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Abstract. The paper is concerned with the control of a fluid flow system gov-

erned by nonlinear hyperbolic partial differential equations. The control and
the output observation are located on the boundary. We study local stability

of spatially heterogeneous equilibrium states by using Lyapunov approach. We

prove that the linearized system is exponentially stable around each subcritical
equilibrium state. A systematic design of proportional and integral controllers

is proposed for the system based on the linearized model. Robust stabilization

of the closed-loop system is proved by using a spectrum method.

1. Introduction. In the paper we study a fluid flow system governed by the Saint
Venant equation

∂S(x, t)
∂t

+
∂Q(x, t)
∂x

= 0, (x, t) ∈ (0, l)× (0,∞),

∂Q(x, t)
∂t

+ ∂
∂x

[
Q2(x, t)
S(x, t)

]
+ gS(x, t)

∂Z(x, t)
∂x

+ gη2R−4/3

[
Q2(x, t)
S(x, t)

]
= 0,

Q(0, t) = Qin(t), Z(l, t) = Zout(t),

y(t) = (Z(0, t), Q(l, t))
(1)

The partial differential equation (PDE) (1) models dynamic behaviour of the un-
steady flow in a one-reach canal for shallow water, where x denotes the spatial
domain (m), t the time (s), S(x, t) the flow cross-section (m2), Z(x, t) the water
level (m), Q(x, t) the flow discharge (m2/s), g the Newton acceleration constant
(m/s2), η the Manning coefficient for friction slope, R the hydraulic radius (sec-
tional area/wetted perimeter), Qin(t) the upstream flow rate and Zout(t) the down-
stream level in the canal. The PDE (1) has three unknown functions S(x, t), Q(x, t)
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and Z(x, t). There is a relation between S(x, t) and Z(x, t) once the cross-section
geometry is fixed :

S(x, t) = S(Z(x, t)). (2)

Therefore we choose Z(x, t) and Q(x, t) as state, and Qin(t) and Zout(t) as con-
trol. The upstream level and the downstream flow rate are chosen as the output
measurement :

y(t) = (Z(0, t), Q(l, t)). (3)

The objective is to control and regulate the output y(t) by using proportional and
integral controllers (PI controllers) on the boundary. The one-reach canal system
described by (1), (2) and (3) is a nonlinear multi-inputs and multi-outputs infinite-
dimensional system. As a first approach to tackling the control problem, we study
the linearized model of the system around equilibrium states. Because of friction
slope η > 0 each equilibrium state is spatially heterogeneous or function of space
variable x. As a consequence the linearized model has for the coefficients functions
of space variable x. Therefore studying local stability of spatially heterogeneous
equilibrium states becomes more difficult than that of homogeneous one (see [1, 2,
25]) as the same as synthesis of stabilizing controllers [25].

Our work is motivated by the problem of controlling an open channel governed
by the Saint Venant equation. The hyperbolic PDE describes the dynamics of open
channel hydraulic systems, such as rivers, irrigation or drainage canals, sewers etc,
assuming one dimensional flow. Description of recent developments in these aspects
can be found in the published works [2, 6, 5].

Davison’s robust PI controllers for finite dimensional systems [4] has been ex-
tended first by Pohjolainen [14] to a class of analytic semigroup systems and then
to strongly continuous semigroup systems in [15, 24] where either the control op-
erator or the observation operator is bounded. The extended synthesis has found
applications for systems such as counter flow heat exchanger system [24]. Synthe-
sis of robust PI controllers has been exploited in [12] for a rather general class of
infinite-dimensional systems called regular systems where both the control operator
and the observation operator may be unbounded. In particular, if the input-output
transfer matrix G(s) is invertible at s = 0, then it is possible to construct an integral
controller which stabilizes the system and guarantees the regulation of the set point.
Guided by the result we consider the linearized model of the Saint Venant system
(1)-(3) where both the control and the observation are located on the boundary,
and so represented by unbounded control operator and unbounded observation op-
erator. We propose a systematic method of designing boundary PI controllers for
the linearized system.

Irrigation systems have received considerable attention since ten years and nu-
merous interesting results on the feedback stabilization have been obtained by the
Lyapunov approach [3] and by the transfer function approach [11]. However there
are still interesting and open questions as suggested in [1]. Specifically, when friction
slope is taken into account in the Saint Venant model, i.e. η > 0 in (1), feedback
stabilizability of heterogeneous equilibrium states has been established by solving
some nonlinear ordinary differential equation. Indeed it is not easy to say if the
ordinary differential equation has a bounded solution (see [1]). The present paper
is a further endeavour towards understanding the nonlinear fluid flow system de-
scribed by the Saint Venant equation. We have for the first objective to find easily
checkable conditions for local stability of heterogeneous equilibrium states.
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We assume the presence of friction slope in the model and study local stability
of heterogeneous equilibrium states. Under general conditions exponential stability
of the linearized system is proved by using a Lyapunov direct approach. Roughly
speaking, if the Manning coefficient of friction slope η is small, then the linearized
system is exponentially stable. Then stabilizing PI controllers are designed based
on the linearized system. Exponential stability of the closed-loop system is shown
by a spectral analysis method so that the output regulation is guaranteed. The
contribution of the paper is twofold: proof of exponential stability of the linearized
Saint Venant system and synthesis of multivariable boundary PI controllers for the
hyperbolic system.

Although our study is carried out directly on the PDE describing the system,
concepts such as operator semigroups, admissibility of observation and control op-
erators, and well-posedness and regularity of linear systems are both helpful and
important for the clarity of reasoning throughout the paper. We shall give a brief
presentation of these notions in the next section. The interested reader is referred
to Pazy [13], Weiss [22] and Tucsnak and Weiss [21] for more details.

The paper is organized as follows : Section 2 is devoted to show that integral
stabilization implies regulation for regular systems; Section 3 is devoted to comput-
ing equilibrium states which are spatially heterogeneous; In Section 4 is proposed
some necessary and sufficient condition for exponential stability of two coupled hy-
perbolic equations; The open-loop exponential stability is proved in Section 5 by
taking into account friction slope; The closed-loop stability of the linearized sys-
tem by the designed PI controllers is proved in Section 6 with a spectral analysis
method; Section 7 contains our conclusions and the Appendix is added for proofs
of technical results.

