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Abstract—There are many advantages in using UAVs for
search and rescue operations. However, detecting people from
a UAV remains a challenge: the embedded detector has to be fast
enough and viewpoint robust to detect people in a flexible manner
from aerial views. In this paper we propose a processing pipeline
to 1) reduce the search space using infrared images and to 2)
detect people whatever the roll and pitch angles of the UAV’s
acquisition system. We tested our approach on a multimodal
aerial view dataset and showed that it outperforms the Integral
Channel Features (ICF) detector in this context. Moreover, this
approach allows real-time compatible detection.

I. INTRODUCTION

UAVs are interesting tools for finding people in distress in
complex and/or in large environments because of their maneu-
verability, their rapidity of deployment and because they can
be intelligently controlled. They can work automatically and
in swarm in order to shrink the search time; but for this, each
UAV should have its own detection system. Unfortunately,
automatically detecting people from a UAV is not an easy
task. Numerous constraints have to be taken into account
in this context and the detection system has to be designed
accordingly.

A. Existing work in human detection

Detection methods based on background substraction are
not well suited when the camera undergoes complex move-
ments or when people are not moving. The detection process
should only rely on the visual information contained in one
frame. Monolithic and part-based detectors fit this condition.

1) Monolithic detection: Monolithic detectors search for
monolithic parts of the image looking like people. Gavrila et
al proposed to use a hierachy of human contour templates
obtained using training [1]. This hierachy, used together with
the chamfer matching algorithm, allows the detection of people
in images. But more discriminative methods based on powerful
descriptors have also been developed. The visual information
is locally extracted and collected. Finally the information is
compared to a general model of people with a classification
algorithm. Papageroriou et al were among the first to propose
this pipeline [2]. They used wavelet descriptors, a sliding-
window method to exhaustively scan the image and a SVM
classifier. Many of current detectors are still based on this
approach. Viola et al based their work on the work of Pa-
pageoriou et al [2]. They used integral images and a cascade
classifier to speed up the computation of the Haar-like wavelet

Fig. 1. First row: results obtained with our method, second row: results
obtained with the ICF. Our method is less sensitive to changes of shape and
angle.

features and reach real-time performance for face detection [3].
The Histogram of Oriented Gradients (HOG) detector of Dalal
and Triggs [4] is an efficient human detector using a variant
of the very well-known and quite efficient SIFT descriptor
[5]. Visual information is extracted using SIFT-like descriptors
over a sliding-window. All the information is classified using a
linear SVM classifier trained on images of people. The SIFT-
like HOG descriptor still remains very competitive for object
detection.

Some detectors combine multiple descriptors, image fea-
tures and/or information sources to increase the detection
rate. Wojek et al showed that combining HOG, Haar-like
descriptors, shaplets and the shape context outperform the
HOG detector alone [6]. Dollar et al proposed a mix between
Viola et al’s detector and the HOG detector [7]. This detector
computes simple rectangular features on integral images of
different channels: L,U,V, gradient magnitude and six ”HOG
channels”. The classification is performed using a fast soft-
cascade classifier.

2) Multiple parts detection: Instead of considering the
human body as one monolithic part, some detectors consider
it as a set of parts. Felzsenzwald et al proposed a method
to detect people by fragments and re-build human models by
using a pictural structure reprensentation [8]. Each part of the
human model is separately learned. An incorrect labelling of
the fragments could decrease the performance of the detector
[9]. That is why Felzenszalb et al introduced a detector using a
new classifier: the latent SVM classifier [9]. With this classifier
the most discriminative information is selected during the
training to produce a more robust detection.



B. Existing work in human detection from a UAV

Detecting people is difficult and it becomes more difficult
in a UAV context. Most human detectors focus on detecting
upright people at nearby distances and from a more or less
invariant viewpoint. The current two main applications of
human detection is the security monitoring and the driving
assistance. Until now little work has been done on detecting
humans from a UAV. Unlike a pedestrian view, an UAV view is
more complex to manage because the UAV undergoes pitching
and rolling rotations. People are also on average further from
the camera in this context.

Gaszczak et al proposed to use both thermal and visible
imagery to better detect people and vehicles [10]. Features
extracted on thermal and visible imagery are fused together to
boost the confidence level of detection. The thermal camera
is used for extracting Haar-like features while the optical
camera is used for a contour shape analysis as a secondary
confirmation to better confirm the detection. This method
permits to detect upright people at a distance of about 160m
using a fixed camera pitch rotation of minus 45 degrees and
in real-time. This method does not seem flexible enough for
detecting people closer to the UAV.

