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Abstract

This paper is concerned with the existence and qualitative properties of transition fronts
for spatially periodic reaction-diffusion equations with bistable nonlinearities. The notion of
transition fronts connecting two stable steady states generalizes the standard notion of pulsating
fronts. In this paper, we prove that the time-global solutions in the class of transition fronts
share some common features. In particular, we establish a uniform estimate for the mean
speed of transition fronts, independently of the spatial scale. Under the a priori existence of a
pulsating front with nonzero speed or under a more general condition guaranteeing the existence
of such a pulsating front, we show that transition fronts are reduced to pulsating fronts, and
thus are unique up to shift in time. On the other hand, when the spatial period is large, we
also obtain the existence of a new type of transition fronts which are not pulsating fronts. This
example, which is the first one in periodic media, shows that even in periodic media, the notion
of generalized transition fronts is needed to describe the set of solutions connecting two stable
steady states.

1 Introduction and main results

This paper is devoted to the study of existence and qualitative properties of generalized fronts of
one-dimensional spatially periodic reaction-diffusion equations with bistable nonlinearities. It is a
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follow-up to the paper [16] which dealt with the case of pulsating fronts. In [16] and the present
paper, we consider periodic reaction-diffusion equations of the type

ut = (aL(x)ux)x + fL(x, u), t ∈ R, x ∈ R (1.1)

with L > 0, where ut stands for ut=∂tu(t, x)=∂u/∂t(t, x), ux stands for ux=∂xu(t, x)=∂u/∂x(t, x)
and (aL(x)ux)x stands for (aL(x)ux)x = ∂x(aLux)(t, x) = ∂(aL∂u/∂x)/∂x(t, x). The diffusion and
reaction coefficients aL and fL are given by

aL(x) = a
(x
L

)
and fL(x, u) = f

(x
L
, u
)
,

where the function a : R → R is positive, of class C1,α(R) (with 0 < α < 1) and
1-periodic, that is, a(x + 1) = a(x) for all x ∈ R. Throughout the paper, the func-
tion f : R× [0, 1] → R, (x, u) 7→ f(x, u) is continuous, 1-periodic in x, of class C0,α in x uniformly
in u ∈ [0, 1], and of class C1,1 in u uniformly in x ∈ R. One also assumes that 0 and 1 are uniformly
(in x) stable zeroes of f(x, ·), in the sense that there exist γ > 0 and δ ∈ (0, 1/2) such that





f(x, 0) = f(x, 1) = 0 for all x ∈ R,

f(x, u) ≤ −γu for all (x, u) ∈ R× [0, δ],

f(x, u) ≥ γ(1− u) for all (x, u) ∈ R× [1− δ, 1].

(1.2)

Notice that this implies in particular that max
(
∂uf(x, 0), ∂uf(x, 1)

)
≤ −γ for all x ∈ R.

A particular case of such a function f satisfying (1.2) is the cubic nonlinearity

f(x, u) = u(1− u)(u− θx), (1.3)

where x 7→ θx is a 1-periodic C0,α(R) function ranging in (0, 1). Notice that in (1.3) the intermediate
zero θx of f(x, ·) is not assumed to be constant. More generally speaking, under the assumption (1.2),
the function f(x, ·) may have several zeroes in the open interval (0, 1) and these zeroes may not be
constant or of constant number. However, in one result of the paper, namely Theorem 1.7 below,
we will assume that for every x ∈ R, the function f(x, ·) has exactly one zero in the interval (0, 1).

The bistable equation (1.1) arises naturally in modeling a variety of physical and biological phe-
nomena, such as phase field models of solidification, signal propagation along bistable transmission
lines, propagation of nerve pulses and population biology, see, e.g., [2, 4, 5, 19, 41, 44, 55, 56, 58].
In particular, in the context of population dynamics, the quantity u(t, x) represents the population
density at location x and at time t, the coefficient aL(x) is the diffusion rate at location x and the
reaction term fL(x, u) measures the growth rate of the population density u at location x. The
dependency of aL(x) and fL(x, u) on x allows to model the effects of the features of the habitat on
the population density. The periodicity condition on aL(x) and fL(x, u) with respect to x indicates
a typical spatial heterogeneity of the habitat. The bistable assumption (1.2) means that the growth
rate fL(x, u) is negative at low densities, which refers to a strong Allee effect [29, 42, 52].

In the sequel, for mathematical purposes, the function f is extended in R × (R\[0, 1])
as follows: f(x, u) = ∂uf(x, 0)u for (x, u) ∈ R × (−∞, 0) and f(x, u) = ∂uf(x, 1)(u − 1)
for (x, u) ∈ R × (1,+∞). Thus, f is continuous in R × R, 1-periodic in x, minx∈R f(x, u) > 0
for all u < 0 and maxx∈R f(x, u) < 0 for all u > 1, while f(x, u) and ∂uf(x, u) are globally Lipschitz-
continuous in u uniformly in x ∈ R.
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Transition fronts

The notion of transition fronts was introduced by Berestycki and Hamel [9, 10] to describe a general
class of front-like solutions for reaction-diffusion equations in unstructured heterogeneous media. For
one-dimensional equations such as (1.1), the notion of transition fronts can be presented precisely
as follows (see also the notion of wave-like one-dimensional solutions defined by Shen [46]).

Definition 1.1. For problem (1.1), a transition front connecting 0 and 1 is a time-global solu-

tion u : R× R → [0, 1] for which there exists a family (ξt)t∈R of real numbers such that

{
u(t, x+ ξt) → 1 as x→ −∞,

u(t, x+ ξt) → 0 as x→ +∞,
uniformly in t ∈ R. (1.4)

Clearly, from the strong maximum principle, any transition front u connecting 0 and 1 for (1.1) is
such that 0 < u(t, x) < 1 for all (t, x) ∈ R

2. We point out that the uniformity in t is essential in this
definition. As a matter of fact, there are solutions satisfying the limits of (1.4) pointwise in t ∈ R,
but not uniformly. Consider for instance the case of (1.1) when both a and f do not depend on x
(whence θx = θ ∈ (0, 1) is independent of x): this homogeneous equation admits some time-global
solutions u such that 0 < u(t, x) < 1 in R

2, u(t,−∞) = 1 and u(t,+∞) = 0 for every t ∈ R,
while u(t, x) is close to θ on some unbounded intervals as t → −∞, see [34]. Thus, these solutions
are not transition fronts connecting 0 and 1 in the sense of Definition 1.1.

For a given transition front u of problem (1.1), the real numbers ξt reflect the positions of u as
time runs. These real numbers ξt are not uniquely defined since, for any bounded function t 7→ ξt, the
family (ξt+ξt)t∈R is also associated with u in the sense of (1.4). However, it follows straightforwardly
from Definition 1.1 that the family (ξt)t∈R is unique up to an additive bounded function. Furthermore,
the distance between ξt and any level set of u(t, ·) is uniformly bounded in t: indeed, for any real
numbers b1 and b2 with 0 < b1 ≤ b2 < 1, there is a constant C = C(u, b1, b2) ≥ 0 such that

{
x ∈ R ; b1 ≤ u(t, x) ≤ b2

}
⊂

[
ξt − C, ξt + C

]
for every t ∈ R.

Thus, an equivalent definition to (1.4) is that a transition front connecting 0 and 1 is a time-global
solution u : R × R → [0, 1] that converges to the steady states 0 (on the right) and 1 (on the left)
far away from any of its level sets, uniformly in t.

An important notion attached to a transition front is the limiting average speed, if any, of the
distance between the positions ξt.

Definition 1.2. We say that a transition front connecting 0 and 1 for (1.1) admits a global mean

speed c ≥ 0 if
|ξt − ξs|

|t− s|
→ c as |t− s| → +∞.

For a given transition front u, the global mean speed, if it exists, is uniquely determined and
does not depend on the special choice of the positions (ξt)t∈R, since they are defined up to a bounded
function (see also [10, Theorem 1.7]). Thus, the notion of global mean speed is meaningful.

A simple example of a transition front connecting 0 and 1 for (1.1) is a pulsating front, that is,
a global solution u : R× R → [0, 1] such that there exist a real number cL (the average speed) and
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a function φ : R× R → [0, 1] satisfying





u(t, x) = φ(x− cLt, x/L) for all (t, x) ∈ R× R,

φ(ξ, y) is 1-periodic in y,

φ(−∞, y) = 1, φ(+∞, y) = 0 uniformly in y ∈ R.

(1.5)

Clearly, any pulsating front with average speed cL ∈ R is a transition front with positions ξt = cLt
for all t ∈ R, whence |cL| is the global mean speed. If cL 6= 0, then the map (t, x) → (x− cLt, x/L) is
a bijection from R×R to R×R and φ is uniquely determined by u. In this case, (1.5) is equivalent
to the following definition

{
u(t+ L/cL, x) = u(t, x− L) for all (t, x) ∈ R

2,

u(t,−∞) = 1, u(t,+∞) = 0 locally in t ∈ R.
(1.6)

As a matter of fact, definition (1.6) was first given in [49] to denote pulsating fronts with nonzero
speed. On the other hand, a pulsating front with speed cL = 0 simply means a steady solu-
tion u(t, x) = φ0(x) of (1.1) such that φ0 : R → [0, 1], φ0(−∞) = 1 and φ0(+∞) = 0. Throughout
this paper, such steady solutions are called stationary fronts.

In this paper, we will first establish some qualitative properties of transition fronts connecting 0
and 1 for problem (1.1) and some uniform bounds on their rate of propagation. With the a priori
existence of a pulsating front of the type (1.6), we will show that any transition front is equal to
this pulsating front up to shift in time. We will finally prove the existence of new types of transition
fronts, which are not pulsating fronts satisfying (1.5). In particular, that will show the broadness of
the notion of transition fronts and the necessity to introduce and use it even in periodic media.

Some known results

Before going further on, let us recall some known existence results of transition fronts for pro-
blem (1.1). We first mention the important case where the function a is equal to a positive constant d,
and the function f does not depend on x. In this case, equation (1.1) can be reduced to the
homogeneous equation

ut = duxx + f(u). (1.7)

Under the additional assumption that the function f : [0, 1] → R is such that

{
f(0) = f(θ) = f(1) = 0 for some θ ∈ (0, 1),

f > 0 on (0, θ), f > 0 on (θ, 1), f ′(0) < 0, f ′(1) < 0,
(1.8)

it is well known [4, 19] that there exists a unique speed c ∈ R and a unique (up to shifts in x) front

u(t, x) = φ(x− ct) such that 0 < φ < 1 in R, φ(−∞) = 1 and φ(+∞) = 0.

Moreover, φ is decreasing in x and the speed c has the same sign as the integral
∫ 1

0
f . Such a standard

traveling front can be viewed as a pulsating front with average speed c, and a transition front with
global mean speed |c| as well. Furthermore, it has been shown recently in [20] that transition fronts
connecting 0 and 1 for problem (1.7) are nothing else but the standard traveling fronts φ(x−ct). We
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point out that this uniqueness result for the one-dimensional equation (1.7) is not valid for multi-
dimensional equations. As a matter of fact, for bistable homogeneous equations in R

N with N ≥ 2,
the class of transition fronts is larger than that of usual planar traveling fronts: there exist non-planar
traveling fronts which are invariant in a moving frame with constant speed [22, 23, 38, 39, 50, 51],
as well as some transition fronts which are not invariant in any moving frame as time runs [20]. We
also mention [11] for the existence of bistable transition fronts for multi-dimensional homogeneous
equations in exterior domains.

For time heterogeneous and space homogeneous bistable equations, the existence and qualitative
properties of standard traveling, pulsating or transition fronts have been investigated by Alikakos,
Bates and Chen [2], Fang and Zhao [18], and Shen [44, 45, 46, 47]. But, for space heterogeneous
bistable equations, there is not so much work on transition fronts. In periodic media, the existence
of pulsating fronts for (1.1), under the assumption (1.2), have just been discussed in our previous
paper [16]. More precisely, under various additional assumptions on the reaction terms f(x, u) and
by using different types of arguments, we proved several existence results of pulsating fronts with
nonzero or zero speeds when the spatial period L is small or large (we will come back to the precise
assumptions in the comments following Theorem 1.5 below). We also established some properties
of the set of periods for which there exist pulsating fronts with nonzero speeds. However, in a given
periodic medium, finding a general necessary and sufficient condition for the existence of pulsating
fronts with nonzero speeds is still unclear in general. We point out that the existence result is known
to hold for all L > 0 in some particular cases where f = f(u) does not depend on x and aL is close to
a constant in some norms, see [18, 54, 55, 56], or under various more abstract conditions, see [17, 18].
Apart from the existence results of pulsating fronts, no other existence results of transition fronts
have been known for the spatially periodic bistable equation (1.1).

Therefore, it is of particular interest to investigate whether transition fronts of (1.1) are all
identically equal to pulsating fronts, or whether there exist transition fronts which are not pulsating
fronts. Under the bistability assumption (1.2), the change of sign of f(x, ·) in (0, 1) and the fact
that the roots of f(x, ·) in (0, 1) depend on x in general may yield the existence of multiple ordered
steady states, and thus makes these questions very difficult.

Similar problems have been addressed recently for other types of nonlinearities f , such as igni-
tion type, and Fisher-KPP nonlinearities. Consider for instance an ignition nonlinearity of the
type f(x, u) = g(x)f0(u) for which g is continuous, 1-periodic and positive in R, and f0 ≥ 0 in [0, 1],
f0 = 0 in [0, θ] ∪ {1} for some θ ∈ (0, 1) and f0 is nonincreasing in [1 − δ, 1] for some δ > 0. It is
known that for each L > 0, (1.1) has a unique (up to shift in t) transition front connecting 0 and 1
in the sense of Definition 1.1, see [32, 33, 40]. Furthermore, this front is actually identically equal to
a pulsating front (up to shift in t) with a positive speed, since pulsating fronts are known to exist
(and to be unique), see [8]. Similar results have been obtained for multidimensional ignition-type
equations, see [60]. On the other hand, for a Fisher-KPP nonlinearity f with f(x, 0) = f(x, 1) = 0
and 0 < f(x, u) ≤ ∂uf(x, 0)u for (x, u) ∈ R × (0, 1), and for each L > 0, there exists a positive
minimal speed c∗L in the following sense: (1.1) admits a pulsating front with a speed c if c ≥ c∗L, while
it does not admit any transition front with a global mean speed c if c < c∗L, see [8, 37, 43, 48, 53].
However, there exist other types of transition fronts which are not standard pulsating fronts (even
in the homogeneous media, Fisher-KPP equations with concaves reaction f admit transition fronts
which are not of the type φ(x− ct), see [24, 25] and additional comments after Theorem 1.4 below).
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General properties of transition fronts

In this subsection, we present some qualitative properties shared by the solutions of (1.1) in the
class of transition fronts, thus showing the robustness of the notion of transition fronts.

