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Abstract

Meta–surfaces are the bidimensional analogue of metamaterials. They are
made on resonant elements periodically disposed on a surface. They have the
ability of controlling the polarization of light and to generalized refraction
laws as well. They have also been used to enhance the generation of the
second harmonic. It seems however that their near-field properties have not
been investigated. In this work, the coupling of an emitter with a meta–
surface made of a periodic set of resonant linear dipoles was studied. Bloch
surface modes localized on the meta–surface exist due the resonance of the
dipoles. The strong coupling regime with a emitter can be reached when the
Bohr frequency of the emitter is in resonance with the Bloch modes of the
meta-surface.

1. Introduction

Meta–surfaces are the 2D analogue of metamaterials [1]. They are made
of basic, resonant, elements disposed on a surface. For electromagnetic waves
whose wavelength is larger than the period, the basic elements behave col-
lectively and provide new means of controlling the flow of light [3]. Meta-
surfaces are generally seen as devices able to control the far-field behavior
of light, such as the polarization state, the directivity, the light-by-light ma-
nipulation or the generation of second harmonic signal [2]. Some have made
claims that they made possible ”generalized laws of diffraction” as compared
to Snell-Descartes laws [3]. However, because of their resonant properties,
meta–surfaces also have interesting properties in the near-field. In the present
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work, we aim at initiating the study of the quantum electrodynamics of meta-
surfaces [4]. In standard cavity quantum electrodynamics, one studies the
coupling between an emitter, such as an atom, or quantum dot or a su-
perconducting qubit [5], and the electromagnetic modes. Depending on the
ratio between the light-matter coupling and that to the irreversible mecha-
nisms, two regimes can occur: the weak coupling and the strong coupling.
In the weak coupling regime the losses dominate and the spontaneous de-
cay rate of the emitter is modified by the structured electromagnetic field.
This is essentially the Purcell effect. In the strong coupling regime, the cou-
pling dominates the losses: the quantum emitter and the meta-surface form a
quantum system whose behavior cannot be decoupled between two separated
objects. Rather, the emitter and the meta-surface can exchange photons pe-
riodically in time, which leads to hybrid excited states. From an experimental
point of view, this regime leads to the onset of a double peak in the emitted
spectrum, due to the anti-crossing of the dispersion curves of the light and
matter modes. This situation has been observed in cavity with hybrid states
between photons and excitons [6] as well as between photons and plasmons
[7]. It was recently predicted theoretically that the strong coupling could be
reached between a quantum emitter and Anderson localized modes [8]. In
the present work, the coupling of a quantum emitter with the photonic sur-
face modes supported by a meta–surface is investigated. The meta–surface
is made of a periodic set of parallel nano wires. From a theoretical point
of view, the meta-surface can be described by an effective impedance model,
which allows to derive the density of electromagnetic modes due to the meta-
surface. Further, it allows to obtain the dressed susceptibility of the quantum
emitter and to exhibit the strong coupling regime. An ab initio numerical
simulation of the meta-surface (containing a finite number of nano wires) is
used in order to simulate the various regimes.

2. Impedance operator description of the meta–surface

The nano wires are disposed periodically with a period d. They show a
resonant behavior at frequency ω0: they are described by a dipolar suscep-
tibility that has a non-zero component S0(ω) [9] along the axis of the wires
only. Therefore, the only relevant polarization is E||, that is, with the electric
field parallel to the axis of the nano wires (Possible experimental realizations
are discussed in section 4). When the collection of nano wires is illuminated
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Figure 1: Sketch of the structure under study.

by a plane wave ei(kx−Ky), it gives rise to a scattered field that can be written:

Us(r) =
∑

m

s0eikmdϕ0(r−mdex). (1)

where ϕ0(r) = H
(1)
0 (k0|r|), and H

(1)
0 is the 0th Hankel function of order 1.

