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Contents

Introduction 1
1. Notable elements 2
1.1. Numerical semigroups with maximal embedding dimension. 9
1.2. Special gaps and unitary extensions of a numerical semigroup 10
2. Irreducible numerical semigroups 11
2.1. Decomposition of a numerical semigroup into irreducible semigroups 15
2.2. Free numerical semigroups 15
3. Semigroup of an irreducible meromorphic curve 17
3.1. Newton-Puiseux theorem 17
3.2. The local case 27
3.3. The case of curves with one place at infinity 28
4. Minimal presentations 32
5. Factorizations 38
5.1. Length based invariants 38
5.2. Distance based invariants 41
5.3. How far is an irreducible from being prime 43
References 45

Introduction

Numerical semigroups arise in a natural way in the study of nonnegative integer solutions
to Diophantine equations of the form a1x1 + · · · + anxn = b, where a1, . . . , an, b ∈ N (here
N denotes the set of nonnegative integers; we can reduce to the case gcd(a1, . . . , an) = 1).
Frobenius in his lectures asked what is the largest integer b such that this equation has
no solution over the nonnegative integers, for the case n = 2. Sylvester and others solved
this problem, and since then this has been known as the Frobenius problem (see [17] for an
extensive exposure of this and related problems).
Other focus of interest comes from commutative algebra and algebraic geometry. Let K

be a field and let A = K[ta1 , . . . , tan ] be the K-algebra of polynomials in ta1 , . . . , tan . The
ring A is the coordinate ring of the curve parametrized by ta1 , . . . , tan , and information
from A can be derived from the properties of the numerical semigroup generated by the
exponents a1, . . . , an. Thus in many cases the names of invariants in numerical semigroups
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are inherited from Algebraic Geometry. Along this line Bertin and Carbonne ([8]), Delorme
([12]), Watanabe ([19]) and others found several families of numerical semigroups yielding
complete intersections and thus Gorenstein semigroup rings. In the monograph [7] one can
find a good dictionary Algebraic Theory-Numerical semigroups.
Numerical semigroups are also useful in the study of singularities of plane algebraic curves.

Let K be an algebraically closed field of characteristic zero and let f(x, y) be an element of
K[[x, y]]. Given another element g ∈ K[[x, y]], we define the local intersection multiplicity of
f with g to be the rank of the K-vector space K[[x, y]]/(f, g). When g runs over the set of
elements of K[[x, y]] \ (f), these numbers define a semigroup. If furthermore f is irreducible,
then this semigroup is a numerical semigroup. This leads to a classification of irreducible
formal power series in terms of their associated numerical semigroups. This classification
can be generalized to polynomials with one place at infinity. The arithmetic properties of
numerical semigroups have been in this case the main tool in the proof of Abhyankar-Moh
lemma which says that a coordinate has a unique embedding in the plane.
Recently, due to use of algebraic codes and Weierstrass numerical semigroups, some appli-

cations to coding theory and cryptography have arise. The idea is finding properties of the
codes in terms of the associated numerical semigroup. See for instance [10] and the references
therein.
Another focus of recent interest has been the study of factorizations in monoids. If we

consider again the equation a1x1 + · · ·+ anxn = b, then we can think of the set of nonnega-
tive integer solutions as the set of factorizations of b in terms of a1, . . . , an. It can be easily
shown that no numerical semigroup other than N is half-factorial, or in other words, there
are elements with factorizations of different lengths. Several invariants measure how far are
monoids from being half-factorial, and how wild are the sets of factorizations. For numer-
ical semigroups several algorithms have been developed in the last decade, and this is why
studying these invariants over numerical semigroups offer a good chance to test conjectures
and obtain families of examples.
The aim of this manuscript is to give some basic notions related to numerical semigroups,

and from these on the one hand describe a classical application to the study of singularities
of plane algebraic curves, and on the other, show how numerical semigroups can be used to
obtain handy examples of nonunique factorization invariants.

1. Notable elements

Most of the results appearing in this section are taken from [18, Chapter 1].
Let S be a subset of N. The set S is a submonoid of N if the following holds:

(i) 0 ∈ S,
(ii) If a, b ∈ S then a+ b ∈ S.

Clearly, {0} and N are submonoids of N. Also, if S contains a nonzero element a, then
da ∈ S for all d ∈ N, and in particular, S is an infinite set.
Let S be a submonoid of N and let G be the subgroup of Z generated by S (that is,

G = {
∑s

i=1 λiai | s ∈ N, λi ∈ Z, ai ∈ S}). If 1 ∈ G, then we say that S is a numerical
semigroup.
We set G(S) = N\S and we call it the set of gaps of S. We denote by g(S) the cardinality

of G(S), and we call g(S) the genus of S. Next proposition in particular shows that the
genus of any numerical semigroup is a nonnegative integer.
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Proposition 1. Let S be a submonoid of N. Then S is a numerical semigroup if and only
if N \ S is a finite set.

Proof. Let S be a numerical semigroup and let G be the group generated by S in Z. Since
1 ∈ G, we can find an expression 1 =

∑k
i=1 λiai for some λi ∈ Z and ai ∈ S. Assume, without

loss of generality, that λ1, . . . , λl < 0 (respectively λl+1, . . . , λk > 0). If s =
∑l

i=l −λiai, then

s ∈ S and
∑k

i=1+l λiai = 1 + s ∈ S. We claim that for all n ≥ (s − 1)(s + 1), n ∈ S. Let
n ≥ (s − 1)(s + 1) and write n = qs + r, 0 ≤ r < s. Since n = qs + r ≥ (s− 1)s + (s − 1),
we have q ≥ s− 1 ≥ r, whence n = qs+ r = (rs+ r) + (q − r)s = r(s+ 1) + (q − r)s ∈ S.
Conversely, assume that N \ S has finitely many elements. Then there exist s ∈ S such

that s+ 1 ∈ S. Hence 1 = s+ 1− s ∈ G. �

The idea of focusing on numerical semigroups instead of submonoids of N in general is the
following.

Proposition 2. Let S be a submonoid of N. Then S is isomorphic to a numerical semigroup.