Proposition 1.3. Let u be a transition front connecting 0 and 1 for problem (1.1). Then

∀C ≥ 0, 0 < inf
t∈R, |x|≤C

u(t, x+ ξt) ≤ sup
t∈R, |x|≤C

u(t, x+ ξt) < 1. (1.9)

Furthermore, there is k0 ∈ N such that u is kL-decreasing in x for all integers k ≥ k0, that is,

u(t, x) > u(t, x+ kL) for all t ∈ R, x ∈ R and k ≥ k0.

The first property in Proposition 1.3, namely (1.9), shows that in the neighborhood of the
positions ξt, any transition front is uniformly bounded away from 0 and 1. We refer to [25, 26] for
the same type of result for homogeneous or time-dependent monostable equations. Indeed, (1.2)
is not needed in the proof of (1.9). Property (1.9) is another way of seeing immediately that the

positions (ξt)t∈R of a given transition front u are unique up to an additive bounded function: if (ξ̃t)t∈R
is another family associated with u in the sense of (1.4), then it follows from (1.4) applied to (ξt)t∈R
and from (1.9) applied to (ξ̃t)t∈R that supt∈R |ξt − ξ̃t| < +∞.

The second property reveals the effect of the periodicity of the coefficients aL and fL on the
solutions of (1.1) in the class of transition fronts. In particular, if the transition front u is a pulsating
front of type (1.6), then it is L-decreasing in x (that is, one can take k0 = 1) since cL×u is increasing
in t (see [10, 16]). In addition, all transition fronts are then equal to this pulsating front up to shift
in time (see Theorem 1.5 below), and thus they are all L-decreasing in x. Nevertheless, whether all
transition fronts for equation (1.1) be L-decreasing in x is not clear in general.

Next, we establish a uniform bound for the propagation rates of all transition fronts of (1.1).

Theorem 1.4. There is a constant C depending only on the functions f and a such that for

any L > 0 and any transition front u connecting 0 and 1 for equation (1.1) and associated with (ξt)t∈R,
there holds

lim sup
|t−s|→+∞

|ξt − ξs|

|t− s|
≤ C. (1.10)

Several comments are in order on Theorem 1.4. Firstly, we point out that the bound C in Theo-
rem 1.4 is uniform with respect to all transition fronts for equation (1.1). This uniform boundedness
is in sharp contrast with the case of Fisher-KPP nonlinearities, for which there is some minimal
speed c∗L > 0 such that for any c ≥ c∗L, equation (1.1) has a pulsating front with average speed c,
see [8, 53].

We also note that the bound C in Theorem 1.4 is independent of the spatial period L. In
particular, if equation (1.1) for a given L > 0 has a transition front with a global mean speed γL,
then γL has a uniform bound independent of L. This global boundedness is more general than the
local boundedness of the speeds of pulsating fronts we have established in [16, Lemma 3.4].

Finally, we remark that although Theorem 1.4 provides a uniform bound for the global mean
speeds of transition fronts, the question of the existence of a global mean speed for a given transition
front is still open. However, there is no example showing that equation (1.1), under the assump-
tion (1.2), has a transition front without a global mean speed. On the other hand, in the case of
Fisher-KPP nonlinearities, there are examples of transition fronts which do not admit any global
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mean speed. Consider for instance the homogeneous equation ut = uxx+ g(u) where g : [0, 1] → R is
of class C2 and concave, g(0) = g(1) = 0 and g(u) > 0 for all u ∈ (0, 1). This equation admits some
transition fronts with positions (ξt)t∈R satisfying ξt/t → c− as t → −∞ and ξt/t → c+ as t → +∞,
where c− and c+ are any two given real numbers such that 2

√
g′(0) ≤ c− < c+ < +∞, see [24, 25]

(see also [26, 59] for further results in time or space dependent media).

Sufficient conditions for the uniqueness of transition fronts

For the homogeneous equation (1.7) with (1.8), it was proved in [20] that the transition fronts are
unique up to shifts and equal to the standard traveling front φ(x − ct), whether c be zero or not.
For the periodic equation (1.1), we showed in [16, Theorem 1.1] that for any given period L > 0,
the speed of pulsating fronts for (1.1) is unique and that, if the speed is not zero, pulsating fronts
are unique up to shift in time. For (1.1), it is therefore natural to wonder whether transition fronts
can be reduced to stationary or non-stationary pulsating fronts. One of the striking results of this
paper is to show that the answer to this question can be yes (see Theorem 1.5 below) or no (see
Theorem 1.7).

In this subsection, we provide some sufficient conditions for the uniqueness of solutions in the (a
priori larger) class of transition fronts. These conditions also lead to the existence and uniqueness
of the global mean speeds. We first give a uniqueness result of Liouville-type under the a priori
existence of a pulsating front with nonzero speed.

Theorem 1.5. If (1.1) admits a pulsating front with speed cL 6= 0, then any transition front con-

necting 0 and 1 is equal to this pulsating front up to shift in time. In particular, any transition front

has a global mean speed, equal to |cL|.

As a consequence of Theorem 1.5, we get the uniqueness of transition fronts of equation (1.1)
when the spatial period L is small or large, under various assumptions on f . More precisely, if, in
addition to (1.2), one assumes that for every x ∈ R, there exists θx ∈ (0, 1) such that

f(x, θx) = 0, f(x, ·) < 0 on (0, θx) and f(x, ·) > 0 on (θx, 1), (1.11)

and that there exists θ ∈ (0, 1) such that

f < 0 on (0, θ), f > 0 on (θ, 1), f
′
(θ) > 0, and

∫ 1

0

f(u) du 6= 0, (1.12)

where f(u) =
∫ 1

0
f(x, u) dx for u ∈ [0, 1], then from [16, Theorems 1.2, 1.4], there is L∗ > 0 such

that for every 0 < L < L∗, equation (1.1) admits a pulsating front with nonzero speed, whence any
transition front is equal to this pulsating front up to shift in time. In a similar way, it follows from [16,

Theorem 1.5] that if, in addition to (1.2) and (1.11), the function f is such that
∫ 1

0
f(x, u) du > 0

(resp. < 0) and ∂f/∂u(x, θx) > 0 for all x ∈ R, then there is L∗ > 0 such that, for every L > L∗, any
transition front of equation (1.1) is equal to a pulsating front with positive (resp. negative) speed,
and is unique up to shift in time.

In the following theorem, we give a characterization of the pulsating fronts in the class of tran-
sition fronts, without assuming a priori the existence of a pulsating front with nonzero speed.
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Theorem 1.6. If there exist a transition front u connecting 0 and 1 and a sequence (tn)n∈N in R

such that

lim
|t−s|→+∞

(
lim inf
n→+∞

|ξt+tn − ξs+tn |
)
= +∞, (1.13)

then there exists a pulsating front with speed cL 6= 0, and any transition front is then equal to this

pulsating front up to shift in time.

Clearly, Theorem 1.6 is more general than Theorem 1.5. Under their assumptions, Theorems 1.5
and 1.6 both imply in particular the existence and uniqueness of the global mean speed in the class of
transition front. As a matter of fact, if a transition front u admits a positive global mean speed c > 0
(as does a pulsating front with a nonzero speed), then

lim
|t−s|→+∞

|ξt − ξs| = +∞. (1.14)

Theorem 1.6 says that the existence of a transition front u satisfying the rough condition (1.14) (or
even a weaker one obtained by passing to the limit along a sequence of time) is actually sufficient
for the existence of a pulsating front with nonzero speed. Under this condition, any transition front
ũ associated with the positions (ξ̃t)t∈R is then equal to this pulsating front up to shift in time and

then satisfies |ξ̃t − ξ̃s| ∼ c|t − s| as |t − s| → +∞ for some c > 0. In particular, any transition
front u which admits a global mean speed c ≥ 0 is either a pulsating front with nonzero speed or a
transition front with null global mean speed and such that lim inf |t−s|→+∞ |ξt − ξs| < +∞. We point
out that transition fronts with null global mean speed may not be stationary fronts in general, and
they may be not unique up to shift in time (see Theorem 1.7 below).

Transition fronts which are not pulsating fronts

In periodic media, pulsating fronts are the natural extension of the standard traveling fronts φ(x−ct)
in homogeneous media. But the notion of pulsating fronts is not broad enough to describe all the
transition fronts connecting the steady states 0 and 1. In this subsection, we show indeed that the
notion of transition fronts is truly needed, even in periodic media.

To do so, we investigate wave-blocking phenomena for the bistable equation (1.1). Wave-blocking
refers to the fact that stationary fronts block the propagation. Some results on wave-blocking
phenomena have been obtained in the specific case where the diffusions aL are not too close to
their average and the reactions fL are x-independent with fL(x, u) = f(u) = u(1 − u)(u − θ) for
some θ ≃ 1/2, see [55, 57] (see also [21] for some blocking phenomena in the case where f(x, u) is
compared to a homogeneous bistable function g with nonzero average). Moreover, wave-blocking
phenomena have been extensively investigated for various other bistable models, see, e.g., [1, 6,
12, 14, 28, 31] for spatially discrete models, [3, 30, 36, 41] for some non-periodic equations, and [7,
13] for some higher-dimensional equations. In the present paper, for constant diffusions aL and
some x-dependent reactions fL, we prove that wave-blocking occurs when the period L is large, and
furthermore we obtain the existence of transition fronts connecting 0 and 1 between two ordered
stationary fronts. We state the main result as follows.

Theorem 1.7. Assume, in addition to (1.2), that f satisfies (1.11), the functions a, ∂uf(·, 0) and

∂uf(·, 1) are constants, and

min
x∈R

(∫ 1

0

f(x, u)du
)
< 0 and max

x∈R

(∫ 1

0

f(x, u)du
)
> 0. (1.15)
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0

1

u u

v v
v(t,x)

u(t,x)

Figure 1: Stationary fronts 0 < u−(x) < u+(x) ≤ v−(x) < v+(x) < 1 and transition fronts u and v
such that u−(x) < u(t, x) < u+(x) and v−(x) < v(t, x) < v+(x).

Then there is L∗ > 0 such that for any L > L∗, equation (1.1) with the period L admits both some

stationary fronts u± and v± satisfying 0 < u−(x) < u+(x) ≤ v−(x) < v+(x) < 1 for all x ∈ R, as

well as some transition fronts u and v connecting 0 and 1 and such that

{
u(−∞, x) = u+(x), u(+∞, x) = u−(x),

v(−∞, x) = v−(x), v(−∞, x) = v+(x),
uniformly in x ∈ R.

Furthermore, u(t, x) is decreasing in t, while v(t, x) is increasing in t. Lastly, for any transition

front ũ associated with positions (ξt)t∈R, there is M ≥ 0 such that |ξt − ξs| ≤ M for all (t, s) ∈ R
2.

In particular, all transition fronts have zero global mean speed and there are transition fronts which

are not pulsating fronts.

Let us first explain the phenomenon behind Theorem 1.7. On the one hand, when the period L is
large, thanks to (1.15), there are large intervals in, say, the positive direction (in x) where the non-
linearity fL(x, ·) is locally close to a homogeneous bistable nonlinearity with a negative integral over
[0, 1]. Roughly speaking, this means that around such large intervals, the speed of any solution of the
associated Cauchy problem with a front-like initial condition is (strictly) negative, at least on some
interval of time. In other words, any solution is blocked by a supersolution moving leftwards and
located far on the right. Similarly, any solution is blocked by a subsolution moving rightwards and lo-
cated far on the left. The supersolution and the subsolution are ordered and move towards each other
as time runs. Therefore, some ordered stationary fronts exist. On the other hand, the supersolution
(resp. subsolution) only blocks the convergence to 1 (resp. 0) as t→ +∞ of the solution, but not the
convergence to some stationary fronts. Thus, there exist time-monotone solutions which connect two
ordered stationary fronts as t → ±∞ (see Figure 1). Such solutions converge to the stable steady
states 0 and 1 as x → ±∞ uniformly in t and therefore they are non-stationary transition fronts
with null global mean speed. Furthermore, notice that, since (1.1) is L-periodic in x, Theorem 1.7
actually provides the existence of two sequences of stationary fronts (u±n )n∈Z = (u±(nL + ·))n∈Z
and (v±n )n∈Z = (v±(nL + ·))n∈Z and two sequences of time-monotone non-stationary transitions
fronts (un)n∈Z = (u(·, nL + ·))n∈Z and (vn)n∈Z = (v(·, nL + ·))n∈Z converging to the stationary
fronts u±n and v±n as t→ ±∞.

Theorem 1.7 actually shows the broadness of Definition 1.1, since the class of transition fronts
includes time-global solutions which connect 0 and 1 in space and connect two strictly ordered
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stationary fronts in time. Notice that this type of solutions cannot be described by non-stationary
pulsating fronts, since any such pulsating front connects 0 and 1 both in space and in time. It is also
worth pointing out that in the homogeneous case where a and f do not depend on x, the transition
fronts are noting else but the standard traveling fronts, see [20]. As far as we know, Theorem 1.7
provides the first example of transition fronts in periodic media, which are neither stationary nor
non-stationary pulsating fronts. It shows in particular the larger complexity of the dynamics in
periodic media than in homogeneous media.

Theorem 1.7 also provides some examples of transition fronts which are not unique up to shift in
time. Indeed, under the assumptions of Theorem 1.7, for any L > L∗, some transition fronts of (1.1)
are increasing in time, others are decreasing and other are stationary. But whether all the transition
fronts are monotone in time is still unclear. Moreover, some other natural questions arise: for a
given L > L∗, does any transition front converge to some stationary fronts as t→ ±∞ ? Under the
assumptions in Theorem 1.7 and the assumption (1.12), is it true that L∗ = L∗, if L∗ denotes the
smallest such real number for which the conclusion of Theorem 1.7 holds and L∗ denotes the largest
real number for which equation (1.1) admits a pulsating front with nonzero speed ?