From multiple scattering theory [10, 11], it can be shown that:

s0(ω, k) = [1− S0(ω)Σ0(ω, k)]
−1 S0(ω), (2)

where the lattice sum [12] Σ0 is given by [13, 14]:

Σ0(ω, k) =
∑

m6=0

eikmdϕ0(md). (3)

The diffracted field can be put in the form of a Rayleigh series, familiar from
grating theory [15]:

Us(x, y;ω, k) =
2s00(ω, k)

d

∑

n

1

Kn(ω, k)
ei(knx+Kn(ω,k)|y|). (4)

3



where kn = k + 2nπ
d

and Kn(ω, k) =
√

(ω/c)2 − k2
n. This expression shows

that the field diffracted by the meta-surface is a finite sum of propagative
plane waves, and an infinite sum of dissociated plane waves, that is, evanes-
cent away from the meta-surface. The directions of the propagative plane
waves are given by the usual relation for diffracted orders: sin θn−sin θ = nλ

d
,

irrespectively of the existence of resonances inside the nano-wires. This shows
that there is no such thing as a “generalized law of diffraction” that would
hold for meta-surfaces, as claimed by some [3].

Formally, this field is the response of the meta-surface to an incident plane
wave. It is the symbol of the pseudo-differential operator that represents
the link between an arbitrary incident field and the diffracted field. For an
incoming field that is a superposition of plane waves in the form: U i(r) =
∫

Û(k)eik·rdk, k = (k,−K) and k2 + K2 = k2
0, the field diffracted by the

meta-surface is given by:

Eg(r) =

∫

dk Us(r;ω, k) Û(k) (5)

The boundary conditions at y = 0 are [10, 11]:

[U(x, 0+)− U(x, 0−)] = 0,

[

∂U

∂y
(x, 0+)−

∂U

∂y
(x, 0−)

]

= V (x) ,

where: V (x) = 2i
∑

n βnU
s
ne

iknx These conditions can be rewritten conve-
niently in the operator form:

Z0F
+ = F− , (6)

where: F+ =

(

U(x, 0+)
∂U
∂y
(x, 0+)

)

, F− =

(

U(x, 0−)
∂U
∂y
(x, 0−)

)

and Z0 is the trans-

fer matrix of the meta surface. When the wavelength is large enough, the
evanescent fields can be neglected and the meta-surface can be described by
a simple 2× 2 matrix:

Z0 =

(

1 0
−2ik0r
r+1

1

)

, where r =
2s0

0
(ω,k)

K d
. It behaves as an infinitely thin current sheet with a con-

ductivity proportional to: −2ik0r
r+1

. This corresponds to an effective description
of the complicated set of nano wires that comes under homogenization theory
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[16, 17, 18]. The transfer matrix can be used to describe the electromagnetic
behavior of a meta-surface deposited on a substrate [19, 20].

The Bloch modes that can exist in the structure [21] are obtained as
solutions of Maxwell equations in the absence of an incident field. They
correspond to zeroes of 1−S0Σ0. The dispersion relation is therefore the set
of couples (ω, k) ∈ R

+×]− π
d
, π
d
] such that:

S0(ω)Σ0(ω, k) = 1 . (7)

Finally, we determine the Green function g(r, r′). It is the response of
the system to a point source δ(r − r′). Let g0 denote the Green function in

vacuum: g0(r, r
′) = − i

4
H

(1)
0 (k0|r − r′|). From Weyl formula [22], the plane

wave expansion is obtained: g0(r, r
′) = 1

4iπ

∫

1
K
ei[k(x−x′)+K|y−y′]dk. The above

derivation leads to:

g(r, r′;ω) = g0(r, r
′) +

1

4iπ

∫

1

K
Us(r;ω, k)e−ik·r′dk, (8)

The cross density of states [8] is then given by: ρ(r, r′) = − 1
π
ℑG(r, r′).