Rudol et al also use thermal and visible imagery but in a
pipeline way [11]. They first identify high temperature regions
from the thermal image and they reject the regions not fitting
a specific ellipse. The corresponding regions are then analyzed
in the visible spectrum using a relaxed Haar-like detector.
Upright and seated people can be detected with this method.
However, the thermal imagery can easily become very tricky
to analyze with this method when the UAV is too close and
the information becomes too noisy.

Reilly et al have a different approach [12]. They use
people’s shadows as a key clue to detect and localize people.
But strong assumptions on weather conditions have to be made
with this technique.

Andriluka et al evaluated various detection methods for
detecting victims at nearby distances [13]. They showed part-
based detectors are better suited for victim detection from a
UAV because they natively take into account the articulation of
the human body. The authors propose the use of complemen-
tary information using several detectors and inertial sensor data
to obtain a better detection rate. However, part-based detection
is a slow process [8] and this seems not suitable for detecting
people too far from the camera.

C. Project context

This work is part of the French regional project SEARCH
whose goal is to develop a system using several UAVs to
rapidly find and rescue people in distress in the Somme
estuary in northern France. The rising tide often trap walkers,
bringing with it a risk of death from drowning. The current
surveillance system employs helicopters to perform prevention
and rescue missions. Unfortunately, this system makes use
heavy equipment and is very expensive. Using a fleet of UAVs
would be an interesting alternative for both the tax payers
and the people in distress. This work is mainly about the
development of a suitable human detection system for the
SEARCH project.

The search and rescue context of the Somme estuary is
the following: the environment is uncluttered, people may be
close or far from the UAV (we consider a distance range of 15
to 50m), people may be walking or standing upright and the
illumination may change over time and may not be the same
everywhere. The use of UAVs adds some more constraints.
The embedded camera of the UAV moves in a 3D world the
detection system should thus be robust to the acquisition sys-
tem’s viewpoint. Moreover, a sufficient reactivness is required
by the system in order for it to be usable in tortuous flights.

D. Content of the paper

The goal of this work is to design a detection system for
addressing all of the following identified constraints: illumi-
nation robustness, detection of moving and stationary people,
real-time compatibility, distance robustness and viewpoint ro-
bustness. The proposed approach is described in details in this
paper.

Section II presents our approach for automatically detecting
people from a UAV in open and natural environments. Section
III concerns the conducted tests and the results obtained in a
sequence taken in the Bay of Somme. This section also talks
about the hardware. The results are discribed in this section.

II. PROPOSED APPROACH

A specific processing pipeline was adopted in order to
obtain better performance: it allows faster computation and
a greater viewpoint robustness (Fig.2). At first visible and
thermal images are extracted during the acquisition phase (1),
a pre-processing phase follows immediately (2), the thermal
images are analyzed to greatly reduce the search space (3), the
spotted areas are fully analyzed in the visible light spectrum by
a viewpoint robust detector to detect people (4) and to finish,
the detected people are looped in the tracker (5).

Stereo
acquisition (1)

Pre-processing (2)

Search space
reduction (3) Detector (4)

Tracker (5)

Data

Data Detections

Data

out

IR+Visible

IR Visible

ROIs

Fig. 2. General pipeline of the onboard detection system. At first visible and
thermal images are obtained and registered (1), a pre-processing of the data is
following this step (2), a search space reduction is performed in the thermal
images (3), the corresponding visible ROIs are analyzed by our viewpoint
robust human detector (4) and detections are looped in the tracker (5)

This paper focuses on stage (1), (2), (3) and (4) of the
proposed pipeline. The acquisition system is composed of a
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Fig. 3. Layout of the stereo acquisition system. C1 and C2 are respectively
camera 1 and 2, Π1 and Π2 are the image planes of respectively camera
1 and 2. P is a person’s location. R: rotation between the two cameras, T:
translation between the two cameras. C1 is the thermal camera and C2 the
visible light spectrum camera.

visible and a thermal camera. The two cameras are set one
beside the other so that the two axis of the cameras are parallel
and at the same height.

A. Stereo acquisition (1)

This step of the pipeline is dedicated to the registration
of the visible and the thermal images: the pixels of both
the cameras are spatially aligned. The goal of this step is to
benefit from the discriminatory nature of thermal images and
the information richness of visible images. Some knowledge
about the intrinsic parameters of the cameras and the geometric
relationship of the cameras are required to align the two
modalities.

Because the objects of the scene are mostly far from the
cameras and because the baseline is short (Fig.3) it has been
decided that the impact of the baseline may be neglected (the
closest people to detect are at about 15m from the UAV).
Thus, for matching the pixels of the two modalities we use the
infinite homography [14] (equation 1 and 2). K1 and K2 are
the matrices of the intrinsic parameters of respectively camera
1 and 2. R is the rotational matrix between the two cameras
and T is the translation between the two cameras.