Proof. Let d be gcd(S), that is, d is the generator of the group generated by S in Z. Let
S1 = {s/d | s ∈ S} is a numerical semigroup. The map φ : S → S1, φ(s) = s/d is a
homomorphism of monoids that is clearly bijective. �

Even though any numerical semigroup has infinitely many elements, it can be described
by means of finitely many of them. The rest can be obtained as linear combinations with
nonnegative integer coefficients from these finitely many.
Let S be a numerical semigroup and let A ⊆ S. We say that S is generated by A and

we write S = 〈A〉 if for all s ∈ S, there exist a1, . . . , ar ∈ A and λ1, . . . , λr ∈ N such that
a =

∑r
i=1 λiai. Every numerical semigroup S is finitely generated, that is, S = 〈A〉 with

A ⊆ S and A is a finite set.
Let S∗ = S \ {0}. The smallest nonzero element of S is called the multiplicity of S,

m(S) = minS∗.

Proposition 3. Every numerical semigroup is finitely generated.

Proof. Let A be a system of generators of S (S itself is a system of generators). Let m be
the multiplicity of S. Clearly m ∈ A. Assume that a < a′ are two elements in A such that
a ≡ a′ mod m. Then a′ = km + a for some positive integer k. So we can remove a′ from A
and we still have a generating system for S. Observe that at the end of this process we have
at most one element in A in each congruence class modulo m, and we conclude that we can
choose A to have finitely many elements. �

The underlying idea in the last proof motivates the following definition.
Let n ∈ S∗. We define the Apéry set of S with respect to n, denoted Ap(S, n), to be the

set
Ap(S, n) = {s ∈ S | s− n /∈ S}.

This is why some authors call {n}∪ (Ap(S, n) \ {0}) a standard basis of S, when n is chosen
to be the least positive integer in S.
As we see next, Ap(S, n) has precisely n elements.

Lemma 4. Let S be a numerical semigroup and let n ∈ S∗. For all i ∈ {1, . . . , n}, let w(i)
be the smallest element of S such that w(i) ≡ i mod n. Then

Ap(S, n) = {0, w(1), . . . , w(n− 1)}.
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Proof. Let 0 ≤ i ≤ n − 1. By definition, w(i) ∈ S and clearly w(i) − n ≡ i mod(n), hence
w(i)− n /∈ S, in particular w(i) ∈ Ap(S, n). This proves one inclusion. Observe that there
are no elements a, b ∈ Ap(S, n) such that a ≡ b mod n. Hence we get an equality, because
we are ranging all possible congruence classes modulo n. �

Next we give an example using the numericalsgps GAP package ([11] and [13], respec-
tively). We will do this several times along the manuscript, since it is also our intention to
show how calculations can easily be accomplished using this package.

GAP example 5. Let us start defining a numerical semigroup.

gap> s:=NumericalSemigroup(5,9,21);;

gap> SmallElementsOfNumericalSemigroup(s);

[ 0, 5, 9, 10, 14, 15, 18, 19, 20, 21, 23 ]

This means that our semigroup is {0, 5, 9, 10, 14, 15, 18, 19, 20, 21, 23,→}, where the arrow
means that every integer larger than 23 is in the set. If we take a nonzero element n in the
semigroup, its Apéry set has exactly n elements.

gap> AperyListOfNumericalSemigroupWRTElement(s,5);

[ 0, 21, 27, 18, 9 ]

We can define the Apéry set for other integers as well, but the above feature no longer holds.

gap> AperyListOfNumericalSemigroupWRTInteger(s,6);

[ 0, 5, 9, 10, 14, 18, 19, 23, 28 ]

Apéry sets are one of the most important tools when dealing with numerical semigroups.
Next we see that they can be used to represent elements in a numerical semigroup in a unique
way (actually the proof extends easily to any integer).

Proposition 6. Let S be a numerical semigroup and let n ∈ S∗. For all s ∈ S, there exists
a unique (k, w) ∈ N× Ap(S, n) such that s = kn + w.

Proof. Let s ∈ S. If s ∈ Ap(S, n), then we set k = 0, w = s. If s /∈ Ap(S, n), then
s1 = s− n ∈ S. We restart with s1. Clearly there exists k such that sk = s− kn ∈ Ap(S, n).
Let s = k1n+w1 with k1 ∈ N, w1 ∈ Ap(S, n). Suppose that k1 6= k. Hence 0 6= (k1−k)n =

w − w1. In particular w ≡ w1 mod(n). This is a contradiction. �

This gives an alternative proof that S is finitely generated.

Corollary 7. Let S be a numerical semigroup. Then S is finitely generated.

Proof. Let n ∈ S∗. By the proposition above, S = 〈{n}∪Ap(S, n)\{0}}〉. But the cardinality
of Ap(S, n) = n. This proves the result. �

Let S be a numerical semigroup and let A ⊆ S. We say that A is a minimal set of
generators of S if S = 〈A〉 and no proper subset of A has this property.

Corollary 8. Let S be a numerical semigroup. Then S has a minimal set of generators.
This set is finite and unique: it is actually S∗ \ (S∗ + S∗).

Proof. Notice that by using the argument in the proof of Proposition 3, every generating set
can be refined to a minimal generating set.
Let A = S∗ \ (S∗ + S∗) and let B be another minimal generating set. If B is not included

in A, there exists a, b, c ∈ B such that a = b+ c. But this contradicts the minimality of B,
since in this setting B \ {a} is a generating system for S. This proves B ⊆ A.
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Now take a ∈ A ⊆ S = 〈B〉. Then a =
∑

b∈B λbb. But a ∈ S∗ \ (S∗ + S∗), and so
∑

b∈B λb = 1. This means that there exists b ∈ B with λb = 1 and λb′ = 0 for the rest of
b′ ∈ B. We conclude that a = b ∈ B, which proves the other inclusion. �

Let S be a numerical semigroup. The cardinality of a minimal set of generators of S is
called the embedding dimension of S. We denote it by e(S).

Lemma 9. Let S be a numerical semigroup. We have e(S) ≤ m(S).

Proof. The proof easily follows from the proof of Corollary 7 or from that of Proposition
3. �

Examples 10. i) S = N if and only if e(S) = 1.
ii) Let m ∈ N∗ and let S = 〈m,m+1, . . . , 2m−1〉. We have Ap(S,m) = {0, m+1, . . . , 2m−

1} and {m,m+ 1, . . . , 2m− 1} is a minimal set of generators of S. In particular e(S) =
m(S) = m.

iii) Let S = {0, 4, 6, 9, 10, . . .}. We have Ap(S, 4) = {0, 9, 6, 12}. In particular m(S) = 4
and S = 〈4, 6, 9, 12〉 = 〈4, 6, 9〉. Hence e(S) = 3.

