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Abstract

This paper presents a Finite Element model for the modeling of the failure of heterogeneous

material at the meso-scale. This model is cast into the framework of the Enhanced Finite

Element Method (E-FEM). Two kinds of enhancement are performed: (1) in the displace-

ment field (strong discontinuity approach) in order to take into account micro-cracks, (2)

in the strain field (weak discontinuity) in order to take into account heterogeneities without

any mesh adaptation. Mechanical applications (uniaxial tension and compression loading,

non-proportional loading) are performed in the context of cementitious materials such as

concrete. We show the capability of the model to represent some of the main features of

such materials observed at macro-scale.

Keywords: heterogeneous quasi-brittle material, strong discontinuity approach, E-FEM

method, EAS method.

1. Introduction

Fracture in brittle or quasi-brittle materials — such as geological media like clay or ce-

mentitious ones — may occur under several loading paths such as tension or compression.
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Modeling this phenomenon is still a very active area. The so-called macroscopic approaches

are mainly based on the definition of a Representative Volume Element (RVE) which allows

for defining macroscopic stress and strain tensors. Usually those quantities lead to deriving

rate-independent strain-softening plasticity models (Prévost (1975)) or damage models (Ol-

livier et al. (2012)). Those models are leading to ill-posedness partial differential equations

(Sandler and Wright (1984)) and mesh-dependent results that require techniques introduc-

ing intrinsic length scales such as the rate-dependent plasticity (Needleman (1988)) or the

non-local approach (Pijaudier-Cabot and Bažant (1987)). In opposition, the approach of

interest in this paper, namely the strong discontinuity approach, yields mesh-independent

finite element solutions without introducing any intrinsic length scale. The main reason for

this is that dissipation is computed over a surface of zero measure, thus being independent

from the element size (Simo et al. (1993)). Moreover an important feature of the strong dis-

continuity approach is that the magnitude of the displacement jump may be viewed as the

crack opening value, which thus belongs to the set of unknowns. This is a key point dealing

with Civil Engineering structures for which the lifespan is evaluated not only according to

the mechanical point of view but mainly through its durability and the corresponding mass

transfers (Jourdain et al. (2011)). Considering the literature related to the strong discon-

tinuity approach, it is worth noting that it is mainly used in the context of macroscopic

problems (e.g. uniaxial test (Oliver (1996)) or bi-axial test (Wells and Sluys (2001a)). At

this scale, only a few macroscopic cracks are to be modeled. Thus the ratio between the

number of elements for which strong discontinuities are introduced to the total number of

elements in the mesh is quite low. Moreover, because at this scale a relevant crack path

modeling is of crucial importance, some authors enforce its continuity by means of numer-

ical techniques such as tracking algorithms (Oliver et al. (2004)) or by solving secondary

problems based on a crack path field (Dias (2012)). This implementations often lead to

complex non-local computations, thus weakening the attractive local aspect of embedded

discontinuity approaches. However, these more accurate modelings of the crack path physi-

cal representativity are known to significantly reduce issues related to high strain localization

such as stress locking and mesh bias dependency.
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In this paper, following the idea developed in (Benkemoun et al. (2010)) and (Benkemoun

et al. (2012)), a new paradigm is presented: the use of the strong discontinuity approach

at the mesoscopic scale. In this context, the strong discontinuity approach becomes a tool

to model (1) a diffuse process of cracking and (2) the coalescence of micro-cracks leading

to one or several macro-cracks and eventually to the failure of the specimen. This massive

use of strong discontinuities leads to a large ratio of the number of elements for which

strong discontinuities are activated to the total number of elements in the mesh and so to a

quite complex and precise shape of the macroscopic crack(s). Moreover the large number of

micro-cracks represented also offers a way to model macro-scale crack path continuity and

branching as a result of micro-cracks coalescence.

At the mesoscopic scale (e.g. millimeter scale for concrete), heterogeneities play a signifi-

cant role: for concrete, they are aggregates inclusions embedded within a mortar matrix. In

order to explicitly take them into account within a Finite Element context, the authors turn

to a method referred as non-adapted meshing process (Moës et al. (2003)). This consists

in a unique “homogeneous” mesh with nodes placed independently from the heterogeneous

morphology and thus from the interfaces. Hence, for a given micro-structure geometry, a set

of elements are split into two parts by a physical interface. These elements are decomposed

into two sub-domains that inherit of each material phase properties. In order to introduce

this contrast of property in the classical linear elements, an enhancement of the kinematics

is performed by means of a jump within the strain field — this being known as a weak

discontinuity. The pioneer work on that matter goes back to the end of the 80’s (Ortiz

et al. (1987)) for the modeling of localization bands. The application of weak discontinuities

in the context of material heterogeneities modeling has been introduced later in (Sukumar

et al. (2001)).

Dealing with two-phase materials (e.g.matrix-inclusion), the non-adapted meshing method

leads to two classes of elements: the ones that are completely within the matrix or within

the inclusions, and the elements split into two parts. Only the latter type of elements are

enhanced by the mean of weak discontinuities. Hence, the meshing process, referred to as

morphological projection, consists in assigning their type to the original elements of the
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mesh. This methodology can be applied to three-dimensional random shapes, allowing com-

plex geometry (based for example on excursion sets of random fields (Roubin (2013), Roubin

et al. (2014)). This point is depicted on figures 1(b) and 1(c) (where matrix, inclusion and

interface elements are represented in light, medium and dark grey, respectively).

(a) Original mesh (b) Projection of a random mor-

phology

(c) Projection of another real-

ization

Figure 1: Projection of two-phase morphologies on a 3D mesh

A weak discontinuity (Hautefeuille et al. (2009)) (finite jump in the strain field) is in-

troduced into each element in order to take into account this particular kinematics. This

technique provides a meshing process that does not depend on the position and the shape of

the inclusions. Cracking and softening behavior observed for quasi-brittle material such as

concrete are introduced thanks to a strong discontinuity (Oliver et al. (2002)) (finite jump in

the displacement field) in each elements. These discontinuities represent micro-cracks that

can occur in any phases (aggregates or mortar matrix) and the debonding at the interface

between aggregates and mortar matrix.

The remainder of the paper begins in Section 2 with a description of the kinematics for

weak and strong discontinuities with which we work, and is then organized as follows: in

Section 3, we introduce those kinematics into a Finite Element model, in Section 4, a general

Finite Element discretization of the problem is presented and its resolution is described

and applied to 4-node tetrahedron elements in Section 5. Finally, in Section 6, attention

is focused on the capability of the model to represent the main features of cementitious
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materials by means of mechanical loading. First uniaxial tension and compression loading

are performed. On the one hand, we show the emergence of the typical asymmetry of

the respective macroscopic responses. On the other hand, we make a complete review of

the crack patterns. The observations enlighten the close relationship between these two

phenomena. In addition, non proportional loadings are performed in order to analyze the

induced anisotropic behavior due to the failure process. This study is carried out on the

previous uniaxial tension and compression tests by means of damage indicator — linear

post-analysis on Young modulus degradation — as well as residual strength — non linear

post-analysis on tensile strength degradation.

2. Kinematics description of weak and strong discontinuities

In this section, we summarize the basic notations employed all along the paper and

remind kinematics of both weak and strong discontinuities.

We denote by Ω ⊂ R3 a domain with smooth boundary ∂Ω and the spatial position of a

particle by x ∈ Ω. This domain is discretized by means of standard isoparametric elements

such as Ω = ∪nelm
e=1 Ωe. Naturally, position of weak discontinuities are defined by the material

heterogeneities surfaces (interfaces) and therefore known prior to any mechanical calculation.

They are represented on figure 2 by the smooth contours of the grey shapes which have to

be seen as the heterogeneities. In opposition, strong discontinuities (cracks) are introduced

thanks to a stress-based localization criterion. Hence they can be, theoretically speaking,

scattered anywhere in the domain (red curves on figure 2). However, in the presented

framework, the physically meaningful assumption that they can be present only in the

matrix (white zone) or following material heterogeneities surface is made. Whatever the

origin of the discontinuity is, it will be called Γd through this paper for sake of clarity.

Dealing with both weak and strong discontinuities, three cases can be present in an

element Ωe: 1) only a weak discontinuity is present, 2) only a strong discontinuity is present,

3) both of them are present. The usual representation of (Jirásek (2000)) on figures 3(a) and

3(b) can be extended in the case of double enhancement as depicted on figure 3(c). In the

first case, the shape of the material surface Γd is defined by the shape of the heterogeneity, the
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direction of the unit normal n is taken orthogonal to Γd and a jump of material properties

passing through Γd is present. In the second case, the direction of the unit normal n is

defined by a standard principal stress criterion and a displacement jump passing through

Γd has to be considered. In the last case, the shape of the material surface Γd is defined by

the shape of the heterogeneity, the direction of the unit normal n is taken orthogonal to Γd

and a jump of material properties and of the displacement passing through Γd are present.

It implies that the crack opening will be localized on Γd or in other term on the physical

boundary of each phase. As it is depicted on figure 2, such elements are split into two parts

Ωe and Ωe so that Ωe = Ωe ∪ Ωe .

Ω

n

Ωe
Γd
Ωe

Ωe

Ωe Γd

Ωe
n

Ωe

Γu

Figure 2: Illustration of the two kinds of discontinuous elements used in Ωe. On top right; a so-called matrix

element embedded with only strong discontinuity and on bottom right; a interface element with both weak

and strong discontinuity

Finally having at hand these two discontinuities, the total strain is written in the context

of the enhanced strain fields (Simo and Rifai (1990)) such as:

ε = ∇
sū

︸︷︷︸

regular

+ ε̃
︸︷︷︸

weak

+ ε̂
︸︷︷︸

strong

, (1)

where ∇
sū is the symmetric gradient of the displacement field. As in (Simo and Rifai

(1990)), we refer to ε̃ and ε̂ as the enhanced parts of the strain field. The notation •̃ (resp.

•̂) refers to weak (resp. strong) discontinuity.

Having those considerations in mind, we turn now to kinematics of weak and strong

discontinuities.

6



(a) (b) (c)

Figure 3: From (Jirásek (2000)), element with: a) one weak discontinuity, b) one strong discontinuity and

c) both weak and strong discontinuity

2.1. Weak discontinuity kinematics

In this part, interest is made only on weak discontinuity kinematics thus only ε̃ is consid-

ered. In order to determine the form of ε̃, considerations on its corresponding displacement

field labelled ũ are taken. The description of such a displacement field depends naturally

on its expression in Ωe and Ωe . Let’s call ũ the displacement field in Ωe and ũ the one

in Ωe . A first natural consideration is to impose continuity of ũ passing through Γd. This

yields to

ũ = ũ ∀ x ∈ Γd. (2)

Whereas ũ itself remains continuous, the displacement gradient shall exhibit a jump

across the surface discontinuity. Maxwell’s compatibility conditions (Gurtin (1984)) lead to

the form,

ũ = Θ n · (x− ξ) ([|ε|]n n+ [|ε|]m m+ [|ε|]t t) with Θ =







Θ ∀ x ∈ Ωe

Θ ∀ x ∈ Ωe

, (3)

where ξ represents the position of Γd, thus letting n · (x− ξ) act has the signed

distance to the surface discontinuity, and Θ a still unidentified piecewise constant

shape function with unit jump at discontinuity surface (a specific definition is

given in section 3) . The introduction of the Θ function leads to a different definition of

ũ weather it is evaluated in Ωe or in Ωe . In (3), [|ε|]n, [|ε|]m and [|ε|]t are three constants

that can be identified as the strain jumps. Actually, by considering the symmetric gradient
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of the displacement field ũ of components (ũn, ũm, ũt), ε̃ can be written:

ε̃ = ∇
s(ũ) =








ũn,n
1
2(ũn,m + ũm,n)

1
2(ũn,t + ũt,n)

sym ũm,m
1
2(ũm,t + ũt,m)

sym sym ũt,t








, (4)

where (•,n), (•,m) and (•,t) represent derivatives in relation with n, m and t.

Then the difference between ε̃ and ε̃ can be expressed as follows

ε̃ − ε̃ =








[|ε|]n [|ε|]m [|ε|]t

[|ε|]m 0 0

[|ε|]t 0 0








, (5)

where [|ε|]n, [|ε|]m and [|ε|]t stand for (ũn,n−ũn,n), (ũn,m−ũn,m) and (ũn,t−ũn,t), respectively.

All the specificity of the weak discontinuity kinematics lies on the enhancement displace-

ment field ũ and its related strain field ε̃. The form of ε̃ is now known: Θ has to be still

exactly defined according to additional statical considerations. One can already note that

the enhancement brings three parameters (stored in the so-called weak discontinuity vector

[|ε|]) that will be future unknowns of the mechanical problem.

2.2. Strong discontinuity kinematics

In this part, an element Ωe is only split by a discontinuity in the displacement field.

Thus only ε̂ is present. Since strong discontinuity kinematics has been widely studied in the

literature (see Simo et al. (1993), Oliver (1996) and Wells and Sluys (2001b) for instance)

herein, focus is placed only on the key points of this method.

The displacement field u of an element Ωe crossed by a strong discontinuity can be

mathematically decomposed, following (Simo and Oliver (1994)), by

u = ū+ (HΓd
− ϕe) [|u|] , (6)

where ū is a regular and continuous part of the displacement field that allows us to impose

standard boundary conditions (Oliver (1996), part II), HΓd
is the Heaviside function centred
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on Γd such as

HΓd
=







1 if x ∈ Ωe

0 if x ∈ Ωe

, (7)

ϕe is an arbitrary continuous shape function in Ωe of unit value at each nodes in Ωe and

null at each nodes in Ωe and finally, [|u|] is a continuous function on Ωe. The components

of the displacement jump at the discontinuity are given by [|u|]x∈Γd
.

By taking the symmetric gradient of equation (6) and following the development proposed

in (Simo and Oliver (1994)), we obtain the underlying strain field such as

∇
su = ε = ∇

sū+ (HΓd
− ϕe)∇

s [|u|]− ([|u|]⊗∇ϕe)
s

︸ ︷︷ ︸

bounded

+ δΓd
([|u|]⊗ n)s

︸ ︷︷ ︸

unbounded

, (8)

where δΓd
is the Dirac-delta distribution centred at the surface discontinuity and n its normal

vector. Except from the fact that [|u|] represents the components of the displacement jump

when evaluated on Γd, this field will not be explicitly defined. At this stage, the resulting

information of this reasoning is the decomposition of ε̂ into a regular and bounded part ε̂b

and an unbounded one ε̂u

ε̂ = ε̂b + ε̂u = (HΓd
− ϕe)∇

s [|u|]− ([|u|]⊗∇ϕe)
s

︸ ︷︷ ︸

ε̂b

+ δΓd
([|u|]⊗ n)s

︸ ︷︷ ︸

ε̂u

. (9)

And so the total strain field in presence of a strong discontinuity only has the form

ε = ∇
sū+ ε̂ = ∇

sū+ ε̂b + ε̂u. (10)

We can notice that strong discontinuity approach brings an unbounded part into the

strain field. With such properties, physical considerations like continuity of the traction

vector at Γd or bounded stress in Ωe seem rather impossible to respect. Under the name

of strong discontinuity analysis, the authors in (Simo et al. (1993)) propose solutions in

order to ensure that constitutive models used are still consistent in presence of strong dis-

continuity. Among them, the so-called Discrete Strong Discontinuity Approach (DSDA)

(Oliver (2000)) is used here. Hence, the continuum model equipped with strong disconti-

nuity leads to an underlying discrete model at the discontinuity Γd. On the one hand, a
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standard continuum relationship links strain and stress fields in Ωe\Γd and on the other

hand, a traction-separation law linking the traction vector to the crack-opening [|u|] on Γd

is introduced, modeling the failure mechanism.

2.3. Remarks

• ε̃ (i.e. Θ) is not defined yet. It will be in Section 3.

• [|u|] is chosen as a constant function thus its symmetric gradient is equal to 0. This

leads to an explicit formulation of the bounded part of the strong enhanced strain

referred as Kinematically Enhanced Strain (KES). It is defined by

ε̂b = − ([|u|]⊗∇ϕe)
s . (11)

• We remind that the contribution of weak and strong discontinuities can be added if

both of them occur, leading to the following strain enhancement

ε = ∇
sū+ ε̃+ ε̂. (12)

• Additional set of unknowns [|ε|] and [|u|] has to be solved. The resolution will be

detailed in Section 4. For the time being, it is sufficient to know that each set is

defined at the element level. Hence, a local resolution will be performed for their

determination letting the problem size unchanged.

