extremal Lipschitz maps be-
tween hyperbolic surfaces. The space 7, endowed with Thurston’s metric
is a complete (asymmetric) geodesic metric space. Unlike the classical Te-
ichmiiller metric, Thurston’s metric is not uniquely geodesic. A special kind
of geodesics for this metric, called stretch lines, are constructed by “stretch-
ing” along complete geodesic laminations of hyperbolic surfaces, that is, ge-
odesic laminations whose complementary regions are all ideal triangles. The
introduction of this metric paved the way to a whole set of new interesting
questions on the geometry of Teichmiiller space [12, 13].

Thurston’s compactification and Thurston’s metric are closely related to
each other. The connection between Thurston’s compactification and the
geodesic rays of Thurston’s metric was shown by Papadopoulos [10]. To state
things more precisely, let u be a complete geodesic lamination. (Note that we
do not assume that p carries a transverse invariant measure of full support.)
Associated to p is a global parametrization of 7g,,, called the cataclysm
coordinates, sending Ty, to the set of measured foliations transverse to p.
The cataclysm coordinates extend continuously to Thurston’s boundary (see
[10, Theorem 4.1] for a more precise statement). In particular, a stretch
line is determined by a measured foliation F' that is transverse to u (called
the horocyclic foliation associated to the stretch line) and this stretch line
converges to the projective class of F' in Thurston’s boundary [10].

Walsh [20] showed that Thurston’s compactification of 7, can be natu-
rally identified with the horofunction compactification with respect to Thurston’s
metric. Horofunction boundaries have the property that each geodesic ray
converges to a point on the boundary. As a corollary, every geodesic ray for
Thurston’s metric converges to a point in Thurston’s boundary.
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Another direct corollary of the result of Walsh [20] is that any isometry
of Ty n equipped with Thurston’s metric induces a self-homeomorphism of
Thurston’s boundary. On the other hand, there is a “detour cost” distance
(which is also asymmetric and which may take the value infinity) defined on
Thurston’s boundary which is preserved by the isometries of 7y, equipped
with Thurston’s metric. By calculating the detour cost between any two
projective measured foliations, Walsh [20] proved that, with some excep-
tional cases, the isometry group of 7,,, equipped with Thurston’s metric is
the extended mapping class group.

In this paper, we compare Thurston’s compactification of the Teichmiiller
spaces of surfaces with boundary with the horofunction boundary of that
space with respect to an appropriate metric, the arc metric introduced in
8].

Thurston’s asymmetric metric can be defined by a formula which com-
pares lengths of simple closed curves computed with the metrics representing
the two elements in Teichmiiller space (§4). The passage to the definition of
the arc metric, using lengths of arcs, is very natural, but there are geomet-
ric questions whose solutions are far from obvious. We mention for instance
that it is unknown whether the arc metric is Finsler, or whether it realizes
the extremal Lipschitz constant of homeomorphisms between hyperbolic sur-
faces, as in the case of Thurston’s metric on Teichmiiller spaces of surfaces
without boundary. We also do not know whether two points in Teichmiiller
space of a surface with boundary are joined by a concatenation of stretch
lines. Working with arcs on a surface with boundary, instead of simple
closed curves, involves several complications and requires new topological
and geometrical tools, and this makes this subject interesting.

We now present our results in more detail.

Let S be a hyperbolic surface of finite area with totally geodesic bound-
ary components and let 7(S) be the Teichmiiller space of S. There is an
analogue of Thurston’s compactification of 7(S) defined using hyperbolic
length and intersection number with simple closed curves and simple arcs
on S (see §3). The boundary of such a compactification is identified with
the space of projective measured laminations on S, which is homeomorphic
to a sphere (see Theorem 3.8 and Proposition 3.9).

We recall the definition of the arc metric in §5 and prove the following:

Theorem 1. Thurston’s compactification of T(S) can be identified with
the horofunction compactification of the arc metric on T(S) by a natural
homeomorphism.

The proof of Theorem 1 depends on the study of the asymptotic behaviour
of the geodesic lengths of simple closed curves and arcs along certain paths
on 7(S). In particular, for every measured lamination u, we will construct
(Lemma 6.7) a path X3, ¢ € [0,+00) in T(S) such that each simple closed
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curve or simple arc o on .S satisfies
eli(p, ) — C < Lo(Xy) < €li(p, @) + Ca,

where C' > 0 is a uniform constant and C, > 0 is a constant depending on
.

Remark 1.1. It is reasonable to conjecture that, in the case where S has
nonempty boundary, the isometry group of 7(S) endowed with the arc met-
ric is the (extended) mapping class group Mod(S), with the usual excep-
tional surfaces that appear in the theory without boundary. As a matter of
fact, if S? = S U S be the double of S, obtained by taking the mirror image
S of S and by identifying the corresponding boundary components by an
orientation-reversing homeomorphism, then S¢ is a surface without bound-
ary. We know that such a doubling induces an isometric embedding from
T(S) to T(S9) (see §2). As a result, one may hope that Walsh’s argument
can be applied. However, the proof of Walsh depends on Thurston’s con-
struction of stretch maps, which does not apply as such to 7(S) when the
surface S has boundary components. A further understanding of Thurston’s
compactification of 7(.S) and the action of isometry group may require some
generalized notion of (appropriately defined) “stretch map” for surfaces with
boundary.

2. PRELIMINARIES

Throughout this paper, we denote by S = S, ,,, a connected orientable
surface of finite type, of genus g with n punctures and p boundary compo-
nents. We always assume that the Euler characteristic x(S) =2—2g—n—p
is < 0 and that the boundary of S, denoted by 0.5, is nonempty.