Generally speaking, for diffusion and reaction coefficients a(x) and f(x, u) satisfying (1.2), the
questions of the existence of front-like solutions connecting 0 and 1 and of the existence of propagation
speeds are still open, even under the additional assumption (1.11). Based on the work in this present
paper and the companion paper [16], one can conclude that the spatial period L plays an important
role in answering these questions. Namely, under various assumptions, there are transition fronts
propagating with nonzero speeds (pulsating fronts with nonzero speeds) when L is small, while there
are both stationary and non-stationary transition fronts propagating with zero speed when L is
large. However, so far there is no explicit condition to guarantee the existence of transition fronts
in general, and no example is known to show their non-existence.

Outline of the paper. Section 2 is devoted to the proof of the general properties of transition
fronts, that is, Proposition 1.3 and Theorem 1.4. In Section 3, we prove Theorems 1.5 and 1.6 on the
uniqueness of transition fronts. Lastly, Section 4 is devoted to the proof of Theorem 1.7, that is, the
existence of stationary fronts and non-stationary transition fronts which are not standard pulsating
fronts.

2 General properties of transition fronts

This section is devoted to the proofs of Proposition 1.3 and Theorem 1.4 on the kL-spatial mono-
tonicity of the transition fronts and the boundedness of the propagation rates.

2.1 Spatial monotonicity: proof of Proposition 1.3

We first do the proof of Proposition 1.3. The first statement will follow easily from Definition 1.1,
that is, u converges to the steady states 0 or 1 far away from the positions ξt uniformly in t. The
proof of the second statement of Proposition 1.3 is more involved. We will slide u with respect to
the x-variable on the set LZ. Before doing so, we first present a result on the uniform boundedness
of the local oscillations of (ξt)t∈R.
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Lemma 2.1. For any transition front u connecting 0 and 1 for problem (1.1), there holds

∀ τ > 0, sup
(t,s)∈R2, |t−s|≤τ

|ξt − ξs| < +∞. (2.1)

Proof. The proof is an immediate application of [25, Proposition 4.1], and we omit the details.

This property holds for more general heterogeneous one-dimensional equations with other types
of nonlinearities, and it has its own interest. As an application of Lemma 2.1, by applying recur-
sively (2.1) with τ = 1, one infers that lim supt→±∞ |ξt/t| < +∞. Namely, the propagation speeds
of any transition front are asymptotically bounded as t→ ±∞.

Proof of Proposition 1.3. We only show the first inequality in (1.9), since the last one follows
similar lines, and the second one is obvious. Assume, by contradiction, that there exists a se-
quence (tn, xn)n∈N in R

2 such that (xn − ξtn)n∈R is bounded and u(tn, xn) → 0 as n → +∞. Write
xn = x′n + x′′n with x′n ∈ LZ and x′′n ∈ [0, L), and set

un(t, x) = u(t+ tn, x+ x′n) for (t, x) ∈ R
2 and n ∈ N.

Since the functions aL and fL are independent of t and L-periodic in x, each function un obeys
equation (1.1). Up to extraction of some subsequence, one can assume that x′′n → x∞ ∈ [0, L]
as n → +∞ and that, from standard parabolic estimates, un(t, x) → u∞(t, x) as n → +∞ locally
uniformly in R

2, where 0 ≤ u∞ ≤ 1 solves (1.1). Furthermore, since u(tn, xn) → 0 as n → +∞,
one has u∞(0, x∞) = limn→+∞ un(0, x

′′
n) = limn→+∞ u(tn, xn) = 0. It then follows from the strong

maximum principle that u∞ ≡ 0. On the other hand, from Definition 1.1, there exists M > 0 such
that u(t, x) ≥ 1/2 for all x− ξt ≤ −M and t ∈ R. One then infers that

un(0, x) ≥
1

2
for all x+ xn − x′′n − ξtn ≤ −M and t ∈ R.

Remember that the sequences (xn − ξtn)n∈R and (x′′n)n∈N are bounded. Thus, there exists M1 ∈ R

such that u∞(0,M1) ≥ 1/2, which is impossible. Hence, the proof of the first inequality in (1.9) is
complete.

Let us now turn to the proof of the second assertion of Proposition 1.3. From Definition 1.1,
there is B > 0 such that

∀ (t, x) ∈ R
2,

{
x− ξt ≥ B =⇒ 0 < u(t, x) ≤ δ,
x− ξt ≤ −B =⇒ 1− δ ≤ u(t, x) < 1,

(2.2)

where δ ∈ (0, 1/2) is the constant in (1.2). Since ∂uf is continuous in R × [0, 1] and periodic in x
(∂uf is thus uniformly continuous in R× [0, 1]), one can also assume without loss of generality, even
if it means decreasing δ > 0, that, for every x ∈ R, f(x, ·) is decreasing in [0, δ] and [1 − δ, 1], and
then in (−∞, δ] and [1 − δ,+∞) owing to the definition of the extension of f on R × (R\[0, 1]).
Choose k0 ∈ N large enough such that k0L ≥ 2B and fix any k ∈ N with k ≥ k0. One then sees
from the second inequality of (2.2) that

v(t, x) := u(t, x− kL) ≥ 1− δ ≥ δ for all x− ξt ≤ B. (2.3)

This together with the first inequality of (2.2) yields

v(t, x) ≥ u(t, x) when x− ξt = B. (2.4)
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Since the function u is bounded, the nonnegative real number

ε∗ := inf
{
ε > 0 ; v(t, x) ≥ u(t, x)− ε for all (t, x) ∈ R

2
}

is well-defined. It is obvious that

u(t, x− kL) = v(t, x) ≥ u(t, x)− ε∗ for all (t, x) ∈ R
2. (2.5)

In order to prove that u(t, x) is kL-decreasing in x, it is sufficient to show ε∗ = 0. Indeed, if ε∗ = 0,
then u(t, x−kL) ≥ u(t, x) for all (t, x) ∈ R

2 and since both functons u(t, x−kL) and u(t, x) satisfy the
same equation (1.1) (because aL and fL are L-periodic in x), the strong maximum principle implies
that either u(t, x− kL) > u(t, x) for all (t, x) ∈ R

2, or u(t, x− kL) = u(t, x) for all (t, x) ∈ R
2. The

latter is impossible since k ≥ k0 > 0 and u(t,−∞) = 1 > 0 = u(t,+∞) for all t ∈ R.
Assume, by contradiction, that ε∗ > 0. Then there exist a sequence (εn)n∈N of positive real

numbers and a sequence (tn, xn) in R
2 such that

εn → ε∗ as n→ +∞ and v(tn, xn) < u(tn, xn)− εn for all n ∈ N. (2.6)

We first claim that the sequence (xn − ξtn)n∈N is bounded. Otherwise, up to extraction of some
subsequence, it would converge to +∞ or −∞ as n → +∞. If xn − ξtn → +∞ as n → +∞,
then, from Definition 1.1, one has u(tn, xn) → 0 and v(tn, xn) = u(tn, xn − kL) → 0 as n → +∞.
Thus, v(tn, xn)−u(tn, xn) → 0 as n→ +∞, which contradicts (2.6) and the positivity of ε∗. Similarly,
the case limn→+∞(xn − ξtn) = −∞ leads to a contradiction. Therefore, the sequence (xn − ξtn)n∈N is
bounded.

Next, we set

w(t, x) := v(t, x)− (u(t, x)− ε∗) = u(t, x− kL)− u(t, x) + ε∗ for (t, x) ∈ R
2.

Clearly, w ≥ 0 in R
2 from (2.5). Define now E1 :=

{
(t, x) ∈ R

2 ; x − ξt ≥ B
}

and E2 :=
{
(t, x) ∈ R

2 ; x − ξt ≤ B
}
. As a consequence of (2.2) and (2.3), one has

u(t, x) − ε∗ < u(t, x) ≤ δ for all (t, x) ∈ E1, and v(t, x) + ε∗ > v(t, x) ≥ 1 − δ for all (t, x) ∈ E2.
Since fL(x, ·) is decreasing in (−∞, δ], one infers that

(u− ε∗)t = (aL(x)(u− ε∗)x)x + fL(x, u)

≤ (aL(x)(u− ε∗)x)x + fL(x, u− ε∗) for all (t, x) ∈ E1.

Namely, the function u − ε∗ is a subsolution of (1.1) in the set E1. Since v solves (1.1), it follows
that

wt ≥ (aL(x)wx)x +
fL(x, v)− fL(x, u− ε∗)

v − (u− ε∗)
w in E1,

where the quotient is defined as ∂ufL(x, v(t, x)) for any point (t, x) ∈ E1 such that v(t, x) = u(t, x)−ε∗.
Similarly, the function v + ε∗ is a supersolution of (1.1) in the set E2, and then w satisfies

wt ≥ (aL(x)wx)x +
fL(x, v + ε∗)− fL(x, u)

(v + ε∗)− u
w in E2.

Finally, since ∂uf(x, u) is bounded in R
2, the function w satisfies an inequation of the type

wt ≥ (aL(x)wx)x + b(t, x)w for all (t, x) ∈ R
2
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for some bounded function b : R
2 → R. Furthermore, from standard parabolic estimates, the

function w = v − u + ε∗ has bounded first-order derivatives. Since the sequence (xn − ξtn)n∈N is
bounded, it follows from Lemma 2.1 that, for any τ > 0, the sequence (xn−ξtn−τ−B)n∈N is bounded.
Since w is nonnegative in R

2 and w(tn, xn) → 0 as n→ +∞ from (2.5) and (2.6), one then concludes
from Krylov-Safonov-Harnack type inequalities that, for any τ > 0, w(tn − τ, ξtn−τ + B) → 0
as n → +∞, which contradicts (2.4) and the positivity of ε∗. Hence, ε∗ = 0 and the proof of
Proposition 1.3 is thereby complete.

2.2 Global boundedness of the propagation rates: proof of Theorem 1.4

This section is devoted to the proof of Theorem 1.4 on global bounds for the propagation rates of any
transition front connecting 0 and 1 for (1.1). The general idea can be summarized as follows. From
the first part of Proposition 1.3, any transition front u ranges in (ε0, 1−ε0) on the set

{
(t, ξt); t ∈ R

}
,

for some ε0 ∈ (0, 1/2). We will show that there exists a constant C > 0, independent of u and of L,
such that for any fixed t0 ∈ R, u(t, x) is less than ε0 when t− t0 >> 1 and x− ξt0 >> C(t− t0), and
is larger than 1− ε0 when t− t0 >> 1 and x− ξt0 << −C(t− t0). This guarantees that, up to some
bounded shifts, the positions ξt stay in the expanding interval [ξt0−C(t−t0), ξt0+C(t−t0)] as t−t0 is
large. In other words, C gives an upper bound for the propagation speed of the positions ξt, while −C
provides a lower bound. To get the constant C, we will construct, for every L > 0, a supersolution
(resp. subsolution) for (1.1), which approaches the limiting state 0 (resp. 1) exponentially fast
as t→ +∞ and x→ +∞ (resp. x→ −∞), the exponential rates being independent of L > 0.

Before doing so, let us first recall some properties of the principal eigenvalue of some linear
second-order differential operators. For every L > 0 and µ ∈ R, let TL,µ be the linear operator
defined on C2

L :=
{
ψ ∈ C2(R) ; ψ(x+ L) = ψ(x) for all x ∈ R

}
by

TL,µ[ψ] = (aLψ
′)′ + 2µaLψ

′ + (µ2aL + µa′L)ψ.

The Krein-Rutman theory provides the existence and uniqueness of the principal eigenvalue λ(L, µ)
of TL,µ, associated with a (unique up to multiplication) positive eigenfunction ψL,µ ∈ C2

L. One can
normalize ψL,µ in such a way that ‖ψL,µ‖ = 1 with the norm ‖ · ‖ := ‖ · ‖L∞(R). Furthermore, for
any fixed µ ∈ R, it is known from [35] that λ(L, µ) is nondecreasing in L > 0. On the other hand,
integrating both sides of TL,µ[ψL,µ] = λ(L, µ)ψL,µ over [0, L] yields λ(L, µ) ≤ ‖a‖µ2 + ‖a′‖|µ|/L for
all L > 0 and µ ∈ R. As a consequence,

λ(L, µ) ≤ lim
L′→+∞

λ(L′, µ) ≤ ‖a‖µ2 for all L > 0 and µ ∈ R. (2.7)

Next we construct a supersolution for equation (1.1).

Lemma 2.2. There is a constant C > 0, depending only on a and f , such that for every L > 0, the
function u defined by

u(t, x) = min
(
e−(x−Ct) ψL,−1(x) +

δ

2
e−γt, 1

)
for t ≥ 0 and x ∈ R, (2.8)

is a supersolution of equation (1.1), where ψL,−1 is the principal eigenfunction of TL,−1, and δ ∈ (0, 1/2)
and γ > 0 are given in (1.2).
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Proof. Set K = max(x,u)∈R×[0,1] |∂uf(x, u)| and let C > 0 be given by

C = ‖a‖+ γ + 2K (2.9)

(remember that max(∂uf(x, 0), ∂u(x, 1)) ≤ −γ < 0 for all x ∈ R, whence γ ≤ K and the computa-
tions below would also work with C = ‖a‖+ 3K).

Now, let us check that

N(t, x) := ut(t, x)− (aL(x)ux(t, x))x − fL(x, u(t, x)) ≥ 0

for all t ≥ 0 and x ∈ R such that u(t, x) < 1. This will be sufficient to ensure that u is a supersolution,
since fL(·, 1) = 0. From (2.7) and the definition of λ(L,−1), it is straightforward to check that,
when u(t, x) < 1,

N(t, x) = −
(
(aLψ

′
L,−1)

′(x)− 2aL(x)ψ
′
L,−1(x) + (aL(x)− a′L(x))ψL,−1(x)

)
e−(x−Ct)

+ C e−(x−Ct) ψL,−1(x)−
δγ

2
e−γt − fL(x, u(t, x))

= −
(
λ(L,−1)− C

)
e−(x−Ct) ψL,−1(x)−

δγ

2
e−γt − fL(x, u(t, x))

≥ −
(
‖a‖ − C

)
e−(x−Ct) ψL,−1(x)−

δγ

2
e−γt − fL(x, u(t, x)).