3. Discontinuity implementation into a three-field variational framework

The Finite Element implementation of the problem is cast into a three-field variational

framework. It is shown in this section how such a statement allows us to blend the presented

strain enhancement into a Finite Element framework. Both yet undetermined shapes of the

enhanced strains are defined following both static and kinematics considerations. Moreover,

this formulation leads a handful incorporation of the discrete model using traction-separation

law on Γd.
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3.1. Hu-Washizu three-field variational formulation

The main idea of the Hu-Washizu (Washizu (1982)) formulation is that, unlike classical

displacement formulations, the three fields (ū, ε,σ), respectively the standard displacement

field, the standard strain field and the standard stress field are considered independent. We

call (η̄,γ, τ ) respectively the virtual displacement, the virtual strain and the virtual stress

fields. With this notation at hand, the Hu-Washizu formulation reads as follows:

• the classical equilibrium equation (or virtual work) (virtual displacement)

HWū(ū, ε,σ; η̄) =

∫

Ω

∇sη̄ : σ dΩ−

∫

Ω

η̄ · ρb dΩ−

∫

Γt

η̄ · t d∂Ω = 0, (13)

• the kinematics equation (virtual stress)

HWσ(ū, ε,σ; τ ) =

∫

Ω

τ : (∇sū− ε) dΩ = 0, (14)

• the behavior equation (or constitutive model) (virtual strain)

HWε(ū, ε,σ;γ) =

∫

Ω

γ : (σ̌ (ε)− σ) dΩ = 0, (15)

where σ̌ is a stress field that verified the behavior law and
∫

Ω η̄ · ρb dΩ and
∫

Γt
η̄ · t d∂Ω

the virtual work of the volumic and surfacic loadings. Note that in classical variational for-

mulation (in displacement) we usually have, by definition







ε
#
= ∇

sū

σ
#
= σ̌(ε)

which would make

(14) and (15) irrelevant.

Having this three-field variational formulation at hand, we now turn in the next subsec-

tion to the so-called Assumed Strain Method developed in (Simo and Rifai (1990)).

3.2. Assumed Strain Method

The first idea of the Assumed Strain Method is to enhance both standard and virtual

strain fields. Each of them can be decomposed into three parts. For the standard strain

field, it gives

ε = ∇
sū

︸︷︷︸

regular

+ ε̃
︸︷︷︸

weak

+ ε̂
︸︷︷︸

strong
︸ ︷︷ ︸

enhanced

(16)
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and for the virtual strain field

γ = ∇
sη̄

︸︷︷︸

regular

+ γ̃
︸︷︷︸

weak

+ γ̂
︸︷︷︸

strong
︸ ︷︷ ︸

enhanced

. (17)

Note that γ̂ respects the form of ε̂ (see equation 9) thus it is decomposed into a bounded

part γ̂b and an unbounded part γ̂u.

Substituting equation (16) into equation (14) and combining equations (13), (15) and

(17) we obtain the following modified three-field variational problem:

∫

Ω

∇sη̄ : σ̌(∇sū+ ε̃+ ε̂) dΩ−

∫

Ω

η̄ · ρb dΩ−

∫

Γt

η̄ · t d∂Ω = 0, (18)

∫

Ω

τ : ε̃ dΩ = 0, (19)

∫

Ω

τ : ε̂ dΩ = 0, (20)

∫

Ω

γ̃ : (σ̌ (∇sū+ ε̃+ ε̂)− σ) dΩ = 0, (21)

∫

Ω

γ̂ : (σ̌ (∇sū+ ε̃+ ε̂)− σ) dΩ = 0. (22)

Following the second idea of the Assumed Strain Method, the explicit presence of the

stress field is eliminated from the modified three-field variational formulation by choosing

the space of the stress field L2-orthogonal to the space of the enhanced strains. As a result,

equations (19) and (20) are satisfied and the second term of (21) and (22) vanish. And so

the modified three-field variational formulation becomes:

∫

Ω

∇sη̄ : σ̌(∇sū+ ε̃+ ε̂) dΩ−

∫

Ω

η̄ · ρb dΩ−

∫

Γt

η̄ · t d∂Ω = 0, (23)

∫

Ωe

γ̃ : (σ̌ (∇sū+ ε̃+ ε̂)) dΩ = 0, (24)

∫

Ωe

γ̂ : (σ̌ (∇sū+ ε̃+ ε̂)) dΩ = 0. (25)

It can be noted that due to the previous L2-orthogonal condition, the stress field σ does not

appear in the final statement of the formulation. Moreover, since no inter element (enhanced
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strain and stress) continuity requirement is imposed, this condition can be applied indepen-

dently on each nel-typical elements. Henceforth, equations (24) and (25) are evaluated at a

the element level — on Ωe for e = (1...nel).

The third idea of the Assumed Strain Method is to assure that after having enforced

the L2-orthogonality condition, the stress field must at least include piece-wise constant

functions; the combination of these two conditions (L2-orthogonality and piece-wise constant

functions) implies satisfaction of the patch test (see Simo and Rifai (1990)). Mathematically

speaking, this gives
∫

Ωe

γ̃ dΩ = 0 and

∫

Ωe

γ̂ dΩ = 0. (26)

Regarding the weak discontinuity, equation (26.1) can be written as

∫

Ωe

γ̃ dΩ+

∫

Ωe

γ̃ dΩ = 0. (27)

By assuming that the surface of discontinuity is flat (n is constant) within an element,

solving (27) gives conditions on Θ. If we also assume that both Θ and Θ are constant in

Ωe and Ωe , we obtain:

V Θ + V Θ = 0. (28)

The choice retained here is: Θ = V /V and Θ = −V /V where V, V and V are the

volumes of Ωe,Ωe and Ωe respectively.

Regarding the strong discontinuity, equation (26.2) can be written as

∫

Ωe

γ̂b dΩ+

∫

Ωe

γ̂u dΩ = 0. (29)

If we choose for γ̂u a form respecting ε̂u namely δΓd
([|η|]⊗ n)s, we get

∫

Ωe

γ̂b dΩ+

∫

Γd

([|η|]⊗ n)s d∂Ω = 0. (30)

The same assumption of constant strain field and flat interface within an element are made.

Thus γ̂b has the form of the so-called Assumed Enhanced Strain (EAS)

γ̂b = −
A

V
([|η|]⊗ n)s , (31)
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with A the area of the discontinuity.

This method gives naturally an non-symmetric formulation: the virtual strain field space

γ̂b based on EAS (equation (31)) differs from the standard strain field space ε̂b based on

KES (equation (11)). It has been shown that this non-symmetric approach leads to superior

numerical results in spite of the fact there is a variational inconsistency in the derivation

(see Wells and Sluys (2001b)).

In the next section, the Finite Element discretization of equations (23), (24) and (25) is

presented.

4. Finite Element discretization and resolution methodology

In this part, the Finite Element discretization of equations (23), (24) and (25) which

correspond to the system to be solved is presented. First the discretization of the standard

strain field and the virtual strain field respecting the form obtained in Sections 2 and 3 is

shown, in a second time those discretizations are incorporated in equations (23), (24) and

(25) to get the Finite Element problem. Note that the next Finite Element discretizations

are general and valuable for tetrahedron, beam or truss elements.

Note: Unless mentionned, Voigt notation is now used.

4.1. Strain fields discretization

Following the form obtained in Sections 2 and 3, the discretization of the standard strain

field and the virtual strain field is written as follows:

ε = [εxx εyy εzz 2εxy 2εyz 2εxz]
T = Bd

︸︷︷︸

∇sū

+ Gw [|ε|]
︸ ︷︷ ︸

ε̃

+ Gs [|u|]
︸ ︷︷ ︸

ε̂b

, (32a)

γ = [γxx γyy γzz 2γxy 2γyz 2γxz]
T = B δ

︸︷︷︸

∇sη̄

+ Gw [|γ|]
︸ ︷︷ ︸

γ̃

+ G∗
s [|η|]

︸ ︷︷ ︸

γ̂

, (32b)

where several interpolation matrices introduced correspond to: B (= ∂N) the standard

strain interpolation matrix, Gw the standard and virtual fields corresponding to the weak

discontinuity, Gs the standard field corresponding to the strong discontinuity (bounded part

14



ε̂b) and G∗
s the virtual field corresponding to the strong discontinuity (bounded and un-

bounded part γ̂). d are nodal displacements and [|ε|] (resp. [|u|]) corresponds to additional

unknowns arising from the kinematics enhancement of weak (resp. strong) discontinuity.

Regarding weak discontinuity kinematics, Gw can be decomposed into Θ and a constant

part Hw that only carries information on the interface vector n such as:

Gw =







Gw = Θ Hw = V
V Hw in Ωe

Gw = Θ Hw = −V
V Hw in Ωe

. (33)

The KES interpolation matrix Gs derives from equation (11) and can be computed by expli-

cating the arbitrary function ϕe. Such function can be defined using standard interpolation

shape functions as follows:

ϕe(x) =
nen∑

a=1

N apa with pa =







1 if node number a ∈ Ωe

0 if node number a ∈ Ωe

, (34)

where nen is the number of nodes in the element and pa the nodal values of ϕe. Gs is

therefore the equivalent symmetric operator (• ⊗ ∇(ϕe))s in the Voigt notation of equation

(32a).

The EAS interpolation matrix G∗
s is known from equation is decomposed in a bounded

G∗
s,b and an unbounded G∗

s,u part that derives from equation (31) and (9), respectively. It

leads to:

G∗
s = G∗

s,b +G∗
s,u =

(

−
A

V
+ δΓd

)

H∗
s , (35)

where H∗
s is the equivalent symmetric operator (• ⊗ n)s in Voigt notations of the strain

field as in (32b).

Having those discretizations and the form of Gw, Gs and G∗
s at hand, equations (23),

(24) and (25) can now be discretized.

4.2. Finite Element discretization of the problem

Injecting equations (32) into (23), (24), (25) and considering (33) and (35), the discretized

problem to be solved reads as follows:
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nel

A
e=1

[f e
int − f e

ext] = 0, (36a)

h[|ε|] =
V

V

∫

Ωe

HT
w σ̌ dΩ−

V

V

∫

Ωe

HT
w σ̌ dΩ = 0 ∀e ∈ [1 .. nel], (36b)

h[|u|] = −
A

V

(∫

Ωe

H∗,T
s σ̌ dΩ+

∫

Ωe

H∗,T
s σ̌ dΩ

)

+

∫

Γd

T d∂Ω = 0 ∀e ∈ [1 .. nel], (36c)

where all the σ̌ linearly depend on d, [|ε|] and [|u|] and where

f e
int =

∫

Ωe

BT σ̌ dΩ+

∫

Ωe

BT σ̌ dΩ, (37a)

f e
ext =

∫

Ωe

NTρb dΩ−

∫

Γt

NT t d∂Ω and (37b)

T = H∗,T
s σ̌ == σ̌ · n

︸ ︷︷ ︸

Matrix

is the traction vector. (37c)

The behavior law written in relation with the spatial position x is

σ̌(d, [|ε|] , [|u|]) =







σ̌ = C ε = C
(

Bd+Gw [|ε|] +Gs [|u|]
)

if x ∈ Ωe

σ̌ = C ε = C
(

Bd+Gw [|ε|] +Gs [|u|]
)

if x ∈ Ωe

, (38)

Equation (36a) is the global equilibrium equation of a standard Finite Element problem

whereas equations (36b) and (36c) are local equations added by the presence of the enhanced

parts of the strain field. It is important to recall that they are solved at the element level,

allowing us to dertermine the values of [|ε|] and [|u|] by performing a local resolution.

As the whole framework fits into the Discrete Strong Discontinuity Approach, two behav-

iors have to be considered. First, regarding the continuum bodies Ωe and Ωe , the behavior

is considered elastic. This rather strong assumption is justified by the general spirit of simple

meso-scale modeling. However, more complex behaviors such as plasticity or damage can

also be implemented (see Oliver (1996) for details). Then, the second part of the modeling

takes place at the discontinuity surface Γd. A governing law that links the traction vector

T = σ̌|Γd
· n1 is defined on the surface Γd where the crack opening magnitude drives the

non-linear failure mechanism. Such laws are often referred as traction-separation laws. In

1 Matrix notation
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order to fit in the general spirit of simple meso-scale modeling, a very basic single traction

criterion and brittle softening is used here. The next subsection describes its main charac-

teristics and shows how it is incorporated in the Finite Element problem (36a, 36b, 36c).

Finally, after linearising these equations, the Finite Element problem is written under a

matricial form and the solving strategy is presented.

4.3. Discrete constitutive model on Γd

The discrete model is based upon a relationship between the traction vector T (via an

equivalent stress σeq) and the crack opening magnitude labelled [u]. The equivalent stress σeq

value has to be tackled with careful attention in order to depict a meaningful representation.

Thus two cases have to be considered. First, if we consider the case where only the strong

discontinuity is present (case 1) of Section 1), no geometrical information are given on the

crack orientation. The choice is made here to use the larger principal stress component as

the equivalent stress σeq = σI. This principal component is simply the first eigenvalue of

the stress matrix. Furthermore, the corresponding eigenvector nI represents its direction.

The physical meaning of eigenvalue problems naturally leads to the choice of this vector

in order to represent the crack orientation n ← nlocalization
I . Secondly, if both weak and

strong discontinuities are present (case 3) of Section1), it is assumed that crack opens at

the interface between each phases. The main difference with the latter case is that n is

defined by geometrical characteristics and therefore is independent from any stress state.

Hence, traction vector can be defined prior to localization. In this case, its projection on

the interface direction is used such as σeq = n · T . Attention is drawn to the fact that in

this case, the shear components are non-zero but we assume they do not participate to the

localization process. This is a major assumption that could be improved by considering more

complex criteria. However, in the spirit of multiscale analysis we aimed at first considering

the most simple case.

The discrete model is introduced when the equivalent stress σeq reaches a certain amount

σy, which has to be seen as a meso-scale material characteristic. Mathematically speaking,

17



the strong discontinuity is introduced when the following localization criterion becomes zero:

Φl = σeq − σy. (39)

Then, the failure mechanism is driven by a scalar opening criterion Φo defined as follows:

Φo = σeq − (σy − q), (40)

where

q = σy

(

1− exp

(

−
σy

Gf
[u]

))

. (41)

It can be seen that a second material parameter Gf called the fracture energy that

governs the amount of energy necessary for the complete material failure is introduced in

(41). Since [u] represents the magnitude of the crack opening [|u|], the criterion is single

valued. However, an additional projection of the crack has to be defined in order to fit in

the previous framework, introducing a unit jump vector np:

[|u|] = [u] np. (42)

Finally, the behavior can be split into two parts: an elastic one in the body Ωe (linear

relationship between strain and stress fields out of the discontinuity Γd) as drawn on figure

4(a) for a 1D case and a discrete one on the discontinuity Γd by means of a traction-separation

law that links Ωe and Ωe as shown on figure 4(b). Since several choices retained here depend

on element kinematics, details on the different ingredients of this model (σeq, np. . . ) will be

given later.

From equation (36c) and making the assumption of flat interface and constant stress, an

easy integration gives an explicit expression of T as a average value of σ̌ and σ̌ weighted

by volumes such as:

T =
1

V
H∗,T

s (V σ̌ + V σ̌ ), (43)

where V, V and V are the volumes of Ωe,Ωe and Ωe , respectively.
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‖σ‖

‖ε‖

E

(a) Behavior outside the discontinuity interface for

a 1D case

σeq

[u]

σy

Gf

(b) Behavior at the discontinuity interface

Figure 4: Elastic/brittle behavior

Considering now (38), equation (43) can be written in function of (d, [|ε|] , [u]) such as:

T =
1

V
H∗,T

s

(

V C + V C
)

B
︸ ︷︷ ︸

Ks∗b

d (44)

+
V V

V 2
H∗,T

s

(

C −C
)

Hw

︸ ︷︷ ︸

Ks∗w

[|ε|] (45)

+
1

V
H∗,T

s

(

V C + V C
)

Gsnp

︸ ︷︷ ︸

Ks∗s

[u]. (46)

Following (Ibrahimbegovic et al. (1998)), the criterion Φo is now incorporated in the

system (36a, 36b, 36c). By injecting equations (44), (45) and (46) in Φo, we obtain a

criterion depending on (d, [|ε|] , [u]). Since such a criterion leads to a non-linear equation,

one has to linearise it. Rewriting it under an incremental form and collecting terms together,
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Φo leads to

∆Φo =
∂σeq

∂T
∆T +

∂q

∂[u]
∆[u]

=
∂σeq

∂T

1

V
H∗,T

s

(

V C + V C
)

B
︸ ︷︷ ︸

Ks∗b

∆d

+
∂σeq

∂T

V V

V 2
H∗,T

s

(

C −C
)

Hw

︸ ︷︷ ︸

Ks∗w

∆ [|ε|]

+
∂σeq

∂T

1

V
H∗,T

s

(

V C + V C
)

Gsnp

︸ ︷︷ ︸

Ks∗s

∆[u]

+
σ2
y

Gf
e−σy[u]/Gf

︸ ︷︷ ︸

Kq

∆[u].

Thus the linearisation of Φo = 0 gives

Ks∗b

∣
∣
∣

(k)

n+1
∆d

∣
∣
∣

(k+1)

n+1
+Ks∗w

∣
∣
∣

(k)

n+1
∆ [|ε|]

∣
∣
∣

(k+1)

n+1
+ (Ks∗s +Kq)

∣
∣
∣

(k)

n+1
∆[u]

∣
∣
∣

(k+1)

n+1
= −Φo

∣
∣
∣

(k)

n+1
. (47)

In the next subsection, we present the form of the final problem to be solved under a

matricial form and the resolution strategy.