2. Integral stabilization implies regulation. Let X be a Hilbert space and let
A : D(A)→ X is the generator of an exponentially stable C0 semigroup etA on X.
The Hilbert space X1 is D(A) with the norm ‖z‖1 = ‖Az‖, where 0 ∈ ρ(A), the
resolvent set of A. The Hilbert space X−1 is the completion of X with respect to
the norm ‖z‖−1 = ‖A−1z‖. This space is isomorphic to D(A∗)′, the dual space of
D(A∗) and

X1 ⊂ X ⊂ X−1 ,

densely and with continuous embeddings. The semigroup etA extends to a semi-
group on X−1, denoted by the same symbol. The generator of the extended semi-
group is an extension of A, whose domain is X, so that A : X → X−1. Without
loss of generality for our applications it is assumed that the input space is the same
as the output space and equal to a finite dimensional real Euclidian space Rm. We
consider a well-posed linear system Σ with input space U = Rm, state space X,
output space Y = Rm, semigroup generator A, control operator B, observation op-
erator C and transfer function G. Thus, B ∈ L(Rm, X−1) is an admissible control
operator for etA and C ∈ L(X1,Rm) is an admissible observation operator for etA.
The control operator B is called bounded if B ∈ L(U,X), and C is called bounded
if it can be extended such that C ∈ L(X,Y ).

An important subclass of the well-posed linear systems are the regular linear
systems [22]. The system Σ is called regular if for each v ∈ Rm, the following limit
exists (in Rm) :

Dv = lim
s→+∞

G(s)v. (4)



504 CHENG-ZHONG XU AND GAUTHIER SALLET

The operator D ∈ L(U, Y ) is then called the feedthrough operator of Σ. We define
the following extension of C by

CΛx = lim
λ→+∞

Cλ(λI −A)−1x ∀ x ∈ D(CΛ), (5)

where D(CΛ) is the space of those x ∈ X for which the above limit exists. The
system Σ is regular if and only if (sI−A)−1BU ⊂ D(CΛ) for some (hence, for every)
s ∈ ρ(A) and, if this is the case, then G(s) = CΛ(sI −A)−1B +D for all s ∈ ρ(A).
Moreover, for a regular system, y(t) = CΛx(t) +Du(t) holds for almost every t ≥ 0
(for every initial state x(0) ∈ X and every input signal u ∈ L2

loc(R+,Rm)).
On the state space X the system is written under the form of evolution equations

as follows  φ̇(t) = Aφ(t) +Bu(t)
y(t) = CΛφ(t) +Du(t)
φ(0) = φ0.

(6)

Definition 2.1. The system (6) is called well-posed if the linear mapping (φ0, u) 7→
(φ(T ), y) is continuous from X × L2((0, T ),Rm) to X × L2((0, T ),Rm) for every
T > 0.

The following result can be found in the literature (cf. [22] or [12]).

Proposition 1. Assume that the system (6) is regular and that the semigroup etA

is exponentially stable on X. Then the following properties hold true :
(i) The observation mapping φ0 7→ y(t) = CΛe

tAφ0 is continuous from X to
L2(R+,Rm);

(ii) The control-state mapping u 7→ φ(t) =
∫ t

0
e(t−τ)ABu(τ)dτ is continuous from

L2(R+,Rm) to C([0,∞), X) and from L2(R+,Rm) to L2(R+, X), and limt→∞ φ(t)
= 0 ∀ u ∈ L2(R+,Rm);

(iii) The control-output mapping u 7→ y(t) = CΛ

∫ t
0
e(t−τ)ABu(τ)dτ +Du(t) is con-

tinuous from L2(R+,Rm) to L2(R+,Rm).

We consider the closed-loop system (6 ) controlled by the following integral con-

troller : ξ̇(t) = y(t)−yr and u(t) = KIξ where KI ∈ Rm×m is the integral controller
gain and yr ∈ Rm is the set point. It is easy to see that the closed-loop system is
governed by the following evolution equation

φ̇(t) = Aφ(t) +BKIξ +Bwc
ξ̇ = CΛφ+DKIξ + wo − yr
y(t) = CΛφ+DKIξ + wo
φ(0) = φ0, ξ(0) = ξ0.

(7)

where wc and wo added here represent control and output disturbances, respectively.
It is well known that the closed-loop system (7 ) is also regular (see [12]). Stabi-
lization of the closed-loop system by the integral controller implies the regulation
guaranteed, independently of unknown constant disturbances wc, wo ∈ Rm. Here
we prove a little more on the regulation result. We say that the disturbances wc(t)
and wo(t) are quadratically close to constant if there are constants w̃c, w̃o ∈ Rm
such that εc(t) = (wc(t)−w̃c) and εo(t) = (wo(t)−w̃o) belong to L2(R+,Rm). If the
disturbances wc(t) and wo(t), instead of being constants, are quadratically close to
constant, then the regulation result is still true if stabilization is fulfilled. However
the regulation must be understood in a broad sense as follows.
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Definition 2.2. The closed-loop system (7) is said regulated if we have

lim
t→∞

∫ ∞
t

‖y(τ)− yr‖2Rmdτ = 0.

The following general result holds true for regular linear systems having possibly
unbounded control and observation operators. It means that regulation is automat-
ically deduced from stabilization. For the reader’s convenience a simple proof of the
following proposition is given in the Appendix.

Proposition 2. Assume that the matrix G0 = (−CΛA
−1B+D) ∈ Rm×m is invert-

ible. Stabilization implies regulation independently of all control disturbance wc(t)
or output disturbance wo(t) quadratically close to constant.

Remark 1. If the control and output disturbances are null, i.e., wc(t) ≡ 0 and
wo(t) ≡ 0, then we recover the regulation in the classical sense : limt→∞ ‖y(t) −
yr‖Rm = 0 ∀ φ0 ∈ D(A).

3. Equilibrium solutions. In the paper the synthesis of boundary PI-controllers
will be carried out based on the linearized Saint Venant model. For the sake of
simplicity it is assumed that the canal has a rectangular cross section. As a conse-
quence we have the relations : S(x, t) = BZ(x, t) and R = BZ(x, t)/(B + 2Z(x, t))
where B is the base width.