(2.10)

If 0 < u(t, x) ≤ δ, then fL(x, u(t, x)) ≤ −γu(t, x) from (1.2), whence

N(t, x) ≥ −
(
‖a‖ − C − γ

)
e−(x−Ct) ψL,−1(x) ≥ 0

from (2.9) and the positivity of γ and K. On the other hand, if δ ≤ u(t, x) < 1, then
fL(x, u(t, x)) = fL(x, u(t, x))− fL(x, 0) ≤ Ku(t, x). It then follows that

δ ≤ u(t, x) = e−(x−Ct) ψL,−1(x) +
δ

2
e−γt ≤ e−(x−Ct) ψL,−1(x) +

δ

2
,

whence (δ/2) e−γt ≤ δ/2 ≤ e−(x−Ct) ψL,−1(x). Thus, if δ ≤ u(t, x) < 1, then (2.10) yields

N(t, x) ≥ −
(
‖a‖ − C +K

)
e−(x−Ct) ψL,−1(x)−

δ

2
(γ +K) e−γt,

whence N(t, x) ≥ −
(
‖a‖−C+γ+2K

)
e−(x−Ct) ψL,−1(x) = 0 from (2.9). Hence, u is a supersolution

of (1.1). The proof of Lemma 2.2 is thereby complete.

The supersolution u depends on period L, but its exponential decay rates as t → +∞
and x→ +∞ are independent of L. In a similar way, we can construct a subsolution.

Lemma 2.3. For every L > 0, the function u defined by

u(t, x) = max
(
1− ex+Ct ψL,1(x)−

δ

2
e−γt, 0

)
for t ≥ 0 and x ∈ R, (2.11)

is a subsolution of equation (1.1), where ψL,1 is the principal eigenfunction of TL,1, δ ∈ (0, 1/2)
and γ > 0 are given in (1.2), and C > 0 is given in (2.9).
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Proof. The proof of this lemma is similar to that of Lemma 2.2. For the sake of completeness, we
include the details here. To prove that u is a subsolution of equation (1.1), one only needs to check
that

N(t, x) := ut(t, x)− (aL(x)ux(t, x))x − fL(x, u(t, x)) ≤ 0

for all t ≥ 0 and x ∈ R such that u(t, x) > 0, since fL(·, 0) = 0. From (2.7) and the definition
of λ(L, 1), it is straightforward to check that

N(t, x) =
(
λ(L, 1)− C

)
ex+Ct ψL,1(x) +

δγ

2
e−γt − fL(x, u(t, x))

≤
(
‖a‖2 − C

)
ex+Ct ψL,1(x) +

δγ

2
e−γt − fL(x, u(t, x)).

If 1− δ ≤ u(t, x) < 1, then fL(x, u(t, x)) ≥ γ(1− u(t, x)) from (1.2), whence

N(t, x) ≤
(
‖a‖2 − C − γ

)
ex+Ct ψL,1(x) ≤ 0.

On the other hand, if 0<u(t, x)≤1−δ, then fL(x, u(t, x))=fL(x, u(t, x))−fL(x, 1)≥−K(1−u(t, x)).
In that case, 1 − ex+Ct ψL,1(x) − δ/2 ≤ 1 − ex+Ct ψL,1(x) − (δ/2)e−γt = u(t, x) ≤ 1 − δ, whence
(δ/2) e−γt ≤ δ/2 ≤ ex+Ct ψL,1(x). Thus, if 0 < u(t, x) ≤ 1− δ, then

N(t, x) ≤
(
‖a‖2 − C +K

)
ex+Ct ψL,1(x) +

δ

2
(γ +K) e−γt

≤
(
‖a‖2 − C + γ + 2K

)
ex+Ct ψL,1(x) = 0.

Hence, u is a subsolution of (1.1) and the proof of Lemma 2.3 is thereby complete.

Given the previous two lemmas, we are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let u(t, x) be a transition front connecting 0 and 1 for problem (1.1) with
period L > 0, associated with positions (ξt)t∈R satisfying (1.4). We will prove the inequality (1.10)
with the constant C given in (2.9) and used in Lemmas 2.2 and 2.3. To do so, we shall show an
upper bound for lim sup|t−s|→+∞(ξt−ξs)/(t−s) and a lower bound for lim inf |t−s|→+∞(ξt−ξs)/(t−s).

First of all, for each k ∈ Z, there is a unique nk ∈ Z such that nkL ≤ ξk < (nk + 1)L. For

all k ∈ Z and t ∈ [k, k + 1), by defining ξ̃t = nkL, it follows from (2.1) applied with τ = 1 that

supt∈R |ξt − ξ̃t| < +∞, whence property (1.4) in Definition 1.1 still holds with the family (ξ̃t)t∈R.
Therefore, even if it means redefining ξt, one can assume without loss of generality that ξt ∈ LZ for
all t ∈ R (and even that ξt is constant on every interval [k, k + 1) with k ∈ Z).

Step 1: the upper estimate. Let u be the function given in (2.8) with the constant C defined
in (2.9). We shall show that

lim sup
|t−s|→+∞

ξt − ξs
t− s

≤ C. (2.12)

From Definition 1.1, there is C1 > 0 such that

u(t, x+ ξt) ≤
δ

2
for all x ≥ C1 and t ∈ R. (2.13)

Owing to the definition of u in (2.8), there is x0 < 0 such that u(0, x) = 1 for all x ≤ x0. LetM1 ∈ LZ
be such that M1 ≥ C1 − x0. Then 0 < u(t, x + ξt) < 1 = u(0, x −M1) for all x ≤ C1 and t ∈ R.
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On the other hand, it follows from (2.13) that 0 < u(t, x + ξt) ≤ δ/2 < u(0, x−M1) for all x ≥ C1

and t ∈ R. Therefore, u(t, x + ξt) < u(0, x −M1) for all x ∈ R and t ∈ R. Since equation (1.1)
is L-periodic in x and since ξt (for every t ∈ R) andM1 belong to LZ, it then follows from Lemma 2.2
and the maximum principle that

0 < u(s, x+ ξt) < u(s− t, x−M1) for all t ≤ s and x ∈ R. (2.14)

Now let us assume by contradiction that there are a real number c1 ∈ (C,+∞) and two se-
quences (tk)k∈N and (sk)k∈N of real numbers such that |tk − sk| → +∞ as k → +∞ and

ξtk − ξsk
tk − sk

> c1 for all k ∈ N. (2.15)

Without loss of generality, one can assume that tk < sk for all k ∈ N. It then follows
from (2.14) that 0 < u(sk, x + ξtk) < u(sk − tk, x − M1) for all k ∈ N and x ∈ R. Notice
that limk→+∞ u(sk − tk, c1(sk − tk) − M1) = 0 by definition of u in (2.8), since c1 > C. This
yields

lim
k→+∞

u(sk, c1(sk − tk) + ξtk) = 0

Set ε1 := inf(s,x)∈R×(−∞,0] u(s, x + ξs). Clearly, ε1 > 0 from Definition 1.1 and Proposition 1.3.
Since there is k1 ∈ N such that u(sk, c1(sk − tk) + ξtk) < ε1 for all k ≥ k1, one finally gets
that c1(sk−tk)+ξtk ≥ ξsk for all k ≥ k1, which is a contradiction with (2.15) (remember that tk < sk).
Hence, the proof of inequality (2.12) is finished.

Step 2: the lower estimate. Let u be the function given in (2.11) with the constant C defined
in (2.9). Here we show that

lim inf
|t−s|→+∞

ξt − ξs
t− s

≥ −C. (2.16)

The proof is similar to that of (2.12). Namely, from Definition 1.1, there is C2 > 0 such
that 1 > u(t, x + ξt) ≥ 1 − δ/2 for all x ≤ −C2 and t ∈ R. Then owing to the definition of u,
there is M2 ∈ LZ such that 1 > u(t, x+ ξt) > u(0, x+M2) for all x ∈ R and t ∈ R. It follows then
from Lemma 2.2 and the maximum principle that

1 > u(s, x+ ξs) > u(s− t, x+M2) for all t ≤ s and x ∈ R. (2.17)

Let us assume by contradiction that there are a positive constant c2 > C and two sequences (t′k)k∈N
and (s′k)k∈N of real numbers such that |t′k − s′k| → +∞ as k → +∞ and

ξt′
k
− ξs′

k

t′k − s′k
< −c2 for all k ∈ N. (2.18)

Without loss of generality, one can assume that t′k < s′k for all k ∈ N. It then follows
from (2.17) that 1 > u(s′k, x + ξt′

k
) > u(s′k − t′k, x + M2) for all k ∈ N and x ∈ R. Notice

that limk→+∞ u(s′k − t′k,−c2(s
′
k − t′k) + M2) = 1 by definition of u in (2.11), and since c2 > C.

Therefore, limk→+∞ u(s′k,−c2(s
′
k − t′k) + ξt′

k
) = 1. Set ε2 := inf(s,x)∈R×[0,+∞)(1 − u(s, x + ξs)) > 0.

Then there is k2 ∈ N such that u(s′k,−c2(s
′
k − t′k) + ξt′

k
) > 1 − ε2 for all k ≥ k2. One infers

that −c2(s
′
k − t′k) + ξt′

k
≤ ξs′

k
for all k ≥ k2, which contradicts (2.18), since t′k < s′k. Hence, the proof

of the lower bound (2.16) is complete.
Consequently, lim sup|t−s|→+∞ |ξt−ξs|/|t−s| ≤ C, where the constant C defined in (2.9) depends

only on the functions a and f . The proof of Theorem 1.4 is thereby complete.
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3 Uniqueness in the class of transition fronts

In this section, we prove Theorem 1.5 and Theorem 1.6 on the uniqueness of transition fronts for
problem (1.1). Applying [10, Theorem 1.14 (1)] to the one-dimensional equation (1.1), one infers
that a transition front u with positions (ξt)t∈R is reduced to a pulsating front provided that there is a
real number c > 0 such that sup(t,s)∈R2

(
|ξt − ξs| − c|t− s|

)
< +∞. Therefore, under the assumption

of existence of a pulsating front with nonzero speed cL, the conclusion of Theorem 1.5 follows easily
by checking that for a given transition front u, the function t 7→ ξt − cLt is bounded. On the other
hand, for the proof of Theorem 1.6, one cannot apply [10, Theorem 1.14 (1)] directly, since the
existence of a pulsating front is not assumed a priori. Instead, we will use the sliding method with
respect to the time variable to get the conclusion under the weaker assumption (1.13).

3.1 Proof of Theorem 1.5

The strategy for the proof of Theorem 1.5 is similar to that used in Proposition 2.2 of [20] for
homogeneous equations. The main difference is that we will use the global stability and uniqueness
of pulsating fronts for the spatially periodic equation (1.1), instead of these properties for standard
traveling waves solving homogeneous equations. For the sake of completeness, we include all the
details as follows.

Proof of Theorem 1.5. Let uL(t, x) = φL(x − cLt, x/L) be a pulsating front of equation (1.1), in
the sense of (1.5), with speed cL 6= 0. Let u(t, x) be a transition front connecting 0 and 1 for
problem (1.1). That is, there is a family (ξt)t∈R of real numbers such that u converges to the steady
states 0 and 1 as x → ±∞ in the sense of (1.4). As in the proof of Theorem 1.4, one can assume
without loss of generality that ξt ∈ LZ for all t ∈ R.

Now we prove that the function t 7→ ξt − cLt is bounded. Let v and v be the solutions of the
Cauchy problem associated to (1.1), with initial conditions

v(0, x) =

{
1 if x ≤ 0,

δ/2 if x > 0,
and v(0, x) =

{
1− δ/2 if x ≤ 0,

0 if x > 0,

where δ ∈ (0, 1/2) is the constant given in (1.2). Since the pulsating front φL is globally stable from
Theorem 1.12 in [16], it follows that there exist two real numbers η and η such that

sup
y∈R

∣∣v(s, y)− φL(y − cLs+ η, y)
∣∣+ sup

y∈R

∣∣v(s, y)− φL(y − cLs+ η, y)
∣∣ → 0 as s→ +∞

(notice that only the assumption (1.2) is used in the proof of that stability result, while the as-
sumption (1.11) on the profile of f(x, ·) is not needed, see Proposition 4.4 in [16]). Therefore, since
φL(−∞, y) = 1 and φL(+∞, y) = 0 uniformly in y ∈ R, there are T > 0 and M > 0 such that, for
all s ≥ T , {

v(s, y) > δ/2 if y ≤ cLs−M,

v(s, y) < 1− δ/2 if y ≥ cLs+M.
(3.1)

On the other hand, from Definition 1.1, there is B ∈ LN such that

∀ (t, x) ∈ R
2,

{
x− ξt ≥ B =⇒ 0 < u(t, x) ≤ δ/2,

x− ξt ≤ −B =⇒ 1− δ/2 ≤ u(t, x) < 1,
(3.2)
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whence v(0, x − ξt0 + B) ≤ u(t0, x) ≤ v(0, x − ξt0 − B) for all x ∈ R and t0 ∈ R. Then, since B
and ξt0 belong to LZ for all t0 ∈ R and since (1.1) is L-periodic in x, the maximum principle yields

v(t− t0, x− ξt0 +B) ≤ u(t, x) ≤ v(t− t0, x− ξt0 − B) for all t ≥ t0 and x ∈ R.

This together with (3.1) implies that, for all t0 < t0 + T ≤ t,
{
u(t, x) > δ/2 if x− ξt0 +B ≤ cL(t− t0)−M,

u(t, x) < 1− δ/2 if x− ξt0 − B ≥ cL(t− t0) +M.

Thus, from (3.2), one obtains that, for all t0 < t0 + T ≤ t,

ξt0 − B + cL(t− t0)−M < ξt +B and ξt0 +B + cL(t− t0) +M > ξt − B. (3.3)

By fixing t = 0, one gets lim supt0→−∞ |ξt0 − cLt0| ≤ |ξ0| + 2B + M . For any arbitrary t ∈ R,
letting t0 → −∞ in (3.3) leads to |ξt − cLt| ≤ |ξ0|+ 4B + 2M . Therefore, the function t 7→ ξt − cLt
is bounded.

Since the family of positions (ξt)t∈R is defined up to an additive bounded function, without loss
of generality, one can finally assume that ξt = cLt for all t ∈ R. That is, ξt is monotone in t,
and |ξt − ξs| − |cL||t − s| = 0 for all (t, s) ∈ R

2. It finally follows from [10, Theorem 1.14 (1)] that
u is a pulsating front and that it is equal to uL up to shift in time. The proof of Theorem 1.5 is
thereby complete.

3.2 Proof of Theorem 1.6

Let us now turn to the proof of Theorem 1.6. Due to the uniqueness result in Theorem 1.5, it is
sufficient to prove the existence of a pulsating front with nonzero speed for equation (1.1). To do
so, we first show that equation (1.1) admits a transition front v associated with a family (ζt)t∈R
satisfying lim|t−s|→+∞ |ζt − ζs| = +∞. More precisely, we have the following result.