A hyperbolic structure on S is a complete metric of constant curvature
—1 such that

(i) each puncture has a neighborhood which is isometric to a cusp, i.e.,
to the quotient of {z = x + iy € H? | y > a}, for some a > 0, by the
group generated by the translation z — 2z + 1;

(ii) each boundary component is a closed geodesic.

A marked hyperbolic surface is a pair (X, f), where X is a hyperbolic
structure on S and f : S — X an orientation-preserving homeomorphism.
The map f is called a marking. Two marked hyperbolic surfaces (X7, f1)
and (X2, f2) are said to be equivalent if there exists an isometry h : X; — Xo
which is homotopic to fao f| ! (note that in our setting, homotopies fix each
boundary component setwise but they do not need to fix it pointwise). The
reduced Teichmiiller space T (S) is the set of equivalence classes of marked
hyperbolic structures on S.

Remark 2.1. Since all Teichmiiller spaces that we consider are reduced,
we shall omit the word “reduced” in our exposition. Furthermore, we shall
sometimes denote an equivalence class of (X, f) in 7(S) by X, without
explicit reference to the marking or to the equivalence relation.
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Let S? be the double of S and 7(S?%) the Teichmiiller space of S¢. Note
that S¢ is a surface of genus 2g+p— 1 with 2n punctures, without boundary.
We construct a natural embedding of 7(.S) into 7(S9).

For any equivalence class of marked hyperbolic structures [(X, f)] € T(S),
we let X be the isometric mirror image of X. The hyperbolic surface X is
equipped with an orientation-reversing isometry J : X — X. Then X¢
is the hyperbolic surface obtained by taking the disjoint union of X and
X, and gluing 0X with X by the restriction of .J to the boundary. This
map J extends to an involution of X% which we still denote by J. Taking
the double of a marked Riemann surface with boundary is a well-known
operation, and it was already considered in Teichmiiller’s paper [14]. We
are dealing here with the analogous operation, at the level of the associated
hyperbolic structures. To determine a point in 7(S%), we have to choose a
marking for X?¢. Note that we can modify the marking f : S — X in its
homotopy class in such a way that f = id in a small collar neighborhood of
each boundary component. We extend f to a marking

f:8%— x4
by setting

fe)=To foJ(x)
when # € X. It is easy to check that the equivalence class [(X¢, f)] is
independent of the choice of (X, f) € [(X, f)].
We set U([(X, f)]) = [(X% f)] and we use for simplicity the notation
¥(X) = X Then we have

Proposition 2.2. The map
U:T(S) — T(SY,
X = ¥X)=x%
is an embedding.

Proof. An efficient way to see that ¥ is an embedding is to present ¥ in terms
of Fenchel-Nielsen coordinates. We choose a maximal set {a;}>97 " 1P of
mutually disjoint and non homotopic simple closed curves in the interior
of S, all of them non-trivial and not homotopic to boundary components.

Denote the boundary components of S by {g; ?:r The map

T(S) = Ry xRPTHP X (R,
X o (lay(X), 70, (X)) X £, (X),
where £y, 3, are the length coordinates and 7,, the twist coordinates, de-
fines the Fenchel-Nielsen coordinates of 7(S) (see Buser [3]).

For each 1 < i < 3g —3+n+p, let & C S be the mirror image of
;. Then {a;} U{B,;} U {a;} is a pants decomposition of S¢. Denote the
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Fenchel-Nielsen coordinates of 7(S%) by
(gaNTOCi) X (€5j77—5j) X (Z&HTdi)'

Then the map ¥ can be written in the Fenchel-Nielsen coordinates as

(1> (eﬂéi’TOéi) X Eﬁj = (eaﬂTai) X (E/Bj70) X (gaw _Tai)'

Note that 75, = —7,, since the mirror image of a right twist deformation on
X becomes a left twist deformation on X.

Since the Fenchel-Nielsen coordinates are real-analytic global parameters
for Teichmiiller spaces, and the map (1) is a real-analytic embedding, it
follows that W gives a real-analytic embedding of 7°(S) into 7(S%). O

The map ¥ will be an isometric embedding if we equip 7 (S) with the arc
metric and 77(S%) with Thurston’s metric [8]. We shall recall the definition
of Thurston’s metric in §4 and the arc metric in §5.

We consider the involution J : ¢ — S% on T(S%) as an element of the
extended mapping class group (that is, we identity when needed a map with
its homotopy class). We set

T™(9%) :={R € T(S") | J(R) = R}.

It is not hard to see that there is a canonical identification W(7(S5)) =~
Toum(S9).

3. MEASURED LAMINATIONS AND THURSTON’S COMPACTIFICATION

In this section, we recall the notion of measured lamination space and
the Thurston compactification of Teichmiiller space, and their extensions to
hyperbolic surfaces with geodesic boundaries. Part of our results here is a
continuation of work done in [8].

3.1. Measured laminations. In the setting of surfaces with boundary, we
need to be precise on the definition of measured geodesic laminations that
we deal with.

We endow S with a fixed hyperbolic structure. A geodesic lamination A on
S is a closed subset of S which is the union of disjoint simple geodesics called
the leaves of A\. With such a definition, a leaf L of A may be a boundary
component of S. It may also be a geodesic ending at a cusp or a boundary
component of S. Furthermore, L may meet a boundary component of S
or spiral along it. If L is a geodesic with some end at a point p € 05, we
require that L is perpendicular to 95 at p.