GAP example 11. We can easily generate “random” numerical semigroups with the following
command. The first argument is an upper bound for the number of minimal generators, while
the second says the range where the generators must be taken from.

gap> s:=RandomNumericalSemigroup(5,100);

<Numerical semigroup with 5 generators>

gap> MinimalGeneratingSystemOfNumericalSemigroup(s);

[ 6, 7 ]

Let S be a numerical semigroup. We set F(S) = max(N \ S) and we call it the Frobenius
number of S. We set C(S) = F(S) + 1 and we call it the conductor of S. Recall that we
denoted G(S) = N \S and we called it the set of gaps of S. Also we used g(S) to denote the
cardinality of G(S) and we call g(S) the genus of S. We denote by n(S) the cardinality of
{s ∈ S : s ≤ F(S)}.

Proposition 12 (Selmer’s formulas). Let S be a numerical semigroup and let n ∈ S∗. We
have the following:

(i) F(S) = max(Ap(S, n))− n,

(ii) g(S) = 1
n

(

∑

w∈Ap(S,n)w
)

− n−1
2
.

Proof. (i) Clearly max(Ap(S, n)) − n /∈ S. If x > max(Ap(S, n)) − n then x + n >
max(Ap(S, n)). Write x+ n = qn+ i, q ∈ N, i ∈ {0, . . . , n− 1} and let w(i) ∈ Ap(S, n)
be the smallest element of S which is congruent to i modulo n. Since x+ n > w(i), we
have x+ n = kn+ w(i) with k > 0. Hence x = (k − 1)n+ w(i) ∈ S.

(ii) For all w ∈ Ap(S, n), write w = kin+ i, ki ∈ N, i ∈ {0, . . . , n− 1}. We have:

Ap(S, n) = {0, k1n+ 1, . . . , kn−1n + n− 1}.

Let x ∈ N and suppose that x ≡ i mod(n). We claim that x ∈ S if and only if w(i) ≤ x.
In fact, if x = qin + i, then x − w(i) = (qi − ki)n. Hence w(i) ≤ x if and only if
ki ≤ qi if and only if x = (qi − ki)n + w(i) ∈ S. It follows that x /∈ S if and only if
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x = qin+ i, qi < ki. Consequently

g(S) =

n−1
∑

i=1

ki =
1

n

(

n−1
∑

i=1

(kin+ i)

)

−
n− 1

2
=

1

n





∑

w∈Ap(S,n)

w



−
n− 1

2
. �

Example 13. Let S = 〈a, b〉 be a numerical semigroup. We have

Ap(S, a) = {0, b, 2b, . . . , (a− 1)b}.

Hence

(i) F(S) = (a− 1)b− a = ab− a− b.

(ii) g(S) = 1
a
(a+ 2a+ · · ·+ (b− 1)a)− a−1

2
= (a−1)(b−1)

2
= F(S)+1

2
.

Lemma 14. Let S be a numerical semigroup. We have g(S) ≥ F(S)+1
2

.

Proof. Let s ∈ N. If s ∈ S, then F(S)− s /∈ S. Thus g(S) is greater than or equal to n(S).
But n(S) + g(S) = F(S) + 1. This proves the result. �

GAP example 15. Let S = 〈5, 7, 9〉.

gap> s:=NumericalSemigroup(5,7,9);

<Numerical semigroup with 3 generators>

gap> FrobeniusNumber(s);

13

gap> ConductorOfNumericalSemigroup(s);

14

gap> ap:=AperyListOfNumericalSemigroupWRTElement(s,5);

[ 0, 16, 7, 18, 9 ]

gap> Maximum(ap)-5;

13

gap> Sum(ap)/5 -2;

8

gap> GenusOfNumericalSemigroup(s);

8

gap> GapsOfNumericalSemigroup(s);

[ 1, 2, 3, 4, 6, 8, 11, 13 ]

Conjecture 16. Let g be positive integer and let ng be the number of numerical semigroups
S with g(S) = g. Is ng ≤ ng+1? This conjecture is known to be true for g ≤ 67 but it is
still open in general (J. Fromentin, personal communication; see also Manuel Delgado’s web
page).

GAP example 17. gap> List([1..20],i->Length(NumericalSemigroupsWithGenus(i)));

[ 1, 2, 4, 7, 12, 23, 39, 67, 118, 204, 343, 592, 1001, 1693, 2857, 4806, 8045,

13467, 22464, 37396 ]

The following result allows to prove Johnson’s formulas (see Corollary 19 below).

Proposition 18. Let S be a numerical semigroup minimally generated by n1, . . . , np. Let
d = gcd(n1, . . . , np−1) and let T = 〈n1/d, . . . , np−1/d, np〉. We have Ap(S, np) = dAp(T, np).
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Proof. Let w ∈ Ap(S, np). Since w−np /∈ S then w ∈ 〈n1, . . . , np−1〉, hence
w
d
∈
〈

n1

d
, . . . ,

np−1

d

〉

.
If w

d
−np ∈ T , then w−dnp ∈ S, which is a contradiction. Hence w

d
∈ Ap(T, np), in particular

w ∈ dAp(T, np).
Conversely, if w ∈ Ap(T, np), then w ∈

〈

n1

d
, . . . , np−1

d

〉

, hence dw ∈ 〈n1, . . . , np−1〉 ∈ S.
Suppose that dw − np ⊆ S. We have:

dw − np =

p
∑

i=1

λini implies dw =

p−1
∑

i=1

λini + (λp + 1)np.

In particular d divides λp + 1. Write w =
∑p−1

i=1 λi
ni

d
+
(

λp+1
d

)

np, whence w − np ∈ T ,

which is a contradiction. Finally dw ∈ Ap(S, np). This implies our assertion. �

Corollary 19. Let S be a numerical semigroup minimally generated by {n1, . . . , np}. Let
d = gcd(n1, . . . , np−1) and let T = 〈n1

d
, . . . ,

np−1

d
, np〉. We have the following:

(i) F(S) = dF (T ) + (d− 1)np,

(ii) g(S) = dg(T ) + (d−1)(d−2)
2

.

Proof. (i) F(S) = maxAp(S, np)− np = dmaxAp(T, np) − np = d(maxAp(T, np)− np) +
(d− 1)np = dF(T ) + (d− 1)np.