Let Q̃in and Z̃out be positive constants. The equilibrium solution of the Saint
Venant equation (1) is given by

dQ(x)
dx

= 0, x ∈ (0, l)

d
dx

[
Q2(x)
BZ(x)

]
+ gBZ(x)

dZ(x)
dx

+ gη2R−4/3

[
Q2(x, t)
BZ(x)

]
= 0

Q(0) = Q̃in, Z(l) = Z̃out.

(8)

Definition 3.1. We call subcritical equilibrium state for the Saint Venant system
(1) each solution (Q̃(x), Z̃(x)) of (8) satisfying the subcritical hydraulic condition :

gB2Z̃3
out − Q̃2

in > 0.

As the reader will see each subcritical equilibrium solution satisfies the inequality
on the interval

gB2Z̃3(x)− Q̃2(x) > 0, ∀ x ∈ [0, l]. (9)

Lemma 3.2. Assume that the upstream flow rate Q̃in and the downstream level Z̃out
satisfy the subcritical condition (9). Then the system (8) has a unique equilibrium

solution (Q̃(x), Z̃(x)) of class C1. Further Q̃(x) = Q̃in is constant and Z̃(x) is a
decreasing function of x obtained by solving the following differential equation : Z̃x =

gη2R−4/3Q̃2Z̃
Q̃2 − gB2Z̃3

Z̃(l) = Z̃out

(10)

where (and hereafter) Z̃x denotes the partial derivative of Z̃(x) w.r.t. x.

Remark 2. The right member of the equation (10) is a C1 function of Z̃. It has a
unique local solution. The subcritical boundary condition being satisfied the unique
solution Z̃(x) is bounded on the interval [0, l] whatever l > 0.
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We set

a1 =
1

B
, a2 =

gB2Z̃3 − Q̃2

BZ̃2
, a3 =

2Q̃

BZ̃
, (11)

a4 =
gη2R−4/3Q̃4

BZ̃2(gB2Z̃3 − Q̃2)
+

4gη2R−4/3BQ̃2

3Z̃2(B + 2Z̃)
, a5 =

2g2η2R−4/3BQ̃Z̃2

gB2Z̃3 − Q̃2
. (12)

where R = BZ̃(x)/(B + 2Z̃(x)).

Remark 3. If the Manning coefficient η = 0, then the equilibrium state is given
by two positive constants (Q̃, Z̃) independent of x. In this case each term ak,
k = 1, ..., 5, is constant with a4 = a5 = 0. If η > 0, then we have ai(x) > 0, ∀ i = 1
and ∀ x ∈ [0, l].

The following lemmas are easy to prove by direct computation.

Lemma 3.3. The linearized system around the equilibrium solution is governed by

∂
∂t

[
z(x, t)
q(x, t)

]
=

[
0 −a1

−a2 −a3

]
∂
∂x

[
z(x, t)
q(x, t)

]
+

[
0 0
a4 −a5

] [
z(x, t)
q(x, t)

]
q(0, t) = u1(t)
z(l, t) = u2(t)

y(t) = [z(0, t), q(l, t)]τ

(13)

Let the matrices A(x) and B(x) be defined by

A(x) =

[
0 −a1

−a2(x) −a3(x)

]
, B(x) =

[
0 0

a4(x) −a5(x)

]
. (14)

Lemma 3.4. The matrix A(x) defined in (14) has two different eigenvalues under
the subcritical condition: the one is negative and the other is positive, given by

λ1(x) = −1

2

(
a3 +

√
a2

3 + 4a1a2

)
, λ2(x) =

1

2

(√
a2

3 + 4a1a2 − a3

)
. (15)

By substituting the expressions ak(x) into the eigenvalues (15) we get the fol-
lowing relation :

λ1(x) = −

(√
gZ̃ +

Q̃

BZ̃

)
, λ2(x) =

√
gZ̃ − Q̃

BZ̃
. (16)

In the next section we present a result of stability concerned with two hyperbolic
PDE. To the best of our knowledge the result is new in the sense that linear PDE
of spatially heterogeneous coefficients are dealt with.

4. Exponential stability of coupled hyperbolic PDE. Consider the linear
hyperbolic system governed by the following PDE

∂
∂t

[
R1(x, t)
R2(x, t)

]
=

[
λ1(x) 0

0 λ2(x)

]
∂
∂x

[
R1(x, t)
R2(x, t)

]
, (x, t) ∈ (0, l)× R+

R1(0, t) = α1R2(0, t),
R2(l, t) = α2R1(l, t),

(17)
where λi(x) is C1 and αi is a real constant ∀ i = 1, 2. Assume that λ1(x) < 0 and
λ2(x) > 0 ∀ x ∈ [0, l]. Consider for the state space the Hilbert space X = (L2(0, 1))2

equipped with the usual quadratic norm.
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Theorem 4.1. The null solution R(·, t) ≡ 0 is exponentially stable for the system
(17) if and only if α2

1α
2
2 < 1.

Remark 4. Greenberg and Li [7] have proved that, in the quasilinear case and
under the form of two Riemann invariants, the above condition was a sufficient
condition for the null equilibrium solution to be exponentially stable. Our condition
is necessary and sufficient for exponential stability of spatially heterogeneous linear
PDE. It is concerned with two different situations.

Proof of Theorem 4.1. We prove the sufficient condition first. Consider the candi-
date of Lyapunov functional VW : X → R+ such that

VW (R) =

∫ l

0

R(x)∗W (x)R(x)dx (18)

where the weight matrix W is a diagonal matrix defined by

W (x) = diag
((

1 + e−θ(1+x)
)
W̃1(x),

(
1− e−θ(1+x)

)
W̃2(x)

)
(19)

and W̃i(x), i = 1, 2, by

W̃1(x) =
λ1(0)

λ1(x)
, W̃2(x) =

(
α2

1 + ε
)(−λ1(0)

λ2(x)

)(
1 + e−θ

1− e−θ

)
. (20)

Notice that the constant ε is fixed, small and positive such that
(
α2

1 + ε
)
α2

2 < 1.
Computing the time derivative of the Lyapunov functional VW (R(·, t)) along the

smooth trajectories of the system (17) gives us the following

V̇W (R(·, t)) =

∫ l

0

2R∗(x, t)W (x)Rt(x, t)dx =

∫ l

0

2R∗(x, t)W (x)Λ(x)Rx(x, t)dx.