4.4. Global system and resolution strategy

Because the linearisation of equations (36a) and (36b) is trivial the mathematical devel-

opment will be skipped. The global system to be solved in terms of increments of d, [|ε|]

and [u] and condensed in a matricial format is








Kbb Kbw Kbs

Kwb Kww Kws

Ks∗b Ks∗w Ks∗s +Kq








(k)

n+1








∆d

∆ [|ε|]

∆[u]








(k+1)

n+1

=








−
nel

A
e=1

{f e
int − f e

ext}

−h[|ε|]

−Φo








(k)

n+1

, (48)
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where

Kbb = BT
(

V C + V C
)

B,

Kbw = V V
V BT

(

C −C
)

Hw,

Kbs = BT
(

V C + V C
)

Gs np,

Kwb = V V
V HT

w

(

C −C
)

B,

Kww = V V
V 2 HT

w

(

V C + V C
)

Hw,

Kws = V V
V HT

w

(

C −C
)

Gs np,

Ks∗b = ∂σeq

∂T
1
V H∗T

s

(

V C + V C
)

B,

Ks∗w = ∂σeq

∂T
V V

V 2 H∗T
s

(

C −C
)

Hw,

Ks∗s = ∂σeq

∂T
1
V H∗T

s

(

V C + V C
)

Gs np,

Kq =
σ2
y

Gf
e−σy [u] / Gf .

(49)

Solving system (48) is done at two levels. First, following the operator split method spirit,

variables (∆ [|ε|] ,∆[u]) are determined at the element level (local solving) for a given ∆d

by solving: 





h[|ε|] = 0

Φo = 0
. (50)

By developing h[|ε|] = 0 as done previously in (36b), one can note that this equation

is linear, thus the non-linear aspect of the local system (50) comes only from the equation

Φo = 0. This one imposes a standard Newton-Raphson procedure implemented within
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element subroutine. Once system (50) is solved, appropriate values of ∆ [|ε|]
∣
∣
∣

(k+1)

n+1
and

∆[u]
∣
∣
∣

(k+1)

n+1
are known, leading to null residuals h[|ε|]

∣
∣
∣

(k)

n+1
and Φo

∣
∣
∣

(k)

n+1
. ∆d is calculated by

solving the global equilibrium equation using a static condensation (Wilson (1974)) on the

local (known) variables (∆ [|ε|] ,∆[u]). This leads to a matricial system, with a modified

stiffness matrix Ksc, to be solved such as

Ksc

∣
∣
∣

(k)

n+1
∆d

∣
∣
∣

(k+1)

n+1
= −

nel

A
e=1

{f e
int − f e

ext}
∣
∣
∣

(k)

n+1
, (51)

where

Ksc

∣
∣
∣

(k)

n+1
= Kbb −

[

Kbw Kbs

]









Kww Kws

Ks∗w Ks∗s +Kq





(k)

n+1






−1 


Kwb

Ks∗b





(k)

n+1

.

Even though the stiffness matrix has been changed due to kinematics enhancement,

both its size and sparsity are unchanged. Hence, no matter how many heterogeneities are

represented or how many elements have starting to fail, the global size of the problem is

preserved. In terms of numerical resources, the memory needed only depends on the mesh

size (number of nodes). Naturally, local Newton algorithms slows down the global calculation

as the number of strong discontinuity activated increases. By using the static condensation,

a standard FE problem is retrieved, where increments of d have to be found in order to

respect the global equilibrium equation 51.

The most common method used to solve those problems in case of non linearity are the

so-called Newton methods. However, it requires full calculation of full stiffness matrix at

each iteration, and since morphological modeling requires rather fine meshes, a quasi-Newton

algorithm coupled with an iterative solver is used here. Among the huge diversity of those

algorithms, the BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm is retained. It makes

the number of arithmetical operations to fall down from O(n3) to O(n2). The price to pay

is that quasi-linear convergence is obtained (instead of quadratic). Full details are given in

the original papers (Broyden (1970a,b); Fletcher (1970); Goldfarb (1970); Shanno (1970)).

Moreover numerical implementation details are in (Matthies and Strang (1979)). Added
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to the quasi-Newton BFGS, a line-search method is also used, modulating the incremental

displacement norm for each iterations by a factor s:

û(k+1) = û(k) + s(k+1)∆d(k+1).

See Dahlquist (2003) for details on the computation of s. It is recalled that powerful algo-

rithm adapted to the E-FEM such as (Oliver et al. (2008)) and not implemented here can

significantly increase the computation performance.

In the next section, we move to applications of this model in the case of 4-node tetra-

hedron elements. First the explicit form of the matrices encountered all along this paper is

presented for sake of clarity. Then the criterion Φo is written in the considered case.

5. Application to 4-node tetrahedron elements

The use of 4-node tetrahedron elements is now presented in the case of this model. This

volumic discretization brings several advantages compared to the initial implementation of

this framework based on lattice discretization (Benkemoun et al. (2010)). First, an exact

representation is made regarding the volumic tessellation of the mesh, leading to exact rep-

resentation of constant stress problem. Therefore, the problematic of mesh convergence

presented in the aforementioned paper with lattices is irrelevant in this context. Further-

more, a complete kinematics of cracks opening can now be represented (mode I, II). Hence,

both geometrical construction and mechanical behavior are more accurately depicted.

5.1. Interpolation matrices

In this part, attention is drawn to the explicit definition of the matrices encountered

through this paper in the case of tetrahedron elements. In addition, for sake of convenience,

fields are represented in their Voigt notation. Hence, each matrices are developed in this

format.

In the case of an element cut by a discontinuity Γd, the tetrahedron is split into two

sub-domains Ωe and Ωe delimited by the interface Γd of direction vector n (see figure (5)).

It is reminded that this surface is assumed to be flat (n is constant over Γd). Numerical
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implementation of such geometrical construction is not trivial and several cases have be taken

into account depending on the surface orientation. Indeed, Ωe and Ωe can be polyhedron

of respectively 6 and 4, 5 and 5 or 4 and 6 nodes. And since the formulation involves only

volumes V and V (not the discontinuity area, see equation (43)), it has to be considered

with utmost attention.

n

Ωe

Γd

m

t

Ωe

Figure 5: 4-node tetrahedron element with discontinuity surface

Dealing with weak discontinuity, it is reminded that the interpolation matrix Gw can

be decomposed into Θ, a piece-wise constant function depending on the considered sub-

domain and Hw a matrix containing information on the discontinuity surface orientation

(see equation (33)). Following the same Voigt convention, Hw can be constructed so that

the vector format of the strain enhancement matches its tensor definition in equation (33).

The vector n is written in the global coordinate system n = [nx ny nz]T , leading to the

following interpolation matrix format:

Hw =

















n2
x nxmx nxtx

n2
y nymy nyty

n2
z nzmz nztz

2nxny nxmy + nymx nxty + nytx

2nynz nymz + nzmy nytz + nzty

2nxnz nxmz + nzmx nxtz + nztx

















. (52)
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And thus the form of Gw is explicitly known

Gw =







Gw = Θ Hw = V
V Hw in Ωe

Gw = Θ Hw = −V
V Hw in Ωe

. (53)

Regarding strong discontinuity, it is reminded that two matrices have to be considered,

namely Gs and G∗
s,b, making the formulation non-symmetric. The form of Gs is given by

Gs = −

















∂ϕe

∂x 0 0

0 ∂ϕe

∂y 0

0 0 ∂ϕe

∂z

∂ϕe

∂y
∂ϕe

∂x 0

0 ∂ϕe

∂z
∂ϕe

∂y

∂ϕe

∂z 0 ∂ϕe

∂x

















(54)

and the form of G∗
s,b by

G∗
s,b = −

A

V
H∗

s with H∗
s =

















nx 0 0

0 ny 0

0 0 nz

ny nx 0

0 nz ny

nz 0 nx

















. (55)

All components of the enhanced strain field are now explicitly defined. The standard

strain field can thus be built respecting the form of equation (32a) and the system (48)

solved.

We now turn explanation on the localization and opening criterion.

5.2. Localization and opening criterion

Since the discontinuity surface orientation is constructed with geometrical properties

for interface element and with stress consideration otherwise, two cases have to be treated

separately.

25



In the case of weak discontinuity within the element, the interface is always defined.

Hence n is known prior to any mechanical calculation. Thus, the traction vector T can be

defined before the localization. In order to represent the interface orientation as the weakest

direction, the equivalent stress for localization is defined as the projection of the traction

vector on it:

Φl = σeq − σy = n · T − σy = Tn − σy (56)

with

T =
1

V
H∗,T

s (V σ̌ + V σ̌ ). (57)

On the contrary, if no material discontinuity can define an interface, strong discontinuity

appears with stress state consideration. One can note that in this case, a constant stress

tensor can be given for the whole element since it is supposed free of material discontinuity.

Its orientation is defined by the principal direction of the stress tensor. If σI is its eigenvalue

then:

Φl = σeq − σy = σI − σy. (58)

When localization occurs (Φl = 0), the corresponding eigenvector nI is recorded and set

as the interface orientation: n ← nlocalization
I . It is assumed that its value remains constant

through time. Afterwards, the traction vector is defined by:

T = H∗,T
s σ̌ (59)

which follows its previous definition with σ̌ = σ̌ = σ̌.

In both cases, after localization the discontinuity surface and its orientation n are defined.

In order to model the same failure mechanism whether an interface element is considered or

not, the opening criterion Φo is assumed to be identical. The equivalent stress is taken to

be the projection of the traction vector on n:

Φo = n · T − (σy − q). (60)

Furthermore, this definition of the equivalent stress leads to a very simple written expression

of the equivalent stress derivative:
∂σeq

∂T
= n. (61)
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Finally, by defining the projection vector np of equation (42) as the normal vector n,

a mode I opening mechanism is represented. Attention is draw to the fact that, in this

case, the evolution of the shear tractions are not driven by the displacement jump. That is

a major assumption which represents a flaw in the model. Improvements may come from

more complex opening mechanisms such as mode II or mode I+II. Those are both under

development and related issues are discussed in the conclusion of the paper.

At this stage, the whole system (48) is now explicitly known in the case of tetrahedron

elements. Thus we can move to numerical examples in the context of concrete-like material

to show the features of the model developed through this paper.

6. Numerical analysis of concrete: from meso to macro-scale

In this section, attention is focused on the capability of the enhanced FE model to

represent the main features of concrete by means of mechanical loading. Starting from meso-

scale (millimeter scale), uniaxial tension and compression tests are performed in order to

show, on the one hand, the emergence of the typical asymmetry of the respective macroscopic

responses and on the other hand, a complete analysis of the crack patterns. Moreover, non

proportional loadings are carried out in order to measure the induced anisotropy. This study

is based on the previous uniaxial tension and compression tests by means of damage indicator

(i.e. linear post-analysis on Young modulus degradation) as well as residual strength (i.e. non

linear post-analysis on tensile strength decrease).

Each numerical example given in this chapter is made on a heterogeneous 100 × 100 ×

100mm3 specimen for which two phases are modeled. Based on unions of excursion sets

(Adler (2008), Roubin et al. (2014)), this method explicitly represents aggregates of different

sizes melt within a matrix that is, roughly speaking a mortar. The former are modeled

with three average diameters of 15, 7 and 5mm representing respectively 25, 50 and 25%

of the total 30% volume fraction (see figure 6(b)). Random shaped inclusions are yielded

by thresholding correlated Random Fields (see Roubin (2013)) and performing the union.
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Following the non-adapted mesh spirit, once projected onto the FE discretized space, this

morphology is represented by two kinds of elements: those which are completely included

within the matrix or an aggregate and those, close to an interface, that are split and thus

enhanced by a weak discontinuity.

Figure 6(a) shows the FE mesh used. Basically, GMSH (Geuzaine and Remacle (2001))

is used to produced the mesh, which is based on the Delaunay triangulation of a set of

randomly positioned nodes. In order to catch the geometrical information of the smallest

heterogeneities, the mesh used to compute the following examples has about 556 103 nodes

(1 600 103 dof) and 3 500 103 elements. Figure 6(b) shows the projection of a typical mor-

phology onto the mesh (only weakly enhanced and aggregates elements are represented in

light and dark grey respectively).

(a) Unstructured FE mesh. (b) Representation of only aggregates and

weakly enhanced FE.

Figure 6: Projection of a typical excursion set morphology onto the chosen mesh

Table 1 summarizes the material properties at the mesoscopic scale. It is reminded

that the model contains, for each phase, two elastic and two failure parameters, the Young

modulus E, the Poisson ratio ν, the yield stress σy and the fracture energy Gf , respectively.

Furthermore, a yield stress and a fracture energy are also set to define the interface.
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It is worth noting that:

• Aggregates are assumed to remain elastic. Thus, no crack may initiate or propagate

within those elements.

• Weakly enhanced elements do not require any specific characteristics in the elastic

regime. Indeed, as presented in the previous chapter, prior to any debonding (modeled

through a strong discontinuity), they model a perfect interface, thus with infinite

rigidity.

• For sake of simplicity, the failure mechanisms are taken to be equal for both matrix

and interfaces. However, the difference in elastic properties of the matrix

and aggregates leads to stress concentrations at the interface. Since the

failure criterion is based on stress considerations, a similar yield stress in

both matrix and interface still leads to a weaker behavior of the latter.

Finally, the computations are performed under uniform displacement control along the

first spatial axis (X-direction). Moreover two other faces of the domain (normal to the Y

and the Z direction) have constant zero value for their normal displacement. Hereafter, a

value corresponding to the X-direction is referred as axial whereas any transversal quantities

refers to an average value set up on both the Y and Z-directions.

Phase E [GPa] ν [-] σy [MPa] Gf [J.m−2]

Aggregates 100 0.2 - -

Mortar 20 0.2 9 0.1

Interface - - 9 0.1

Table 1: Meso-scale material characteristics of each phase and interface

6.1. Analysis of the macroscopic responses for simple traction and compression

6.1.1. Axial upscaled properties and crack pattern analysis

Figure 7 shows the macroscopic response obtained through the computation for both a

simple tension and a simple compression loading. It plots the macroscopic axial force versus
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the imposed macroscopic axial displacement.

First it is worth noting that, although the failure criterion at the meso-scale is triggered

in tension only, macroscopic simple compression leads to the failure of the specimen. Indeed

this feature is clearly a consequence of the structural effect that is set up by the explicit

representation of the aggregates.

Second, it clearly appears that the macroscopic failures are unsymmetric. This feature is

typical of quasi brittle materials such as concrete. Table 2 sums up macroscopic key values

extracted from figure 7: we denote by EM the macroscopic modulus, σM
f the macroscopic

tensile or compressive strengths, εMf the corresponding macroscopic failure strain and finally

Dp the total dissipated energy. The last value is computed through integration of the

macroscopic axial force over the axial displacement..
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Figure 7: Macroscopic response for simple tension and compression tests

As expected the initial elastic behavior is strictly symmetric. Even though it is quite

difficult to observe the end of the purely elastic region on the plots, it can safely be assumed

that, for compression, the transition to the non linear behavior occurs for a more important

macroscopic stress than for tension. This unsymmetric elastic domain is the first feature
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Loading path EM [GPa] νM [-] σM
f [MPa] εMf [-] Dp [J ]

Compression 37.8 0.195 39.2 1.2 10−3 50

Tension 37.8 0.195 3.9 1.2 10−4 0.5

Table 2: Macroscopic upscaled material properties for both tension and compression

that emerges from the multi-scale analysis.

Regarding the energy Dp needed to reach the specimen ruin, it can be noted that both

are greater than the mesoscopic fracture energy Gf (in J.m−2) assigned to the mortar (cor-

responding values of Dp in tension and compression are 50 and 5 000 J.m−2, respectively).

Furthermore, the fact that this energy is significantly greater in compression reflects the

more brittle behavior of concrete when tested in tension. It is naturally linked with the

asymmetric strength values and their corresponding failure strains for which the ratio of

compression to tension are both 10. A discussion on this meaningful result is given in the

main conclusion of this paper.
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Figure 8: Distribution of the crack openings at the last time step of the simple tension test

Figure 8(a) shows the distribution of the cracks openings – which correspond

to the strong discontinuities magnitudes – at the end of the tensile test. The

range of these openings is clearly quite large, up to more than 20 µm. Figure

8(b) is a zoom showing that this distribution has a maximum for small values
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(a) y = 0 mm. (b) y = 20 mm. (c) y = 80 mm. (d) y = 100 mm.

Crack opening [mm] 0.0210−5

Figure 9: Macroscopic crack paths for simple tension: 2D slices

between 0.015 and 0.02 µm.

Figure 10 plots the crack patterns obtained at the end of the computation for both

compression (Figure 10(a)) and tension (Figure 9 and Figure 10(b)). This corresponds to

the elements for which a strong discontinuity has been introduced. It can be seen that

those crack patterns are very significant either in tension or compression. First in tension,

some micro-cracks are linked in order to set up a single macro-crack that roughly lies in the

transversale plane (best seen on Figure 9) . Obviously this macro-crack is tortuous and

goes around the aggregates that remain elastic. Second, in compression, it can be observed

that several macro-cracks are present (contrary to tension) and that they are roughly parallel

to the axial direction.