(ii) g(S) = 1
np

(

∑

w∈Ap(S,np)
w
)

− np−1
2

= d
np

(

∑

w∈Ap(T,np)
w
)

− np−1
2

= d
(

1
np

∑

w∈Ap(T,np)
w − np−1

2

)

+ (d−1)(np−1)
2

. �

Example 20. Let S = 〈20, 30, 17〉, T = 〈2, 3, 17〉 = 〈2, 3〉; F(S) = 10F(T ) + 9× 17 = 163 and
g(S) = 10 + 916/2 = 82.

Let S be a numerical semigroup. We say that x ∈ N is a pseudo-Frobenius number if
x /∈ S and x + s ∈ S for all s ∈ S∗. We denote by PF(S) the set of pseudo Frobenius
numbers. The cardinality of PF(S) is denoted by t(S) and we call it the type of S. Note
that F(S) = max(PF(S)).
Let a, b ∈ N. We define ≤S as follows: a ≤S b if b− a ∈ S. Clearly ≤S is a (partial) order

relation. With this order relation Z becomes a poset. We see next that PF(S) are precisely
the maximal gaps of S with respect to ≤S .

Proposition 21. Let S be a numerical semigroup. We have

PF(S) = max≤S
(N \ S).

Proof. Let x ∈ PF(S): x /∈ S and x + S∗ ⊆ S. Let y ∈ N \ S and assume that x ≤S y. If
x 6= y, then y − x = s ∈ S∗, hence y = x+ s ∈ x+ S∗ ⊆ S. This is a contradiction.
Conversely, let x ∈ Max≤S

N \ S. If x + s /∈ S for some s ∈ S∗, then x ≤S x + s. This is a
contradiction. �

We can also recover the pseudo-Frobenius elements by using, once more, the Apéry sets.

Proposition 22. Let S be a numerical semigroup and let n ∈ S∗. Then

PF(S) = {w − n | w ∈ max≤S
Ap(S, n)}.

Proof. Let x ∈ PF(S) : x + n ∈ S and x /∈ S. Hence x + n ∈ Ap(S, n). Let us prove that
x + n is maximal with respect to ≤S. Let w ∈ Ap(S, n) such that x + n ≤S w. Let s ∈ S
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such that w− x− n = s. We have w− n = x+ s. If s ∈ S∗, then x+ s ∈ S. But w− n /∈ S,
a contradiction.
Conversely let w ∈ Max≤S

Ap(S, n) and let s ∈ S∗. If w − n+ s /∈ S, then w + s ∈ Ap(S, n).
This contradicts the maximality of w. �

Examples 23. (i) Let S = 〈5, 6, 8〉; Ap(S, 5) = {0, 6, 12, 8, 14}. Hence PF(S) = {12 −
5, 14− 5} = {7, 9}. In particular, t(S) = 2.

(ii) Let S = 〈a, b〉 where a, b ∈ N \ {0, 1} and gcd(a, b) = 1. We have Ap(S, a) =
{0, b, 2b, . . . , (a− 1)b}. Thus PF(S) = {F(S) = (a− 1)b− a} and t(S) = 1.

In particular, we get the following consequence, which gives an upper bound for the type
of a numerical semigroup.

Corollary 24. Let S be a numerical semigroup other than N. We have t(S) ≤ m(S)− 1.

Proof. The type S is nothing but the cardinality of the set of maximal elements of Ap(S,m(S))
with respect to ≤S. Since 0 is not a maximal element, the result follows. �

Remark 25. Let S be a numerical semigroup. In the above inequality, one cannot replace
m(S)−1 by e(S) as it is shown in the following example: let S = 〈s, s+3, s+3n+1, 5+3n+2〉,
n ≥ 2, r ≥ 3n+ 2, s = r(3n+ 2) + 3; then t(S) = 2n+ 3.

Type, the number of sporadic elements (elements below the Frobenius number) and the
genus of a numerical semigroup are related in the following way.

Proposition 26. Let S be a numerical semigroup and recall that n(S) is the cardinality of
N(S) = {s ∈ S | s < F(S)}. With these notations we have g(S) ≤ t(S)n(S).

Proof. Let x ∈ N and let fx = min{f ∈ PF(S) | f − x ∈ S}. Let

φ : G(S) → PF(S)×N(S), φ(x) = (fx, fx − x).

The map φ is clearly injective. In particular g(s) is less than or equal than the cardinality of
PF(S)×N(S), which is t(S)n(S). �

In particular, if we use the fact that g(s) + n(s) = F(S) + 1, then we obtain the following
easy consequence.

Corollary 27. Let S be a numerical semigroup. We have F(S) + 1 ≤ (t(S) + 1)n(S).

GAP example 28. We go back to S = 〈5, 7, 9〉.

gap> PseudoFrobeniusOfNumericalSemigroup(s);

[ 11, 13 ]

gap> TypeOfNumericalSemigroup(s);

2

gap> MultiplicityOfNumericalSemigroup(s);

5

gap> SmallElementsOfNumericalSemigroup(s);

[ 0, 5, 7, 9, 10, 12, 14 ]

gap> Length(last-1);

7

Conjecture 29 (Wilf). F(S) + 1 ≤ e(S)n(S).
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1.1. Numerical semigroups with maximal embedding dimension. Let S be a numer-
ical semigroup and recall that e(S) ≤ m(S). In the following we shall consider the case where
e(S) = m(S). We are going to see that if this is the case, then the type is also maximal.
Let S be a numerical semigroup. We say that S has maximal embedding dimension if

e(S) = m(S).
Trivially, any minimal generator is in the Apéry set of any nonzero element different from

it. We write the short proof for this.

Lemma 30. Let x be a minimal generator of S and let n ∈ S∗, n 6= x. We have x− n /∈ S.
In particular x ∈ Ap(S, n).

Proof. If x− n ∈ S, since x = n + (x− n), this contradicts the the fact that x is a minimal
generator. �

As a consequence, we get that the Apéry set of the multiplicity consists of 0 plus the rest
of minimal generators.

Proposition 31. Let n1 < n2 < · · · < ne be a minimal set of generators of S. Then S has
maximal embedding dimension if and only if Ap(S, n1) = {0, n2, . . . , ne}.

Proof. Assume that S has maximal embedding dimension. By Lemma 30, n2, . . . , ne ∈
Ap(S, n1). But n1 = m(S) = e, whence Ap(S, n1) = {0, n2, . . . , ne}.
Conversely, S = 〈(Ap(S, n1)\{0})∪{n1}〉 = 〈n1, n2, . . . , ne〉. Hence e = e(S) = m(S). �

As we already mentioned above, the type is also maximal in this kind of numerical semi-
group. Actually this also characterizes maximal embedding dimension.