Lemma 3.1. Under the assumptions of Theorem 1.6, equation (1.1) admits a transition front

0 < v < 1 connecting 0 and 1 associated with a family (ζt)t∈R in the sense of (1.4), such that

lim|t−s|→+∞ |ζt − ζs| = +∞. Furthermore, either there is a positive integer K1 such that

ζ(k+1)K1
> ζkK1

+ 1 for all k ∈ Z, (3.4)

or there is a positive integer K2 such that

ζ(k+1)K2
< ζkK2

− 1 for all k ∈ Z. (3.5)

Proof. Throughout the proof, we assume the existence of a transition front u connecting 0 and 1
for (1.1), associated with a family (ξt)t∈R satisfying (1.4). We are also given a sequence (tn)n∈N
satisfying (1.13). Firstly, as in the proof of Theorem 1.4, one can assume without loss of generality
that ξt ∈ LZ for all t ∈ R and that ξt is constant on [m,m+ 1) for all m ∈ Z. Set

un(t, x) = u(t+ tn, x+ ξtn) for (t, x) ∈ R
2 and n ∈ N.

For each n ∈ N, the function un satisfies (1.1). Furthermore, from Proposition 1.3, there holds

0 < inf
n∈N

un(0, 0) ≤ sup
n∈N

un(0, 0) < 1. (3.6)
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Up to extraction of some subsequence, one can assume, from standard parabolic estimates,
that un(t, x) → v(t, x) as n → +∞ locally uniformly in (t, x) ∈ R

2, where 0 ≤ v ≤ 1 is a clas-
sical solution of (1.1). It follows from (3.6) that 0 < v(0, 0) < 1, whence 0 < v(t, x) < 1 for
all (t, x) ∈ R

2 by the strong maximum principle.
On the other hand, for each n ∈ N, the function t 7→ ξt+tn − ξtn ranges in LZ and is constant

on [m − tn,m + 1 − tn) for every m ∈ Z. Furthermore, Lemma 2.1 implies that, for each C ≥ 0,
supn∈N, |t|≤C |ξt+tn − ξtn | < +∞. Therefore, up to extraction of a subsequence, there exists a func-

tion t 7→ ξ̃t such that ξ̃t ∈ LZ for all t ∈ R and ξt+tn − ξtn → ξ̃t as n→ +∞ for every t ∈ R.

Let us now show that v is a transition front connecting 0 and 1 for (1.1) with this family (ξ̃t)t∈R.
To do so, let ε > 0 be any arbitrary positive real number. LetM ≥ 0 be such that u(t, x+ξt) ≥ 1−ε

for all t ∈ R and x ≤ −M , and u(t, x+ξt) ≤ ε for all t ∈ R and x ≥M . For any t ∈ R and x < ξ̃t−M ,
one has

x+ ξtn − ξt+tn −→
n→+∞

x− ξ̃t < −M,

whence x + ξtn < ξt+tn −M for n large and un(t, x) = u(t + tn, x + ξtn) ≥ 1 − ε for n large. As a

consequence, v(t, x) ≥ 1− ε for all t ∈ R and x < ξ̃t −M . Similarly, one can show that v(t, x) ≤ ε

for all t ∈ R and x > ξ̃t +M . In other words, v is a transition front connecting 0 and 1, with the
family (ξ̃t)t∈R satisfying (1.4). Furthermore, by writing ξt+tn − ξs+tn = (ξt+tn − ξtn) − (ξs+tn − ξtn),
it follows from assumption (1.13) that

lim
|t−s|→+∞

|ξ̃t − ξ̃s| = +∞. (3.7)

Let us set ζt = ξ̃k + (ξ̃k+1 − ξ̃k)(t − k) for t ∈ [k, k + 1) and k ∈ N. The family (ζt)t∈R is also

associated to v in the sense of (1.4), since the function t 7→ ζt− ξ̃t is bounded by Lemma 2.1 applied

to v and (ξ̃t)t∈R. Moreover, by using again Lemma 2.1, the function t 7→ ζt is actually Lipschitz
continuous, and

lim
|t−s|→+∞

|ζt − ζs| = +∞ (3.8)

from (3.7). In particular, there is a positive integer K0 > 0 such that

|ζK0i − ζK0j| > 1 for all i, j ∈ Z with i 6= j. (3.9)

Next, we claim that either the set

E+ :=
{
k ∈ N ; ζK0k > 0

}
∪
{
k ∈ Z\N ; ζK0k < 0

}

or the set
E− :=

{
k ∈ N ; ζK0k < 0

}
∪
{
k ∈ Z\N ; ζK0k > 0

}

is finite. Suppose on the contrary that both E+ and E− are infinite. Since E+ is infinite, let us
assume here that the set

{
k ∈ N ; ζK0k > 0

}
is infinite (the case where the set

{
k ∈ Z\N ; ζK0k < 0

}

is infinite can be handled similarly). Since the set E− is infinite, two cases may then occur.
Case 1: the set

{
k ∈ N ; ζK0k < 0

}
is infinite. From (3.8), there exist two sequences of positive

integers (ik)k∈N and (jk)k∈N such that

0 < i0 < j0 < i1 < j1 < · · · < ik < jk < · · ·
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and ζK0jk+1
< ζK0jk < 0 < ζK0ik < ζK0ik+1

for all k ∈ N. By continuity of the function t 7→ ζt, there
exists a sequence of real numbers (sk)k∈N such that K0ik < sk < K0jk and ζsk = 0 for all k ∈ N.
The facts that limk→+∞ sk = +∞ and ζsk = 0 contradict (3.8). Therefore, case 1 is ruled out.

Case 2: the set
{
k ∈ Z\N ; ζK0k > 0

}
is infinite. From (3.8), there exist then two se-

quences (i′k)k∈N in N and (j′k)k∈N in Z\N such that

· · · < j′k+1 < j′k < · · · < j′0 < 0 < i′0 < · · · < i′k < i′k+1 < · · ·

and ζK0i′k
< ζK0j′k

< ζK0i′k+1
< ζK0j′k+1

for all k ∈ N. By continuity of t 7→ ζt, there exists a sequence

of real numbers (s′k)k∈N such that K0i
′
k < s′k < K0i

′
k+1 and ζs′

k
= ζK0j′k

for all k ∈ N. But s′k → +∞
while K0j

′
k → −∞ as k → +∞, which contradicts (3.8). Thus, case 2 is ruled out too.

The proof of our claim is thereby complete, that is, either E+ or E− is a finite set. Finally,
we prove that, if E− is a finite set, then there is K1 ∈ K0N such that (3.4) holds, while there
is K2 ∈ K0N such that (3.5) holds if E+ is a finite set. We will just consider the case where the
set E− is finite, the proof for the case where the set E+ is finite being similar. So, let us assume
that the set E− is finite. Even if it means increasing K0, one can then assume without loss of
generality that ζK0k ≥ 0 for all k ∈ N\{0} and ζK0k ≤ 0 for all k ∈ Z\N. As a consequence of (3.8),
one infers that ζK0k → ±∞ as k → ±∞ (and even ζt → ±∞ as t → ±∞ by Lemma 2.1 applied
to v and (ζt)t∈R). Let us now assume by contradiction that (3.4) does not hold. In particular, for
each m ∈ N\{0}, there is km ∈ Z such that ζ(km+1)K0m ≤ ζkmK0m + 1, whence

ζ(km+1)K0m < ζkmK0m − 1

from (3.9). Since t 7→ ζt is continuous and ζt → +∞ as t → +∞, there are a sequence of
real numbers (τm)m∈N\{0} such that τm ≥ (km + 1)K0m and ζτm = ζkmK0m for all m ∈ N\{0}.
Since τm − kmK0m→ +∞ as m→ +∞, one gets a contradiction with (3.8).

Consequently, (3.4) holds if E− is a finite set. Similarly, (3.5) holds if E+ is a finite set. Since
either E− or E+ is a finite set, it follows that either (3.4) or (3.5) holds and the proof of Lemma 3.1
is thereby complete.

Let 0 < v < 1 be the transition front given in Lemma 3.1 and associated with positions (ζt)t∈R.
By sliding v with respect to t, we will show that equation (1.1) admits a pulsating front with
positive speed if (ζt)t∈R satisfies (3.4), while it admits a pulsating front with negative speed if (ζt)t∈R
satisfies (3.5).

Lemma 3.2. Assume that (ζt)t∈R satisfies (3.4). Then there is a real number τ0 > 0 such

that v(t+ τ, x+ L) ≥ v(t, x) for all τ ≥ τ0 and (t, x) ∈ R
2.

Proof. From Definition 1.1, there is B > 0 such that

∀ (t, x) ∈ R
2,

{
x− ζt ≥ B =⇒ 0 < v(t, x) ≤ δ,

x− ζt ≤ −B =⇒ 1− δ/2 ≤ v(t, x) < 1,
(3.10)

where δ ∈ (0, 1/2) is the constant given in (1.2). As in the proof of Proposition 1.3, one can also as-
sume that f(x, ·) is (strictly) decreasing in (−∞, δ] and [1−δ,+∞) for every x ∈ R. Because of (3.4)
and Lemma 2.1 applied to v and (ζt)t∈R, there is a real number τ0 > 0 such that ζt+τ − ζt ≥ 2B +L
for all t ∈ R and τ ≥ τ0. It then follows that, for any τ ≥ τ0,

v(t+ τ, x+ L) ≥ 1− δ for all (t, x) ∈ R
2 such that x− ζt ≤ B. (3.11)
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Together with (3.10) and 1− δ ≥ δ, one gets that

v(t+ τ, x+ L) ≥ v(t, x) for all (t, x) ∈ R
2 with x− ζt = B. (3.12)

Fix any τ ∈ [τ0,+∞), define

ε∗ := inf
{
ε > 0 ; v(t+ τ, x+ L) + ε ≥ v(t, x) for all (t, x) ∈ R

2 with x− ζt ≤ B
}

and let us show that ε∗ = 0. Assume by contradiction that ε∗ > 0. There are then a sequence (εn)n∈N
of positive real numbers and a sequence (tn, xn)n∈N in R

2 such that εn → ε∗ as n→ +∞ and

v(tn + τ, xn + L) + εn < v(tn, xn) and xn − ζtn ≤ B for all n ∈ N. (3.13)

By (3.12) and the uniform continuity of v in R
2, one infers that supn∈N(xn− ζtn) < B. Furthermore,

since the map t 7→ ζt is Lipschitz-continuous (that is true owing to the construction of ζt, but this
property can always be assumed without loss of generality by Lemma 2.1), there is then ρ > 0 such
that

∀n ∈ N, ∀ (t, x) ∈ R
2,

(
|t− tn|+ |x− xn| < ρ

)
=⇒

(
x− ζt < B

)
. (3.14)

Write xn = x′n + x′′n with x′n ∈ LZ, x′′n ∈ [0, L) and assume that, up to extraction of
a subsequence, x′′n → x∞ ∈ [0, L] as n → +∞. Define vn(t, x) = v(t + tn, x + x′n) for
n ∈ N and (t, x) ∈ R

2. Up to extraction of a subsequence, the functions vn converge lo-
cally uniformly in R

2 to a solution 0 ≤ v∞ ≤ 1 of (1.1). Furthermore, for any (t, x) ∈ R
2

with |t| + |x| < ρ, there holds x + xn − ζt+tn < B for all n ∈ N by (3.14), whence
vn(t+ τ, x+ x′′n + L) = v(t+ tn + τ, x+ xn + L) ≥ 1− δ by (3.11) and

vn(t+ τ, x+ x′′n + L) + ε∗ = v(t+ tn + τ, x+ xn + L) + ε∗ ≥ v(t+ tn, x+ xn) = vn(t, x+ x′′n)

by definition of ε∗. Therefore, for any (t, x) ∈ R
2 with |t|+ |x| < ρ, one has

v∞(t+ τ, x+ x∞ + L) ≥ 1− δ and v∞(t+ τ, x+ x∞ + L) + ε∗ ≥ v∞(t, x+ x∞).

On the other hand, (3.13) implies that vn(τ, x
′′
n + L) + εn < vn(0, x

′′
n) for every n ∈ N, whence

v∞(τ, x∞ + L) + ε∗ ≤ v∞(0, x∞) and finally v∞(τ, x∞ + L) + ε∗ = v∞(0, x∞). Finally, de-
fine z(t, x) = v∞(t + τ, x + L) − v∞(t, x) for (t, x) ∈ R

2. There holds z(t, x) ≥ −ε∗ for
all (t, x) ∈ R

2 such that |t| + |x − x∞| < ρ, while z(0, x∞) = −ε∗. Since z satisfies the equa-
tion zt − (aLzx)x = f(x/L, v∞(t+ τ, x+ L))− f(x/L, v∞(t, x)) in R

2, one gets at (0, x∞) that

f
(x∞
L
, v∞(τ, x∞ + L)

)
− f

(x∞
L
, v∞(0, x∞)

)
≤ 0. (3.15)

However, v∞(0, x∞) = v∞(τ, x∞ + L) + ε∗ > v∞(τ, x∞ + L) ≥ 1 − δ and f(x∞/L, ·) is (strictly)
decreasing in [1−δ,+∞). Therefore, (3.15) is impossible, whence ε∗ = 0 and v(t+τ, x+L) ≥ v(t, x)
for all (t, x) ∈ R

2 with x− ζt ≤ B.
Similarly, by using the first property in (3.10) and (3.12), one gets that v(t+τ, x+L) ≥ v(t, x) for

all τ ≥ τ0 and for all (t, x) ∈ R
2 with x− ζt ≥ B. The proof of Lemma 3.2 is thereby complete.

Similarly, if (ζt)t∈R satisfies property (3.5), then there is a real number τ ′0 > 0 such
that v(t+ τ, x) ≤ v(t, x+ L) for all (t, x) ∈ R

2 and τ ≥ τ ′0.
Based on the previous properties, we are now ready to prove Theorem 1.6.
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Proof of Theorem 1.6. Firstly, assume that the family (ζt)t∈R satisfies (3.4). Then Lemma 3.2 yields
the existence of τ0 > 0 such that v(t+ τ, x+ L) ≥ v(t, x) for all (t, x) ∈ R

2 and τ ≥ τ0. Define

τ ∗ := inf
{
τ > 0 ; v(t+ τ ′, x+ L) ≥ v(t, x) for all (t, x) ∈ R

2 and τ ′ ≥ τ
}
.