Aggregates properties E (-40%) ν (+50%)

Compression strength [MPa] 48.2 (+23%) 40.3 (+3%)

Tension strength [MPa] 4.0 (constant) 3.72 (-5%)

Compression to tension ratio 12.05 (+20%) 10.8 (+8%)

Table 3: Influence of elastic properties of aggregates on compression and tension strengths

Table 3 shows the influence of the elastic properties of the aggregates on both compression

and tension macroscopic strengths. As expected, the ratio between those two quantities
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(a) Compression test. (b) Tension test.

Crack opening [mm] 0.310−6 Crack opening [mm] 0.0210−5

Figure 10: Macroscopic crack paths for simple tension and compression

is largely influenced by the contrast of Young’s modulus. To be more precise, the less

this contrast is, the more the compressive strength increases and so the ratio (the tension

strength remains almost constant). On the contrary, the Poisson ratio of the aggregates

seems to have a small influence on the macroscopic strengths: from ν = 0.2 to ν = 0.3 the

compressive strength shows a 3% increase and the tensile a 5% decrease.

On a more general point of view, the question of the geometrical representation of a

macroscopic crack using a local method as the Embedded Finite Element is non trivial. For

example, in the two-dimensional case, using constant triangular elements, it has been shown

(see Jirásek (2012) for details) that the best way to produce a suitable crack trajectory and

avoid numerical issues such as stress locking is to combine two methods. First a non-local

formulation of the smeared crack approach, giving crack orientation in each element. Then

a tracking algorithm to enforce the crack path continuity between each element. The major

drawback of this implementation is that the local spirit of the E-FEM (directly inherited

from the FEM itself) is lost. Indeed, in addition to non local damage, path continuity
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enforcement implies, for an element, a crack position that depends of those of its neighbors.

Moreover, in the three-dimensional case, continuity of flat plane (crack) is often impossible.

Herein, the E-FEM implementation has to be placed within the multi-scale context. In

this case, a single fractured element is not considered to be representative of any specific

macroscopic feature. However, it is only when a large number of those activated elements are

merging that it may be considered that they model a continuous path at the macroscopic

scale. It is for these reasons that, herein, no specific effort has been made in order to

enforce any path continuity at the meso-scale. It is reminded that herein, the discontinuity

is considered piecewise constant in each element. In the case of weakly discontinuities

(interfaces elements), the orientation and position of the strong discontinuity are predefined

by the crossing heterogeneity. However, in the case of standard kinematics (matrix element),

the orientation of the strong discontinuity is set to be the direction of the larger principal

stress at the localization time. In this case it is assumed that the discontinuity path through

the centroid of each tetrahedron. This assumption impacts only the construction of the

functions ϕe.

Finally, features like multi-cracking or branching, which usually require a complex local

numerical implementation (within an element), are herein omitted at the meso-scale. How-

ever, as shown on Figure 11 (which is a zoom made on a subset of Figure 10(b)), it can

be retrieved at the macro-scale. This picture shows a crack that splits in two branches; a

main branch (on the top) with larger opening values and a second branch that eventually

vanishes. Generally, these branchings come from an aggregate “blocking” the way of the

crack propagation direction.

6.1.2. Transversal strain analysis

Regarding the transversal behavior of the specimen, several observations can be made

either in tension or in compression. It is recalled that the axial direction X corresponds to

the imposed displacement direction and transversal values are defined as the average of the

values along Y and Z. The results presented here are still based on the same one-dimensional

macroscopic tests (tension/compression) mentioned above.
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Figure 11: Branching of macroscopic cracks around the aggregates

The macroscopic Poisson ratio can be determined using the transversal strains by:

νM = −
εMtr
εMax

(62)

Herein, this property is extended to the diffuse cracking regime in order to illustrate the

mechanism that leads to the specimen loss of rigidity - see figure 12 where it is plotted in

terms of axial strain for both tension and compression tests. First, the elastic part shows

that the macroscopic Poisson ratio is of the same order as for the meso-scale: νM = 0.195 in

both cases. Afterwards those values are diverging. First, in tension, the ignition of diffuse

cracking causes local strain to release and thus making the macroscopic strain decrease

with the Poisson ratio. On the contrary, in compression, this local strain releasing causes a

heightening of the transversal mechanism leading to a significant increase of the apparent

Poisson ratio.

Since the meaning of the Poisson ratio is highly contestable with strongly non-linear

failure behavior, the post-localization analysis is only based on transversal strains. For that

matter, Figure 13(b) and Figure 13(a) show the macroscopic response up to the specimen

ruin in terms of the axial strain εMax (solid curve) and of the transversal direction εMtr (dashed

curve). Regarding the tension test, during the post-peak phase the transversal strain de-

creases and tends to vanish (see Figure 13(b)). It represents the unloading that occurs in the

specimen — at a macroscopic scale — after the main crack localization. In contrast, during a

compression test, the transversal strain still increases after the peak load (see Figure 13(a)).

As already mentioned, for this loading path, the cracks pattern is more a network of several
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Figure 12: Apparent Poisson ratio for tension and compression tests vs. axial strain

macroscopic cracks than a single localization zone. The dilatancy observed here is the direct

result of this much more diffuse cracking process. Besides, it is the same mechanisms that

explains the apparent Poisson ratio increasing.
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Figure 13: Macroscopic response in terms of axial and transversal strain

The dilatancy δ of the specimen can also be computed by considering the trace of the
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macroscopic strain tensor. Thus, the relative variation of the volume, drawn on Figure 14,

is:

δ =
∆V

V0
= εMax + εMtrY + εMtrZ (63)

Notice that the same magnitude in the dilatancy rate is observed in tension and in

compression regarding the elastic region. This result is in conformity with the identical

Poisson ratio value. Naturally a tension test produces a volumetric expansion (δ > 0)

while compression first produces a contraction (δ < 0). However, the cracking process

increases the dilatation rate for both tests, which is a major feature of many materials such

as concrete. Hence, when in tension the slope increases in the diffuse cracking regime, for

compression the contraction slows down. The localization is characterized by: in tension a

sudden increase in rate and in compression a maximum (considering absolute value) of the

dilatancy. Afterwards, the dilatancy sign changes in the post-localization region, which is

an interesting feature, also experimentally observed for concrete. In (Torrenti (1987)) the

interpretation is made that, in compression, the contraction corresponds to a predominant

elastic effect where the following expansion reveals an important cracking stage. However,

experiences revealed a volumetric strain which switches sign prior to the localization.

6.1.3. Dissipated energy

By integrating the macroscopic force over the displacement, the total energy can be

calculated from the macroscopic response. It is shown on Figure 7 for each calculation step.

Furthermore, considering a fictitious elastic unloading up to a zero force level, a difference

can be made between the elastic and the dissipated part. Thus it gives an additional way

to understand the failure mechanisms and to compare tension and compression behaviors.

Three energies — elastic, dissipated and total — are plotted on figure 15 as a function of

the axial imposed displacement for both loadings.

These curves give a clear representation of the reversible and irreversible mechanisms that

occur during the loadings, which are typical of a softening behavior. It can be observed that,

at the beginning, nearly all the energy involved is elastic. Then, at the localization stage,

the part of energy dissipated increases significantly. A more brittle failure in tension than
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Figure 15: Energies calculated for each computation step

in compression can be seen. The fall of the elastic energy to a nearly null value represents

the unloading outside the macro cracks region and the fact that all the energy is dissipated

close to the macroscopic cracks.
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6.2. Numerical evaluation of the induced anisotropy

After having shown the macroscopic responses of the model in relation with simple radial

and proportional macroscopic loading paths, focus is placed on non proportional cases. Here,

our objective is to show the emergence, at macro-scale, of some features related to any

anisotropic behaviors. This anisotropy shall be revealed by the non proportionality of the

loading path.

Considering a tension or a compression test with monotonic loading, the failure mech-

anism that leads to the specimen ruin induces a strong anisotropy of cracks pattern. On

the basis of this simple observation, an analysis of the macroscopic material properties —

e.g. Young modulus, tensile strength, etc. — for each step of the previous monotonic load-

ing tests (in both tension and compression) is now proposed. Hereafter, the two first parts

of the macroscopic loading path (tension or compression) are referred as principal calcu-

lations. In order to yield residual material properties, additional calculations, that inherit

from the principal, are performed. They are referred as secondary computations. Basically,

the inheritance from principal to secondary calculation is made through the non linear data,

i.e. the whole set of meso-scale cracks (with their orientations and opening values). This

second part of the numerical analysis is also made under displacement control. Actually the

displacements obtained from the first part are imposed and additional displacements are

added. Those displacements correspond to the same kind of boundary conditions along a

different direction (Y or Z).

6.2.1. Anisotropic induced damage

Here the residual property of concern is the damage Young modulus, which is com-

puted as the secant modulus on the macroscopic stress – strain curve. In order to catch

the anisotropy, from each step of the principal calculation three secondary calculations are

performed in the three directions. It leads to three macroscopic secant moduli: an axial

ẼM
ax value and two transversal ones ẼM

trY and ẼM
trZ . The results are displayed by defining

“damage” variables dax, dtrY and dtrZ , respectively. They are built to compare the upscaled

residual secant moduli to those corresponding to the initial state EM (which are the same
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for all direction):

dax =
EM − ẼM

ax

EM
, dtrY =

EM − ẼM
trY

EM
and dtrZ =

EM − ẼM
trZ

EM
(64)

Theoretically, in the elastic region of the principal test, those variables are null and then

tend to increase along with the specimen failure state. Herein, the secant moduli upscaled

values ẼM
ax and ẼM

tr yield the damage variables dax and dtr (equation 64).

Results for tension are given on Figure 16(b) where the two damage variables are plotted

in terms of the macroscopic axial strain of the principal calculation. It can be observed

that the axial damage dax is growing faster than that of the transversal one dtr. Moreover,

dax reaches a value of ≈ 0.85 which corresponds to a highly damaged state when dtr hardly

reaches 0.15. Hence, the elastic property is far more spoiled in the axial direction. This

result reflects the characteristic morphology of the cracks pattern, splitting the specimen in

two by a plane roughly perpendicular to the axial axis. As the macroscopic crack grows,

the “link” between each part of the specimen becomes weaker, leading to a decrease of the

upscaled secant modulus in this direction. On the contrary, it remains several non-broken

paths on the transversal directions that give to the specimen a higher rigidity. Regarding

the compression test, Figure 16(a) shows the opposite effect. Indeed, here the transversal

damage is more important than the axial one. It may be explained by cracks patterns

that form planes parallel to the axial direction, leading to a higher loss of rigidity in the

transversal directions. Furthermore, the more diffuse aspect of the crack repartition makes

the difference between axial and transversal damage less important.

Finally, for both tension and compression cases, it can be noticed that the two transversal

damages are of the same order of magnitude, representing isotropic behavior in these two

directions. Somehow, it can be said that the macroscopic elastic behavior is shifting from

an isotropic case to a transverse isotropic one. More numerical investigations for the second

step of those non proportional loading paths may determine the complete elasticity tensor

for this case.
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Figure 16: Axial and transversal damage variables evolutions

6.2.2. Induced anisotropy for tensile strengths

Still dealing with both tension and compression tests, interest is now taken in the residual

tensile strength of the specimen for each direction. As the previous section computed an

elastic property, herein, non-linear calculations are performed at each step of the principal

test in order to yield these failure properties. The results are plotted in terms of residual

strengths defined by the ratio between actual tensile strengths fax, ftrY and ftrZ to the initial

state one f :

rax =
fax
f

, rtrY =
ftrY
f

and rtrZ =
ftrZ
f

(65)

Theoretically, these residual strengths are unit valued or null whether the specimen is in

the elastic domain or ruined. Their evolution through tension and compression failure are

drawn as a function of the principal calculation axial strain (Figure 17(b) and Figure 17(a),

respectively).

The results show approximately the same behavior as those for the elastic moduli. Re-

garding the tension failure, a more important decrease of the tensile strength is observed

in the axial direction than along the transversal directions. The ratios are also of the same

order of magnitude. Indeed, when the specimen has lost ≈ 80% of its strength in the for-

mer direction, it has only lost ≈ 20% in the last two. Regarding the compression test, the

specimen seems to follow a rather isotropic behavior. Nevertheless, the transversal resid-
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Figure 17: Evolution of the residual tensile strength during the failure process

ual strengths are a little smaller. Notice that at these failure states, the specimen has lost

≈ 90% of its tensile strength, representing the completely ruined state of the specimen.

However, regarding the transversal directions, it can be noticed that this state seems rather

more deteriorated than what experimental results shows.

7. Discussions and conclusions

This paper first sets a numerical tool for the modeling of the quasi-brittle behavior of

heterogeneous materials such as the cementitious ones. This model can be viewed as a multi-

scale model, aiming at upscaling data from mesoscopic scale (millimeter scale for concrete)

to macro-scale.

At meso-scale the numerical implementation is based on the introduction of kinematics

enhancements of two kinds within the FE context. The first enhancement, referred to

as weak, leads to a non-adapted mesh strategy for heterogeneous morphologies. It can

therefore be “simply” projected onto an unstructured mesh, freeing us of any expensive

algorithm that aim to match a mesh onto a given morphology. Indeed, according to the non-

adapted mesh point of view, this mesh is created regardless of any physical surface (i.e. the

interface between each component). The second enhancement, referred to as strong, models

discontinuities in the displacement field that are viewed as micro-cracks. Their opening
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evolution are directly linked to the local fracture energy and tensile strength leading to a

model with only two meaningful non-linear parameters. These two enhancements make the

model a relevant and efficient tool to represent the failure mechanisms in a continuum region

(mortar matrix cracking) as well as on its interfaces (debonding).

Numerical applications of the model have been shown by modeling concrete specimens

mainly under uniaxial loadings. The massive use of E-FEM in this case, which consists in the

introduction of a high number of strongly enhanced elements (typically more than hundreds

of thousands), has lead to complex macroscopic crack patterns. Moreover it has revealed

some emergent macroscopic responses that exhibit several features such as asymmetry of

the tension-compression stress-strain relationship, which are typical of concrete. However,

even though the implementation of full kinematics presented here is a major improvement

compared to simpler FE (see Benkemoun et al. (2010)), several weak points are worth

noticing regarding the macroscopic responses. They are now discussed.

First, a low ratio of compression to tension strengths and a too brittle behavior in

compression are still observed. To the authors point of view, the main reason for that is the

choice of rather simple failure mechanisms and cracks opening mode at meso-scale. Hence

future work shall include for example, mode II or I+II crack opening. Furthermore, from

the authors experience, it has been noticed that high fraction volumes leads to higher ratio

of compression to tension strengths. Unfortunately, increasing the fraction volume leads to

the need of representing thinner heterogeneity (and therefore finer meshes), thus leading to

unreasonable time consuming computations (a computation as presented in this paper takes

about 24h of CPU time). Second, as it can be seen in Figure 7, some locking effect can

be observed for both tension and compression curves, which exhibit, for large

strain, an asymptotic behavior that does not correspond to zero macroscopic

force . As a matter of fact, this issue can directly be linked with the two problematics

addressed just above. Indeed, it has been said that the orientation of the strong discontinuity

at the interface are set to be equal to the weak discontinuities, thus being pre-defined by the

heterogeneities (and not based on the principal stress directions). And since the failure is

governed by a mode I opening mechanism, stress locking often occurs when the displacement
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incompatibilities results in shear loading. Furthermore, the ratio of weakly enhanced element

increase along with the fraction volume which highlight even more the need of mode II

opening. Finally, if not sufficiently discretized by the FE mesh, the morphology can exhibits

“elastic paths” within the aggregates, thus explaining partially the stressed state at the end

of the loading. Due to the inner complexity of this topological quantification, only a visual

validation has been made, thus leading to reasonable doubts as to the disconnected state of

all discretized inclusions.

Moreover the model clearly offers a large number of perspectives dealing with multi-

physics. This is a major point associated to the durability of concrete structures, for which

mass transfers are the cornerstone. Thus improving the physics of the modeling can be made:

(1) through a coupling between the cracks pattern (obtained from a mechanical analysis)

to simple flows (such as the Poiseuille flow between two planes). (2) according to a better

morphological representation of the heterogeneities, e.g. accounting for the largest porosity

that can be found within mortar matrix. On a more general point of view, the authors

think that the use of the E-FEM in the context of heterogeneous materials shall be applied,

in a near future, to smaller scales (typically the micrometer scale dealing with concrete),

allowing for a better understanding of the role played by simple failure mechanisms and their

propagation to macro-scale. Thus the future development of this model lies in retaining the

spirit of the physical significance of fine scales.
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Pijaudier-Cabot, G., Bažant, Z., 1987. Nonlocal damage theory. Journal of Engineering Mechanics 113 (10),

1512–1533.

Prévost, J.-H., 1975. Soil mechanics and plasticity analysis of strain softening. Gotechnique 25, 279–297(18).

URL http://www.icevirtuallibrary.com/content/article/10.1680/geot.1975.25.2.279

Roubin, E., 2013. Meso-scale fe and morphological modeling of heterogeneous media : applications to

cementitious materials. Ph.D. thesis, ENS-Cachan.

Roubin, E., Bogdan, M., Hosseini, M., N., B., J.-B., C., 2014. Morphological modeling of cementitious

materials: a generalized method based on excursion sets of correlated random fields. in preparation.