Hence we have

V̇W (R(·, t)) =

∫ l

0

(R∗W (x)Λ(x)R)x dx−
∫ l

0

R∗ (W (x)Λ(x))xRdx, (21)

where Λ(x) = diag (λ1(x), λ2(x)) and

(W (x)Λ(x))x = −θλ1(0)e−θ(1+x)

 1 0

0
(α2

1 + ε)
(
1 + e−θ

)
1− e−θ

 .
Using the boundary condition in (17) we get∫ l

0

(R∗W (x)Λ(x)R)x dx ≤ λ1(0)
[
1 + e−θ(1+l)

]
R2

1(l, t)
[
1− (α2

1 + ε)α2
2F (θ)

]
,

(22)
where

F (θ) =

(
1 + e−θ

1− e−θ

)(
1− e−θ(1+l)

1 + e−θ(1+l)

)
.

From the fact that F (θ) is a decreasing function of θ having limit equal to 1 as
θ → ∞ and by the hypothesis (α2

1 + ε)α2
2 < 1, there exists a positive constant

θ1 > 0 such that, for every θ ≥ θ1,∫ l

0

(R∗W (x)Λ(x)R)x dx ≤ 0. (23)
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Let W̃ be the diagonal matrix defined by

W̃ (x) = diag

(
−λ1(0),

−λ1(0)
(
α2

1 + ε
) (

1 + e−θ1
)

1− e−θ1

)
(24)

and let VW̃ be the functional defined as in (18) with the weight W̃ . It is easy to

find positive constants K1, K2, K̃1 and K̃2 such that

K1‖R‖2X ≤ VW (R) ≤ K2‖R‖2X , K̃1‖R‖2X ≤ VW̃ (R) ≤ K̃2‖R‖2X , ∀ R ∈ X. (25)

For every smooth initial condition R0 ∈ X and by substituting (23) and (25) into
(21), the following inequality is obtained :

V̇W (R(·, t) ≤ −θ1K̃1K
−1
2 e−θ1(1+l)VW (R(·, t),

or, with K3 = θ1K̃1K
−1
2 e−θ1(1+l),

VW (R(·, t) ≤ e−tK3VW (R0).

So we have proved exponential stability of the system (18).
To prove the necessary part, consider the Lyapunov candidate VŴ (R) as above

with the weight Ŵ :

Ŵ (x) = diag(Ŵ1(x), Ŵ2(x))

where Ŵi, i = 1, 2, is the same as in (19)-(20) except with ε = 0. Suppose that
α2

1α
2
2 ≥ 1. Computing the time derivative of VŴ (R(·, t)) along the smooth solutions

of (18) gives us V̇Ŵ (R(·, t)) ≥ 0, or VŴ (R(·, t)) ≥ VŴ (R0) ∀ t ≥ 0. Hence the system
is not asymptotically stable, which contradicts exponential stability of the system.
The necessary part is proved. The proof of Theorem 4.1 is complete. �

5. Open-loop stability of the Saint Venant system. We investigate first local
stability of the Saint Venant system around each equilibrium solution. More pre-
cisely we are interested to know if the linearized system (13) is exponentially stable.
If the viscous friction slope is null, our Theorem 4.1 is applied to prove exponential
stability of the linearized system. If the friction slope is small, exponential stability
still holds true for the linearized system.

The following useful identities may be proved by direct computation.

Lemma 5.1. Let ai, i = 1, ..., 5, be defined in (10)-(12) and let λj, j = 1, 2, be
defined in (15). Then we have

a1a2 − λka3 = λ2
k, k = 1, 2.

Corollary 1. The linearized system (13) around each subcritical equilibrium state
is exponentially stable if the viscous friction slope is equal to zero, i.e. η = 0.

Proof of Corollary 1. If the viscous friction slope is null, each ai is constant and
positive ∀ i = 1, 2, 3 and a4 = a5 = 0. Thus the matrix A(x) is equal to constant
matrix A

A =

[
0 −a1

−a2 −a3

]
which has two real eigenvalues of opposite sign λ1 and λ2. Consider the invertible
linear transformation T1 : L2(0, l)× L2(0, l)→ L2(0, l)× L2(0, l) such that(

z
q

)
= T1

(
R1

R2

)
=

(
1 1

−λ1
a1

−λ2
a1

)(
R1

R2

)
. (26)
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The transformed open-loop system from (13) is written as follows

∂
∂t

(
R1(x, t)
R2(x, t)

)
=

(
λ1 0
0 λ2

)
∂
∂x

(
R1(x, t)
R2(x, t)

)
R1(0, t) = −

(
λ2(0)
λ1(0)

)
R2(0, t)−

(
a1

λ1(0)

)
u1(t)

R2(l, t) = −R1(l, t) + u2(t)

y(t) =

(
R1(0, t) +R2(0, t),−λ1(l)

a1
R1(l, t)− λ2(l)

a1
R2(l, t)

)τ
.

(27)

Putting α1 = −(λ2(0)/λ1(0)) and α2 = −1, we check easily that α2
1α

2
2 < 1 for the

subcritical equilibrium state. Direct application of Theorem 4.1 proves exponential
stability of the linearized system for u1 = u2 = 0. �

Remark 5. It is not difficult to show that the open-loop system (27) is well-posed
and regular (cf. [26, 20, 22]).

If the viscous friction slope is positive, we have the following result.

Theorem 5.2. The null solution R(·, t) ≡ 0 is exponentially stable for the linearized
system (13) around each subcritical equilibrium solution, provided that the viscous
friction slope is small. More precisely there exists some positive constant η∗ > 0
such that the linearized system (13) is exponentially stable ∀ η ∈ [0, η∗].