Let A be a geodesic lamination on S with compact support. A transverse
measure for A is an assignment, for each embedded arc k on S which is
transverse to A and with endpoints contained in the complement of A, of a
finite Borel measure p on k with the following properties:

(1) The support of pis AN k.
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(2) For any two transverse arcs k and &’ that are homotopic through em-
bedded arcs which move their endpoints within fixed complementary
components of u, the assigned measures satisfy

(k) = (k).

A measured geodesic lamination is a geodesic lamination A together with
a transverse measure. To simplify notation, we shall sometimes talk about
a “measured lamination” instead of a “measured geodesic lamination”. We
shall denote such a measured lamination by (A, ) or, sometimes, p for
simplicity.

All the measured laminations we consider are assumed to have compact
support. An example of a measured lamination is a weighted simple closed
geodesic, that is, a simple closed geodesic a equipped with a positive weight
a > 0. The measure disposed on a transverse arc k is then the sum of
the Dirac masses at the intersection points between k and o multiplied by
the weight a. In general, a lamination is a finite union of uniquely defined
minimal sub-laminations, called its components. With the assumptions we
made, each such component is of one of the following three types:

(i) a simple closed geodesic in S (such a simple closed geodesic can be a
boundary component);
(ii) a geodesic arc meeting 05 at right angles;
(iii) a measured geodesic lamination in the interior of S, in which every leaf
is dense.

This follows from our definition and from the corresponding result for sur-
faces without boundary.

Let ML(S) be the space of measured geodesic laminations on S. We shall
equip ML(S) with the weak*-topology, following Thurston [17] in the case
of surfaces without boundary. We can choose a finite collection of generic
geodesic arcs kq,- -+ , kp, on S such that p, € ML(S) converges to pu if and

only if
max ‘/ dun—/ d,u’—>0.
i=lm! Jy K,

Here a geodesic arc is called generic if it is transverse to any simple geodesic
on S. Note that almost every geodesic arc on S is generic [2].

We also recall that there are natural homeomorphisms between the various
measured lamination spaces when the hyperbolic structure on the surface
varies. Using this fact, it is possible to talk about a measured geodesic
lamination on the surface without referring to a specific hyperbolic structure
on it.

Let S¢ be the double of S and ML(S?) be the space of measured geodesic
laminations on S¢. As before, denote the natural involution of S¢ by J. For
any subset A C S or A C S, we denote by A = J(A). Moreover, if y is a
measure on an arc I on S or S, then we set ji(I) = p(J(I)). From the above
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definition of measured geodesic lamination on S, there is a natural inclusion
¥ from ML(S) into the space ML(S?) defined by

Y ML(S) — ML(SY
A p) = AU+ ).

We will use the notation u? = (AU, s+ fi) for simplicity. Note that if y is
a weighted simple closed geodesic (a, a) where « is a boundary component
of S and a the weight it carries, then u? = (o, 2a).

A measured lamination (respectively, hyperbolic structure, simple closed
curve, etc.) on S? is said to be symmetric if it is invariant by the canonical
involution J. Denote the subset of all symmetric measured laminations in

ML(S?) by MLV™(S9).

Lemma 3.1. The map ¢ : ML(S) — ML(S?) is continuous and we have
a natural identification

ML (S = h(ML(S)).

Proof. Tt is obvious that all elements in 1)(ML(S)) are symmetric.

Conversely, let /i be a symmetric measured lamination in ML(S%). Every
component of y which meets the fixed point locus of the involution J is, if it
exists, a simple closed geodesic. Indeed, such a component must intersect the
fixed point locus perpendicularly, and no component which is not a simple
closed geodesic can intersect the fixed point locus in this way, because of
the recurrence of leaves. It follows that any sublamination of g which is
connected (that is, which has only one component) that intersects 95 is
either a boundary component of S or a symmetric closed geodesic meeting
0S at right angles. As a result, the restriction of pi to S defines a unique
measured lamination p € ML(S) such that fi = ¢(p) = u?.

The continuity of @ follows directly from the definition of the weak™-
topology on measured lamination spaces. ([l

3.2. Rational measured laminations are dense in ML(S). We say
that a simple closed curve on a surface is essential if it is neither homo-
topic to a puncture nor homotopic to a point (but it can be homotopic to
a boundary component). We let C(S) be the set of homotopy classes of
essential simple closed curves on S.

In the case where 0S is nonempty, an arc in S is the homeomorphic image
of a closed interval which is properly embedded in S (that is, the interior
of the arc is in the interior of S and the endpoints of the arc are on the
boundary of S). All homotopies of arcs that we consider are relative to
0S, that is, they keep the endpoints of arcs on the set S (but they do not
necessarily fix pointwise the points on 95). An arc is said to be essential if
it is not homotopic to a subset of 9S. We let A(S) be the set of homotopy
classes of essential arcs on S.
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Endowing S with a hyperbolic structure X, for any v € A(S) U C(S),
there is a unique geodesic 4~ in its homotopy class. It is orthogonal to 0X
at each intersection point, in the case where v is an equivalence class of arc.
We denote by £ (X) the length of ~X, and we call it the geodesic length of ~
on X. This length only depends on the equivalence class of X in Teichmiiller
space.

The geodesic representation v — X defines a correspondence between
Ry x (A(S) UC(S)) and the set of weighted simple closed geodesics and
weighted simple geodesic arcs on S.

A measured lamination p is rational if the support of p consists of simple
closed geodesics or simple geodesic arcs. Let us denote a rational measured

lamination by
Z a;i%i,

i€l
where Z is some finite set, a; > 0 and the ; € A(S) UC(S) are pairwise
disjoint.