Proposition 32. Let n1 < n2 < · · · < ne be a minimal set of generators of S. The following
are equivalent.

(i) S has maximal embedding dimension.
(ii) g(S) = 1

n1

∑e
i=2 ni −

n1−1
2

.

(iii) t(S) = n1 − 1 = m(S)− 1.

Proof. If S has maximal embedding dimension, then Ap(S, n1) = {0, n2, . . . , ne}. By Selmer’s
formulas (Proposition 12), g(S) = 1

n1

∑

w∈Ap(S,n1)
w − n1−1

2
= 1

n1

∑e
i=2 ni −

n1−1
2

. Conversely,

we have {n2, . . . , ne} ⊆ Ap(S, n1) and 1
n1

∑

w∈Ap(S,n1)
w = 1

n1

∑e
i=2 ni. Hence Ap(S, n1) =

{0, n2, . . . , ne}. In particular, S has maximal embedding dimension. This proves that (i) and
(ii) are equivalent.
Finally we prove that (i) is equivalent to (iii). If S has maximal embedding dimension,

then Ap(S, n1) = {0, n2, . . . , ne}. It easily follows that Max≤S
Ap(S, n1) = {n2, . . . , ne},

whence t(S) = n1 − 1 = m(S) − 1. Now assume that t(S) = n1 − 1. Then the cardinality
of PF(S) is n1 − 1 = m(S) − 1. According to Proposition 22, this means that all the
elements in Ap(S, n1) with the exception of 0 are maximal with respect to ≤S . We also
know that {n2, . . . , ne} ⊆ Ap(S, n1) (Lemma 30). Hence all minimal generators (other than
n1) are maximal in Ap(S, n1) with respect to ≤S. Assume that there exists x ∈ Ap(S, n1) \
{0, n2, . . . , ne}. Then x =

∑e
i=1 λini, λi ≥ 0, and since x − n1 /∈ S, we deduce that λ1 = 0.

Since x 6= 0, λk 6= 0 for some k. Thus x− nk ∈ S, and consequently nk is not maximal with
respect to ≤S. This is a contradiction. Hence Ap(S, n1) = {0, n2, . . . , ne}, and this yields
n1 = m(S) = e(S). �
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As another consequence of Selmer’s formulas, we get an easy expression of the Frobenius
number of a maximal embedding dimension numerical semigroup.

Proposition 33. Let n1 < n2 < · · · < ne be a minimal set of generators of S with e = n1.
Then F(S) = ne − n1.

Proof. This follows from the fact that F(S) = maxAp(S, n1)− n1 (Proposition 12). �

The converse to this proposition is not true. Just take S = 〈4, 5, 11〉.

GAP example 34. One can always construct maximal embedding dimension numerical semi-
groups from any numercal semigroup in the following way (see [18, Chapter 2]).

gap> s:=NumericalSemigroup(4,7,9);

<Numerical semigroup with 3 generators>

gap> AperyListOfNumericalSemigroup(s);

[ 0, 9, 14, 7 ]

gap> t:=NumericalSemigroup(4+last);

<Numerical semigroup with 4 generators>

gap> MinimalGeneratingSystemOfNumericalSemigroup(t);

[ 4, 11, 13, 18 ]

1.2. Special gaps and unitary extensions of a numerical semigroup. We introduce
in this section another set of notable elements of numerical semigroups, that is, in some sense
dual to the concept of minimal generating system. Let S be a numerical semigroup. Notice
that an element s ∈ S is a minimal generator if and only if S \ {s} is a numerical semigroup.
We define the set of special gaps of S as

SG(S) = {x ∈ PF(S) | 2x ∈ S}.

The duality we mentioned above comes in terms of the following result.

Lemma 35. Let x ∈ Z. Then x ∈ SG(S) if and only if S ∪ {x} is a numerical semigroup.

Proof. Easy exercise. �

If S and T are numerical semigroups, with S ⊂ T , we can construct a chain of numerical
semigroups S = S1 ⊂ S2 ⊂ · · · ⊂ Sk = T such that for every i, Si+1 is obtained from Si by
adjoining a special gap. This can be done thanks to the following result.

Lemma 36. Let T be a numerical semigroup and assume that S ⊂ T . Then max(T \ S) ∈
SG(S). In particular, S ∪ {max(T \ S)} is a numerical semigroup.

Proof. Let x = max(T \ S). Clearly 2x ∈ S. Take s ∈ S∗. Then x + s ∈ T and x < x + s.
Hence x+ s ∈ S. �

Remark 37. Let O(S) be the set of oversemigroups of S, that is, the set of numerical semi-
groups T such that S ⊆ T . Since N \ S is a finite set, we deduce that O(S) is a finite
set.

GAP example 38. gap> s:=NumericalSemigroup(7,9,11,17);;

gap> GenusOfNumericalSemigroup(s);

12

gap> o:=OverSemigroupsNumericalSemigroup(s);;

gap> Length(o)
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51

gap> s:=NumericalSemigroup(3,5,7);;

gap> o:=OverSemigroupsNumericalSemigroup(s);;

gap> List(last,MinimalGeneratingSystemOfNumericalSemigroup);

[ [ 1 ], [ 2, 3 ], [ 3 .. 5 ], [ 3, 5, 7 ] ]

2. Irreducible numerical semigroups

A numerical semigroup S is irreducible if it cannot be expressed as the intersection of two
proper oversemigroups. In the following we will show that irreducible semigroups decompose
into two classes: symmetric and pseudo-symmetric. We will also give characterizations of
these two classes. Usually in the literature the concepts of symmetric and pseudo-symmetric
have been studied separately; the second a sort of generalization of first. Irreducible numerical
semigroups gathered these two families together, and since then many papers devoted to them
have been published.
The following lemma is just a particular case of Lemma 36, taking T = N.

Lemma 39. Let S be a numerical semigroup other than N. Then S ∪{F(S)} is a numerical
semigroup.

The following result is just one of the many characterizations that one can find for irre-
ducible numerical semigroups.

Theorem 40. Let S be a numerical semigroup. The following are equivalent.

(i) S is irreducible.
(ii) S is maximal (with respect to set inclusion) in the set of numerical semigroups T such

that F(S) = F(T ).
(iii) S is maximal (with respect to set inclusion) in the set of numerical semigroups T such

that F(S) /∈ T .