Proof of Theorem 5.2. Consider the same transformation T1 as the previous one in
(26). Without ambiguity we set

T1(x) =

[
1 1

−λ1(x)
a1

−λ2(x)
a1

]
. (28)

Note that T1(x) is a smooth functions of x because λ1 and λ2 are. The same
transformation carried out on the linearized system (13) gives us

∂R
∂t

= Λ(x)∂R
∂x

+ B̃(x)R

R1(0, t) = −
(
λ2(0)
λ1(0)

)
R2(0, t)−

(
a1

λ1(0)

)
u1(t)

R2(l, t) = −R1(l, t) + u2(t)

(29)

where
Λ(x) = diag(λ1(x), λ2(x))

B̃(x) = T−1
1 (x) [A(x)T ′1(x) +B(x)T1(x)] .

(30)

Direct computation gives us B̃(x)

B̃(x) =
a1

λ1 − λ2

 λ1
a1

(λ′1 − a5)− a4
1
a1

(λ1λ
′
2 − a5λ2)− a4

1
a1

(a5λ1 − λ2λ
′
1) + a4

λ2
a1

(a5 − λ′2) + a4

 .
(λ′1 denotes the derivative of λ1(x) w.r.t. x.) Moreover B̃(x) can be written as
follows

B̃(x) = Z̃x(x)

[
b11(x) b12(x)
b21(x) b22(x)

]
(31)
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where bij(x) can be computed explicitly from the equilibrium state. From the
equilibrium equation (10) there exists some positive constant β > 0 such that

Z̃out ≤ Z̃(x) ≤ eη
2βlZ̃out, ∀ x ∈ [0, l]. (32)

In (29), we set α1 = −λ2(0)/λ1(0) and α2 = −1. By applying Theorem 4.1 expo-

nential stability of the open-loop system is proved when B̃(x) ≡ 0. From Lemma 3.2
et by (32), there exists a positive constant K4 > 0 such that

‖B̃(x)‖L(R2) ≤ η2K4, ∀ x ∈ [0, l]. (33)

Let VW (R) be the same Lyapunov functional as in the proof of Theorem 4.1 but
with ε = 0. By computing the time derivative of the Lyapunov functional VW (R)
along the smooth solutions of (29), we get the following

V̇W (R(·, t)) ≤ −θ1K̃1K
−1
2 e−θ1(1+l)VW (R(·, t)) +

∫ l

0

2R∗W (x)B̃(x)Rdx, (34)

where the constants K̃1, K2 and θ1 are chosen as in the proof of Theorem 4.1. We
have used the fact that

|α1α2| =
B
√
gZ̃3/2(0)− Q̃in

B
√
gZ̃3/2(0) + Q̃in

≤
B
√
gZ̃

3/2
out e

3η2βL/2 − Q̃in
B
√
gZ̃

3/2
out e

3η2βL/2 + Q̃in
< 1. (35)

By (25) and (33) we have some positive constant K5 such that the following in-
equality holds ∣∣∣∣∣

∫ l

0

2R∗W (x)B̃(x)Rdx

∣∣∣∣∣ ≤ 2η2K−1
1 K4K5VW (R(·, t)). (36)

Substituting (36) into (34) allows to find some constant η∗ > 0 such that for every
η ∈ [0, η∗],

V̇W (R(·, t)) ≤ −1

2
θ1K̃1K

−1
2 e−θ1(1+l)VW (R(·, t)). (37)

With the same notation as in the proof of Theorem 4.1, we get

VW (R(·, t) ≤ e−tK3/2VW (R0), ∀ η ∈ [0, η∗].

So is proved exponential stability of the linearized system (13) for η > 0. �

6. PI-controllers and closed-loop stability. We have shown that the linearized
model (13) can be transformed into the form (29). In this section our Theorem 5.2
is applied to prove exponential stability of the linearized model controlled by the
proportional output feedback law. Moreover the closed-loop system is stabilized
and regulated by PI-controllers of the form :

(
u1(t)
u2(t)

)
= Kp(y(t)− yr) + kIKIξ

ξ̇ = y(t)− yr,
(38)

where Kp, KI ∈ R2×2, kI ∈ R and yr ∈ R2 is the control setpoint. In other words we
give a systematic design method for tuning the controller matrices KP and KI such
that the following properties hold true : (a) the closed-loop system (13) by the PI
output feedback law (38) is well-posed and the associated semigroup is exponentially
stable; (b) the output regulation is achieved in the sense of Definition 2.2 :

lim
t→+∞

‖y(t)− yr‖R2 = 0 (39)



BOUNDARY PI CONTROL OF A FLUID FLOW SYSTEM 511

independently of known or unknown disturbances quadratically close to constant.

Recall that the matrix

(
0 −a1

−a2 −a3

)
in (13) has two real eigenvalues of oppo-

site sign. Denote by λ1 the negative one and by λ2 the positive one λ1 = − 1
2

(
a3 +

√
a2

3 + 4a1a2

)
,

λ2 = 1
2

(
−a3 +

√
a2

3 + 4a1a2

)
.

(40)

Let us set

KP = diag(KP,1,KP,2) =

 −λ2(0)
a1

0

0 −a1
λ1(l)

 (41)

and

KI =


KP,1 −1

−exp
(∫ l

0
ã4(ξ)dξ

)
KP,2 +

∫ l

0

exp
(∫ l

η
ã4(ξ)dξ

)
ã5(η)dη

 (42)

where the constants KP,1 and KP,2 are defined in (41) and

ã4(x) =
a4(x)

a2(x)
, ã5(x) =

a5(x)

a2(x)
. (43)

Notice that the matrix KI is invertible.

Remark 6. The integral controller matrix KI in (42) is obtained by computing
KI = −G−1

0 where G0 is the mapping v 7→ y defined by the following ordinary
differential equation :

0 = A(x) ∂
∂x

[
z
q

]
+B(x)

[
z
q

]
[q(0), z(l)]

τ
= KP (y + v)

y = [z(0), q(l)]
τ
,

(44)

where A(x) and B(x) are defined in (14). Notice that G0 is just the transfer matrix
G(s) of the system (13) with u = KP y + v evaluated at s = 0. If KP = 0, we
recover a pure integral controller which also works for the considered system.

Our main result is summarized in the coming theorem.

Theorem 6.1. (a) There exists some positive η∗ > 0 such that, for every Manning
number η ∈ [0, η∗], the closed-loop system (13) by the proportional controller (38)
with kI = 0 is exponentially stable.
(b) There exists a constant k∗I > 0 such that the PI-controller (38) and (41)-(42)
stabilizes exponentially the linearized Saint Venant system (13) with the output reg-
ulation guaranteed, ∀ 0 < kI < k∗I and ∀ 0 ≤ η ≤ η∗.