Sandler, I. S., Wright, J. P., 1984. Theoretical Foundations for Large Scale Computations of Nonlinear

46



Material Behavior. Strain-softening. In: Nemat-Nasser, S., Asaro, R., Hegemier, G. (Eds.). Martinus

Nijhoff, Netherlands, pp. 285–315.

Shanno, D. F., 1970. Conditioning of quasi-newton methods for function minimization. Mathematics of

Computation 24, 647–656.

URL http://dx.doi.org/10.1090/S0025-5718-1970-0274029-X

Simo, J. C., Oliver, J., 1994. A new approach to the analysis an simulation of strain softening in solids. In:

Fractude and Damage in Quasibrittle Structures, z. p. bazant, z. bittar, m. jirásek and j. mazars Edition.
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Abstract

This paper presents a Finite Element model for the modeling of the failure of heterogeneous

material at the meso-scale. This model is cast into the framework of the Enhanced Finite

Element Method (E-FEM). Two kinds of enhancement are performed: (1) in the displace-

ment field (strong discontinuity approach) in order to take into account micro-cracks, (2)

in the strain field (weak discontinuity) in order to take into account heterogeneities without

any mesh adaptation. Mechanical applications (uniaxial tension and compression loading,

non-proportional loading) are performed in the context of cementitious materials such as

concrete. We show the capability of the model to represent some of the main features of

such materials observed at macro-scale.

Keywords: heterogeneous quasi-brittle material, strong discontinuity approach, E-FEM

method, EAS method.

1. Introduction

Fracture in brittle or quasi-brittle materials — such as geological media like clay or ce-

mentitious ones — may occur under several loading paths such as tension or compression.
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Modeling this phenomenon is still a very active area. The so-called macroscopic approaches

are mainly based on the definition of a Representative Volume Element (RVE) which allows

for defining macroscopic stress and strain tensors. Usually those quantities lead to deriving

rate-independent strain-softening plasticity models (Prévost (1975)) or damage models (Ol-

livier et al. (2012)). Those models are leading to ill-posedness partial differential equations

(Sandler and Wright (1984)) and mesh-dependent results that require techniques introduc-

ing intrinsic length scales such as the rate-dependent plasticity (Needleman (1988)) or the

non-local approach (Pijaudier-Cabot and Bažant (1987)). In opposition, the approach of

interest in this paper, namely the strong discontinuity approach, yields mesh-independent

finite element solutions without introducing any intrinsic length scale. The main reason for

this is that dissipation is computed over a surface of zero measure, thus being independent

from the element size (Simo et al. (1993)). Moreover an important feature of the strong dis-

continuity approach is that the magnitude of the displacement jump may be viewed as the

crack opening value, which thus belongs to the set of unknowns. This is a key point dealing

with Civil Engineering structures for which the lifespan is evaluated not only according to

the mechanical point of view but mainly through its durability and the corresponding mass

transfers (Jourdain et al. (2011)). Considering the literature related to the strong discon-

tinuity approach, it is worth noting that it is mainly used in the context of macroscopic

problems (e.g. uniaxial test (Oliver (1996)) or bi-axial test (Wells and Sluys (2001a)). At

this scale, only a few macroscopic cracks are to be modeled. Thus the ratio between the

number of elements for which strong discontinuities are introduced to the total number of

elements in the mesh is quite low. Moreover, because at this scale a relevant crack path

modeling is of crucial importance, some authors enforce its continuity by means of numer-

ical techniques such as tracking algorithms (Oliver et al. (2004)) or by solving secondary

problems based on a crack path field (Dias (2012)). This implementations often lead to

complex non-local computations, thus weakening the attractive local aspect of embedded

discontinuity approaches. However, these more accurate modelings of the crack path physi-

cal representativity are known to significantly reduce issues related to high strain localization

such as stress locking and mesh bias dependency.
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In this paper, following the idea developed in (Benkemoun et al. (2010)) and (Benkemoun

et al. (2012)), a new paradigm is presented: the use of the strong discontinuity approach

at the mesoscopic scale. In this context, the strong discontinuity approach becomes a tool

to model (1) a diffuse process of cracking and (2) the coalescence of micro-cracks leading

to one or several macro-cracks and eventually to the failure of the specimen. This massive

use of strong discontinuities leads to a large ratio of the number of elements for which

strong discontinuities are activated to the total number of elements in the mesh and so to a

quite complex and precise shape of the macroscopic crack(s). Moreover the large number of

micro-cracks represented also offers a way to model macro-scale crack path continuity and

branching as a result of micro-cracks coalescence.

At the mesoscopic scale (e.g. millimeter scale for concrete), heterogeneities play a signifi-

cant role: for concrete, they are aggregates inclusions embedded within a mortar matrix. In

order to explicitly take them into account within a Finite Element context, the authors turn

to a method referred as non-adapted meshing process (Moës et al. (2003)). This consists

in a unique “homogeneous” mesh with nodes placed independently from the heterogeneous

morphology and thus from the interfaces. Hence, for a given micro-structure geometry, a set

of elements are split into two parts by a physical interface. These elements are decomposed

into two sub-domains that inherit of each material phase properties. In order to introduce

this contrast of property in the classical linear elements, an enhancement of the kinematics

is performed by means of a jump within the strain field — this being known as a weak

discontinuity. The pioneer work on that matter goes back to the end of the 80’s (Ortiz

et al. (1987)) for the modeling of localization bands. The application of weak discontinuities

in the context of material heterogeneities modeling has been introduced later in (Sukumar

et al. (2001)).

Dealing with two-phase materials (e.g.matrix-inclusion), the non-adapted meshing method

leads to two classes of elements: the ones that are completely within the matrix or within

the inclusions, and the elements split into two parts. Only the latter type of elements are

enhanced by the mean of weak discontinuities. Hence, the meshing process, referred to as

morphological projection, consists in assigning their type to the original elements of the
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mesh. This methodology can be applied to three-dimensional random shapes, allowing com-

plex geometry (based for example on excursion sets of random fields (Roubin (2013), Roubin

et al. (2014)). This point is depicted on figures 1(b) and 1(c) (where matrix, inclusion and

interface elements are represented in light, medium and dark grey, respectively).

(a) Original mesh (b) Projection of a random mor-

phology

(c) Projection of another real-

ization

Figure 1: Projection of two-phase morphologies on a 3D mesh

A weak discontinuity (Hautefeuille et al. (2009)) (finite jump in the strain field) is in-

troduced into each element in order to take into account this particular kinematics. This

technique provides a meshing process that does not depend on the position and the shape of

the inclusions. Cracking and softening behavior observed for quasi-brittle material such as

concrete are introduced thanks to a strong discontinuity (Oliver et al. (2002)) (finite jump in

the displacement field) in each elements. These discontinuities represent micro-cracks that

can occur in any phases (aggregates or mortar matrix) and the debonding at the interface

between aggregates and mortar matrix.

The remainder of the paper begins in Section 2 with a description of the kinematics for

weak and strong discontinuities with which we work, and is then organized as follows: in

Section 3, we introduce those kinematics into a Finite Element model, in Section 4, a general

Finite Element discretization of the problem is presented and its resolution is described

and applied to 4-node tetrahedron elements in Section 5. Finally, in Section 6, attention

is focused on the capability of the model to represent the main features of cementitious
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materials by means of mechanical loading. First uniaxial tension and compression loading

are performed. On the one hand, we show the emergence of the typical asymmetry of

the respective macroscopic responses. On the other hand, we make a complete review of

the crack patterns. The observations enlighten the close relationship between these two

phenomena. In addition, non proportional loadings are performed in order to analyze the

induced anisotropic behavior due to the failure process. This study is carried out on the

previous uniaxial tension and compression tests by means of damage indicator — linear

post-analysis on Young modulus degradation — as well as residual strength — non linear

post-analysis on tensile strength degradation.

2. Kinematics description of weak and strong discontinuities

In this section, we summarize the basic notations employed all along the paper and

remind kinematics of both weak and strong discontinuities.

We denote by Ω ⊂ R3 a domain with smooth boundary ∂Ω and the spatial position of a

particle by x ∈ Ω. This domain is discretized by means of standard isoparametric elements

such as Ω = ∪nelm
e=1 Ωe. Naturally, position of weak discontinuities are defined by the material

heterogeneities surfaces (interfaces) and therefore known prior to any mechanical calculation.

They are represented on figure 2 by the smooth contours of the grey shapes which have to

be seen as the heterogeneities. In opposition, strong discontinuities (cracks) are introduced

thanks to a stress-based localization criterion. Hence they can be, theoretically speaking,

scattered anywhere in the domain (red curves on figure 2). However, in the presented

framework, the physically meaningful assumption that they can be present only in the

matrix (white zone) or following material heterogeneities surface is made. Whatever the

origin of the discontinuity is, it will be called Γd through this paper for sake of clarity.

Dealing with both weak and strong discontinuities, three cases can be present in an

element Ωe: 1) only a weak discontinuity is present, 2) only a strong discontinuity is present,

3) both of them are present. The usual representation of (Jirásek (2000)) on figures 3(a) and

3(b) can be extended in the case of double enhancement as depicted on figure 3(c). In the

first case, the shape of the material surface Γd is defined by the shape of the heterogeneity, the
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direction of the unit normal n is taken orthogonal to Γd and a jump of material properties

passing through Γd is present. In the second case, the direction of the unit normal n is

defined by a standard principal stress criterion and a displacement jump passing through

Γd has to be considered. In the last case, the shape of the material surface Γd is defined by

the shape of the heterogeneity, the direction of the unit normal n is taken orthogonal to Γd

and a jump of material properties and of the displacement passing through Γd are present.

It implies that the crack opening will be localized on Γd or in other term on the physical

boundary of each phase. As it is depicted on figure 2, such elements are split into two parts

Ωe and Ωe so that Ωe = Ωe ∪ Ωe .

Ω

n

Ωe
Γd
Ωe

Ωe

Ωe Γd

Ωe
n

Ωe

Γu

Figure 2: Illustration of the two kinds of discontinuous elements used in Ωe. On top right; a so-called matrix

element embedded with only strong discontinuity and on bottom right; a interface element with both weak

and strong discontinuity

Finally having at hand these two discontinuities, the total strain is written in the context

of the enhanced strain fields (Simo and Rifai (1990)) such as:

ε = ∇
sū

︸︷︷︸

regular

+ ε̃
︸︷︷︸

weak

+ ε̂
︸︷︷︸

strong

, (1)

where ∇
sū is the symmetric gradient of the displacement field. As in (Simo and Rifai

(1990)), we refer to ε̃ and ε̂ as the enhanced parts of the strain field. The notation •̃ (resp.

•̂) refers to weak (resp. strong) discontinuity.

Having those considerations in mind, we turn now to kinematics of weak and strong

discontinuities.
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(a) (b) (c)

Figure 3: From (Jirásek (2000)), element with: a) one weak discontinuity, b) one strong discontinuity and

c) both weak and strong discontinuity

2.1. Weak discontinuity kinematics

In this part, interest is made only on weak discontinuity kinematics thus only ε̃ is consid-

ered. In order to determine the form of ε̃, considerations on its corresponding displacement

field labelled ũ are taken. The description of such a displacement field depends naturally

on its expression in Ωe and Ωe . Let’s call ũ the displacement field in Ωe and ũ the one

in Ωe . A first natural consideration is to impose continuity of ũ passing through Γd. This

yields to

ũ = ũ ∀ x ∈ Γd. (2)

Whereas ũ itself remains continuous, the displacement gradient shall exhibit a jump

across the surface discontinuity. Maxwell’s compatibility conditions (Gurtin (1984)) lead to

the form,

ũ = Θ n · (x− ξ) ([|ε|]n n+ [|ε|]m m+ [|ε|]t t) with Θ =







Θ ∀ x ∈ Ωe

Θ ∀ x ∈ Ωe

, (3)

where ξ represents the position of Γd, thus letting n · (x− ξ) act has the signed

distance to the surface discontinuity, and Θ a still unidentified piecewise constant

shape function with unit jump at discontinuity surface (a specific definition is

given in section 3) . The introduction of the Θ function leads to a different definition of

ũ weather it is evaluated in Ωe or in Ωe . In (3), [|ε|]n, [|ε|]m and [|ε|]t are three constants

that can be identified as the strain jumps. Actually, by considering the symmetric gradient
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of the displacement field ũ of components (ũn, ũm, ũt), ε̃ can be written:

ε̃ = ∇
s(ũ) =








ũn,n
1
2(ũn,m + ũm,n)

1
2(ũn,t + ũt,n)

sym ũm,m
1
2(ũm,t + ũt,m)

sym sym ũt,t








, (4)

where (•,n), (•,m) and (•,t) represent derivatives in relation with n, m and t.

Then the difference between ε̃ and ε̃ can be expressed as follows

ε̃ − ε̃ =








[|ε|]n [|ε|]m [|ε|]t

[|ε|]m 0 0

[|ε|]t 0 0








, (5)

where [|ε|]n, [|ε|]m and [|ε|]t stand for (ũn,n−ũn,n), (ũn,m−ũn,m) and (ũn,t−ũn,t), respectively.

All the specificity of the weak discontinuity kinematics lies on the enhancement displace-

ment field ũ and its related strain field ε̃. The form of ε̃ is now known: Θ has to be still

exactly defined according to additional statical considerations. One can already note that

the enhancement brings three parameters (stored in the so-called weak discontinuity vector

[|ε|]) that will be future unknowns of the mechanical problem.

2.2. Strong discontinuity kinematics

In this part, an element Ωe is only split by a discontinuity in the displacement field.

Thus only ε̂ is present. Since strong discontinuity kinematics has been widely studied in the

literature (see Simo et al. (1993), Oliver (1996) and Wells and Sluys (2001b) for instance)

herein, focus is placed only on the key points of this method.

The displacement field u of an element Ωe crossed by a strong discontinuity can be

mathematically decomposed, following (Simo and Oliver (1994)), by

u = ū+ (HΓd
− ϕe) [|u|] , (6)

where ū is a regular and continuous part of the displacement field that allows us to impose

standard boundary conditions (Oliver (1996), part II), HΓd
is the Heaviside function centred
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on Γd such as

HΓd
=







1 if x ∈ Ωe

0 if x ∈ Ωe

, (7)

ϕe is an arbitrary continuous shape function in Ωe of unit value at each nodes in Ωe and

null at each nodes in Ωe and finally, [|u|] is a continuous function on Ωe. The components

of the displacement jump at the discontinuity are given by [|u|]x∈Γd
.

By taking the symmetric gradient of equation (6) and following the development proposed

in (Simo and Oliver (1994)), we obtain the underlying strain field such as

∇
su = ε = ∇

sū+ (HΓd
− ϕe)∇

s [|u|]− ([|u|]⊗∇ϕe)
s

︸ ︷︷ ︸

bounded

+ δΓd
([|u|]⊗ n)s

︸ ︷︷ ︸

unbounded

, (8)

where δΓd
is the Dirac-delta distribution centred at the surface discontinuity and n its normal

vector. Except from the fact that [|u|] represents the components of the displacement jump

when evaluated on Γd, this field will not be explicitly defined. At this stage, the resulting

information of this reasoning is the decomposition of ε̂ into a regular and bounded part ε̂b

and an unbounded one ε̂u

ε̂ = ε̂b + ε̂u = (HΓd
− ϕe)∇

s [|u|]− ([|u|]⊗∇ϕe)
s

︸ ︷︷ ︸

ε̂b

+ δΓd
([|u|]⊗ n)s

︸ ︷︷ ︸

ε̂u

. (9)

And so the total strain field in presence of a strong discontinuity only has the form

ε = ∇
sū+ ε̂ = ∇

sū+ ε̂b + ε̂u. (10)

We can notice that strong discontinuity approach brings an unbounded part into the

strain field. With such properties, physical considerations like continuity of the traction

vector at Γd or bounded stress in Ωe seem rather impossible to respect. Under the name

of strong discontinuity analysis, the authors in (Simo et al. (1993)) propose solutions in

order to ensure that constitutive models used are still consistent in presence of strong dis-

continuity. Among them, the so-called Discrete Strong Discontinuity Approach (DSDA)

(Oliver (2000)) is used here. Hence, the continuum model equipped with strong disconti-

nuity leads to an underlying discrete model at the discontinuity Γd. On the one hand, a

9



standard continuum relationship links strain and stress fields in Ωe\Γd and on the other

hand, a traction-separation law linking the traction vector to the crack-opening [|u|] on Γd

is introduced, modeling the failure mechanism.

2.3. Remarks

• ε̃ (i.e. Θ) is not defined yet. It will be in Section 3.

• [|u|] is chosen as a constant function thus its symmetric gradient is equal to 0. This

leads to an explicit formulation of the bounded part of the strong enhanced strain

referred as Kinematically Enhanced Strain (KES). It is defined by

ε̂b = − ([|u|]⊗∇ϕe)
s . (11)

• We remind that the contribution of weak and strong discontinuities can be added if

both of them occur, leading to the following strain enhancement

ε = ∇
sū+ ε̃+ ε̂. (12)

• Additional set of unknowns [|ε|] and [|u|] has to be solved. The resolution will be

detailed in Section 4. For the time being, it is sufficient to know that each set is

defined at the element level. Hence, a local resolution will be performed for their

determination letting the problem size unchanged.