Proof. (i) implies (ii) Let T be a numerical semigroup such that F(S) = F(T ). If S ⊆ T ,
then S = T ∩ (S ∪ {F(S)}). Since S 6= S ∪ {F(S)}, we deduce S = T .
(ii) implies (iii) Let T be a numerical semigroup such that F(S) /∈ T and assume that

S ⊆ T . The set T1 = T∪{F(S)+1,F(S)+2, . . .} is a numerical semigroup with F(T1) = F(S).
But S ⊆ T1, whence S = T1. Since F(S) + k ∈ S for all k ≥ 1, it follows that S = T .
(iii) implies (i) Let S1, S2 be two numerical semigroups such that S ⊆ S1, S ⊆ S2 and

S = S1 ∩ S2. Since F(S) 6∈ S, F(S) 6∈ Si for some i ∈ {1, 2}. By (iii), Si = S. �

Let S be a numerical semigroup. We say that S is symmetric if

(i) S is irreducible,
(ii) F(S) is odd.

We say that S is pseudo-symmetric if

(i) S is irreducible,
(ii) F(S) is even.

Next we show some characterizations of symmetric and pseudo-symmetric numerical semi-
groups. We first prove the following.

Proposition 41. Let S be a numerical semigroup and suppose that

H =

{

x ∈ Z \ S | F(S)− x /∈ S, x 6=
F(S)

2

}
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is not empty. If h = maxH, then S ∪ {h} is a numerical semigroup.

Proof. Since S ⊆ S∪{h}, the set N\(S∪{h}) has finitely many elements. Let a, b ∈ S∪{h}.

• If a, b ∈ S, then a + b ∈ S.
• Let a ∈ S∗. Assume that a+h /∈ S, by the maximality of h, we deduce F(S)−a−h =
F(S) − (a + h) ∈ S. Hence F(s) − h = a + F(S) − a − h ∈ S. This contradicts the
definition of h.

• If 2h /∈ S, then F(S)− 2h = s ∈ S∗. This implies that F(S)− h = h+ s ∈ S (by the
preceding paragraph). This is a contradiction. �

GAP example 42. In light of Proposition 41 and Lemma 35, if for a numerical semigroup,
there exists a maximum of {x ∈ Z \ (S ∪ {F(S)/2}) | F(S)− x 6∈ S}, then it is a special gap.

gap> s:=NumericalSemigroup(7,9,11,17);

<Numerical semigroup with 4 generators>

gap> g:=GapsOfNumericalSemigroup(s);

[ 1, 2, 3, 4, 5, 6, 8, 10, 12, 13, 15, 19 ]

gap> Filtered(g, x-> (x<>19/2) and not(19-x in s));

[ 4, 6, 13, 15 ]

gap> SpecialGapsOfNumericalSemigroup(s);

[ 13, 15, 19 ]

We have introduced the concepts of symmetric and pseudo-symmetric as subclasses of the
set of irreducible numerical semigroups. However, these two concepts existed before that of
irreducible numerical semigroup, and thus the definitions were different than the ones we
have given above. Next we recover the classical definitions of these two classical concepts.
Needless to say that as in the case of irreducible numerical semigroups, there are many
different characterizations of these properties. We will show some below.

Proposition 43. Let S be a numerical semigroup.

(i) S is symmetric if and only if for all x ∈ Z \ S, we have F(S)− x ∈ S.

(ii) S is pseudo-symmetric if and only if for all x ∈ Z \ S, F(S)− x ∈ S or x = F(S)
2

.

Proof. (i) Assume that S is symmetric. Then F(S) is odd, and thus H = {x ∈ Z \ S |
F(S) − x /∈ S} = {x ∈ Z \ S | F(S) − x /∈ S, x 6= F(S)/2}. If H is not the emptyset,
then T = S ∪ {h = maxH} is a numerical semigroup with Frobenius number F(S)
containing properly S, which is impossible in light of Theorem 40.
For the converse note that F(S) cannot be even, since otherwise as F(S)/2 6∈ S, we

would have F(S) − F(S)/2 = F(S)/2 ∈ S; a contradiction. So, we only need to prove
that S is irreducible. Let to this end T be a numerical semigroup such that F(S) /∈ T
and suppose that S ⊂ T . Let x ∈ T \ S. By hypothesis F(S) − x ∈ S. This implies
that F(S) = (F(S)− x) + x ∈ T . This is a contradiction (we are using here Theorem
40 once more).

(ii) The proof is the same as the proof of (i). �

The maximality of irreducible numerical semigroups, in the set of numerical semigroups
with the same Frobenius number, translates to minimality in terms of gaps. This is high-
lighted in the next result.

Corollary 44. Let S be a numerical semigroup.

(i) S is symmetric if and only if g(S) = F(S)+1
2

.
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(ii) S is pseudo-symmetric if and only if g(S) = F(S)+2
2

.

Hence irreducible numerical semigroups are those with the least possible genus.

Recall that the Frobenius number and genus for every embedding dimension two numerical
semigroup are known; as a consequence, we get the following.

Corollary 45. Let S be a numerical semigroup. If e(S) = 2, then S is symmetric.

The rest of the section is devoted to characterizations in terms of the Apéry sets (showing
in this way their ubiquity). First we show that Apéry sets are closed under summands.

Lemma 46. Let S be a numerical semigroup and let n ∈ S∗. If x, y ∈ S and x+y ∈ Ap(S, n),
then x, y ∈ Ap(S, n).

Proof. Assume to the contrary, and without loss of generality, that y−n ∈ S. Then x+y−n ∈
S, and consequently x+ y 6∈ Ap(S, n). �

Proposition 47. Let S be a numerical semigroup and let n ∈ S∗. Let Ap(S, n) = {0 =
a0 < a1 < · · · < an−1}. Then S is symmetric if and only if ai + an−1−i = an−1 for all
i ∈ {0, . . . , n− 1}.