In the following, we show how the linearized Saint Venant system (13) controlled
by the PI controller (38) is transformed into the form (29) and prove Theorem 6.1
by a spectral method. The natural state space for the closed-loop system is the
Hilbert space H = L2(0, l)× L2(0, l)× R2.
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6.1. P-controller design. Synthesis of the proportional controller is to keep sat-
isfied the following basic requirements : 1) On each boundary point the outgoing
information should be determined by the incoming information for existence and
uniqueness of the PDE solutions (see [18]); 2) The dissipation conditions are made
satisfied “at the very most” ; 3) The exponential decay rate is made as large as
possible for the underlying semigroup.

After the proportional output feedback u = KP (y − yr) + v and by the trans-
formation (z, q)τ = T1R in (26), the closed-loop system (13) or (29) is governed by
the following PDE

∂R
∂t

= Λ(x)∂R
∂x

+ B̃(x)R[
R1(0, t)
R2(l, t)

]
=

 −λ2(0)
λ1(0)

R2(0, t)

−R1(l, t)

+

( −a1
λ1(0)

0

0 1

)[
KP (y(t)− yr) + v(t)

]
y(t) =

[
R1(0, t) +R2(0, t), −1

a1
(λ1(l)R1(l, t) + λ2(l)R2(l, t))

]τ
(45)

where the matrices B̃(x) and KP are defined in (31) and (41), respectively.

Lemma 6.2. Let yr = 0. The P-controlled system in (45) is well-posed and expo-
nentially stable ∀ η ∈ [0, η∗] for some η∗ > 0.

Proof of Lemma 6.2 . Substituting y into the boundary condition from (45) leads
to the following PDE

∂
∂t

(
R1(x, t)
R2(x, t)

)
= Λ(x) ∂

∂x

(
R1(x, t)
R2(x, t)

)
+ B̃(x)

(
R1(x, t)
R2(x, t)

)

(
R1(0, t)
R2(l, t)

)
= C3v +

 λ2(0)
λ2(0)− λ1(0)

0

0 a1
λ1(l)− λ2(l)

 yr

y(t) =

(
R1(0, t) +R2(0, t),−λ1(l)

a1
R1(l, t)− λ2(l)

a1
R2(l, t)

)τ
,

(46)

where C3 is a constant matrix given by (56). The well-posedness of the system has
been proved in [26]. Let us prove just exponential stability of the system.

Let v = 0 and yr = 0. Define the unbounded linear operator Ã : D(Ã)→ X as
follows :

D(Ã) = {(f1, f2) ∈ (H1(0, l))2 | f1(0) = f2(l) = 0} (47)

and for every f ∈ D(Ã),

Ãf(x) = Λ(x)fx(x) + B̃(x)f(x). (48)

It is easy to see that Ã is the generator of a C0 semigroup on X. By using (31) and
the same argument as in the proof of Theorem 5.2 we prove exponential stability of

the semigroup etÃ and hence exponential stability of the P-controlled system. �
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6.2. I-controller design. By adding the integral controller the closed-loop system
(46) is described by the following PDE

∂
∂t

(
R1(x, t)
R2(x, t)

)
= Λ(x) ∂

∂x

(
R1(x, t)
R2(x, t)

)
+ B̃(x)

(
R1(x, t)
R2(x, t)

)

ξ̇ = y(t)− yr

(49)

(
R1(0, t)
R2(l, t)

)
=

 λ2(0)
λ2(0)− λ1(0)

0

0 a1
λ1(l)− λ2(l)

 yr + C3(kIKIξ + v) (50)

y(t) =

(
R1(0, t) +R2(0, t),−λ1(l)

a1
R1(l, t)− λ2(l)

a1
R2(l, t)

)τ
. (51)

Consider the homogeneous PDE corresponding to the above closed-loop system
(49)-(50):

Rt = (Λ(x)∂x + B̃)R
ξt = y

(52)[
R1(0, t)
R2(l, t)

]
= C3kIKIξ (53)

y = C1R(·, t) + C2kIKIξ, (54)

where the linear operators C1 : (H1(0, 1))2 → R2 and C2, C3 : R2 → R2, defined
by

C1R =

(
1 0

0
−λ1(l)
a1

)(
R2(0)
R1(l)

)

C2ξ =

 a1
λ2(0)− λ1(0)

0

0
−λ1(l)λ2(l)

a1(λ1(l)− λ2(l))

 ξ

(55)

and

C3ξ =

 a1
λ2(0)− λ1(0)

0

0
λ1(l)

λ1(l)− λ2(l)

 ξ. (56)

The first objective is to prove exponential stability of the system governed by the
PDE (52)-(53). For each kI > 0 we define the unbounded operator A1 : D(A1)→ H
by

D(A1) =


 f1

f2

f3

 ∈ (H1(0, l))2 × R2

∣∣∣∣ ( f1(0)
f2(l)

)
= C3kIKIf3

 (57)

and for every f ∈ D(A1),

A1f(x) =



(
λ1(x) 0

0 λ2(x)

)
∂
∂x

(
f1(x)
f2(x)

)
+ B̃(x)

(
f1(x)
f2(x)

)

C1

(
f1

f2

)
+ kIC2KIf3

 (58)
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which is exactly the right hand member of (52).
Then we have the following result whose proof will be presented at the end of

the section.

Theorem 6.3. (i) There exists some constant k∗I > 0 such that A1 is the generator
of an exponentially stable C0 semigroup on H whatever 0 < kI < k∗I .
(ii) The output regulation is guaranteed ∀ 0 < kI < k∗I : For all control and output
disturbances quadratically close to constant the output converges to the set point in
the sense that

lim
T→+∞

∫ ∞
T

‖y(t)− yr‖2R2dt = 0.