The set of weighted simple closed curves on S? is dense in the space
ML(S?), and the geodesic length function, defined on weighted simple
closed geodesics, extends to a continuous function on the space ML(S?)
[17]. The situation is slightly different for surfaces with boundary.

In general, the set Ry x A(S) URy x C(S) is not dense in ML(S). For
example, if y = a + S where « is a simple closed curve in the interior of S
and ( is a boundary component of S, then u cannot be approximated by a
sequence in Ry x A(S) URy x C(S). However, using multiple curves and
arcs instead of curves and arcs suffices, and we have the following:

Lemma 3.2. The set of rational measured laminations on S is dense in

ML(S).

Proof. Let p € ML(S). Each component of y is either a simple closed geo-
desic, a geodesic arc or a minimal measured lamination in the interior of S.
Each minimal component is contained in a geodesically convex subsurface,
whose interior is disjoint from the other components. Thus, by Thurston’s
theory, each minimal component can be approximated by a sequence of
weighted simple closed geodesics in the interior of the subsurface. ([l

Proposition 3.3. For every X and Y in T(S), we have
LY 2, (Y
@) ap oY) o )
vee($)UAS) (X)) pemeis) Lu(X)
Proof. 1t is obvious that

L) oY)
’Y(X) = ;LEME(S) EM(X)‘

sup
~YEC(S)UA(S)

S

Let us set

MLA(S) = {p € ML(S) | £u(X) =1}
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and
ML (8% = {ji € ML(S?) | £a(X) =2},
The map v sends ML1(S) into MLy (S?).
Since ML (S?) is compact and ¥ (M L1(S)) is a closed subset of ML (S59),
ML (S) is a compact subset of ML(.S). Therefore, there is a measured lam-
ination pp € ML;1(S) that realizes the maximum:

a1 (V)
®) MGME(S) Cu(X) Lo (X)

Consider the decomposition of pg into minimal components,
Mo = Z a;vj.
i

Let K be the value of the supremum in (3). We have £,,(Y) = K{,,(X),
that is, since the length function is positively homogeneous,

Z aily,(Y) =K Z aily, (X).

Since £,,(Y) < K¢,,(X) (from the definition), it follows that
Ew (Y) = KEW (X)

for each v;. As a result, any component of 1 also realizes the supremum L.

As before, since each component of g is either a simple closed geodesic,
a geodesic arc or a minimal measured lamination in the interior of S, each
of which can be approximated by a sequence in Ry x (.A(S) U C(S)), we

conclude that ) )
% (Y

sup = sup L.

vee($)UA(S) LX) peme(s) bu(X)

S

O

Denote by B the set of all boundary components of S. In the paper [§],
the following was shown:

Proposition 3.4.
£(Y) £,(Y)
sup = sup
vee($)UAS) LX) yess)vas) 4 (X)

> 1,

and the last inequality becomes an equality if and only if X =Y.

3.3. Thurston’s compactification. We need to recall some fundamental
results of Thurston described in [5].

Let R be a surface of genus g with n punctures. Let Ri(R) be the set
of all nonnegative functions on C(R) and P]Ri(R) the projective space of
R (

by m : Ri(R) — PRi(R) the natural projection. We endow ]Ri(R) with

that is, its quotient by the action of positive reals). We denote
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the product topology and P]Ri(R) with the quotient topology. There is a
mapping L defined by

L:T(R) — R,
X = (la(X))aec(r)-

The map mo L : T(R) — P]Ri(R) is an embedding.
There is also a mapping I, defined by
I:ML(R) — RSP
poo= o (1, @))ace(ry
where
i(p, ) = inf du
o'€la] J o
is the intersection number. Then [ is also an embedding.
Thurston showed that the closure of mo L(7T (R)) is compact and coincides
with
mo L(T(R)) U moI(ML(R)).
We denote this closure by T(R). This is Thurston’s compactification of
T(R). In the following, we shall identify 7 (R) with its image and the
boundary of 7 (R) with PML(R), the space of projective classes of measured
laminations on R.
Now we introduce an analogue of Thurston’s compactification for the
Teichmiiller space T (.S), where S is a surface with boundary. For simplicity,
let C =C(S) and A = A(S).

Consider the map defines by the following composition:

(4) T(S) =5 REWA Ty pROVA,

Lemma 3.5. The map defined in (4) is injective.

Proof. Suppose that X, Y € T(S) are mapped to the same point in PRﬁUA.
Then there exists a constant K > 0 such that

0,(X) = K0,(Y)
for all v € CU.A. Without loss of generality, we may assume that K > 1.
This implies that

~—

sup 6
yee($)UAS) L4 (X)
It follows from Proposition 3.4 that X =Y. U

<1

Similarly, we consider
(5) ML(S) L5 REA,
Lemma 3.6. The map defined in (5) is injective.
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Proof. Suppose that p,v € ML(S) are mapped to the same point in RiUA.
Let

M= po + p1,V =1V + V1,
where pg, vy are unions of components contained in the interior of S and
(1,1 are unions of components that belong to 95 or intersect 95 (some of
these components might be empty).

Since p1 and v (if they exist) are unions of simple geodesic arcs or bound-
ary components of .S, it is easy to see that p; = 1. For otherwise, it is not
hard to find some element 7 in C U A such that i(p1,v) # i(v1,7).

On the other hand, since pg and 1 are contained in the interior of the
surface, by the same argument as for a surface without boundary which may
have punctures, we have py = 1.