Proof. Suppose that S is symmetric. From Proposition 12, we know that F(S) = an−1 − n.
Let 0 ≤ i ≤ n − 1. Since ai − n /∈ S, we get F(S) − ai + n = an−1 − ai ∈ S. Let s ∈ S be
such that an−1 − ai = s. Since an−1 = ai + s ∈ Ap(S, n), by Lemma 46, s ∈ Ap(S, n). Hence
s = aj for some 0 ≤ j ≤ n− 1. As this is true for any i, we deduce that j = n− 1− i.
Conversely, the hypothesis implies that Max≤S

Ap(S, n) = an−1. Hence PF(S) = {F(S)}
(Proposition 22). Also, by Proposition 21, {F(S)} = Max≤S

(N\S). If x /∈ S, then x ≤S F(S),
whence F(S)− x ∈ S. To prove that F(S) is odd, just use the same argument of the proof
of Proposition 43. �

As a consequence of the many invariants that can be computed using Apéry sets, we get
the following characterizations of the symmetric property.

Corollary 48. Let S be a numerical semigroup. The following conditions are equivalent.

(i) S is symmetric.
(ii) PF(S) = {F(S)}.
(iii) If n ∈ S, then Max≤S(Ap(S, n) = {F(S) + n}.
(iv) t(S) = 1.

Now, we are going to obtain the analogue for pseudo-symmetric numerical semigroups.
The first step is to deal with one half of the Frobenius number.

Lemma 49. Let S be a numerical semigroup and let n ∈ S∗. If S is pseudo-symmetric, then
F(S)
2

+ n ∈ Ap(S, n).

Proof. Clearly F(S)
2

/∈ S. If F(S)
2

+n /∈ S, then F(S)− F(S)
2

−n ∈ S. This implies that F(S)
2

∈ S,
which is a contradiction. �

Proposition 50. Let S be a numerical semigroup and let n ∈ S∗. Let Ap(S, n) = {0 = a0 <

a1, · · · < an−2} ∪
{

F(S)
2

+ n
}

. Then S is pseudo-symmetric if and only if ai + an−2−i = an−2

for all 0 ≤ i ≤ n− 2.
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Proof. Suppose that S is pseudo-symmetric and let w ∈ Ap(S, n). If w 6= F(S)
2

+ n, then

w−n /∈ S and w−n 6= F(S)
2

. Hence F(S)− (w−n) = F(S)+n−w = maxAp(S, n)−w ∈ S.
Since F(S)−w /∈ S, then F(S)+n−w = maxAp(S, n)−w ∈ Ap(S, n). But max(S, n)−w 6=
F(S)
2

+ n (otherwise w = F(S)
2

, a contradiction). Now we use the same argument as in the
symmetric case (Proposition 47).

Conversely, let x 6= F(S)
2

, x /∈ S. Take w ∈ Ap(S, n) such that w ≡ x (mod n). There
exists k ∈ N∗ such that x = w − kn (compare with Proposition 6).

(1) If w = F(S)
2

+ n, then F(S) − x = F(S)
2

+ (k − 1)n. But x 6= F(S)
2

. Hence k ≥ 2, and
consequently F(S)− x = w + (k − 2)n ∈ S.

(2) If w 6= F(S)
2

+n, then F(S)− x = F(S) +n−w+ (k− 1)n = an−2−w+ (k− 1)n ∈ S,
because an−2 − w ∈ S. �

Again, by using the properties of the Apéry sets, we get several characterizations for
pseudo-symmetric numerical semigroups.

Corollary 51. Let S be a numerical semigroup. The following conditions are equivalent.

(i) S is pseudo-symmetric.

(ii) PF(S) =
{

F(S), F(S)
2

}

.

(iii) If n ∈ S, then Max≤S(Ap(S, n)) =
{

F(S)
2

+ n,F(S) + n
}

.

Example 52. Let S be a numerical semigroup. If S is pseudo-symmetric, then t(S) = 2. The
converse is not true in general. Let S = 〈5, 6, 8〉. We have Ap(S, 5) = {0, 6, 12, 8, 14}. Thus,
PF(S) = {7, 9}, and t(S) = 2. However S is not pseudo-symmetric.

GAP example 53. Let us see how many numerical semigroups with Frobenius number 15
and type 2 are not pseudo-symmetric.

gap> l:=NumericalSemigroupsWithFrobeniusNumber(16);;

gap> Length(l);

205

gap> Filtered(l, s->TypeOfNumericalSemigroup(s)=2);

[ <Numerical semigroup>, <Numerical semigroup>, <Numerical semigroup>,

<Numerical semigroup>, <Numerical semigroup>, <Numerical semigroup>,

<Numerical semigroup>, <Numerical semigroup>, <Numerical semigroup>,

<Numerical semigroup>, <Numerical semigroup>, <Numerical semigroup>,

<Numerical semigroup>, <Numerical semigroup> ]

gap> Filtered(last,IsPseudoSymmetricNumericalSemigroup);

[ <Numerical semigroup>, <Numerical semigroup>, <Numerical semigroup>,

<Numerical semigroup>, <Numerical semigroup>, <Numerical semigroup>,

<Numerical semigroup> ]

gap> Difference(last2,last);

[ <Numerical semigroup with 3 generators>, <Numerical semigroup with 3 generators>,

<Numerical semigroup with 3 generators>, <Numerical semigroup with 3 generators>,

<Numerical semigroup with 3 generators>, <Numerical semigroup with 4 generators>,

<Numerical semigroup with 5 generators> ]

gap> List(last, MinimalGeneratingSystemOfNumericalSemigroup);

[ [ 3, 14, 19 ], [ 3, 17, 19 ], [ 5, 7, 18 ], [ 5, 9, 12 ], [ 6, 7, 11 ],
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[ 6, 9, 11, 13 ], [ 7, 10, 11, 12, 13 ] ]

2.1. Decomposition of a numerical semigroup into irreducible semigroups. Recall
that a numerical semigroup S is irreducible if it cannot be expressed as the intersection of two
numerical semigroups properly containing it. We show in this section that every numerical
semigroup can be expressed as a finite intersection of irreducible numerical semigroups.

Theorem 54. Let S be a numerical semigroup. There exists a finite set of irreducible nu-
merical semigroups {S1, . . . , Sr} such that S = S1 ∩ · · · ∩ Sr.

Proof. If S is not irreducible, then there exist two numerical semigroups S1 and S2 such
S = S1 ∩ S2 and S ⊂ S1 and S ⊂ S2. If S1 is not irreducible, then we restart with S1,
and so on. We construct this way a sequence of oversemigroups of S. This process will stop,
because O(S) has finitely many elements. �

The next step is to find a way to compute an “irredundant” decomposition into irreducible
numerical semigroups. The key result to accomplish this task is the following proposition.

Proposition 55. Let S be a numerical semigroup and let S1, . . . , Sr ∈ O(S). The following
conditions are equivalent.