H∞ = K2 ×R×K−11 (1)

(
u2
v2
w2

)
= H∞ ×

(
u1
v1
1

)
(2)

This technique is less time-consuming but also less accu-
rate than the full rectification of the stereo pair with respect to
a known distance. Besides, we found this assumption accurate
enough for our case. The regions of interest extracted from the
infrared images do not have to exactly match people locations
but rather match coarse areas around people. Indeed, these
coarse areas and their close neighborhood are finely analyzed
afterwards. Tab.I shows the average pixel error between the two
cameras (along u1 or u2) and with respect to the distance to
the persons. For a better accuracy, these offsets can be roughly
corrected if the distance between the camera and the persons
can be known at run-time.

TABLE I. AVERAGE PIXEL ERROR ALONG THE u AXES WITH RESPECT
TO THE DISTANCE FROM THE CAMERA

d (m) 10 20 30 40 50
Average pixel error (pixels) 5.998 3.04 2.03 1.53 1.22

B. Pre-processing (2)

We found it better to treat the thermal images using a
saliency algorithm in order to enhance the visibility of the
warmest areas. We noticed that it improves considerably the
job of the search space reduction: thanks to that the reduction
is cleaner and more robust. It has been decided to use the
Achanta’s saliency algorithm [15] which is fast and compute
outstanding saliency maps. The algorithm has been slightly
modified for the thermal case: only the L component of the
Lab color space is considered.

C. Search space reduction (3)

The infrared map of a scene permits to better distinguish
people from other objects of the surrounding environment.
Indeed, human beings are natural Long Wave Infrared sources.
But, it is not appropriate to only use this information to detect
people because many objects of the scene can emit infrared
on certain conditions (warm wall, stones, leafs of a tree,
etc.). However, the search space can be greatly reduced for
further treatments by simply analyzing these thermal images
for extracting some regions of interest.

The special segmentation algorithm of San-Biagio and
al [16] was implemented to reduce the search space. This
algorithm is fast and spot relatively well warm areas of
the scene that might correspond to human beings. It works
recursively by extracting ROIs and refining them. It stopes
when all ROIs do not change size after two iterations. The first
ROI is the entire image. For each recursion the ROI is analyzed
in the following way: the number of pixels with a brightness
bigger than Thrstep is stored for each row. The same process
is repeated for each column. The boundaries of the new ROIs
within this ROI are found by thresholding the previously stored
numbers for the rows and the columns. The thresholds for the
rows (Thrpixel,row) and for the columns (Thrpixel,col) depend
on the size of the image and on some constants [16]. Thrstep
is refined after each recursion as showed in equation 3 and 4.
w1, w2, w3 and ThrSk are parameters.

Thrstep = w1× Thrstep−1 + (1− w1)× ThrROI (3)

ThrROI =w2×maxGrayLevel(ROI)+

w3×meanGrayLevel(ROI)+

(1− w2− w3)× ThrSk

(4)

D. Detection (4)

This is the most important step of the detection pipeline.
The regions of interest extracted on the thermal images are
analyzed in the visible light spectrum. This step is divided into
two sub-steps: 1) random generation of candidate windows in
and around the ROIs (Fig.4.4) and 2) analysis of each of the
candidate windows using a supervised detector (Fig.4.5).



Fig. 4. 1) stereo-acquisition: input visible en infrared images, 2) pre-
processing: computation of the saliency map of the infrared image, 3) search
space reduction: segmentation of the ”warmest areas” of the saliency map, 3)
search space reduction and detector: transposition of the ROIs in the visible
image and random generation of candidate windows around the ROIs, 4)
detector: treatment of the candidate windows by our PRD and Non-Maximum
Suppression treatment.

For the first sub-step, the candidate windows are generated
according to the three following rules: the center of the window
is randomly chosen within the ROI, the size of the window
is randomly chosen between a min and a max scale (0.5
and 1.5 respectively) and the number of windows to generate
for each ROI depends on the surface of the ROI. For the
second sub-step, the candidate windows are analyzed by our
viewpoint robust detector: the Pitch and Roll-trained Detector
(PRD). The PRD is based on the Integral Channel Features
(ICF) detector of Dollar et al [7]. Our detector requires a
specific training phase with correctly labeled training data. The
detection phase and the training phase are more detailed in the
following sections.