It follows that p = v. O

Remark 3.7. Both Lemmas 3.5 and 3.6 can be proved directly by the same
arguments as [5, Exposés 6 and 7]. Note that the images of 7(S) and ML(S)
in RGUA are disjoint. This follows from the fact that for each X € T(S),
the set of lengths £,(X),y € CU A is bounded below by a strictly positive
constant (only depending on X); while for each p € ML(S) and for any
€ > 0, there is some v € C U A such that

i(p,y) <e.
Here ~ can be taken as a simple closed curve, a simple arc belonging to a
component of p (if it exists) or a simple closed curve quasi-transverse to p
(see [5, Proposition 8.1] for details).

By Lemma 3.5, Lemma 3.6 and Remark 3.7, we have an embedding

T(S)UPML(S) — PREVA,

We have already identified 77(S) with the subset 7°¥™(S%) of T(S¢) by
the map ¥ and PML(S) with the subset PMLY™(S?) of PML(SY) by
the map . To give an idea of the image of T(S) U PML(S) in PRGVA,
we shall show that the convergence of sequences in 7(S) in the topology of

PR&UA is equivalent to the convergence in the topology of PRi(Sd).

Let {X,} be a sequence in 7(S) and let {X%} be the corresponding
sequence in 7Y™ (S%).

Assume that X? converges to a point i € PML(S?) in the topology of
P]Ri(sd). Now an element of 7(S%) or PML(S?) in PRi(Sd) is in 7Y™ (S%)
or ML%¥™(S8%) if and only if as a function on the set of homotopy classes
of curves C(S?) it has the same values on pairs of curves that are images of
each other by the involution J of S¢. Thus, since X¢ is symmetric, fi is also
symmetric. It follows that X,, converges to p (which satisfies 7 = u?) in the
topology of PREVA.

Conversely, assume that X,, converges to a point P in PRS_(S)UA(S). Let
fi be any accumulation point of X¢ in PML¥Y™(S?). By definition, there
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exists a sequence ¢, > 0 such that (up to a subsequence)
enly(X33) = (1, )
for any v € C(S?%). Setting ¥ = J(v), we have

enls (X7) = enly (X31) = i) = i, 7)-
In particular, we have
i(p, ) = i1, 7)
for any vy € C(S?). Such a i must be symmetric and unique (the restriction
of 1 on S is identified with P).
In conclusion, we have

Theorem 3.8. PML(S) is identified with the boundary of T (S) in PR{UA.
The embedding ¥ : T(S) — T(S9) extends to T(S) U PML(S) such that
Vlpre(s)y = 9-

3.4. Topology of the boundary. Let S be a surface of genus g, with p
punctures and with b boundary components denoted by {Bi,...,By}. A
pants decomposition of S contains 3g — 3 + b + p pairwise disjoint interior
curves which we denote by {C1,...,C3g_34p4p}, decomposing the surface
into 2g — 2 4+ b 4 p pairs of pants. Such a pants decomposition induces a
symmetric pants decomposition of the double S¢, with 69 —6+3b+2p curves
denoted by

{Cla s 7C3g—3+b+p7 Bl7 s 7Bba Cl) RN C3g—3+b+p}7

dividing S¢ into 4g — 4 + 2b + 2p pairs of pants.

The space of measured laminations ML(S%) can be understood using the
Dehn-Thurston coordinates associated with a pants decomposition.

Given a measured lamination p, for every curve C' in the symmetric pants
decomposition of S¢, there are two associated coordinates, the length co-
ordinate i(u, C') € R>g and the twist coordinate 6(u,C) € R (see Dylan
Thurston [16] for details). This gives an element (i(p, C'), 0(p, C)) € R>oxR.
Consider the quotient R = Rsg x R/ ~, where (0,t) ~ (0, —t), and de-
note by DT (u,C) the equivalent class of (i(u,C),0(u,C)) in RE. Notice
that R is homeomorphic to R2. The Dehn-Thurston coordinates give a
homeomorphism

ML(Sd) N (R[2])6g—6+3b+2p
p — (DT(p, Ch),.. . DT (1, C3g—34b1p), DT (11, B1),
ceey DT(M7 Bb)? DT(lu’a Cl)? ceey DT(IU’J C3g—3+b+p))
The subspace ML(S) € ML(S?) can be described by equations imposing
symmetry on the coordinates:
Vi i(p, Cj) = i(p, Cy)
K 9(/’&70]) = _0(M7Cj)
Vs 00, By) = 0 if i(y1, By) 0.
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The minus sign in the equation for the twist comes from the fact that the
sign of the twist parameter depends on the orientation of the surface, and
the mirror symmetry changes the orientation.

The first two equations mean that, for symmetric laminations, the coor-
dinates associated with the curves C; can be recovered from the coordinates
associated to Cj, so we can neglect the curves C; in the coordinates.

The third equation shrinks every factor R? corresponding to a boundary
curve B; into a line. Then we define the coordinate 8(u, B;) as i(u, B;) if
i(p, Bj) # 0, and as —|0(u, By)| if i(p, B;) = 0.

These considerations prove the following:

Proposition 3.9. The following map is a homeomorphism
ML(S) > p—
(DT(M7 01)7 SE) DT(M? C3g—3+b+p)a é(/.L, bl)a ceey é(/.t, Bb)) € (R[Q})gg_3+b+pXRb

In particular, ML(S) is homeomorphic to R69=6+30+20 and PML(S) is
homeomorphic to S69~7+30+2p,

4. THURSTON’S ASYMMETRIC METRIC

Given a set M, a nonnegative function d defined on M x M is said to
be a weak metric if it satisfies all the axioms of a distance function except
the symmetry axiom. A weak metric d is said to be asymmetric if it is
strictly weak, that is, if there exist two points x and y in M such that
d(z,y) # d(y, z).

In this section, we first review Thurston’s metric and stretch maps on Te-
ichmiiller spaces of surfaces without boundary (with or without punctures).