3. Discontinuity implementation into a three-field variational framework

The Finite Element implementation of the problem is cast into a three-field variational

framework. It is shown in this section how such a statement allows us to blend the presented

strain enhancement into a Finite Element framework. Both yet undetermined shapes of the

enhanced strains are defined following both static and kinematics considerations. Moreover,

this formulation leads a handful incorporation of the discrete model using traction-separation

law on Γd.
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3.1. Hu-Washizu three-field variational formulation

The main idea of the Hu-Washizu (Washizu (1982)) formulation is that, unlike classical

displacement formulations, the three fields (ū, ε,σ), respectively the standard displacement

field, the standard strain field and the standard stress field are considered independent. We

call (η̄,γ, τ ) respectively the virtual displacement, the virtual strain and the virtual stress

fields. With this notation at hand, the Hu-Washizu formulation reads as follows:

• the classical equilibrium equation (or virtual work) (virtual displacement)

HWū(ū, ε,σ; η̄) =

∫

Ω

∇sη̄ : σ dΩ−

∫

Ω

η̄ · ρb dΩ−

∫

Γt

η̄ · t d∂Ω = 0, (13)

• the kinematics equation (virtual stress)

HWσ(ū, ε,σ; τ ) =

∫

Ω

τ : (∇sū− ε) dΩ = 0, (14)

• the behavior equation (or constitutive model) (virtual strain)

HWε(ū, ε,σ;γ) =

∫

Ω

γ : (σ̌ (ε)− σ) dΩ = 0, (15)

where σ̌ is a stress field that verified the behavior law and
∫

Ω η̄ · ρb dΩ and
∫

Γt
η̄ · t d∂Ω

the virtual work of the volumic and surfacic loadings. Note that in classical variational for-

mulation (in displacement) we usually have, by definition







ε
#
= ∇

sū

σ
#
= σ̌(ε)

which would make

(14) and (15) irrelevant.

Having this three-field variational formulation at hand, we now turn in the next subsec-

tion to the so-called Assumed Strain Method developed in (Simo and Rifai (1990)).

3.2. Assumed Strain Method

The first idea of the Assumed Strain Method is to enhance both standard and virtual

strain fields. Each of them can be decomposed into three parts. For the standard strain

field, it gives

ε = ∇
sū

︸︷︷︸

regular

+ ε̃
︸︷︷︸

weak

+ ε̂
︸︷︷︸

strong
︸ ︷︷ ︸

enhanced

(16)
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and for the virtual strain field

γ = ∇
sη̄

︸︷︷︸

regular

+ γ̃
︸︷︷︸

weak

+ γ̂
︸︷︷︸

strong
︸ ︷︷ ︸

enhanced

. (17)

Note that γ̂ respects the form of ε̂ (see equation 9) thus it is decomposed into a bounded

part γ̂b and an unbounded part γ̂u.

Substituting equation (16) into equation (14) and combining equations (13), (15) and

(17) we obtain the following modified three-field variational problem:

∫

Ω

∇sη̄ : σ̌(∇sū+ ε̃+ ε̂) dΩ−

∫

Ω

η̄ · ρb dΩ−

∫

Γt

η̄ · t d∂Ω = 0, (18)

∫

Ω

τ : ε̃ dΩ = 0, (19)

∫

Ω

τ : ε̂ dΩ = 0, (20)

∫

Ω

γ̃ : (σ̌ (∇sū+ ε̃+ ε̂)− σ) dΩ = 0, (21)

∫

Ω

γ̂ : (σ̌ (∇sū+ ε̃+ ε̂)− σ) dΩ = 0. (22)

Following the second idea of the Assumed Strain Method, the explicit presence of the

stress field is eliminated from the modified three-field variational formulation by choosing

the space of the stress field L2-orthogonal to the space of the enhanced strains. As a result,

equations (19) and (20) are satisfied and the second term of (21) and (22) vanish. And so

the modified three-field variational formulation becomes:

∫

Ω

∇sη̄ : σ̌(∇sū+ ε̃+ ε̂) dΩ−

∫

Ω

η̄ · ρb dΩ−

∫

Γt

η̄ · t d∂Ω = 0, (23)

∫

Ωe

γ̃ : (σ̌ (∇sū+ ε̃+ ε̂)) dΩ = 0, (24)

∫

Ωe

γ̂ : (σ̌ (∇sū+ ε̃+ ε̂)) dΩ = 0. (25)

It can be noted that due to the previous L2-orthogonal condition, the stress field σ does not

appear in the final statement of the formulation. Moreover, since no inter element (enhanced
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strain and stress) continuity requirement is imposed, this condition can be applied indepen-

dently on each nel-typical elements. Henceforth, equations (24) and (25) are evaluated at a

the element level — on Ωe for e = (1...nel).

The third idea of the Assumed Strain Method is to assure that after having enforced

the L2-orthogonality condition, the stress field must at least include piece-wise constant

functions; the combination of these two conditions (L2-orthogonality and piece-wise constant

functions) implies satisfaction of the patch test (see Simo and Rifai (1990)). Mathematically

speaking, this gives
∫

Ωe

γ̃ dΩ = 0 and

∫

Ωe

γ̂ dΩ = 0. (26)

Regarding the weak discontinuity, equation (26.1) can be written as

∫

Ωe

γ̃ dΩ+

∫

Ωe

γ̃ dΩ = 0. (27)

By assuming that the surface of discontinuity is flat (n is constant) within an element,

solving (27) gives conditions on Θ. If we also assume that both Θ and Θ are constant in

Ωe and Ωe , we obtain:

V Θ + V Θ = 0. (28)

The choice retained here is: Θ = V /V and Θ = −V /V where V, V and V are the

volumes of Ωe,Ωe and Ωe respectively.

Regarding the strong discontinuity, equation (26.2) can be written as

∫

Ωe

γ̂b dΩ+

∫

Ωe

γ̂u dΩ = 0. (29)

If we choose for γ̂u a form respecting ε̂u namely δΓd
([|η|]⊗ n)s, we get

∫

Ωe

γ̂b dΩ+

∫

Γd

([|η|]⊗ n)s d∂Ω = 0. (30)

The same assumption of constant strain field and flat interface within an element are made.

Thus γ̂b has the form of the so-called Assumed Enhanced Strain (EAS)

γ̂b = −
A

V
([|η|]⊗ n)s , (31)
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with A the area of the discontinuity.

This method gives naturally an non-symmetric formulation: the virtual strain field space

γ̂b based on EAS (equation (31)) differs from the standard strain field space ε̂b based on

KES (equation (11)). It has been shown that this non-symmetric approach leads to superior

numerical results in spite of the fact there is a variational inconsistency in the derivation

(see Wells and Sluys (2001b)).

In the next section, the Finite Element discretization of equations (23), (24) and (25) is

presented.

4. Finite Element discretization and resolution methodology

In this part, the Finite Element discretization of equations (23), (24) and (25) which

correspond to the system to be solved is presented. First the discretization of the standard

strain field and the virtual strain field respecting the form obtained in Sections 2 and 3 is

shown, in a second time those discretizations are incorporated in equations (23), (24) and

(25) to get the Finite Element problem. Note that the next Finite Element discretizations

are general and valuable for tetrahedron, beam or truss elements.

Note: Unless mentionned, Voigt notation is now used.

4.1. Strain fields discretization

Following the form obtained in Sections 2 and 3, the discretization of the standard strain

field and the virtual strain field is written as follows:

ε = [εxx εyy εzz 2εxy 2εyz 2εxz]
T = Bd

︸︷︷︸

∇sū

+ Gw [|ε|]
︸ ︷︷ ︸

ε̃

+ Gs [|u|]
︸ ︷︷ ︸

ε̂b

, (32a)

γ = [γxx γyy γzz 2γxy 2γyz 2γxz]
T = B δ

︸︷︷︸

∇sη̄

+ Gw [|γ|]
︸ ︷︷ ︸

γ̃

+ G∗
s [|η|]

︸ ︷︷ ︸

γ̂

, (32b)

where several interpolation matrices introduced correspond to: B (= ∂N) the standard

strain interpolation matrix, Gw the standard and virtual fields corresponding to the weak

discontinuity, Gs the standard field corresponding to the strong discontinuity (bounded part
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ε̂b) and G∗
s the virtual field corresponding to the strong discontinuity (bounded and un-

bounded part γ̂). d are nodal displacements and [|ε|] (resp. [|u|]) corresponds to additional

unknowns arising from the kinematics enhancement of weak (resp. strong) discontinuity.

Regarding weak discontinuity kinematics, Gw can be decomposed into Θ and a constant

part Hw that only carries information on the interface vector n such as:

Gw =







Gw = Θ Hw = V
V Hw in Ωe

Gw = Θ Hw = −V
V Hw in Ωe

. (33)

The KES interpolation matrix Gs derives from equation (11) and can be computed by expli-

cating the arbitrary function ϕe. Such function can be defined using standard interpolation

shape functions as follows:

ϕe(x) =
nen∑

a=1

N apa with pa =







1 if node number a ∈ Ωe

0 if node number a ∈ Ωe

, (34)

where nen is the number of nodes in the element and pa the nodal values of ϕe. Gs is

therefore the equivalent symmetric operator (• ⊗ ∇(ϕe))s in the Voigt notation of equation

(32a).

The EAS interpolation matrix G∗
s is known from equation is decomposed in a bounded

G∗
s,b and an unbounded G∗

s,u part that derives from equation (31) and (9), respectively. It

leads to:

G∗
s = G∗

s,b +G∗
s,u =

(

−
A

V
+ δΓd

)

H∗
s , (35)

where H∗
s is the equivalent symmetric operator (• ⊗ n)s in Voigt notations of the strain

field as in (32b).

Having those discretizations and the form of Gw, Gs and G∗
s at hand, equations (23),

(24) and (25) can now be discretized.

4.2. Finite Element discretization of the problem

Injecting equations (32) into (23), (24), (25) and considering (33) and (35), the discretized

problem to be solved reads as follows:
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nel

A
e=1

[f e
int − f e

ext] = 0, (36a)

h[|ε|] =
V

V

∫

Ωe

HT
w σ̌ dΩ−

V

V

∫

Ωe

HT
w σ̌ dΩ = 0 ∀e ∈ [1 .. nel], (36b)

h[|u|] = −
A

V

(∫

Ωe

H∗,T
s σ̌ dΩ+

∫

Ωe

H∗,T
s σ̌ dΩ

)

+

∫

Γd

T d∂Ω = 0 ∀e ∈ [1 .. nel], (36c)

where all the σ̌ linearly depend on d, [|ε|] and [|u|] and where

f e
int =

∫

Ωe

BT σ̌ dΩ+

∫

Ωe

BT σ̌ dΩ, (37a)

f e
ext =

∫

Ωe

NTρb dΩ−

∫

Γt

NT t d∂Ω and (37b)

T = H∗,T
s σ̌ == σ̌ · n

︸ ︷︷ ︸

Matrix

is the traction vector. (37c)

The behavior law written in relation with the spatial position x is

σ̌(d, [|ε|] , [|u|]) =







σ̌ = C ε = C
(

Bd+Gw [|ε|] +Gs [|u|]
)

if x ∈ Ωe

σ̌ = C ε = C
(

Bd+Gw [|ε|] +Gs [|u|]
)

if x ∈ Ωe

, (38)

Equation (36a) is the global equilibrium equation of a standard Finite Element problem

whereas equations (36b) and (36c) are local equations added by the presence of the enhanced

parts of the strain field. It is important to recall that they are solved at the element level,

allowing us to dertermine the values of [|ε|] and [|u|] by performing a local resolution.

As the whole framework fits into the Discrete Strong Discontinuity Approach, two behav-

iors have to be considered. First, regarding the continuum bodies Ωe and Ωe , the behavior

is considered elastic. This rather strong assumption is justified by the general spirit of simple

meso-scale modeling. However, more complex behaviors such as plasticity or damage can

also be implemented (see Oliver (1996) for details). Then, the second part of the modeling

takes place at the discontinuity surface Γd. A governing law that links the traction vector

T = σ̌|Γd
· n1 is defined on the surface Γd where the crack opening magnitude drives the

non-linear failure mechanism. Such laws are often referred as traction-separation laws. In

1 Matrix notation
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order to fit in the general spirit of simple meso-scale modeling, a very basic single traction

criterion and brittle softening is used here. The next subsection describes its main charac-

teristics and shows how it is incorporated in the Finite Element problem (36a, 36b, 36c).

Finally, after linearising these equations, the Finite Element problem is written under a

matricial form and the solving strategy is presented.

4.3. Discrete constitutive model on Γd

The discrete model is based upon a relationship between the traction vector T (via an

equivalent stress σeq) and the crack opening magnitude labelled [u]. The equivalent stress σeq

value has to be tackled with careful attention in order to depict a meaningful representation.

Thus two cases have to be considered. First, if we consider the case where only the strong

discontinuity is present (case 1) of Section 1), no geometrical information are given on the

crack orientation. The choice is made here to use the larger principal stress component as

the equivalent stress σeq = σI. This principal component is simply the first eigenvalue of

the stress matrix. Furthermore, the corresponding eigenvector nI represents its direction.

The physical meaning of eigenvalue problems naturally leads to the choice of this vector

in order to represent the crack orientation n ← nlocalization
I . Secondly, if both weak and

strong discontinuities are present (case 3) of Section1), it is assumed that crack opens at

the interface between each phases. The main difference with the latter case is that n is

defined by geometrical characteristics and therefore is independent from any stress state.

Hence, traction vector can be defined prior to localization. In this case, its projection on

the interface direction is used such as σeq = n · T . Attention is drawn to the fact that in

this case, the shear components are non-zero but we assume they do not participate to the

localization process. This is a major assumption that could be improved by considering more

complex criteria. However, in the spirit of multiscale analysis we aimed at first considering

the most simple case.

The discrete model is introduced when the equivalent stress σeq reaches a certain amount

σy, which has to be seen as a meso-scale material characteristic. Mathematically speaking,
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the strong discontinuity is introduced when the following localization criterion becomes zero:

Φl = σeq − σy. (39)

Then, the failure mechanism is driven by a scalar opening criterion Φo defined as follows:

Φo = σeq − (σy − q), (40)

where

q = σy

(

1− exp

(

−
σy

Gf
[u]

))

. (41)

It can be seen that a second material parameter Gf called the fracture energy that

governs the amount of energy necessary for the complete material failure is introduced in

(41). Since [u] represents the magnitude of the crack opening [|u|], the criterion is single

valued. However, an additional projection of the crack has to be defined in order to fit in

the previous framework, introducing a unit jump vector np:

[|u|] = [u] np. (42)

Finally, the behavior can be split into two parts: an elastic one in the body Ωe (linear

relationship between strain and stress fields out of the discontinuity Γd) as drawn on figure

4(a) for a 1D case and a discrete one on the discontinuity Γd by means of a traction-separation

law that links Ωe and Ωe as shown on figure 4(b). Since several choices retained here depend

on element kinematics, details on the different ingredients of this model (σeq, np. . . ) will be

given later.

From equation (36c) and making the assumption of flat interface and constant stress, an

easy integration gives an explicit expression of T as a average value of σ̌ and σ̌ weighted

by volumes such as:

T =
1

V
H∗,T

s (V σ̌ + V σ̌ ), (43)

where V, V and V are the volumes of Ωe,Ωe and Ωe , respectively.
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‖σ‖

‖ε‖

E

(a) Behavior outside the discontinuity interface for

a 1D case

σeq

[u]

σy

Gf

(b) Behavior at the discontinuity interface

Figure 4: Elastic/brittle behavior

Considering now (38), equation (43) can be written in function of (d, [|ε|] , [u]) such as:

T =
1

V
H∗,T

s

(

V C + V C
)

B
︸ ︷︷ ︸

Ks∗b

d (44)

+
V V

V 2
H∗,T

s

(

C −C
)

Hw

︸ ︷︷ ︸

Ks∗w

[|ε|] (45)

+
1

V
H∗,T

s

(

V C + V C
)

Gsnp

︸ ︷︷ ︸

Ks∗s

[u]. (46)

Following (Ibrahimbegovic et al. (1998)), the criterion Φo is now incorporated in the

system (36a, 36b, 36c). By injecting equations (44), (45) and (46) in Φo, we obtain a

criterion depending on (d, [|ε|] , [u]). Since such a criterion leads to a non-linear equation,

one has to linearise it. Rewriting it under an incremental form and collecting terms together,
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Φo leads to

∆Φo =
∂σeq

∂T
∆T +

∂q

∂[u]
∆[u]

=
∂σeq

∂T

1

V
H∗,T

s

(

V C + V C
)

B
︸ ︷︷ ︸

Ks∗b

∆d

+
∂σeq

∂T

V V

V 2
H∗,T

s

(

C −C
)

Hw

︸ ︷︷ ︸

Ks∗w

∆ [|ε|]

+
∂σeq

∂T

1

V
H∗,T

s

(

V C + V C
)

Gsnp

︸ ︷︷ ︸

Ks∗s

∆[u]

+
σ2
y

Gf
e−σy[u]/Gf

︸ ︷︷ ︸

Kq

∆[u].