1) Detection phase: During the detection phase the PRD
analyzes the visual content of the circular window. Local visual
features are extracted at different places of the circular window
using integral images of ten different channels, which are: L,
U, V, gradient magnitude and six ”HOG channels”. A visual
feature is simply the sum of the pixels contained within a
rectangle and associated to one of the ten channels. These
visual features are extracted from a resized version of the
circular window (resized with a radius of 64 pixels). A person
is detected in a window if the visual features match the human
model previously learned during the training phase.

A coarse-to-fine approach is adopted to speed the classi-
fication: the soft-cascade. For greater performance Dollar et
al [17] propose to approximate the features between image
scales to speed up the detection, they named this detector:
The Fastest Pedestrian Detector in the West (FPDW) [17]. This
same technique can also be used with our PRD for even greater
speed performance.

2) Training phase: The training has been thought to deal
with the change of human appearance occuring when the
UAV’s camera looks at people on the ground. The impact of
the camera angles on the human appearance are the followings:
the roll angle tends to rotate the shape of people and the pitch
angle tends to change the shape of people (Fig.5 and 6). When
the visual changes are too important, they cannot be managed
by a detector with a classic design whose aim is to detect
people in a pedestrian view. In order to overcome this problem
a more general human model is trained by taking into account
both the effect of the roll and the pitch during the training.

1) 2)
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Fig. 5. C: optical center of the camera, 1) elevation and azimuth: position
angles. 2) camera’s angles.

Fig. 6. Examples of people images with different roll and pitch angles.

A specific training dataset was built: the GMVRT-v2 train-
ing dataset1. This dataset contains 3846 images of people taken
at different pitch angles of the camera (Fig.7). This dataset
is loaded in memory five times. Subsets of all the training
images are rotated every 5deg so that all the images are spread
from -90deg to 90deg. This step is necessary to minimize the
effet of the roll on human apperance at training. A modified
version of the Cluster Boosting Tree (CBT) algorithm [18]
is used to learn the multiple aspects of the human class in
relation to the viewpoint. This algorithm is based on AdaBoost,
which is a very famous learning method in pattern recognition.
AdaBoost [19] selects the best discriminant combination of
visual features on positive and negative training images.

Fig. 7. Examples of GMVRT-v2 images.

Alg.1 presents our modified version of the CBT, see [18]
for the original implementation. Our version is lighter and
proved to be more efficient for our needs. Line 1 is the
angular spreading of the data. Lines 7 and 8 (Alg.1) are typical
AdaBoost procedures, except that Sk

+ is a subset of S0
+ for

k>0. Line 9 is the condition to trigger the clusterization:
the classification power (h(t, k).Z) of the three latest trained
weak-classifiers are compared to θZ . Lines 12 and 13 are re-
training procedures of the previously trained weak-classifiers.
We found it better to set θZ to 0.98 and to authorize as many
clusterizations as possible.

Dollar and al recommend to use 30.000 random candidate
features at training to build the weak-classifiers [7]. 45.000
candidate features were generated in order to keep a relatively
similar density of candidates because the surface of the circular
window of the PRD is 1.5 bigger than the surface of the classic
detection window (64x128).

1http://mis.u-picardie.fr/∼p-blondel/papers/data



input : GMVRT-v2 training dataset1
output: viewpoint robust classifier

several angular spreading of the data;1
extracting all candidate features for all the data;2
c← 1;3
for k ← 0 to c do4

reset default weights of Sk
+ and S−;5

for t← tinit(k) to T do6
build best weak-classifier h(k,t);7

update weights of Sk
+ and S−;8

if h(k,t).Z > θZ and h(k,t-1).Z > θZ and9
h(k,t-2).Z > θZ then

split Sk
+ into Sk

+ and Sc+1
+ ;10

h(c+1,t’) = h(k,t’), ∀t’ ∈ [ 0, t ] ;11
retrain weak-classifiers h(k,t’), ∀t’ ∈ [ 0, t ]12

with Sk
+ and S−;

retrain weak-classifiers h(c+1,t’), ∀t’ ∈ [ 0, t13

] with Sc+1
+ and S−;

tinit(c+1) = t;14
c++;15

end16
end17

end18
∀k ∈ [ 0, c ] compute the soft-cascade for channel k;19

Algorithm 1: Our CBT implementation. c: number of clus-
terizations, k: index of the cluster (or channel), T: maximum
number of weak-classifiers, h(k,t): weak-classifier number
t of channel k, tinit(k): starting index for cluster k, θZ :
clustering critera, Sk

+: cluster k of positive image, S−: all
the negative images.