One then has 0 ≤ τ ∗ ≤ τ0 and

v(t+ τ ∗, x+ L) ≥ v(t, x) for all (t, x) ∈ R
2. (3.16)

Now we claim that τ ∗ > 0. Otherwise, v(t, x + L) ≥ v(t, x) for all (t, x) ∈ R
2, whence

v(t, x + iL) ≥ v(t, x) for all (t, x) ∈ R
2 and i ∈ N. Definition 1.1 applied to v implies in par-

ticular that v(0, 0) ≤ limi→+∞ v(0, iL) = 0, which contradicts the positivity of v. Therefore, τ ∗ > 0.
Next, we prove that

ω := inf
{
v(t+ τ ∗, x+ L)− v(t, x) ; |x− ζt| ≤ B

}
= 0, (3.17)

where B > 0 is as in (3.10). Assume, by contradiction, that ω > 0. Notice that the derivative vt is
globally bounded from standard parabolic theory. Then there exists η0 ∈ (0, τ ∗) such that

v(t+ τ ∗ − η, x+ L) ≥ v(t, x) for all η ∈ [0, η0] and |x− ζt| ≤ B. (3.18)

For each η ∈ [0, η0], one then has v(t + τ ∗ − η, x + L) ≥ v(t, x) for all (t, x) ∈ R
2 with x − ζt = B,

while 0 < v(t, x) ≤ δ for all (t, x) ∈ R
2 with x − ζt ≥ B from (3.10). Therefore, with the same

arguments as in the proof of Lemma 3.2, one infers that

v(t+ τ ∗ − η, x+ L) ≥ v(t, x) for all η ∈ [0, η0] and x− ζt ≥ B. (3.19)

On the other hand, since v(t+ τ ∗, x+ L) ≥ v(t, x) ≥ 1− δ/2 for all x− ζt ≤ −B by (3.10), one can
assume without loss of generality that η0 > 0 is small enough so that

v(t+ τ ∗ − η, x+ L) ≥ 1− δ for all η ∈ [0, η0] and x− ζt ≤ −B.1

Since v(t + τ ∗ − η, x + L) ≥ v(t, x) for all (t, x) ∈ R
2 with x − ζt = −B from (3.18), one concludes

as in Lemma 3.2 that

v(t+ τ ∗ − η, x+ L) ≥ v(t, x) for all η ∈ [0, η0] and x− ζt ≤ −B.

This, together with (3.18)-(3.19), implies that v(t + τ ∗ − η, x + L) ≥ v(t, x) for all η ∈ [0, η0]
and (t, x) ∈ R

2, contradicting the minimality of τ ∗. Thus, the proof of (3.17) is finished.
We finally show that equation (1.1) admits a pulsating front with speed cL = L/τ ∗ > 0.

From (3.17), there exists a sequence (sn, xn)n∈N in R
2 such that

v(sn + τ ∗, xn + L)− v(sn, xn) → 0 as n→ +∞ and |xn − ζsn | ≤ B for all n ∈ N. (3.20)

Let us now write xn = x′n + x′′n with x′n ∈ LZ and x′′n ∈ [0, L) and set

vn(t, x) = v(t+ sn, x+ x′n) for (t, x) ∈ R
2 and n ∈ N.

1Notice that this is the place where we use the choice of δ/2 in the second property of (3.10).
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For each n ∈ N, the function vn satisfies (1.1). Up to extraction of some subsequence, one
can assume that x′′n → x∞ ∈ [0, L] as n → +∞ and that, from standard parabolic esti-
mates, vn(t, x) → v∞(t, x) as n→ +∞ locally uniformly in R

2, where 0 ≤ v∞ ≤ 1 solves (1.1). Fur-
thermore, v∞(t+τ ∗, x+L) ≥ v∞(t, x) for all (t, x) ∈ R

2 from (3.16), and v∞(τ ∗, x∞+L) = v∞(0, x∞)
from (3.20). Since v∞(t + τ ∗, x + L) is also a solution to equation (1.1), it follows from the strong
parabolic maximum principle that

v∞(t+ τ ∗, x+ L) = v∞(t, x) for all (t, x) ∈ R
2.

On the other hand, from Definition 1.1, one has

vn(t, x) = v(t+ sn, x+ x′n) → 0 as x+ x′n − ζsn+t → +∞

uniformly with respect to n ∈ N and (t, x) ∈ R
2. Write

x+ x′n − ζsn+t = (x− ζt) + (xn − ζsn)− x′′n + (ζt + ζsn − ζt+sn)

and remember that the sequences (x′′n)n∈N and (xn − ζsn)n∈N are bounded. Notice that, thanks to
Lemma 2.1, the quantities ζt and ζt + ζsn − ζt+sn are bounded locally in t ∈ R and independently
of n ∈ N. It then follows that

v∞(t, x) → 0 as x→ +∞ locally in t ∈ R.

Similar arguments imply that v∞(t, x) → 1 as x→ −∞ locally in t ∈ R. Therefore, v∞ is a pulsating
front with positive speed cL = L/τ ∗. Thus, from Theorem 1.5, any transition front connecting 0
and 1 for equation (1.1) is equal to v∞ up to shift in time.

Similarly, if (ζt)t∈R satisfies property (3.5), then one can conclude that equation (1.1) admits a
pulsating front with speed c̃L = −L/τ∗ < 0, where τ∗ is the positive number defined by

τ∗ = inf
{
τ > 0 ; v(t+ τ ′, x) ≤ v(t, x+ L) for all (t, x) ∈ R

2 and τ ′ ≥ τ
}
.

Furthermore, any transition front connecting 0 and 1 is equal to this pulsating front up to shift in
time. The proof of Theorem 1.6 is thereby complete.

4 Transition fronts which are not pulsating fronts

This section is devoted to the proof of Theorem 1.7 on the existence of a new type of transition
fronts, which are not pulsating fronts. Let us explain the general strategy before going into the
details. The first step consists in constructing super- and subsolutions for equation (1.1) when the
period L is large. The construction will use the properties of the standard traveling wave for the
homogeneous equation

(uy)t(t, x) = a (uy)xx(t, x) + f y(uy(t, x))

with 0 < uy(t, x) < 1 for all (t, x) ∈ R
2, where y is a fixed real number and f y = f(y, ·) in [0, 1]

(remember that a is a constant in Theorem 1.7). As a matter of fact, for large L, by choosing some
fixed suitable real numbers y > y, we will get a supersolution uL and a subsolution uL of (1.1) which
are located around the positions Ly and Ly respectively, which are strictly ordered and which move
towards each other as time runs. As a consequence, there exist stationary fronts for equation (1.1)
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at large L, which emerge from these super- and subsolutions. By shifting suitably in space the
subsolution (or the supersolution) of the first step, we can then construct a pair of strictly ordered
stationary fronts such that the lower one is stable from above, and the upper one is stable from
below. Once this is done, the Dancer-Hess connecting orbit lemma will lead to the existence of time-
monotone transition fronts between these two stationary fronts. Actually, we will see that there exist
at least two transition fronts: the first one is decreasing in time and the second one is increasing.
Finally, we will prove that all transition fronts have zero global mean speed. In Section 4.1, we
provide a series of auxiliary lemmas for the proof of Theorem 1.7, which is carried out in Section 4.2.

4.1 Some auxiliary lemmas

We recall that a, ∂uf(·, 0) and ∂uf(·, 1) are constants. Denote µ+ = ∂uf(·, 0) and µ− = ∂uf(·, 1),
and remember that max(µ+, µ−) ≤ −γ < 0 where γ > 0 is given in (1.2). Since the function f(x, u)
is continuous in R× [0, 1] and 1-periodic in x, one can choose x ∈ [0, 1] such that

∫ 1

0

f(x, u)du = min
x∈R

∫ 1

0

f(x, u)du.

Due to the assumptions (1.2) and (1.11), the profile f(x, ·) : [0, 1] 7→ R is bistable in the sense
of (1.8). It then follows from [4, 19] that the homogeneous equation

ut(t, x) = a uxx(t, x) + f(x, u(t, x)) (4.1)

admits a standard traveling front φ(x− ct) such that 0 < φ < 1 in R, φ(−∞) = 1 and φ(+∞) = 0.
The front φ(x) is decreasing in x and is unique up to shift in x (one can normalize φ in such a way

that φ(0) = 1/2). Furthermore, the speed c is unique and it has the sign of the integral
∫ 1

0
f(x, u)du,

that is, c < 0 thanks to the assumption (1.15). Moreover, φ(x) approaches the limits 1 and 0
as x→ ±∞ exponentially, namely there are two positive constants A± such that

φ(x) ∼ A+e
−λ+x as x→ +∞, 1−φ(x) ∼ A−e

λ−x as x→ −∞, λ± =
±c+

√
c2 − 4aµ±

2a
> 0. (4.2)

Lastly, φ
′
(x)/φ(x) → −λ+ as x→ +∞ and φ

′
(x)/(1− φ(x)) → −λ− as x→ −∞.

Lemma 4.1. There is L1 > 0 large enough such that for every L > L1, the function

uL(x) = φ(x− Lx)

is a strict supersolution of (1.1).

Proof. Fix any real number ε such that 0 < ε < min(−c λ+/3,−c λ−/3) (remember that c < 0).
Since f(·, 0) = f(·, 1) = 0 and since ∂uf is continuous in R × [0, 1] and 1-periodic in x
with µ+ = ∂uf(·, 0) and µ− = ∂uf(·, 1) being constant, it follows that there exists a number C > 0
(independent of L > 0) such that

(µ+ − ε)φ(x) ≤ f(y, φ(x)) ≤ (µ+ + ε)φ(x) for all x ≥ C and y ∈ R, (4.3)

−(µ− + ε)(1− φ(x)) ≤ f(y, φ(x)) ≤ −(µ− − ε)(1− φ(x)) for all x ≤ −C and y ∈ R, (4.4)
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and
c φ

′
(x)

φ(x)
+ c λ+ ≥ −ε for all x ≥ C, (4.5)

c φ
′
(x)

1− φ(x)
+ c λ− ≥ −ε for all x ≤ −C. (4.6)

Let us now check that NL(x) := −a u′′L(x) − fL(x, uL(x)) > 0 in R for all L > 0 large enough.
Since φ(x− ct) is a solution to (4.1), one infers that, for all x ∈ R,

NL(x) = c φ
′
(x− Lx) + f

(
x, φ(x− Lx)

)
− fL

(
x, φ(x− Lx)

)
. (4.7)

If x ≥ C + Lx, then from (4.3), (4.5) and the choice of ε, one has

NL(x) ≥ c φ
′
(x− Lx) + (µ+ − ε)φ(x− Lx)− (µ+ + ε)φ(x− Lx)

= φ(x− Lx)
(c φ′

(x− Lx)

φ(x− Lx)
− 2ε

)
≥ φ(x− Lx)(−c λ+ − 3ε) > 0.

On the other hand, if x ≤ −C + Lx, then, from (4.4), (4.6) and the choice of ε, there holds

NL(x) ≥ c φ
′
(x− Lx)− (µ− + ε)

(
1− φ(x− Lx)

)
+ (µ− − ε)

(
1− φ(x− Lx)

)

=
(
1− φ(x− Lx)

)( c φ
′
(x− Lx)

1− φ(x− Lx)
− 2ε

)
≥

(
1− φ(x− Lx)

)
(−c λ− − 3ε) > 0.

Finally, for −C + Lx ≤ x ≤ C + Lx, due to the continuity and negativity of φ
′
, one gets

that φ
′
(x− Lx) ≤ −β < 0 for some positive real number β := −max[−C,C] φ

′ > 0 which is indepen-
dent of L > 0. Since the function f(x, u) is of class C0,α in x uniformly in u ∈ [0, 1], one concludes
that there is a positive real number κ independent of L > 0 such that, for all −C+Lx ≤ x ≤ C+Lx,

∣∣f
(
x, φ(x− Lx)

)
− fL

(
x, φ(x− Lx)

)∣∣ ≤ κ
∣∣∣x−

x

L

∣∣∣
α

≤
κCα

Lα
,

whence NL(x) ≥ −cβ − κCα/Lα from (4.7) and c < 0. Therefore, if L > L1 := (κCα/(|c|β))1/α > 0,
then NL(x) > 0 for all −C + Lx ≤ x ≤ C + Lx.

Thus, for every L > L1, one has NL(x) > 0 for all x ∈ R. Namely, uL is a strict supersolution of
equation (1.1). The proof of Lemma 4.1 is thereby compete.

A subsolution for equation (1.1) at large L can be constructed in a similar way. More precisely,
choose x ∈ [−1, 0] such that ∫ 1

0

f(x, u)du = max
x∈R

∫ 1

0

f(x, u)du.

It follows from (1.11) and (1.15) that, for the homogeneous equation vt = a vxx+ f(x, v), there are a
unique c > 0 and a standard traveling front v(t, x) = φ(x−ct) such that 0 < φ < 1 in R, φ(−∞) = 1
and φ(+∞) = 0. The front φ is decreasing in R and is unique up to shifts. Furthermore, there are
two positive constants B± such that

φ(x) ∼ B+e
−λ+x as x→ +∞, 1−φ(x) ∼ B−e

λ
−
x as x→ −∞, λ± =

±c+
√
c2 − 4aµ±

2a
> 0. (4.8)

25



Lemma 4.2. There is L2 > 0 large enough such that for every L > L2, the function

uL(x) = φ(x− Lx)

is a strict subsolution of equation (1.1).

Proof. The proof is similar to that of Lemma 4.1, and we omit the details.

Furthermore, when L is large enough, the following comparison holds.

Lemma 4.3. There is L∗ > 0 large enough such that for every L > L∗, 0 < uL < uL < 1 in R.

Proof. From (4.2), (4.8) and c < 0 < c, one infers that 0 < λ+ < λ+ and λ− > λ− > 0,
whence φ(x)/φ(x) → +∞ as x → +∞ and (1 − φ(x))/(1 − φ(x)) → 0 as x → −∞. It then

follows that there is C ′ > 0 such that φ(x) > φ(x) for all x ∈ R\[−C ′, C ′]. Remember that φ and φ
are decreasing in R and that −1 ≤ x ≤ 0 ≤ x ≤ 1 with x 6= x, whence x < x. Consequently, there
is L∗ > 0 large enough such that, for every L > L∗ and x ∈ R, 1 > φ(x−Lx) > φ(x−Lx) > 0. The
proof of Lemma 4.3 is thereby complete.

Without loss of generality, one can assume that L∗ > max(L1, L2), where L1 and L2 are given
in Lemmas 4.1 and 4.2. Thus, for any given L > L∗, 0 < uL < uL < 1 are strictly ordered sub- and
supersolutions for equation (1.1), which both converge to 0 and 1 as x → ±∞. As a consequence
of the maximum principle, as will be explained in the proof of Theorem 1.7 below, stationary
fronts for (1.1) will then exist, that is, stationary solutions 0 < p(x) < 1 such that p(−∞) = 1
and p(+∞) = 0.