Since the integral part is applied on the boundary and the output observation is
also on the boundary, the existing theory in [14, 15] and [24] is not directly useful
to prove exponential stability of the semigroup etA1 . The reason is that its domain
D(A1) depends on KI and kI . It makes incongruous to assign the spectrum of
A1 by using the perturbation theory [9]. Our idea is to look for a transformation
such that the domain of the new generator is independent of KI and kI . Then
the technical methods in [14], [24] and [9] can be used for our transformed system.
Since the transformation is continuous and invertible, the transformed system is
exponentially stable if and only if the original one is.

For the purpose we consider the invertible transformation T2 : H → H such that R1(x)
R2(x)
ξ

 = T2

 R̃1(x)

R̃2(x)

ξ̃



=


(
R̃1(x)

R̃2(x)

)
+

(
l − x
l

0

0 x
l

)
C3kIKI ξ̃

ξ̃


(59)

where the matrix C3 : R2 → R2 is defined in (56). Applying the transformation

(R, ξ)τ = T2(R̃, ξ̃)τ on the homogeneous equation (52)-(54) leads us to the following
PDE :

R̃t = (Λ(x)∂x + B̃)R̃+B1(x)C3kIKI ξ̃ − C4(x)C3kIKI(C1R̃+ C2kIKI ξ̃)

ξ̃t = C1R̃+ C2kIKI ξ̃

R̃1(0, t) = 0, R̃2(l, t) = 0

y = C1R̃+ C2kIKI ξ̃

(60)

where

C4(x) =

(
l − x
l

0

0 x
l

)
, B1(x) = Λ(x)

( −1
l

0

0 1
l

)
+ B̃(x)C4(x). (61)

Now we define the unbounded operator A2 : D(A2)→ H by

D(A2) =


 f1

f2

f3

 ∈ (H1(0, l))2 × R2

∣∣∣∣ ( f1(0)
f2(l)

)
=

(
0
0

) (62)
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and for every f ∈ D(A2),

A2f =

 [Ã− C4C3kIKIC1]

(
f1

f2

)
+ [B1C3 − C4C3kIKIC2]kIKIf3

C1

(
f1

f2

)
+ C2kIKIf3

 (63)

which is exactly the right-hand member of (60) and where Ã has been defined in
(47)-(48). Obviously A1 is the generator of an exponentially stable semigroup on
H if and only if A2 is. If the resolvent R(λ,A2) = (λI −A2)−1 is bounded in some
right half plane <e(λ) ≥ −α for some α > 0, it follows from the result of Huang [8]
or Prüss [16] that the semigroup etA2 is exponentially stable.

Remark 7. The operator A2 is the generator of a C0 semigroup on H and its do-
main D(A2) is independent of KI and kI . However they appear in the perturbation
term.

Let α > 0 and let C+
−α denote the closed right half plane : C+

−α = {λ ∈
C | <e(λ) ≥ −α}. The complementary set of C+

−α is the open left half plane

noted as C−−α = {λ ∈ C | <e(λ) < −α}. We consider also the closed set Ω−α
defined in C by (see Figure 1) :

Ω−α = {λ | <e(λ) ≥ −α, |λ| ≥ α}. (64)

Define the unbounded operator A3 : D(A2)→ H by

Re

Im

0
−α1

−α1/3

α=(1/3)α1

−(2/3)α1

Γα

Figure 1. Separation of the spectrums

A3f(x) =

[
Ã 0
C1 0

] f1

f2

f3

 , ∀ f ∈ D(A2). (65)

Then the operator A2 can be written as follows

A2 = A3 + P (66)

where the perturbation term P is given by

P =

[
−C4C3kIKIC1 [B1C3 − C4C3kIKIC2]kIKI

0 C2kIKI

]
. (67)

The resolvent R(λ,A2) is written by

R(λ,A2) = R(λ,A3)

∞∑
n=0

(PR(λ,A3))n (68)



516 CHENG-ZHONG XU AND GAUTHIER SALLET

where R(λ,A3) is given by

R(λ,A3) =

[
R(λ, Ã) 0

λ−1C1R(λ, Ã) λ−1

]
. (69)

Recall that Ã and C1 are defined in (47)-(48) and (55), respectively. By referring
to Russell and Weiss [19] and our Theorem 5.2 the following result can be proved
by direct computation.

Lemma 6.4. (i) The semigroup etÃ is exponentially stable on X.

(ii) (C1, Ã) is admissible and there exist some positive constants α and M such that

‖C1R(λ, Ã)‖ ≤ M√
<e(λ) + α

, ∀ <e(λ) + α > 0.

(iii) There are some positive constants α and k∗I such that ‖R(λ,A2)‖ is bounded
on the closed set Ω−α uniformly w.r.t. kI ∈ (0, k∗I ).

In the following we keep using the same notation as in Lemma 6.4 and take the
constant k∗I smaller if necessary. Let Dα denote the open disc Dα = {λ ∈ C | |λ| <
α}. The following lemma may be proved similarly as in [14, 15] or [24]. To be
complete we give a simpler proof in the Appendix.

Lemma 6.5. (i) With the notation of Lemma 6.4, the spectrum σ(A2) ⊂ C−−α∪Dα

∀ kI ∈ (0, k∗I ). Moreover the subset σ(A2) ∩Dα is equal to two eigenvalues of A2.
(ii) The two eigenvalues of A2 in the disc Dα are located in the left half part, i.e.
σ(A2) ∩Dα ⊂ C−−kI/2 ∀ kI ∈ (0, k∗I ).

The state space being an Hilbert space, our Theorem 6.3 is easily proved by using
Lemmas 6.4-6.5 and a result of Huang [8].

Proof of Theorem 6.3 . Since ‖R(λ,A2)‖ is continuous on ρ(A2), by Lemma 6.5-
(ii) it is bounded on the right half disc Dα ∩ C+

−kI/2. This fact combined with

Lemma 6.4-(iii) implies that ‖R(λ,A2)‖ is bounded on the right half plane C+
−kI/2.

The theorem of Huang [8] (see also Prüss [16]) tells us that the semigroup etA2 is
exponentially stable.

Since the system is regular, stabilization implies regulation by Proposition 2. �

Remark 8. We have introduced yr to illustrate the regulation effect. However,
for the designed PI controllers to be useful for the nonlinear system (1), it is more
realistic to take yr = 0.