Denote by 7, the Teichmiiller space of a surface R of genus g with n
punctures and without boundary. The space Ty, is the space of marked
hyperbolic structures on R. Thurston [18] defined an asymmetric metric
dty on Ty, by setting

where the infimum is taken over all homeomorphisms f : X — Y homotopic
to the identity map of R and where L;(X,Y") is the Lipschitz constant of f,

that is,
dY (f(x)7 f(y)>
sup ————~—~.
etyes  dx(z,y)
An important result of Thurston [18] is that

Li(X,)Y) =

(YY)

(7) drn(X,Y) =log sup —L—~.

~ee(s) by(X)
The asymmetric metric defined in (6) is Finsler, that is, it is a length
metric which is defined by integrating a weak (asymmetric) norm on the
tangent bundle of 7, along paths in 7 ,,, and taking the infimum of lengths
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over all piecewise C''-paths. Thurston [18] also gave an explicit formula for
the weak norm of a tangent vector V' at a point X in 7 ,, namely,

dlx(V)
8 V = su .
® IVlin AG.APM Ix(X)

Here, ML is the space of measured laminations on the surface, £y : Tg, —
R is the geodesic length function on Teichmiiller space associated to the
measured lamination A and df) is the differential of /) at the point X € 7 .

There is a (non-necessary unique) extremal Lipschitz homeomorphism
that realizes the infimum in (6). Related to the extremal Lipschitz homeo-
morphsim, there is a class of geodesics for Thurston’s metric called stretch
lines, which we will describe below.

Let X be again a hyperbolic surface on R. A geodesic lamination A on X
is said to be complete if its complementary regions are all isometric to ideal
triangles. Associated with (X, \) is a measured foliation F)(X), called the
horocyclic foliation, whose equivalence class is characterized by the following
three properties:

(i) Fx(X) intersects A transversely, and in each cusp of an ideal triangle in
the complement of A, the leaves of the foliation are pieces of horocycles
that make right angles with the boundary of the triangle;

(ii) on the leaves of A, the transverse measure for F(X) agrees with hy-
perbolic arc length;

(iii) there is a non-foliated region at the center of each ideal triangle of X \ A
whose boundary consists of three pieces of horocycles that are pairwise
tangent (see Figure 1).

horocycles
perpendicular
to the boundary

S

region
horocycle of length 1

FiGUrE 1. The horocyclic foliation of an ideal triangle.

We denote by MF () the space of measured foliations that are transverse
to A. Note that by the definition of a horocylic foliation, we require the
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measured foliation in MF () to be standard in a neighborhood of any cusp
of the surface. This means that its leaves are circles, and the transverse
measure of any arc converging to the cusp is infinite. Thurston [18] proved
the following fundamental result.

Theorem 4.1. The map ¢y : Ty, = MF(N) defined by X — F\(X) is a

homeomorphism.

The stretch line g (X) directed by A and passing through X € T (R) is the
line in Teichmiiller space parameterized by

R >t gh(X) = ¢y (' FA(X)).

We call a segment of a stretch line a stretch path. We also have a natural
notion of stretch ray.

Stretch rays are geodesics for the Thurston metric: Suppose that Ag is
a measured lamination whose support is contained in a complete geodesic
lamination . Let I'(f) = g} (X). Then, for any two points I's, Ty, s < ¢ on
the stretch line, The distance dpy(I's,T't) is equal to t — s, and this distance
is realized by
E)\O (Ft)
ZAO (FS) ‘
It was observed by Thurston [18] that any measured lamination that realizes
the maximum of

log

sup £ (Xt)
peme £ (Xs)
is supported by A. The union of all the measured geodesic laminations that
realize this maximum is also a measured geodesic lamination, called the
stump of .

Thurston proved that any two points in Teichmiiller space can be joined
by a geodesic which is a finite concatenation of stretch paths, but in general
such a geodesic is not unique. There also exist geodesics for Thurston’s
metric that are not concatenations of stretch paths. Some of them are made
explicit in [12]. This contrasts with Teichmiiller’s theorem establishing the
existence and uniqueness of Teichmiiller geodesics joining any two distinct
points.

Given X € 74, and a complete geodesic lamination A on X, we consider
the map

F(t):RZO — 7-9771
t = IL(X).

By definition, I'(¢) is the stretch ray directed by \ starting at X. Note that
I'(0) = X. There is a unique measured lamination p which is equivalent to
the horocylic foliation F(X). In fact, there is a one-to-one correspondence
between measured laminations and (equivalence class of ) measured foliations
on X. The measured lamination u equivalent to F\(X) is totally transverse
to A (see Thurston [18, Proposition 9.4]).
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In the following, we assume that A has no closed leaves. It follows from
this assumption that A is obtained from its stump by adding finitely many
infinite geodesics. Therefore any simple closed geodesic or any geodesic arc
(connecting two simple closed geodesics (1, f2 with i(81, f2) = 0 perpendic-
ularly) is transverse to X\. We shall use this fact. Papadopoulos [10] proved
the following:

Lemma 4.2. For any simple closed curve v on R, there is a constant C
that depends only on v such that

e'i(p,y) < £y (D(1) < e'i(p, ) + Cs.

This implies that, as ¢ — 400, I'(¢) converges to [u], the projective class
of p on the boundary of Thurston’s compactification.

When i(p,y) = 0, Lemma 4.2 says that £ (I'(t)) is bounded above by a
constant C, (depending on ). The following result of Théret [15] gives a
further estimate for £, (I'(¢)).