Before going further on, we need to prove a useful property, which actually holds for any L > 0,
on the asymptotic behavior at ±∞ of any stationary front of (1.1).

Lemma 4.4. Let L > 0 be arbitrary and let 0 < p(x) < 1 be a stationary solution of equation (1.1)
such that p(−∞) = 1 and p(+∞) = 0. Then there are two positive constants M± such that

p(x) ∼M+e
−λ+x as x→ +∞, 1− p(x) ∼M−e

λ−x as x→ −∞, λ± =

√
−µ±

a
> 0. (4.9)

Proof. We will just show the first property of (4.9), that is, p(x) decays exponentially to 0
as x→ +∞, the proof of the behavior as x→ −∞ being similar. First of all, because of (1.2), there
is x̃ ∈ R such that fL(x, p(x)) < 0 for all x ≥ x̃, whence p′′(x) > 0 for all x ≥ x̃. Thus, p′ is increasing
in [x̃,+∞) and since p(+∞) = 0, one infers that p′(+∞) = 0 and p′ < 0 in [x̃,+∞). On the other
hand, from standard elliptic interior estimates and from Harnack inequality, the function p′/p is
bounded in R. Hence λ := lim supx→+∞ p′(x)/p(x) ∈ (−∞, 0].

Let (xn)n∈N be a sequence in R such that xn → +∞ and p′(xn)/p(xn) → λ as n → +∞.
Write xn = x′n + x′′n with x′n ∈ LZ and x′′n ∈ [0, L). Without loss of generality, one can assume
that x′n ≥ x̃ for all n ∈ N and that x′′n → y ∈ [0, L] as n→ +∞. From the boundedness of p′/p, the
functions

x 7→ pn(x) :=
p(x+ x′n)

p(x′n)
> 0

are locally bounded (that is, supn∈N ‖pn‖L∞(K) < +∞ for any compact subset K ⊂ R). Furthermore,
since equation (1.1) is L-periodic in x, the functions pn obey a p′′n + fL(x, p(x

′
n)pn)/p(x

′
n) = 0 in R.

26



Notice that p(x′n) → 0 as n→ +∞ since x′n → +∞, and remember that ∂uf is uniformly continuous
in R × [0, 1] and that ∂uf(·, 0) = µ+ < 0 is constant. From standard elliptic estimates, there is
then a nonnegative function p∞ such that, up to extraction of a subsequence, pn → p∞ in C1

loc(R)
and p∞ is a classical solution of a p′′∞ + µ+p∞ = 0 in R. Furthermore, p∞(0) = 1, whence p∞ > 0
in R from the strong maximum principle. On the other hand, since x′n ≥ x̃ for all n ∈ N and p′ < 0
on [x̃,+∞), there holds p′n < 0 on [0,+∞), whence p′∞ ≤ 0 in [0,+∞) (actually, p′∞ ≤ 0 in R

since x′n → +∞ as n → +∞). Therefore, p∞(x) = e−λ+x for all x ∈ R, with λ+ =
√
−µ+/a > 0.

Finally, since p′n(x
′′
n)/pn(x

′′
n) = p′(xn)/p(xn) → λ as n → +∞, one infers that p′∞(y)/p∞(y) = λ,

whence λ = −λ+.
One has then proved that lim supx→+∞ p′(x)/p(x) = −λ+. With similar arguments, one can get

that lim infx→+∞ p′(x)/p(x) = −λ+, and finally p′(x)/p(x) → −λ+ as x→ +∞. Then the asymptotic
stability theory for ordinal differential equations (see, e.g. [15, Chapter 13, Theorem 4.5]) implies
that p(x) ∼M+e

−λ+x as x→ +∞ for some constant M+ > 0.
Similarly, applying the above analysis to the function 1−p, one concludes that 1−p(x) ∼M−e

λ−x

as x→ −∞ for some constant M− > 0. The proof of Lemma 4.4 is thereby complete.

In the following lemma, we show that when L ≥ L∗, any transition front connecting 0 and 1 for
problem (1.1) can be bounded from above by a translate of uL and from below by a translate of uL
at large time, up to some exponentially small terms. As a matter of fact, this property will be used
in Theorem 1.7 to prove that all transition fronts have zero global mean speed.

Lemma 4.5. Even if it means increasing L∗ > 0, the following property holds: for every L > L∗ and

every transition front 0 < u < 1 connecting 0 and 1 for problem (1.1), there are some real numbers

x∗, x
∗, q0 > 0 and γ0 > 0 such that

max
(
uL(x− x∗)− q0e

−γ0t, 0
)
≤ u(s+ t, x+ ξs) ≤ min

(
uL(x− x∗) + q0e

−γ0t, 1
)

(4.10)

for all x ∈ R, s ∈ R and t ≥ 0. Furthermore, q0 and γ0 can be chosen independently of L and u.

Proof. We will only prove the upper inequality of (4.10), since the proof of the lower one is similar.
We are given a transition front u connecting 0 and 1 for (1.1), for some L > 0 (that will be large
at the end of the proof), associated with a family (ξt)t∈R satisfying (1.4). First of all, as already
emphasized, one can assume without loss of generality that ξs ∈ LZ for all s ∈ R.

We first claim that, for any real number q0 ∈ (0, 1), there exists a η0 ∈ L(N\{0}) such that

u(s, x+ ξs) ≤ uL(x− η0) + q0 for all (s, x) ∈ R
2. (4.11)

Indeed, from Definition 1.1, for any q0 ∈ (0, 1), there is M > 0 such that u(s, x + ξs) ≤ q0 for
all x ≥ M and s ∈ R. Since limx→−∞ uL(x) = 1 and 0 < u < 1 in R

2, there exists η0 ∈ L(N\{0})
large enough such that u(s + ξs, x) ≤ uL(x − η0) + q0 for all x ≤ M and s ∈ R. Therefore, the
inequality (4.11) is proved.

Next, we set

vL(t, x) := min
(
uL(x− η(t)) + q(t), 1

)
> 0 for t > 0 and x ∈ R,

where η and q are C1([0,+∞)) functions such that η(0) = η0, η
′(t) > 0 for all t ≥ 0, q(0) = q0

and 0 < q(t) ≤ q0 for all t ≥ 0. By choosing later some appropriate functions η(t) and q(t), we will
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show that vL(t, x) is a supersolution of equation (1.1). To do so, for all (t, x) ∈ (0,+∞) × R such
that vL(t, x) < 1, define

N(t, x) := ∂tvL(t, x)− a∂xxvL(t, x)− fL
(
x, vL(t, x)

)
.

A straightforward calculation gives, for all (t, x) ∈ (0,+∞)× R such that vL(t, x) < 1,

N(t, x) = q′(t)− η′(t)u′L(x− η(t))− au′′L(x− η(t))− fL
(
x, uL(x− η(t)) + q(t)

)
.

Since uL(x) = φ(x − Lx) and φ(x − ct) is a traveling front of equation (4.1), it follows that, for
all (t, x) ∈ (0,+∞)× R such that vL(t, x) < 1,

N(t, x) =
(
c− η′(t)

)
u′L(x− η(t)) + q′(t) + f

(
x, uL(x− η(t))

)
− fL

(
x, uL(x− η(t)) + q(t)

)
.

For all such (t, x), define

{
N1(t, x) := −η′(t)u′L(x− η(t)) + q′(t) + fL

(
x, uL(x− η(t))

)
− fL

(
x, uL(x− η(t)) + q(t)

)
,

N2(t, x) := c u′L(x− η(t)) + f
(
x, uL(x− η(t))

)
− fL

(
x, uL(x− η(t))

)
,

so that N(t, x) = N1(t, x) +N2(t, x).
In this paragraph, we will choose suitable functions q(t) and η(t) such that N1(t, x) ≥ 0 for

all (t, x) ∈ (0,+∞) × R such that vL(t, x) < 1. Since f satisfies (1.2) and ∂uf(x, u) is continuous
in R × [0, 1] and 1-periodic in x, there exists a real number δ0 ∈ (0, 1) (which depends only on f)
such that, if (q0, t, x) ∈ (0, δ0]× (0,+∞)×R with uL(x− η(t)) ∈ [0, δ0]∪ [1− δ0, 1] and vL(t, x) < 1,
then fL

(
x, uL(x− η(t))

)
− fL

(
x, uL(x− η(t)) + q(t)

)
≥ (γ/2)q(t) and

N1(t, x) ≥ −η′(t)u′L(x− η(t)) + q′(t) +
γq(t)

2
. (4.12)

On the other hand, due to the monotonicity of φ, there is a constant ρ = −maxδ0≤φ(y)≤1−δ0
φ
′
(y) > 0

(which actually depends only on φ and δ0, that is, only on f) such that if (t, x) ∈ (0,+∞) × R

with uL(x− η(t)) ∈ [δ0, 1− δ0] and vL(t, x) < 1, then u′L(x− η(t)) = φ
′
(x− η(t)−Lx) ≤ −ρ, whence

N1(t, x) ≥ ρ η′(t) + q′(t)−Kq(t), (4.13)

where K = max(x,u)∈R×[0,1] |∂uf(x, u)|. Now, let us choose q0 = δ0 (depending only on f). There
exists η0 ∈ L(N\{0}) (depending on L and u) such that (4.11) holds. Let us then choose q(t) and η(t)
such that

q(0) = q0, q
′(t) = −

γq(t)

2
for all t ≥ 0, η(0) = η0 and η′(t) =

2K + γ

2ρ
q(t) for all t ≥ 0. (4.14)

Namely, q(t) = q0e
−γt/2 and η(t) = η0 + q0(2K + γ)(1 − e−γt/2)/(γρ) for all t ≥ 0. It is easy to

check from (4.12)-(4.14) and the negativity of u′L that q(t) and η(t) are such that N1(t, x) ≥ 0 for
all (t, x) ∈ (0,+∞)× R such that vL(t, x) < 1. Notice also that the functions q and η − η0 depend
only on f and are thus independent of L and u (but η0 and η(t) depend on L and u)

Now, for those chosen functions q(t) and η(t), we show thatN2(t, x) ≥ 0 for all (t, x) ∈ (0,+∞)×R

such that vL(t, x) < 1, as soon as L is large enough. The arguments are similar to those used in
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the proof of Lemma 4.1. More precisely, since uL(x − η(t)) = φ(x − η(t) − Lx), it follows that, for
all (t, x) ∈ (0,+∞)× R such that vL(t, x) < 1,

N2(t, x) = c φ
′
(x− η(t)− Lx) + f

(
x, φ(x− η(t)− Lx)

)
− fL

(
x, φ(x− η(t)− Lx)

)
,

that is, N2(t, x) is nothing but the expression (4.7) with x − η(t) instead of x. As a consequence,
as in the proof of Lemma 4.1, there exists a positive number C (independent of L and u) such
that N2(t, x) > 0 for all (t, x) ∈ (0,+∞) × R with |x − η(t) − Lx| ≥ C and vL(t, x) < 1. On the

other hand, there is a constant β > 0 (independent of L and u) such that φ
′
(x − η(t) − Lx) ≤ −β

for all (t, x) ∈ (0,+∞)× R with |x− η(t)− Lx| ≤ C and vL(t, x) < 1. Moreover, in this case, since

x− η0 − Lx = (x− η(t)− Lx) + (η(t)− η0)

and since the function t 7→ η(t)−η0 is bounded and independent of L and u, there exists a positive real
number C1 (independent of L, u and (t, x)) such that |x−η0−Lx| ≤ C1 if |x−η(t)−Lx| ≤ C. Remem-
ber that f(x, u) is 1-periodic in x, that f(x, u) is of class C0,α in x uniformly in u ∈ [0, 1], that η0 ∈ LZ
and that c < 0. One then concludes that, for all (t, x) ∈ (0,+∞)×R such that |x− η(t)−Lx| ≤ C
and vL(t, x) < 1, there holds

N2(t, x) = c φ
′
(x−η(t)−xL)+f

(
x, φ(x−η(t)−xL)

)
−f

(x− η0
L

, φ(x−η(t)−xL)
)
≥ −c β−

C2C
α
1

Lα
,

for some positive number C2 independent of L, u and (t, x). Thus, even if it means increasing L∗

(but still independently of u and (t, x)), one has N2(t, x) ≥ 0 for all L > L∗ and (t, x) ∈ (0,+∞)×R

with |x − η(t) − Lx| ≤ C and vL(t, x) < 1. Combining the above properties, one has N2(t, x) ≥ 0
for all L > L∗ and (t, x) ∈ (0,+∞)× R with vL(t, x) < 1.

By choosing q(t) and η(t) as in (4.14), we then get the inequality (4.11) and N(t, x) ≥ 0 for all
(t, x) ∈ (0,+∞)× R such that vL(t, x) < 1. Since ξs ∈ LZ for all s ∈ R and since u < 1 in R

2, the
maximum principle implies that

u(s+ t, x+ ξs) ≤ min
(
uL(x− η(t)) + q(t), 1

)
for all t ≥ 0, s ∈ R and x ∈ R.

Set x∗ = supt≥0 η(t) = η0 + q0(2K + γ)/(γρ) and γ0 = γ/2. Since uL is decreasing in R, the second
inequality of (4.10) follows immediately.

As already emphasized, the proof of the first inequality follows the same scheme. Hence, the
proof of Lemma 4.5 is complete.

4.2 Proof of Theorem 1.7

Based on the above preparations, we are in a position to carry out the proof of Theorem 1.7.
Throughout the proof, we fix a period L > L∗, where L∗ > 0 is given in Lemmas 4.3 and 4.5. The
proof will be divided into five main steps.

Step 1: some useful notations. Let E = BUC(R,R) be the Banach space of bounded uniformly
continuous functions from R to R, endowed with the L∞ norm ‖ · ‖E = ‖ · ‖L∞(R) and the usual order
in C(R,R), that is, u ≤E v if u(x) ≤ v(x) for all x ∈ R and u <E v if u(x) ≤, 6≡ v(x) in R. For u ∈ E
and σ > 0, BE(u, σ) =

{
v ∈ E ; ‖v−u‖E < σ

}
is the open ball with center u and radius σ. For any
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u0 ∈ E, let (t, x) 7→ u(t, x; u0) denote the unique solution of (1.1) in (0,+∞)× R with initial value
u(0, ·; u0) = u0. This solution exists for all t > 0 since ∂uf is bounded in R

2. For any t ≥ 0, set

St[u0] = u(t, ·; u0).