7. Conclusions. In the paper we have studied dynamical behavior of a fluid flow
system governed by the Saint Venant equation and local stability of its subcritical
equilibrium states. As the friction slope is taken into account, the considered equi-
librium states are spatially heterogeneous. We have proposed different conditions
allowing to guarantee exponential stability of the linearized models according to
friction slope. We have shown that the linearized Saint Venant system is exponen-
tially stable at least for small friction slope. What is more interesting to note is
that exponential stability might be proved by our approach even for big friction
slope facing to concrete models. Systematic synthesis of stabilizing PI controllers
has been worked out based on the linearized models. Since both the control and
the observation are boundary, a spectral analysis approach has been used to prove
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exponential stability of the closed-loop system resulted from the designed PI con-
trollers. It is our future work to study the closed-loop stability by the PI controllers
from the nonlinear models.
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Appendix A. Proof of Proposition 2. The closed-loop system (7) is still regular
with (A,B,C,D) as follows

A =

[
A BKI

CΛ DKI

]
, B =

[
B 0
0 I

]
, C =

[
CΛ DKI

]
, D =

[
0 I

]
.

Let w̃c, w̃o ∈ Rm such that εc(t) = (wc(t)− w̃c) and εo(t) = (wo(t)− w̃o) belong to
L2(R+,Rm). The unique solution of the system (7) is written as[

φ(t)
ξ(t)

]
= etA

([
φ0

ξ0

]
+ A−1

[
Bw̃c

w̃0 − yr
])

+

∫ t

0

e(t−τ)AB
[
εc(τ)
εo(τ)

]
dτ + s∞

where

s∞ = −A−1

[
Bw̃c

w̃0 − yr
]
.

As A is the generator of an exponentially stable semigroup on H = X × Rm, by
Proposition 1-(ii), the state (φ(t), ξ(t))τ converges to s∞ as time goes to infinity.
By Proposition 1-(i) and (iii), the output y(t) is quadratically close to constant,
that is

lim
t→∞

∫ ∞
t

‖y(τ)− (Cs∞ + w̃0)‖2dτ = 0.

We have only to prove that yr = Cs∞ + w̃0.
Indeed, set

x = −A−1

[
Bw̃c

w̃0 − yr
]

= s∞

where x = (x1, x2) with x1 ∈ X and x2 ∈ Rm. Direct algebraic computation gives
us

x1 = −A−1BG−1
0 (yr − w̃o +Dw̃c), KIx2 = G−1

0 (CΛA
−1Bw̃c + yr − w̃0).

One may check easily that CΛx1 +DKIx2 + w̃o = yr. �

Appendix B. Proof of Lemma 6.5. (i) By Lemma 6.4-(iii), Ω−α ⊂ ρ(A2),
which implies that σ(A2) ⊂ C−−α ∪Dα. The resolvent R(λ,A3) being compact, the

bounded set σ(A3)∩Dα is constituted of eigenvalues only and σ(A3) = σ(Ã)∪{0}.
Denote by Γα the circle centered at zero of radius α (see Figure 1). The algebraic
multiplicity of λ = 0 is equal to the dimension of the projector P0

P0 =
1

2πi

∮
Γα

R(λ,A3)dλ =

(
0 0

−C1Ã
−1 I

)
. (70)

Obviously Dim(Range(P0))=2 and so the algebraic multiplicity of λ = 0 is equal to
2.

It is easy to find that PR(λ,A3) is given by

PR(λ,A3) = kI

(
[−C4C3 + λ−1C5]KIC1R(λ, Ã) λ−1C5KI

λ−1C2KIC1R(λ, Ã) λ−1C2KI

)
, (71)
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where C5 = B1C3−C4C3kIKIC2 and B1, C3, KI and C2 are defined in (61), (56),
(42) and (55), respectively. Denote by Pλ the operator defined by the matrix in
(71). By Lemma 6.4-(ii), we have

sup
λ∈Ω−α

‖kIPλ‖ < 1, ∀ 0 < kI < k∗I

Thus the following sum

R(λ,A2) = R(λ,A3)

+∞∑
n=0

knI P
n
λ (72)

converges normally on Ω−α. Similarly σ(A2) ∩ Dα contains only eigenvalues of
A2. More precisely it contains two eigenvalues only. Indeed the dimension of the
eigen-space encircled by Γα is still equal to two. Consider the projector P1

P1 =
1

2πi

∮
Γα

R(λ,A2)dλ = P0 + o(kI), (73)

From (70) and (73), we have ‖P0−P1‖L(H) < 1 for every kI small enough, which im-
plies that the two projectors have the same dimension (cf. [9, p.34]). The assertion
(i) is proved.

It is sufficient to assign by means of KI the two eigenvalues λ1 and λ2 in Dα to
the left half part. From (72),

A2P1 =
1

2πi

∮
Γα

λR(λ,A2)dλ = kI

(
0 0

−C6KIC1Ã
−1 C6KI

)
+ o(k2

I ),

where C6 = (C2−C1Ã
−1B1C3). Let M ′ = P1H and let AM

′

2 denote the part of A2

in M ′. From Theorem 6.17 in [9, p.178], we have

σ(AM
′

2 ) = {λ1, λ2}.

For small kI a basis of M ′ is formed by

P1

 0
1
0

 , P1

 0
0
1

. With respect to

the basis is the matrix representation of AM
′

2 given by

AM
′

2 = kIC6KI +O(k2
I ). (74)

We claim that the following identity holds true

KI = −C−1
6 . (75)

By the claim and (74), one finds some k∗I > 0 such that

max{<e(λ1),<e(λ2)} = −kI +O(k2
I ) < 0, ∀ kI ∈ (0, k∗I ).

The rest of the spectrum σ(A2) satisfies <e(λ) ≤ −α for λ 6= λ1 or λ2. So we prove
that

sup{<e(λ) | λ ∈ σ(A2)} < −kI/2.
To finish we prove the claim. Notice that the matrix C6 is the mapping v 7→ y

defined by the following ordinary differential equation

0 = ÃR̃+B1C3v

R̃1(0) = R̃2(l) = 0

y = C1R̃+ C2v.
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By the successive transformations R = T−1
2 R̃ and (z, q)τ = T1R, we recover the

differential equation (44). The mapping being invariant with respect to the trans-
formations we have C6 = G0. �
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