Lemma 4.3. Let vy be a simple closed curve on R with i(u,y) = 0. If v is
a leaf of p with wight equal to w, then

(T (1) < smi'(igi?‘/z)'

If v is not a leaf of pu (in this case we set w = 0), then
B, < 4,(I'(t)) < Cy,

where B, and C are positive constants that depend only on .

5. GEOMETRY OF THE ARC METRIC

In this section, we prove our main theorem. We first recall the definition
of the arc metric. Then we introduce the horofunction compactification of
the arc metric. Finally, we show that Thurston’s compactification 7 (.S) is
homeomorphic to the horofunction compactification of the arc metric.

5.1. The arc metric. For any v € A(S) UC(S) and for any hyperbolic
structure X on S, we let X be the geodesic representative of v (that is,
the curve of shortest length in the homotopy class relative to 95). In the
case where 7 is an equivalence class of arcs, the geodesic ¥X is unique, and
it is orthogonal to X at each intersection point. We denote by ¢, (X) the
length of X with respect to the hyperbolic metric considered. This length
depends only on the equivalence class of X in Teichmiiller space.

Let S be a hyperbolic surface with geodesic boundary. Let C = C(S) and
A = A(S). In the paper [8], the authors defined an asymmetric metric, the
arc metric, on T (S) by

_ 4(Y)
9) d(X,Y) = logvzlcla)A K:(X)'
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Relations between the arc metric and the Teichmiiller metric are studied in
the same paper.
Remark 5.1. Note that the arcs are necessary in order to have a metric
because if we use only the closed curves, then there exist X,Y such that
(see [11])
6H(Y)
log sup
ve€ K’Y(X )

The definition of the arc metric is a natural generalization of Thurston’s
formula (7).

< 0.

Proposition 5.2 ([8]). The map ¥ (defined in Section 2) gives an isometric
embedding

(T(S),d) = (T ("), dr)
that 1is,

d(Xv Y) - dTh(Xd7 Yd)

5.2. Horofunction compactification. Let 7(S) be the Teichmiiller space
of S endowed with the arc metric d. We set d(X,Y) = d(Y, X). Then, d
is also an asymmetric metric on 7 (S). The topology of T(S) induced by
the arc metric d is the same as the one induced by d, and it is defined as
the topology induced by the genuine metric d + d or § = max{d, d} (see [8,
Theorem 4.4]).

Fix a base point Xy € T(S). To each X € T(S) we assign a function
Oy : T(S) — R, defined by

By (Y) = d(Y, X) — d(Xp, X).

Let C(T(S)) be the space of continuous functions on 7(S) endowed with
the topology of locally uniform convergence. Then the map

O:T(S) — C(T(9)),
X = (I’X

is an embedding. The closure ®(7(.S)) is compact (this follows from the fact
that 7(S) is locally compact and the Arzela-Ascoli theorem) and it is called
the horofunction compactification of T(S). The horofunction boundary is
defined to be

(T(9)) — (T(9)),

and its elements are called horofunctions.

Remark 5.3. For a general locally compact metric space (M,d), the ho-
rofunction compactification is defined by Gromov [9]. A good property of
the horofunction compactification is that the action of the isometry group
Isom(M,d) of M extends continuously to a homeomorphism on the horo-
function boundary.
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Note that our definition depends on the choice of a base point Xy. How-

ever, if we let
Ox =d(-, X) — d(Yo, X)

for another base point Yj, then the relation between ® x and ) x 1s described
by
(10) Ox(-) = Dx () — x(Y).
Equation (10) induces a natural homeomorphism between W¥(7(S)) and
U(T7(S)) and it induces a homeomorphism between the corresponding horo-
function boundaries. As a result, we can embed the Teichmiiller space T (S)
into the quotient of C(7(S)) by the 1-dimensional subspace of constant
functions, by identifying two functions in C(7(S)) whenever they differ by
an additive constant. For convenience, in the following discussion, we shall

fix a base point.
In the remaining part of this paper, we shall make the identification

PML = {ne ML(S) | £;,(Xo) = 1}.
Suppose that X € T(S). From the definition,

X
®x(-) =log sup bl X)
nepme On(e)

For any v € ML, we set

y(X)
—log sup —* .
nepme bny(Xo)

£,(X) = 6,(X)/ sup P

Then

(11) Ox(-) =log sup £7(X).

vepme Oy()
5.3. Convergence in Thurston’s compactification. Let (X,,) be a se-
quence in 7(S) that converges to u € PML. From the definition, there
exists a sequence of numbers (¢,),c, > 0, such that for any v € ML,
cnly(Xn) — i(p,y) as n — oo. We claim that the following holds:

Lemma 5.4. With the above notation, we have:

£,(X) = i)/ sup }’{XO ))

as n — 0.

Proof. Note that

LX) = b)) sp
cnln(Xn)

= c b (X, su
4 )/neP/I\DAL €n(Xo)
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By assumption, cply(X,) — i(p,m) (as n — oo) for all n € PML.
By a continuity argument (the same proof as [20, Lemma 3.1]), we have
cnlyn(Xn) — i(p,m) uniformly on PML. This implies that

nln(Xn (1,
lim sup 0777() = su i 7]).
n—copepme Un(Xo)  nepme €n(Xo)

Since cply(Xy) = i(p,y) as n — 0o, we are done. O

For v and p in ML, we set

. i(p,v)
Ly(p) =1i(p,7v)/ sup :
y) = il )/ vepmc €u(Xo)
Note that the value £,(p) is invariant by multiplication of p by a positive
constant, therefore we can also define £,(p) by the same formula for p in

PML.