3. Coupling of the dipole with the meta–surface

Let us now consider the coupling of a quantum emitter with the meta-
surface. The quantum emitter is basically a two-level system, that can be

described as a dipole with a susceptibility [8] sD(ω) =
2c2

ω2

ΓR
s

ω0−ω−i(ΓR
s +ΓNR

s )/2
,

where ΓR
s and ΓN

s R are, respectively, the radiative and intrinsic non-radiative
linewidth. The emitter is assumed to have a resonance at the same frequency
ω0 as the nano-wires. When the emitter is not too close to the meta-surface,
the physical phenomena at stake is the Purcell effect [23], which is described
by means of Fermi golden rule. The spontaneous decay rate is given by:

Γms ∼
2ω2

~c2
Im[g(r, r, ω)]

up to an irrelevant factor. By normalizing by the decay rate in vacuum, one
introduces the Purcell factor, defined as: FP = ρ/ρ0 = 4Im[g(r, r, ω)]. It de-
scribes the enhancement of the spontaneous decay rate of a quantum emitter
due to its interaction with the structured electromagnetic field produced by
the meta-surface.
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Let us now study the strong coupling regime. In the celebrated sit-
uation that exists in cavity quantum electrodynamics, excitons and pho-
tons can form polaritons; here the emitter plays the role of the exciton
(flat dispersion curve), while the surface modes of the meta-surface play
the role of the electromagnetic cavity modes. The system ’emitter+meta-
surface’ is illuminated by an incident field Ei(r) =

∫

Ai(k)eik·r. The field
radiated by the emitter at position rD = (xD, yD) is given by: Es

D(r) =
bD(ω)H0(k|r − rD|). Here bD(ω) is the scattering amplitude, it is given by:
bD = sD × Elocal(rD), where Elocal(rD) is the local field at the position of
the emitter: it is the sum of the incident field and that reflected by the
meta-surface. Using Weyl formula, Es can be decomposed into plane waves:
Es

D(r) = bD(ω)
1
π

∫

1
K
ei[k(x−xD)+K|y−yD|]dk. In order to determine bD, one has

to find the expression of the local field. Let Eg(rD) denote the field emitted
by the meta-surface at the position of the emitter. It is the response of the
meta-surface to both the incident field and the field emitted by the emitter.

The incident field impinging on the meta–surface is given by

bD(ω)H0(k|r− rD|) + Ei(r) =

∫
[

bD(ω)

πK
eiκ·rD + Ai(k)

]

eik·rdk.

Hence, we obtain: Eg(r) =
∫

Us(r;ω, k)
[

bD(ω)
πK

eiκ·rD + Ai(k)
]

eiκ·rdk, where

κ = (k,K). Consequently, the local field on the emitter is:

Ei(rD) + Eg(rD) = bD(ω)

∫

dk
Us(r;ω, k)

πK
e2iκ·rD +

∫

dkAi(k)eikxD

[

Us(r;ω, k)eiKyD + e−iKyD
]

It holds: bD(ω) = sD(ω)[E
i(rD) + Eg(rD)], and therefore we obtain the

dressed scattering coefficient:

bD(ω) =
sD(ω)

∫

dkAi(k)eikxD

[

Us(r;ω, k)eiKyD + e−iKyD
]

1− sD(ω)
∫

dkUs(r;ω,k)
πK

e2iκ·rD
(9)

4. Numerical simulations

In this section, we illustrate the preceding formalism in the case of a 2D
resonant emitter situated in the vicinity of a meta surface made of dielectric
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Figure 2: Energy transmitted in the specular order for an infinite meta-surface (continuous
line) and transmission spectrum through the finite meta-surface (stars). The transmission
is defined as the normalized flux of the Poynting vector through a segment situated below
the meta-surface. The structures are illuminated at normal incidence.
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nano wires. The relative permittivity of the nano wires is chosen to be 12.
The resonant behavior is linked to a Mie resonance that exist at a wavelength
λ/a ∼ 5.3, where a is the radius of the nano wires. This can be achieved
in the visible domain for nano wires having a diameter of about 200nm.
Let us start by describing the optical properties of the meta-surface. As
a periodic object, it behaves basically as a grating. When illuminated in
normal incidence, the transmitted efficiency (the energy transported in the
specular order) as predicted by eq. (4) is given in fig.2 as a continuous line.
A Fano–like behavior is seen, with the existence of a zero in the vicinity of
the maximum of the efficiency in the first order. These results are obtained
for the ideal meta-surface, i.e. for an infinite number of nano wires. From an
experimental point of view, only a finite number of nano wires are allowed.
Numerically, this can be handled by means of a multiple scattering approach
[9]. In fig. 2, the transmission spectrum of a meta-surface with 40 nano wires
is given (red markers). An excellent fit with the prediction of the theory is
found, showing that the finite meta-surface is very well described by the
impedance model.