Then (St)t>0 is a continuous semiflow on E, and the strong parabolic maximum principle implies
that (St)t>0 is strictly order-preserving on E in the sense that if u0 and v0 belong to E and u0 ≤, 6≡ v0
in R, then St[u0] < St[v0] in R for every t > 0. An equilibrium point p ∈ E for the semiflow (St)t>0

is nothing but a stationary solution of (1.1). Lastly, given two equilibrium points p± in E, an entire
orbit connecting p− to p+ is a continuous map Γ : R → E such that Γ(t) = St−s[Γ(s)] for all s < t
in R and Γ(t) → p± in E as t→ ±∞.

Step 2: the existence of some ordered stationary fronts. From Lemmas 4.1 and 4.2, 0 < uL < 1
is a strict subsolution and 0 < uL < 1 is a strict subsolution of (1.1). Hence, from the parabolic
maximum principle, u(t, x; uL) is increasing in t > 0, while u(t, x; uL) is decreasing in t > 0. From
standard parabolic estimates, u(t, x; uL) converges as t→ +∞ to a stationary solution 0 ≤ u1(x) ≤ 1
of (1.1) and u(t, x; uL) converges as t→ +∞ to a stationary solution 0 ≤ u2(x) ≤ 1 of (1.1), locally
uniformly in x ∈ R. Furthermore, since 0 < uL < uL < 1 in R from Lemma 4.3, there holds

0 < uL(x) < u(t, x; uL) < u(t, x; uL) < uL(x) < 1 for all x ∈ R and t > 0,

from the strong maximum principle, whence

0 < uL < u1 ≤ u2 < uL < 1 in R. (4.15)

On the other hand, since uL(−∞) = uL(−∞) = 1 and uL(+∞) = uL(+∞) = 0, one
has u1(−∞) = u2(−∞) = 1, u1(+∞) = u2(+∞) = 0, while u(t,−∞; uL) = u(t,−∞; uL) = 1
and u(t,+∞; uL) = u(t,+∞; uL) = 0 uniformly in t > 0. Therefore, u(t, ·; uL) → u1
and u(t, ·; uL) → u2 as t → +∞ uniformly in R, that is, St[uL] → u1 and St[uL] → u2 in E
as t→ +∞.

The functions u1 and u2 are thus ordered stationary fronts connecting 0 and 1 for (1.1). The
lower front u1 is approached from below by a solution of the Cauchy problem associated to (1.1),
while the upper front u2 is approached from above. For the conclusion of Theorem 1.7, we would
need the opposite situation, namely a lower front which is approached from above and an upper
front which is approached from below. To do so, we will, say, keep u2 as such and shift u1 to the
right in order to make it larger than u2. Namely, since both u1 and u2 have the same exponential
convergence rates λ± at ±∞ in the sense of (4.9) in Lemma 4.4, and since both u1 and u2 are
continuous and range in (0, 1), it is elementary to check that there is k ∈ N such that

0 < u2(x) < u3(x) := u1(x− kL) < 1 for all x ∈ R. (4.16)

Step 3: the stability from above and below of u2 and u3. Let us define the order interval

I := [u2, u3]E =
{
u ∈ E ; u2 ≤E u ≤E u3

}
=

{
u ∈ BUC(R,R) ; u2 ≤ u ≤ u3 in R

}

and let us show in this step that u2 is stable from above in I for the semiflow (St)t>0 and that u3 is
stable from below in I for the semiflow (St)t>0, in the sense that there is σ > 0 such that

{
∀ u ∈ I ∩ BE(u2, σ), St[u] → u2 in E as t→ +∞,

∀ u ∈ I ∩ BE(u3, σ), St[u] → u3 in E as t→ +∞.
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Indeed, first of all, it follows from (4.15) and (4.16) that u2 < min(u3, uL) ≤ u3 in R. Observe
from (4.2), (4.9) and the negativity of c that 0 < λ+ < λ+, 0 < λ− < λ− and that

lim
x→+∞

u3(x)

uL(x)
= 0 and lim

x→−∞

1− u3(x)

1− uL(x)
= +∞.

Therefore, there is C > 0 such that u3(x) < uL(x) for all |x| ≥ C, whence min(u3, uL) = u3
in R\(−C,C). On the other hand, by continuity of u2, u3 and uL and the inequality u2 < min(u3, uL)
in R, there is σ > 0 such that u2(x) + σ ≤ min(u3(x), uL(x)) for all |x| ≤ C. As a consequence, for
any u ∈ I ∩BE(u2, σ) = [u2, u3]E ∩ BE(u2, σ), one has

{
u2(x) ≤ u(x) ≤ u3(x) = min(u3(x), uL(x)) for all |x| ≥ C,

u2(x) ≤ u(x) < u2(x) + σ ≤ min(u3(x), uL(x)) for all |x| ≤ C,
(4.17)

whence u2 ≤ u ≤ min(u3, uL) ≤ uL in R. Since u2 is a stationary solution of (1.1) and
since St[uL] → u2 in E as t→ +∞, one concludes from the maximum principle that St[u] → u2 in E
as t→ +∞ for every u ∈ I ∩BE(u2, σ), namely u2 is stable from above in I for the semiflow (St)t>0.

Similarly, it follows from (4.8) and (4.9) that 0 < λ+ < λ+, 0 < λ− < λ− and
that max(u2(x), uL(x − kL)) = u2(x) for all |x| ≥ C ′, for some C ′ > 0. On the other
hand, uL(· − kL) ≤ max(u2, uL(· − kL)) < u3 in R from (4.15) and (4.16). Hence, as in the
previous paragraph, there is σ′ > 0 such that, for all u ∈ I ∩ BE(u3, σ

′), there holds

uL(· − kL) ≤ max(u2, uL(· − kL)) ≤ u ≤ u3 in R,

whence St[u] → u3 in E as t→ +∞ (notice that St[uL(· − kL)] = St[uL](· − kL) → u1(· − kL) = u3
in E as t → +∞, since (1.1) is L-periodic in x). Therefore, u3 is stable from below in I for the
semiflow (St)t>0.

Step 4: the existence of transition fronts which are not pulsating fronts. From the previous steps,
u2 < u3 are ordered equilibria for the continuous and strictly order-preserving semiflow (St)t>0, and
u2 and u3 are stable respectively from above and below in I = [u2, u3]E for (St)t>0. Furthermore,
for any t > 0, the set St[I] is precompact with respect to the compact open topology, from standard
parabolic estimates. Since u2(−∞) = u3(−∞) = 1 and u2(+∞) = u3(+∞) = 0, and since the
semiflow is order-preserving, it follows then that St[I] is precompact in E with respect to the L∞-
norm for every t > 0.

It follows then from the Dancer-Hess connecting orbit lemma (see, e.g., [27, Proposition 9.1])
that the semiflow (St)t>0 has an equilibrium u∗ in I\{u2, u3}. From the strong elliptic maximum
principle, u∗ is a stationary solution of (1.1) such that u2 < u∗ < u3 in R.

Let us now define the set

E =
{
p ∈ [u2, u

∗]E\{u2} ; p is an equilibrium of (St)t>0

}
,

that is, E is the set of stationary solutions p of (1.1) such that u2 ≤, 6≡ p ≤ u∗ in R. We will apply
Zorn lemma to show the existence of a minimal element in E . First of all, notice that E is not empty,
since u∗ ∈ E . Consider now any non-empty and totally ordered subset F of E and let us show that
there is p ∈ E such that p ≤E q for all q ∈ F . Namely, define

p(x) = inf
{
q(x) ; q ∈ F

}
.
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One immediately has

0 < u2 ≤ p ≤ q ≤ u∗ ≤ u3 < 1 in R for all q ∈ F .

In particular, p ∈ [u2, u
∗]E. One shall show that p ∈ E , that is, p 6≡ u2 in R and p is a stationary

solution of (1.1).
First of all, we claim that, for any q ∈ F , there is xq ∈ R such that

q(xq) > min(u3(xq), uL(xq)).

Otherwise, (u2 ≤) q ≤ min(u3, uL) (≤ uL) in R and q = St[q] → u2 in E as t→ +∞, whence q = u2,
contradicting q ∈ E . Thus, q(xq) > min(u3(xq), uL(xq)) for some xq ∈ R. Furthermore, q ≤ u∗ ≤ u3
in R and min(u3(x), uL(x)) = u3(x) for all |x| ≥ C, where C > 0 independent of q is as in (4.17).
Therefore |xq| < C, whence q(xq) > min(u3(xq), uL(xq)) > u2(xq) + σ, where σ > 0 independent
of q is as in (4.17). Since q ≥ u2 are two stationary solutions of (1.1), it follows then from Harnack
inequality that there is a constant ω > 0, independent of q, such that min[−C,C](q− u2) ≥ ω > 0. As
a consequence, p(x) ≥ u2(x) + ω for all |x| ≤ C. In particular, p 6≡ u2 in R.

Let us then show that p is a stationary solution of (1.1). First of all, since F is totally ordered and
consists of stationary solutions of (1.1), the strong maximum principle implies that, for any q, q̃ ∈ F ,
there holds either q < q̃ in R, or q > q̃ in R, or q = q̃ in R. By definition of p, there is a
sequence (pn)n∈N in F such that

pn(0) → p(0) as n→ +∞.

Since pn(0) ≥ p(0) for all n ∈ N, one can assume without loss of generality that pn(0) ≥ pn+1(0) for
all n ∈ N, whence pn ≥ pn+1 in R for all n ∈ N. Since q(0) ≥ p(0) for all q ∈ F by definition of p,
two cases may then occur:

either there is q0 ∈ F such that q0(0) = p(0), or q(0) > p(0) for all q ∈ F .

In the first case, one infers that q0(0) = p(0) ≤ q(0) for all q ∈ F , whence (p ≤) q0 ≤ q in R for
all q ∈ F ; finally q0 = p and thus p ∈ E . In the second case, one has q(0) > p(0) for all q ∈ F .
Fix any x ∈ R and ε > 0. By definition of p, there is q ∈ F such that p(x) ≤ q(x) ≤ p(x) + ε.
Since p(0) < q(0), there is n0 ∈ N such that p(0) ≤ pn(0) < q(0) for all n ≥ n0, whence pn < q
in R and p(x) ≤ pn(x) < q(x) ≤ p(x) + ε for all n ≥ n0. Therefore, pn(x) → p(x) as n → +∞ for
all x ∈ R. Since 0 < u2 ≤ pn ≤ u∗ < u3 < 1 in R and each pn is a stationary solution of (1.1),
standard elliptic estimates imply then that pn → p in C2

loc(R) and p is thus a stationary solution
of (1.1).

Finally, in all cases, one has shown that p ∈ [u2, u
∗]E\{u2} is an equilibrium of the semiflow (St)t>0

such that p ≤ q in R for all q ∈ F . In other words, p is a minorant of F which belongs to E . Therefore,
Zorn lemma provides the existence of a minimal element u4 in E , the minimality meaning that there
is no element p ∈ E\{u4} such that p ≤ u4. In other words, u4 is a stationary solution of (1.1) such
that u2 < u4 ≤ u∗ (from the strong maximum principle) and the semiflow (St)t>0 has no equilibrium
in [u2, u4]E\{u2, u4}. It follows then from the Dancer-Hess connecting orbit lemma and from the
stability of u2 from above in I that there is a time-decreasing entire orbit connecting u4 to u2, that is,
a solution u : R2 → R of (1.1) such that u(t, x) is time-decreasing, with u(t, x) → u4(x) as t→ −∞
and u(t, x) → u2(x) as t→ +∞ uniformly in x ∈ R. In particular,

0 < u2(x) < u(t, x) < u4(x) ≤ u∗(x) < u3(x) < 1 for all (t, x) ∈ R
2
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and since u2(−∞) = u3(−∞) = 1 and u2(−∞) = u3(−∞) = 0, one gets that u is a transition front
connecting 0 and 1 for (1.1), with for instance ξt = 0 for all t ∈ R.

Similarly, one can show the existence of a stationary solution u5 and a time-increasing solu-
tion v(t, x) of (1.1) such that

0 < u2(x) < u∗(x) ≤ u5(x) < v(t, x) < u3(x) < 1 for all (t, x) ∈ R
2,

with v(t, x) → u5(x) as t → −∞ and v(t, x) → u3(x) as t → +∞ uniformly in x ∈ R. Further-
more, v is a transition front connecting 0 and 1 for (1.1). Finally, 0 < u2 < u4 ≤ u∗ ≤ u5 < u3
in R and the desired conclusion of Theorem 1.7 follows with u− = u2, u

+ = u4, v
− = u5 and v

+ = u3.

Step 5: the characterization of global mean speeds. Lastly, we show that for any transition front ũ con-
necting 0 and 1 for (1.1) and associated with positions (ξt)t∈R, there isM ≥ 0 such that |ξt−ξs| ≤M
for all (t, s) ∈ R

2. Assume not. By Lemma 2.1, there are then two sequences (tk)k∈N and (sk)k∈N
of real numbers such that |tk − sk| → +∞ and |ξtk − ξsk | → +∞ as k → +∞. Without loss of
generality, one can assume that sk < tk for all k ∈ N.

Suppose firstly that, up to extraction of some subsequence, ξtk − ξsk → +∞ as k → +∞. From
Definition 1.1, one then infers that, for any x ∈ R, limk→+∞ ũ(tk, x + ξsk) = 1. On the other hand,
it follows from Lemma 4.5, there are x∗ ∈ R, γ0 > 0 and q0 > 0 such that

ũ(tk, x+ ξsk) ≤ min
(
uL(x− x∗) + q0e

−γ0(tk−sk), 1
)

for all k ∈ N and x ∈ R.

Notice that, for any x ∈ R, limk→+∞(uL(x − x∗) + q0e
−γ0(tk−sk)) = uL(x − x∗) < 1. Therefore, for

every x ∈ R, lim supk→+∞ ũ(tk, x+ ξsk) < 1. One has then reached a contradiction. Secondly, in the
case where, up to extraction of some subsequence, ξtk − ξsk → −∞ as k → +∞, one can derive a
similar contradiction by using the lower bound for ũ in Lemma 4.5.

Therefore, there is M > 0 such that |ξt − ξs| ≤ M for all (t, s) ∈ R
2. In particular, every

transition front connecting 0 and 1 for (1.1) has zero global mean speed. The proof of Theorem 1.7
is thereby complete. �
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