III. TESTS AND RESULTS

A. Hardware

We built our own stereoscopic system in order to conduct
the tests. This system is composed of an infrared and a classic
visible camera. The optical axes of the two cameras are at
the same height and the baseline between the two cameras is
exactly 5cm. The infrared camera is a Flir Tau2 running at 7
fps in VGA mode. The visible camera is a GoPro 3 HD (we
took into account the distortion effect of the camera). Each
camera is connected to a grabber. The two grabbers have the
same specifications. The whole stereoscopic system weights
about 470gr. The stereoscopic system is embedded in a Pelican
quadrotor UAV (Fig.8).

Fig. 8. The Pelican UAV with the embedded acquisition system.

Fig. 9. Examples of images from AerialTest1.

Fig. 10. Examples of images from AerialTest2.

B. Tests

In order to build the test datasets we flied the UAV in
natural and open environments. Images of people were taken
for different angular configurations of the acquisition system:
the UAV flied over and around the persons. Two datasets were
built: a first one containing only visible images taken from very
challenging viewpoints of the camera (AerialTest11), and a
second dataset containing spatially and temporally syncronized
visible and infrared images with some challenging viewpoints
(AerialTest21). In the second case, we flied the UAV at a lower
altitude. AerialTest1 is used to demonstrate the robustness of
our pipeline’s core detector: the PRD. AerialTest2 is used to
demonstrate the feasibility of our approach and to compare the
performance of it to the performance of the classic approach
(ICF).

1) Test 1: general performance of our core detector in
a challenging dataset: The ICF detector fails to succeed
in most cases (Fig.11): the miss-rate is constant and very
high (pratically 1). Better performance are obtained with the
Pitch and Roll-trained Detector (PRD). The PRD is much less
sensitive to the challenging viewpoints of AerialTest1. The
shape of the PRD’s ROC curve is very similar to ROC curves
of pedestrian detectors tested in pedestrian scenarios [20].

Fig. 11. ROC curves obtained by testing the ICF and the PRD detectors on
AerialTest1. The ICF detector clearly fails on this dataset. On the contrary,
the PRD is not affected by the challenging viewpoints of AerialTest1.

TABLE II. REDUCTION EFFICIENCY

Reduction Technique Min (%) Max (%) Mean (%) Sdev (%)

IR+Segmentation 0 0.6185 0.05246 0.0811
IR+Saliency+Segmentation 0.001 0.1009 0.0266 0.0203



Fig. 12. ROC curves obtained by testing the ICF and our detection pipeline
on AerialTest2. Better detection performance are obtained with our detection
pipeline. However, the ICF still manages to detect the easiest cases of
AerialTest2.

TABLE III. COMPUTATION TIME.

Detection Method ICF PRD Our Pipeline

Computation time T 1.75×T 1.05×T

2) Test 2: space reduction efficiency using infrared images:
Infrared images are sometimes too bright, and therefore diffi-
cult to analyze: this leads to a non-optimal space reduction.
We improved our space reduction by taking into account
the saliency (Tab.II): the mean is about twice smaller. The
reduction is more robust to changes, as well: the standard
deviation (Sdev) is about four times smaller.

3) Test 3: detection performance of our detection pipeline:
Our pipeline has better general performance than the ICF
detector on AerialTest2 (Fig.12). However, the ICF detector
manages to detect the easiest cases of AerialTest2, when view
is close to the pedestrian view (contrary to the cases showed
in Fig.1).

4) Test 4: computation time: The PRD alone is 1.75
times slower than the ICF (Tab.III). The computation time
of our pipeline is equivalent to the computation time of the
ICF. This can be further improved by approximating features
between octaves [17] and/or by performing the low-level pixel
treatments (such as saliency map computation) using FPGAs.

IV. CONCLUSION

In this paper, we proposed a new detection pipeline for
viewpoint robust and fast human detection in search and rescue
operations. Our approach combines the use of a viewpoint
robust detector (PRD) and an accurate search space reduction
technique. We showed that our detection pipeline outperforms
traditional human detection approaches such as the Integral
Channel Features (ICF) detector: one of the top-performing
human detectors in pedestrian contexts.

The main contributions of this work are: 1) a search
space reduction technique using syncronized infrared images
optimized to lighten the work of the core detector which treats
the corresponding areas but in the visible light spectrum, and
2) a viewpoint robust detector (PRD) to detect people whatever

the roll and pitch angles of the acquisition system in a UAV
context.

The next objective is to improve the general performance
of the core detector by also taking into account the shape
information available in IR images. It is also wished to improve
the speed of our detection pipeline in order to improve its
reactiveness even further. Test are planned to conduct tests
with different types of UAVs in order to show the flexibility
of our approach.
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