In order to illustrate the Fano behavior, let us plot the map the electric
field for ω/ω0 = 0.99 where the transmitted efficiency is equal to 1, that is
the field is perfectly transmitted and ω/ω0 = 0.873, corresponding to a zero
of the efficiency, that is a perfectly reflected field. The situation of a perfectly
transparent medium is illustrated in fig. 3, where the real part of the electric
field is plotted (the energy would only show a uniform color).The map of
the energy of the field at the perfect reflection frequency is given in fig.4.
The finite meta-surface thus has the property of switching from completely
transparent to perfectly reflective with a variation of 10% of the frequency,
even with a small number of nano wires.

The Bloch modes of the meta-surface, obtained from the dispersion rela-
tion (7) are given in fig. 5 with respect to the normalized frequency ω/ω0.
The low-frequency modes correspond to the homogenization regime where
the nano wires behave as a dielectric slab. The band formed above corre-
sponds to the collective behavior of the nano wires near the resonance energy
ω0. These modes are localized in the vicinity of the meta-surface and cannot
be excited directly by incident wave. A possible way to see these modes is to
illuminate the nano wires directly from the side (see fig.6) and then collect
the transmitted field at the other side. The transmission spectrum is given
in fig. (6).

We turn to the coupling with a quantum emitter. As it has been said
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Figure 3: The finite meta-surface is illuminated in normal incidence, from above, by a
plane wave at ω/ω0 = 0.99. The map of the real part of the electric field is plotted. The
map is given in false color with a linear scale.
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Figure 4: The finite meta-surface is illuminated in normal incidence, from above, by a
plane wave at ω/ω0 = 0.873. The map of the square modulus of the electric field is
plotted. The map is given in false color with a linear scale.
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Figure 5: Dispersion curves for the meta-surface. The red line corresponds to the light
cone. Two bands can be seen: the lower one corresponds to the homogenization regime
where the nano wires behaves a homogeneous slab and the upper branch to the Bloch
modes corresponding to a collective resonance of a nano wires .
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Figure 6: Transmission spectrum as a function of the normalized frequency through the
meta-surface when illuminated from the side.
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Figure 7: Modulus of the scattering coefficient of a quantum emitter as a function of the
frequency and the distance to the meta-surface. The double peaks indicate the strong
coupling regime.

before, the emitter is described by a dipole with a frequency-dependent sus-
ceptibility. It is a model for a two-level system in the minimal coupling
regime. The emitter is situated at some distance h above the meta-surface.
The strong and weak coupling regime can be distinguished by evaluating the
dressed scattering coefficient of the emitter, that is, the susceptibility modi-
fied by the electromagnetic environment. This is illustrated in fig. 7, where
the modulus of the dressed scattering coefficient of the emitter is plotted
as a function of both the distance to the meta-surface and the normalized
frequency. When the scatterer is far enough from the meta-surface, there is
only one peak that exists, corresponding to the Bohr frequency of the emit-
ter. When it gets closer to the meta-surface, a second peak appears, that is
due to the coupling with the Bloch mode of the meta-surface, which creates
an anti-crossing between the flat dispersion curve of the emitter and that of
the Bloch modes supported by the meta-surface.

5. Conclusion

A model for the interaction of a dipole with a meta–surface was derived,
where the meta-surface is described by an impedance operator. Using this
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formalism, it is possible to obtain the Bloch electromagnetic surface modes on
the meta-surface and to derive their dispersion relation. The Green function
and the cross density of states were also derived. Further, the coupling with
an emitter characterized by a dressed susceptibility was described and led to
the demonstration of the weak and strong coupling regimes with the modes
supported with the meta-surface. Because these modes have a very small
group velocity, they appear as a peak in the density of states, and, from a
quantum point of view, the system can be mapped to a Jaynes-Cummings
model. A full quantum model within this approach is currently under study.
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