Thus the linearisation of Φo = 0 gives

Ks∗b

∣
∣
∣

(k)

n+1
∆d

∣
∣
∣

(k+1)

n+1
+Ks∗w

∣
∣
∣

(k)

n+1
∆ [|ε|]

∣
∣
∣

(k+1)

n+1
+ (Ks∗s +Kq)

∣
∣
∣

(k)

n+1
∆[u]

∣
∣
∣

(k+1)

n+1
= −Φo

∣
∣
∣

(k)

n+1
. (47)

In the next subsection, we present the form of the final problem to be solved under a

matricial form and the resolution strategy.

4.4. Global system and resolution strategy

Because the linearisation of equations (36a) and (36b) is trivial the mathematical devel-

opment will be skipped. The global system to be solved in terms of increments of d, [|ε|]

and [u] and condensed in a matricial format is








Kbb Kbw Kbs

Kwb Kww Kws

Ks∗b Ks∗w Ks∗s +Kq








(k)

n+1








∆d

∆ [|ε|]

∆[u]








(k+1)

n+1

=








−
nel

A
e=1

{f e
int − f e

ext}

−h[|ε|]

−Φo








(k)

n+1

, (48)
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where

Kbb = BT
(

V C + V C
)

B,

Kbw = V V
V BT

(

C −C
)

Hw,

Kbs = BT
(

V C + V C
)

Gs np,

Kwb = V V
V HT

w

(

C −C
)

B,

Kww = V V
V 2 HT

w

(

V C + V C
)

Hw,

Kws = V V
V HT

w

(

C −C
)

Gs np,

Ks∗b = ∂σeq

∂T
1
V H∗T

s

(

V C + V C
)

B,

Ks∗w = ∂σeq

∂T
V V

V 2 H∗T
s

(

C −C
)

Hw,

Ks∗s = ∂σeq

∂T
1
V H∗T

s

(

V C + V C
)

Gs np,

Kq =
σ2
y

Gf
e−σy [u] / Gf .

(49)

Solving system (48) is done at two levels. First, following the operator split method spirit,

variables (∆ [|ε|] ,∆[u]) are determined at the element level (local solving) for a given ∆d

by solving: 





h[|ε|] = 0

Φo = 0
. (50)

By developing h[|ε|] = 0 as done previously in (36b), one can note that this equation

is linear, thus the non-linear aspect of the local system (50) comes only from the equation

Φo = 0. This one imposes a standard Newton-Raphson procedure implemented within
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element subroutine. Once system (50) is solved, appropriate values of ∆ [|ε|]
∣
∣
∣

(k+1)

n+1
and

∆[u]
∣
∣
∣

(k+1)

n+1
are known, leading to null residuals h[|ε|]

∣
∣
∣

(k)

n+1
and Φo

∣
∣
∣

(k)

n+1
. ∆d is calculated by

solving the global equilibrium equation using a static condensation (Wilson (1974)) on the

local (known) variables (∆ [|ε|] ,∆[u]). This leads to a matricial system, with a modified

stiffness matrix Ksc, to be solved such as

Ksc

∣
∣
∣

(k)

n+1
∆d

∣
∣
∣

(k+1)

n+1
= −

nel

A
e=1

{f e
int − f e

ext}
∣
∣
∣

(k)

n+1
, (51)

where

Ksc

∣
∣
∣

(k)

n+1
= Kbb −

[

Kbw Kbs

]









Kww Kws

Ks∗w Ks∗s +Kq





(k)

n+1






−1 


Kwb

Ks∗b





(k)

n+1

.

Even though the stiffness matrix has been changed due to kinematics enhancement,

both its size and sparsity are unchanged. Hence, no matter how many heterogeneities are

represented or how many elements have starting to fail, the global size of the problem is

preserved. In terms of numerical resources, the memory needed only depends on the mesh

size (number of nodes). Naturally, local Newton algorithms slows down the global calculation

as the number of strong discontinuity activated increases. By using the static condensation,

a standard FE problem is retrieved, where increments of d have to be found in order to

respect the global equilibrium equation 51.

The most common method used to solve those problems in case of non linearity are the

so-called Newton methods. However, it requires full calculation of full stiffness matrix at

each iteration, and since morphological modeling requires rather fine meshes, a quasi-Newton

algorithm coupled with an iterative solver is used here. Among the huge diversity of those

algorithms, the BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm is retained. It makes

the number of arithmetical operations to fall down from O(n3) to O(n2). The price to pay

is that quasi-linear convergence is obtained (instead of quadratic). Full details are given in

the original papers (Broyden (1970a,b); Fletcher (1970); Goldfarb (1970); Shanno (1970)).

Moreover numerical implementation details are in (Matthies and Strang (1979)). Added
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to the quasi-Newton BFGS, a line-search method is also used, modulating the incremental

displacement norm for each iterations by a factor s:

û(k+1) = û(k) + s(k+1)∆d(k+1).

See Dahlquist (2003) for details on the computation of s. It is recalled that powerful algo-

rithm adapted to the E-FEM such as (Oliver et al. (2008)) and not implemented here can

significantly increase the computation performance.

In the next section, we move to applications of this model in the case of 4-node tetra-

hedron elements. First the explicit form of the matrices encountered all along this paper is

presented for sake of clarity. Then the criterion Φo is written in the considered case.

5. Application to 4-node tetrahedron elements

The use of 4-node tetrahedron elements is now presented in the case of this model. This

volumic discretization brings several advantages compared to the initial implementation of

this framework based on lattice discretization (Benkemoun et al. (2010)). First, an exact

representation is made regarding the volumic tessellation of the mesh, leading to exact rep-

resentation of constant stress problem. Therefore, the problematic of mesh convergence

presented in the aforementioned paper with lattices is irrelevant in this context. Further-

more, a complete kinematics of cracks opening can now be represented (mode I, II). Hence,

both geometrical construction and mechanical behavior are more accurately depicted.

5.1. Interpolation matrices

In this part, attention is drawn to the explicit definition of the matrices encountered

through this paper in the case of tetrahedron elements. In addition, for sake of convenience,

fields are represented in their Voigt notation. Hence, each matrices are developed in this

format.

In the case of an element cut by a discontinuity Γd, the tetrahedron is split into two

sub-domains Ωe and Ωe delimited by the interface Γd of direction vector n (see figure (5)).

It is reminded that this surface is assumed to be flat (n is constant over Γd). Numerical
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implementation of such geometrical construction is not trivial and several cases have be taken

into account depending on the surface orientation. Indeed, Ωe and Ωe can be polyhedron

of respectively 6 and 4, 5 and 5 or 4 and 6 nodes. And since the formulation involves only

volumes V and V (not the discontinuity area, see equation (43)), it has to be considered

with utmost attention.

n

Ωe

Γd

m

t

Ωe

Figure 5: 4-node tetrahedron element with discontinuity surface

Dealing with weak discontinuity, it is reminded that the interpolation matrix Gw can

be decomposed into Θ, a piece-wise constant function depending on the considered sub-

domain and Hw a matrix containing information on the discontinuity surface orientation

(see equation (33)). Following the same Voigt convention, Hw can be constructed so that

the vector format of the strain enhancement matches its tensor definition in equation (33).

The vector n is written in the global coordinate system n = [nx ny nz]T , leading to the

following interpolation matrix format:

Hw =

















n2
x nxmx nxtx

n2
y nymy nyty

n2
z nzmz nztz

2nxny nxmy + nymx nxty + nytx

2nynz nymz + nzmy nytz + nzty

2nxnz nxmz + nzmx nxtz + nztx

















. (52)
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And thus the form of Gw is explicitly known

Gw =







Gw = Θ Hw = V
V Hw in Ωe

Gw = Θ Hw = −V
V Hw in Ωe

. (53)

Regarding strong discontinuity, it is reminded that two matrices have to be considered,

namely Gs and G∗
s,b, making the formulation non-symmetric. The form of Gs is given by

Gs = −

















∂ϕe

∂x 0 0

0 ∂ϕe

∂y 0

0 0 ∂ϕe

∂z

∂ϕe

∂y
∂ϕe

∂x 0

0 ∂ϕe

∂z
∂ϕe

∂y

∂ϕe

∂z 0 ∂ϕe

∂x

















(54)

and the form of G∗
s,b by

G∗
s,b = −

A

V
H∗

s with H∗
s =

















nx 0 0

0 ny 0

0 0 nz

ny nx 0

0 nz ny

nz 0 nx

















. (55)

All components of the enhanced strain field are now explicitly defined. The standard

strain field can thus be built respecting the form of equation (32a) and the system (48)

solved.

We now turn explanation on the localization and opening criterion.

5.2. Localization and opening criterion

Since the discontinuity surface orientation is constructed with geometrical properties

for interface element and with stress consideration otherwise, two cases have to be treated

separately.
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In the case of weak discontinuity within the element, the interface is always defined.

Hence n is known prior to any mechanical calculation. Thus, the traction vector T can be

defined before the localization. In order to represent the interface orientation as the weakest

direction, the equivalent stress for localization is defined as the projection of the traction

vector on it:

Φl = σeq − σy = n · T − σy = Tn − σy (56)

with

T =
1

V
H∗,T

s (V σ̌ + V σ̌ ). (57)

On the contrary, if no material discontinuity can define an interface, strong discontinuity

appears with stress state consideration. One can note that in this case, a constant stress

tensor can be given for the whole element since it is supposed free of material discontinuity.

Its orientation is defined by the principal direction of the stress tensor. If σI is its eigenvalue

then:

Φl = σeq − σy = σI − σy. (58)

When localization occurs (Φl = 0), the corresponding eigenvector nI is recorded and set

as the interface orientation: n ← nlocalization
I . It is assumed that its value remains constant

through time. Afterwards, the traction vector is defined by:

T = H∗,T
s σ̌ (59)

which follows its previous definition with σ̌ = σ̌ = σ̌.

In both cases, after localization the discontinuity surface and its orientation n are defined.

In order to model the same failure mechanism whether an interface element is considered or

not, the opening criterion Φo is assumed to be identical. The equivalent stress is taken to

be the projection of the traction vector on n:

Φo = n · T − (σy − q). (60)

Furthermore, this definition of the equivalent stress leads to a very simple written expression

of the equivalent stress derivative:
∂σeq

∂T
= n. (61)
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Finally, by defining the projection vector np of equation (42) as the normal vector n,

a mode I opening mechanism is represented. Attention is draw to the fact that, in this

case, the evolution of the shear tractions are not driven by the displacement jump. That is

a major assumption which represents a flaw in the model. Improvements may come from

more complex opening mechanisms such as mode II or mode I+II. Those are both under

development and related issues are discussed in the conclusion of the paper.

At this stage, the whole system (48) is now explicitly known in the case of tetrahedron

elements. Thus we can move to numerical examples in the context of concrete-like material

to show the features of the model developed through this paper.

6. Numerical analysis of concrete: from meso to macro-scale

In this section, attention is focused on the capability of the enhanced FE model to

represent the main features of concrete by means of mechanical loading. Starting from meso-

scale (millimeter scale), uniaxial tension and compression tests are performed in order to

show, on the one hand, the emergence of the typical asymmetry of the respective macroscopic

responses and on the other hand, a complete analysis of the crack patterns. Moreover, non

proportional loadings are carried out in order to measure the induced anisotropy. This study

is based on the previous uniaxial tension and compression tests by means of damage indicator

(i.e. linear post-analysis on Young modulus degradation) as well as residual strength (i.e. non

linear post-analysis on tensile strength decrease).

Each numerical example given in this chapter is made on a heterogeneous 100 × 100 ×

100mm3 specimen for which two phases are modeled. Based on unions of excursion sets

(Adler (2008), Roubin et al. (2014)), this method explicitly represents aggregates of different

sizes melt within a matrix that is, roughly speaking a mortar. The former are modeled

with three average diameters of 15, 7 and 5mm representing respectively 25, 50 and 25%

of the total 30% volume fraction (see figure 6(b)). Random shaped inclusions are yielded

by thresholding correlated Random Fields (see Roubin (2013)) and performing the union.

27



Following the non-adapted mesh spirit, once projected onto the FE discretized space, this

morphology is represented by two kinds of elements: those which are completely included

within the matrix or an aggregate and those, close to an interface, that are split and thus

enhanced by a weak discontinuity.

Figure 6(a) shows the FE mesh used. Basically, GMSH (Geuzaine and Remacle (2001))

is used to produced the mesh, which is based on the Delaunay triangulation of a set of

randomly positioned nodes. In order to catch the geometrical information of the smallest

heterogeneities, the mesh used to compute the following examples has about 556 103 nodes

(1 600 103 dof) and 3 500 103 elements. Figure 6(b) shows the projection of a typical mor-

phology onto the mesh (only weakly enhanced and aggregates elements are represented in

light and dark grey respectively).

(a) Unstructured FE mesh. (b) Representation of only aggregates and

weakly enhanced FE.

Figure 6: Projection of a typical excursion set morphology onto the chosen mesh

Table 1 summarizes the material properties at the mesoscopic scale. It is reminded

that the model contains, for each phase, two elastic and two failure parameters, the Young

modulus E, the Poisson ratio ν, the yield stress σy and the fracture energy Gf , respectively.

Furthermore, a yield stress and a fracture energy are also set to define the interface.
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It is worth noting that:

• Aggregates are assumed to remain elastic. Thus, no crack may initiate or propagate

within those elements.

• Weakly enhanced elements do not require any specific characteristics in the elastic

regime. Indeed, as presented in the previous chapter, prior to any debonding (modeled

through a strong discontinuity), they model a perfect interface, thus with infinite

rigidity.

• For sake of simplicity, the failure mechanisms are taken to be equal for both matrix

and interfaces. However, the difference in elastic properties of the matrix

and aggregates leads to stress concentrations at the interface. Since the

failure criterion is based on stress considerations, a similar yield stress in

both matrix and interface still leads to a weaker behavior of the latter.

Finally, the computations are performed under uniform displacement control along the

first spatial axis (X-direction). Moreover two other faces of the domain (normal to the Y

and the Z direction) have constant zero value for their normal displacement. Hereafter, a

value corresponding to the X-direction is referred as axial whereas any transversal quantities

refers to an average value set up on both the Y and Z-directions.

Phase E [GPa] ν [-] σy [MPa] Gf [J.m−2]

Aggregates 100 0.2 - -

Mortar 20 0.2 9 0.1

Interface - - 9 0.1

Table 1: Meso-scale material characteristics of each phase and interface

6.1. Analysis of the macroscopic responses for simple traction and compression

6.1.1. Axial upscaled properties and crack pattern analysis

Figure 7 shows the macroscopic response obtained through the computation for both a

simple tension and a simple compression loading. It plots the macroscopic axial force versus
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the imposed macroscopic axial displacement.

First it is worth noting that, although the failure criterion at the meso-scale is triggered

in tension only, macroscopic simple compression leads to the failure of the specimen. Indeed

this feature is clearly a consequence of the structural effect that is set up by the explicit

representation of the aggregates.

Second, it clearly appears that the macroscopic failures are unsymmetric. This feature is

typical of quasi brittle materials such as concrete. Table 2 sums up macroscopic key values

extracted from figure 7: we denote by EM the macroscopic modulus, σM
f the macroscopic

tensile or compressive strengths, εMf the corresponding macroscopic failure strain and finally

Dp the total dissipated energy. The last value is computed through integration of the

macroscopic axial force over the axial displacement..
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Figure 7: Macroscopic response for simple tension and compression tests

As expected the initial elastic behavior is strictly symmetric. Even though it is quite

difficult to observe the end of the purely elastic region on the plots, it can safely be assumed

that, for compression, the transition to the non linear behavior occurs for a more important

macroscopic stress than for tension. This unsymmetric elastic domain is the first feature
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Loading path EM [GPa] νM [-] σM
f [MPa] εMf [-] Dp [J ]

Compression 37.8 0.195 39.2 1.2 10−3 50

Tension 37.8 0.195 3.9 1.2 10−4 0.5

Table 2: Macroscopic upscaled material properties for both tension and compression

that emerges from the multi-scale analysis.

Regarding the energy Dp needed to reach the specimen ruin, it can be noted that both

are greater than the mesoscopic fracture energy Gf (in J.m−2) assigned to the mortar (cor-

responding values of Dp in tension and compression are 50 and 5 000 J.m−2, respectively).

Furthermore, the fact that this energy is significantly greater in compression reflects the

more brittle behavior of concrete when tested in tension. It is naturally linked with the

asymmetric strength values and their corresponding failure strains for which the ratio of

compression to tension are both 10. A discussion on this meaningful result is given in the

main conclusion of this paper.
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Figure 8: Distribution of the crack openings at the last time step of the simple tension test

Figure 8(a) shows the distribution of the cracks openings – which correspond

to the strong discontinuities magnitudes – at the end of the tensile test. The

range of these openings is clearly quite large, up to more than 20 µm. Figure

8(b) is a zoom showing that this distribution has a maximum for small values
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(a) y = 0 mm. (b) y = 20 mm. (c) y = 80 mm. (d) y = 100 mm.

Crack opening [mm] 0.0210−5

Figure 9: Macroscopic crack paths for simple tension: 2D slices

between 0.015 and 0.02 µm.