Proposition 5.5. A sequence (X,,) in T(S) converges to u € PML if and
only if L(X,) converges to L(p) for all v € ML.

Proof. We already showed that if (X,,) converges to u, then £(X,) con-
verges to L, (u) for all vy € ML.

Conversely, assume that £,(X,) converges to L, () for all v € ML.
Then (X,,) is unbounded in 7(S). Let (Y,,) be any subsequence of X, that
converges to ¢ € PML. Then L, (Y,,) converges to L (y) for all v € ML.
By assumption, £ (¢') = £ (), therefore

. i(wv) .y i(w,v)
i, su =i(u, su .
(7)/ vepre Lo(Xo) )/ vepae b(Xo)
Therefore, if we set
. L
C= sup ‘WY, o WY

verme Lu(Xo)" vepme 4 (Xo)

then i(u,v) = Ci(y,) for all v € ML. This implies that = ¢’ in PML.
Since (Y},) is arbitrary, (X,,) converges to p. O

Corollary 5.6. A sequence (Zy,) in T(S) converges to Z € T(S) if and
only if L(Zy) converges to L(Z) for all v € ML.

Proof. This follows from Proposition 5.5 and a usual continuity argument.
O

For p € PML(S), let ® : PML — C(T(S)) be the function defined by
(12) ®,(-) =log sup Eﬂ,(,u).
vepme by()

The maps on PML defined by Equations (11) and (12) combine together
and define a map
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©:T(S) = C(T(9),
Z CI)2.

By Corollary 5.6 and the compactness of PML, this map is continu-
ous. In §7, we will prove that ® is injective on 7(S). The same result for
surface without boundary was proved by Walsh [20] by a direct method.
Unfortunately, his argument does not apply here. Our proof is based on the
inequality (Lemma 6.7) in next section.

6. AN INEQUALITY FOR LENGTH FUNCTIONS

For any p € PML, let u? be the double of i on S%. We endow S¢ with
the hyperbolic structure Xg and we choose a complete geodesic lamination A
which contains no closed leaves and which is totally transverse to u. (Recall
that this is equivalent to saying that u? can be represented by a measured
foliation transverse to A and trivial around each puncture.)

Denote by T'(t) the stretch line in 7(S%) directed by A and converging to

p¢ in the positive direction, that is,

L(t) = ¢y ' (' n?)
where ¢) is the map in Theorem 4.1. For ¢t > 0, the hyperbolic structure
I'(t) might not be symmetric, and this is the reason for the technical work
that follows.

Consider any a € A. We realize o as a geodesic arc a; on I'(t) whose
endpoints are on two simple closed geodesics 51, f2 and which meets them
perpendicularly. These closed geodesics are homotopic to the images in
the hyperbolic surface I'(t) of the boundary curves of S which contain the
endpoints of a. They can either coincide in I'(¢) or be distinct, depending
on whether they come from curves that coincide or are distinct in S.

Similarly, we can realize u as a measured geodesic lamination p; on I'(¢).
The support of p; lies on a totally geodesic subsurface of I'(¢) which is
homeomorphic to S. The intersection number i(u, «) is realized by the total
mass of the intersection of oy with ;. Thus, we have:

i(:uv Oz) = I(Mtv at)

where

I(ut,at):/ dpu.
at

We wish to prove an inequality similar to [10, Lemma 4.9]. The first step
is to show that there is a constant C' > 0 (depending only on the stretch
line) such that for all « € A,

eli(p, a) — C < Lo (T'(1)).
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This is confirmed by Lemma 6.3 below.
We fix « in A and the hyperbolic structure I'(t). We will use the same
notation « to denote the geodesic representation of a on I'(¢). We suppose

that a joins two simple closed geodesics (1, 52 perpendicularly. We set
(a) = £, (T'(t)) and so on.

Remark 6.1. It seems that the constant C' > 0 is necessary when o € A.
This is due to the fact that the horocylic foliation F; equivalent to ety
is not symmetric. A similar argument as in [10, Lemma 4.9] shows that
for any a € C, eli(u?,a) < £o(T'(t)). This can be done by showing that
Lo (T(t)) > I(Fy, o), where oy is the geodesic representation of « on T'(t).

6.1. Estimation of arc length in a pair of pants. The three geodesics
(51, B2, a determine a geodesic pair of pants, denoted by P, which is isotopic
to a tubular neighborhood of aU 81 U fBs.

When 3 = (2 (and in this case we denote both curves by ), the boundary
of P has three connected components: one is 8 and the other two will be
denoted by 71,72. It may happen that v; and 7, coincide on the surface S°.

If 81 # B2, the boundary of P has three connected components, two of
them are 81 and 2. We denote by  the third one, so that 0P = 81U B U~.

Remark 6.2. In both cases, some boundary component of P (such as 7,1
or 72) may have zero length. We always consider a puncture to be a bound-
ary component of length zero.

The intersection numbers of the three boundary components of P with p
are three positive numbers satisfying some equation. To simplify notation,
we will always assume that indices are chosen such that i(u,v1) > i(u, y2)
in the first case, and that i(u, 51) > i(u, S2) in the second case.

As indicated on the left of Figure 2, the case where 5, = (5 is divided
into three different subcases.

(A) the intersection number of p with one boundary component of P is
less than the sum of the intersection number of y with the two others.
(That is, the triangle inequality for the triple of intersection numbers
holds.)

(B) i, 1) > i(p, B) +i(p, 72)-

(C) i, B) > ip 1) + 1, 72)-

In each subcase, we have the following corresponding equation:

(A) i(py ) = 5 (i, m) +i(p,v2) —i(p, B)) + wp
(B) i(u.0) = (1 71) 