Figure 10 plots the crack patterns obtained at the end of the computation for both

compression (Figure 10(a)) and tension (Figure 9 and Figure 10(b)). This corresponds to

the elements for which a strong discontinuity has been introduced. It can be seen that

those crack patterns are very significant either in tension or compression. First in tension,

some micro-cracks are linked in order to set up a single macro-crack that roughly lies in the

transversale plane (best seen on Figure 9) . Obviously this macro-crack is tortuous and

goes around the aggregates that remain elastic. Second, in compression, it can be observed

that several macro-cracks are present (contrary to tension) and that they are roughly parallel

to the axial direction.

Aggregates properties E (-40%) ν (+50%)

Compression strength [MPa] 48.2 (+23%) 40.3 (+3%)

Tension strength [MPa] 4.0 (constant) 3.72 (-5%)

Compression to tension ratio 12.05 (+20%) 10.8 (+8%)

Table 3: Influence of elastic properties of aggregates on compression and tension strengths

Table 3 shows the influence of the elastic properties of the aggregates on both compression

and tension macroscopic strengths. As expected, the ratio between those two quantities
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(a) Compression test. (b) Tension test.

Crack opening [mm] 0.310−6 Crack opening [mm] 0.0210−5

Figure 10: Macroscopic crack paths for simple tension and compression

is largely influenced by the contrast of Young’s modulus. To be more precise, the less

this contrast is, the more the compressive strength increases and so the ratio (the tension

strength remains almost constant). On the contrary, the Poisson ratio of the aggregates

seems to have a small influence on the macroscopic strengths: from ν = 0.2 to ν = 0.3 the

compressive strength shows a 3% increase and the tensile a 5% decrease.

On a more general point of view, the question of the geometrical representation of a

macroscopic crack using a local method as the Embedded Finite Element is non trivial. For

example, in the two-dimensional case, using constant triangular elements, it has been shown

(see Jirásek (2012) for details) that the best way to produce a suitable crack trajectory and

avoid numerical issues such as stress locking is to combine two methods. First a non-local

formulation of the smeared crack approach, giving crack orientation in each element. Then

a tracking algorithm to enforce the crack path continuity between each element. The major

drawback of this implementation is that the local spirit of the E-FEM (directly inherited

from the FEM itself) is lost. Indeed, in addition to non local damage, path continuity
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enforcement implies, for an element, a crack position that depends of those of its neighbors.

Moreover, in the three-dimensional case, continuity of flat plane (crack) is often impossible.

Herein, the E-FEM implementation has to be placed within the multi-scale context. In

this case, a single fractured element is not considered to be representative of any specific

macroscopic feature. However, it is only when a large number of those activated elements are

merging that it may be considered that they model a continuous path at the macroscopic

scale. It is for these reasons that, herein, no specific effort has been made in order to

enforce any path continuity at the meso-scale. It is reminded that herein, the discontinuity

is considered piecewise constant in each element. In the case of weakly discontinuities

(interfaces elements), the orientation and position of the strong discontinuity are predefined

by the crossing heterogeneity. However, in the case of standard kinematics (matrix element),

the orientation of the strong discontinuity is set to be the direction of the larger principal

stress at the localization time. In this case it is assumed that the discontinuity path through

the centroid of each tetrahedron. This assumption impacts only the construction of the

functions ϕe.

Finally, features like multi-cracking or branching, which usually require a complex local

numerical implementation (within an element), are herein omitted at the meso-scale. How-

ever, as shown on Figure 11 (which is a zoom made on a subset of Figure 10(b)), it can

be retrieved at the macro-scale. This picture shows a crack that splits in two branches; a

main branch (on the top) with larger opening values and a second branch that eventually

vanishes. Generally, these branchings come from an aggregate “blocking” the way of the

crack propagation direction.

6.1.2. Transversal strain analysis

Regarding the transversal behavior of the specimen, several observations can be made

either in tension or in compression. It is recalled that the axial direction X corresponds to

the imposed displacement direction and transversal values are defined as the average of the

values along Y and Z. The results presented here are still based on the same one-dimensional

macroscopic tests (tension/compression) mentioned above.
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Figure 11: Branching of macroscopic cracks around the aggregates

The macroscopic Poisson ratio can be determined using the transversal strains by:

νM = −
εMtr
εMax

(62)

Herein, this property is extended to the diffuse cracking regime in order to illustrate the

mechanism that leads to the specimen loss of rigidity - see figure 12 where it is plotted in

terms of axial strain for both tension and compression tests. First, the elastic part shows

that the macroscopic Poisson ratio is of the same order as for the meso-scale: νM = 0.195 in

both cases. Afterwards those values are diverging. First, in tension, the ignition of diffuse

cracking causes local strain to release and thus making the macroscopic strain decrease

with the Poisson ratio. On the contrary, in compression, this local strain releasing causes a

heightening of the transversal mechanism leading to a significant increase of the apparent

Poisson ratio.

Since the meaning of the Poisson ratio is highly contestable with strongly non-linear

failure behavior, the post-localization analysis is only based on transversal strains. For that

matter, Figure 13(b) and Figure 13(a) show the macroscopic response up to the specimen

ruin in terms of the axial strain εMax (solid curve) and of the transversal direction εMtr (dashed

curve). Regarding the tension test, during the post-peak phase the transversal strain de-

creases and tends to vanish (see Figure 13(b)). It represents the unloading that occurs in the

specimen — at a macroscopic scale — after the main crack localization. In contrast, during a

compression test, the transversal strain still increases after the peak load (see Figure 13(a)).

As already mentioned, for this loading path, the cracks pattern is more a network of several
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Figure 12: Apparent Poisson ratio for tension and compression tests vs. axial strain

macroscopic cracks than a single localization zone. The dilatancy observed here is the direct

result of this much more diffuse cracking process. Besides, it is the same mechanisms that

explains the apparent Poisson ratio increasing.
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Figure 13: Macroscopic response in terms of axial and transversal strain

The dilatancy δ of the specimen can also be computed by considering the trace of the
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macroscopic strain tensor. Thus, the relative variation of the volume, drawn on Figure 14,

is:

δ =
∆V

V0
= εMax + εMtrY + εMtrZ (63)

Notice that the same magnitude in the dilatancy rate is observed in tension and in

compression regarding the elastic region. This result is in conformity with the identical

Poisson ratio value. Naturally a tension test produces a volumetric expansion (δ > 0)

while compression first produces a contraction (δ < 0). However, the cracking process

increases the dilatation rate for both tests, which is a major feature of many materials such

as concrete. Hence, when in tension the slope increases in the diffuse cracking regime, for

compression the contraction slows down. The localization is characterized by: in tension a

sudden increase in rate and in compression a maximum (considering absolute value) of the

dilatancy. Afterwards, the dilatancy sign changes in the post-localization region, which is

an interesting feature, also experimentally observed for concrete. In (Torrenti (1987)) the

interpretation is made that, in compression, the contraction corresponds to a predominant

elastic effect where the following expansion reveals an important cracking stage. However,

experiences revealed a volumetric strain which switches sign prior to the localization.

6.1.3. Dissipated energy

By integrating the macroscopic force over the displacement, the total energy can be

calculated from the macroscopic response. It is shown on Figure 7 for each calculation step.

Furthermore, considering a fictitious elastic unloading up to a zero force level, a difference

can be made between the elastic and the dissipated part. Thus it gives an additional way

to understand the failure mechanisms and to compare tension and compression behaviors.

Three energies — elastic, dissipated and total — are plotted on figure 15 as a function of

the axial imposed displacement for both loadings.

These curves give a clear representation of the reversible and irreversible mechanisms that

occur during the loadings, which are typical of a softening behavior. It can be observed that,

at the beginning, nearly all the energy involved is elastic. Then, at the localization stage,

the part of energy dissipated increases significantly. A more brittle failure in tension than
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Figure 15: Energies calculated for each computation step

in compression can be seen. The fall of the elastic energy to a nearly null value represents

the unloading outside the macro cracks region and the fact that all the energy is dissipated

close to the macroscopic cracks.
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6.2. Numerical evaluation of the induced anisotropy

After having shown the macroscopic responses of the model in relation with simple radial

and proportional macroscopic loading paths, focus is placed on non proportional cases. Here,

our objective is to show the emergence, at macro-scale, of some features related to any

anisotropic behaviors. This anisotropy shall be revealed by the non proportionality of the

loading path.

Considering a tension or a compression test with monotonic loading, the failure mech-

anism that leads to the specimen ruin induces a strong anisotropy of cracks pattern. On

the basis of this simple observation, an analysis of the macroscopic material properties —

e.g. Young modulus, tensile strength, etc. — for each step of the previous monotonic load-

ing tests (in both tension and compression) is now proposed. Hereafter, the two first parts

of the macroscopic loading path (tension or compression) are referred as principal calcu-

lations. In order to yield residual material properties, additional calculations, that inherit

from the principal, are performed. They are referred as secondary computations. Basically,

the inheritance from principal to secondary calculation is made through the non linear data,

i.e. the whole set of meso-scale cracks (with their orientations and opening values). This

second part of the numerical analysis is also made under displacement control. Actually the

displacements obtained from the first part are imposed and additional displacements are

added. Those displacements correspond to the same kind of boundary conditions along a

different direction (Y or Z).

6.2.1. Anisotropic induced damage

Here the residual property of concern is the damage Young modulus, which is com-

puted as the secant modulus on the macroscopic stress – strain curve. In order to catch

the anisotropy, from each step of the principal calculation three secondary calculations are

performed in the three directions. It leads to three macroscopic secant moduli: an axial

ẼM
ax value and two transversal ones ẼM

trY and ẼM
trZ . The results are displayed by defining

“damage” variables dax, dtrY and dtrZ , respectively. They are built to compare the upscaled

residual secant moduli to those corresponding to the initial state EM (which are the same
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for all direction):

dax =
EM − ẼM

ax

EM
, dtrY =

EM − ẼM
trY

EM
and dtrZ =

EM − ẼM
trZ

EM
(64)

Theoretically, in the elastic region of the principal test, those variables are null and then

tend to increase along with the specimen failure state. Herein, the secant moduli upscaled

values ẼM
ax and ẼM

tr yield the damage variables dax and dtr (equation 64).

Results for tension are given on Figure 16(b) where the two damage variables are plotted

in terms of the macroscopic axial strain of the principal calculation. It can be observed

that the axial damage dax is growing faster than that of the transversal one dtr. Moreover,

dax reaches a value of ≈ 0.85 which corresponds to a highly damaged state when dtr hardly

reaches 0.15. Hence, the elastic property is far more spoiled in the axial direction. This

result reflects the characteristic morphology of the cracks pattern, splitting the specimen in

two by a plane roughly perpendicular to the axial axis. As the macroscopic crack grows,

the “link” between each part of the specimen becomes weaker, leading to a decrease of the

upscaled secant modulus in this direction. On the contrary, it remains several non-broken

paths on the transversal directions that give to the specimen a higher rigidity. Regarding

the compression test, Figure 16(a) shows the opposite effect. Indeed, here the transversal

damage is more important than the axial one. It may be explained by cracks patterns

that form planes parallel to the axial direction, leading to a higher loss of rigidity in the

transversal directions. Furthermore, the more diffuse aspect of the crack repartition makes

the difference between axial and transversal damage less important.

Finally, for both tension and compression cases, it can be noticed that the two transversal

damages are of the same order of magnitude, representing isotropic behavior in these two

directions. Somehow, it can be said that the macroscopic elastic behavior is shifting from

an isotropic case to a transverse isotropic one. More numerical investigations for the second

step of those non proportional loading paths may determine the complete elasticity tensor

for this case.
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Figure 16: Axial and transversal damage variables evolutions

6.2.2. Induced anisotropy for tensile strengths

Still dealing with both tension and compression tests, interest is now taken in the residual

tensile strength of the specimen for each direction. As the previous section computed an

elastic property, herein, non-linear calculations are performed at each step of the principal

test in order to yield these failure properties. The results are plotted in terms of residual

strengths defined by the ratio between actual tensile strengths fax, ftrY and ftrZ to the initial

state one f :

rax =
fax
f

, rtrY =
ftrY
f

and rtrZ =
ftrZ
f

(65)

Theoretically, these residual strengths are unit valued or null whether the specimen is in

the elastic domain or ruined. Their evolution through tension and compression failure are

drawn as a function of the principal calculation axial strain (Figure 17(b) and Figure 17(a),

respectively).

The results show approximately the same behavior as those for the elastic moduli. Re-

garding the tension failure, a more important decrease of the tensile strength is observed

in the axial direction than along the transversal directions. The ratios are also of the same

order of magnitude. Indeed, when the specimen has lost ≈ 80% of its strength in the for-

mer direction, it has only lost ≈ 20% in the last two. Regarding the compression test, the

specimen seems to follow a rather isotropic behavior. Nevertheless, the transversal resid-
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Figure 17: Evolution of the residual tensile strength during the failure process

ual strengths are a little smaller. Notice that at these failure states, the specimen has lost

≈ 90% of its tensile strength, representing the completely ruined state of the specimen.

However, regarding the transversal directions, it can be noticed that this state seems rather

more deteriorated than what experimental results shows.

7. Discussions and conclusions

This paper first sets a numerical tool for the modeling of the quasi-brittle behavior of

heterogeneous materials such as the cementitious ones. This model can be viewed as a multi-

scale model, aiming at upscaling data from mesoscopic scale (millimeter scale for concrete)

to macro-scale.

At meso-scale the numerical implementation is based on the introduction of kinematics

enhancements of two kinds within the FE context. The first enhancement, referred to

as weak, leads to a non-adapted mesh strategy for heterogeneous morphologies. It can

therefore be “simply” projected onto an unstructured mesh, freeing us of any expensive

algorithm that aim to match a mesh onto a given morphology. Indeed, according to the non-

adapted mesh point of view, this mesh is created regardless of any physical surface (i.e. the

interface between each component). The second enhancement, referred to as strong, models

discontinuities in the displacement field that are viewed as micro-cracks. Their opening
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evolution are directly linked to the local fracture energy and tensile strength leading to a

model with only two meaningful non-linear parameters. These two enhancements make the

model a relevant and efficient tool to represent the failure mechanisms in a continuum region

(mortar matrix cracking) as well as on its interfaces (debonding).

Numerical applications of the model have been shown by modeling concrete specimens

mainly under uniaxial loadings. The massive use of E-FEM in this case, which consists in the

introduction of a high number of strongly enhanced elements (typically more than hundreds

of thousands), has lead to complex macroscopic crack patterns. Moreover it has revealed

some emergent macroscopic responses that exhibit several features such as asymmetry of

the tension-compression stress-strain relationship, which are typical of concrete. However,

even though the implementation of full kinematics presented here is a major improvement

compared to simpler FE (see Benkemoun et al. (2010)), several weak points are worth

noticing regarding the macroscopic responses. They are now discussed.

First, a low ratio of compression to tension strengths and a too brittle behavior in

compression are still observed. To the authors point of view, the main reason for that is the

choice of rather simple failure mechanisms and cracks opening mode at meso-scale. Hence

future work shall include for example, mode II or I+II crack opening. Furthermore, from

the authors experience, it has been noticed that high fraction volumes leads to higher ratio

of compression to tension strengths. Unfortunately, increasing the fraction volume leads to

the need of representing thinner heterogeneity (and therefore finer meshes), thus leading to

unreasonable time consuming computations (a computation as presented in this paper takes

about 24h of CPU time). Second, as it can be seen in Figure 7, some locking effect can

be observed for both tension and compression curves, which exhibit, for large

strain, an asymptotic behavior that does not correspond to zero macroscopic

force . As a matter of fact, this issue can directly be linked with the two problematics

addressed just above. Indeed, it has been said that the orientation of the strong discontinuity

at the interface are set to be equal to the weak discontinuities, thus being pre-defined by the

heterogeneities (and not based on the principal stress directions). And since the failure is

governed by a mode I opening mechanism, stress locking often occurs when the displacement
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incompatibilities results in shear loading. Furthermore, the ratio of weakly enhanced element

increase along with the fraction volume which highlight even more the need of mode II

opening. Finally, if not sufficiently discretized by the FE mesh, the morphology can exhibits

“elastic paths” within the aggregates, thus explaining partially the stressed state at the end

of the loading. Due to the inner complexity of this topological quantification, only a visual

validation has been made, thus leading to reasonable doubts as to the disconnected state of

all discretized inclusions.

Moreover the model clearly offers a large number of perspectives dealing with multi-

physics. This is a major point associated to the durability of concrete structures, for which

mass transfers are the cornerstone. Thus improving the physics of the modeling can be made:

(1) through a coupling between the cracks pattern (obtained from a mechanical analysis)

to simple flows (such as the Poiseuille flow between two planes). (2) according to a better

morphological representation of the heterogeneities, e.g. accounting for the largest porosity

that can be found within mortar matrix. On a more general point of view, the authors

think that the use of the E-FEM in the context of heterogeneous materials shall be applied,

in a near future, to smaller scales (typically the micrometer scale dealing with concrete),

allowing for a better understanding of the role played by simple failure mechanisms and their

propagation to macro-scale. Thus the future development of this model lies in retaining the

spirit of the physical significance of fine scales.
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