(i) S = S1 ∩ · · · ∩ Sr.
(ii) For all h ∈ SG(S), there is i ∈ {1, . . . , r} such that h /∈ Si.

Proof. (i) implies (ii) Let h ∈ SG(S). Then h /∈ S, which implies that h /∈ Si for some
i ∈ {1, . . . , r}.
(ii) implies (i) Suppose that S ⊂ S1 ∩ · · · ∩Sr, and let h = max(S1 ∩ · · · ∩Sr \S). In light

of Lemma 36, h ∈ SG(S), and for all i ∈ {1, . . . , r}, h ∈ Si, contradicting the hypothesis. �

Remark 56. Let I(S) be the set of irreducible numerical semigroups of O(S), and let
Min⊆(I(S)) be the set of minimal elements of I(S) with respect to set inclusion. Assume that
Min≤⊆

(I(S)) = {S1, . . . , Sr}. Define C(Si) = {h ∈ SG(S) : h /∈ Si}. We have S = S1∩· · ·∩Sr

if and only if SG(S) = C(S1)∪ · · · ∪C(Sr). This gives a procedure to compute a (nonredun-
dant) decomposition of S into irreducibles. This decomposition might not be unique, and
not all might have the same number of irreducibles involved.

GAP example 57. gap> s:=NumericalSemigroup(7,9,11,17);;

gap> DecomposeIntoIrreducibles(s);

[ <Numerical semigroup>, <Numerical semigroup>, <Numerical semigroup> ]

gap> List(last,MinimalGeneratingSystemOfNumericalSemigroup);

[ [ 7, 8, 9, 10, 11, 12 ], [ 7, 9, 10, 11, 12, 13 ], [ 7, 9, 11, 13, 15, 17 ] ]

There exists some (inefficient) bound on the number of irreducible numerical semigroups
appearing in a minimal decomposition of a numerical semigroup into irreducibles. Actually,
there might be different minimal decompositions (in the sense that they cannot be refined
to other decompositions) with different cardinalities. So it is an open problem to know the
minimal cardinality among all possible minimal decompositions.

2.2. Free numerical semigroups. We present in this section a way to construct easily
symmetric numerical semigroups. This idea was originally exploited by Bertin, Carbonne
and Watanabe among others (see [8, 12, 19]) and goes back to the 70’s.
Let S be a numerical semigroup and let {a0, . . . , ah} be its minimal set of generators. Let

d1 = a0 and for all k ≥ 2, set dk = gcd(dk−1, ak). Define ek = dk
dk+1

, 1 ≤ k ≤ h.
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We say that S is free for the arrangement (a0, . . . , ah) if for all k ∈ {1, . . . , h}:

(i) ek > 1,
(ii) ekak belongs to the semigroup generated by {a0, . . . , ak−1}.

We say that S is telescopic if a0 < a1 < · · · < ah and S is free for the arrangement
(a0, . . . , ah).
There is an alternative way of introducing free semigroups with the use of gluings (more

modern notation), see for instance [18, Chapter 8].
One of the advantages of dealing with free numerical semigroups is that every integer

admits a unique representation in terms of its minimal generators if we impose some bounds
on the coefficients.

Lemma 58. Assume that S is free for the arrangement (a0, . . . , ah), and let x ∈ Z. There
exist unique λ0, . . . , λh ∈ Z such that the following holds:

(i) x =
∑h

k=1 λkak,
(ii) for all h ∈ {1, . . . , h}, 0 ≤ λk < ek.

Proof. Existence. The group generated by S is Z, and so there exist α0, . . . , αh ∈ Z such
that x =

∑h
k=1 αkak. Write αh = qheh + λh, with 0 ≤ λh < eh. But ehah =

∑h−1
i=0 βiai, with

βi ∈ N for all i ∈ {1, . . . , h− 1}. Hence

x =
h−1
∑

k=0

(λk + qhβk) + λhah,

and 0 ≤ λh < eh. Now the result follows by an easy induction on h.
Uniqueness. Let x =

∑h
k=0 αkak =

∑h
k=0 βkak be two distinct such representations, and

let j ≥ 1 be the greatest integer such that αj 6= βj . We have

(αj − βj)aj =

j−1
∑

k=1

(βk − αk)ak.

In particular, dj divides (αj−βj)aj. But gcd(dj, aj) = dj+1, , whence
dj

dj+1
divides (αj−βj)

aj
dj+1

.

As gcd(dj/dj+1, aj/dj+1) = 1, this implies that
dj

dj+1
divides αj−βj . However |αj−βj| < ej =

dj
dj+1

, yielding a contradiction. �

An expression of x like in the preceding lemma is called a standard representation. As a
consequence of this representation we obtain the following characterization for membership
to a free numerical semigroup.

Lemma 59. Suppose that S is free for the arrangement (a0, . . . , ah) and let x ∈ N. Let

x =
∑h

k=0 λkak be the standard representation of x. We have x ∈ S if and only if λ0 ≥ 0.

Proof. If λ0 ≥ 0 then clearly x ∈ S. Suppose that x ∈ S and write x =
∑h

k=0 αkak with
α0, . . . , αh ∈ N. Imitating the construction of a standard representation made in the above
Lemma, we easily obtain the result. �

With this it is easy to describe the Apéry set of the first generator in the arrangement that
makes the semigroup free.
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Corollary 60. Suppose that S is free for the arrangement (a0, . . . , ah). Then

Ap(S, a0) =

{

h
∑

k=1

λkak | 0 ≤ λk < ek for all k ∈ {1, . . . , h}

}

.

Proof. Let x ∈ S and let x =
∑h

k=0 λkak be the standard representation of x. Clearly

x− a0 = (λ0 − 1)a0 +
∑h

k=1 λkak is the standard representation of x− λ0. Hence x− a0 /∈ S
if and only if λ0 = 0. This proves our assertion. �

As usual, once we know an Apéry set, we can derive many properties of the semigroup.

Proposition 61. Let S be free for the arrangement (a0, . . . , ah).

(i) F(S) =
∑h

k=1(ek − 1)− r0.
(ii) S is symmetric.

(iii) g(S) = F(S)+1
2

.

Proof. We have F(S) = maxAp(S, a0)−a0, by Proposition 12. As maxAp(S, a0) =
∑h

k=1(ek−
1)ak, (i) follows easily.
Assertion (ii) is a consequence of Corollary 60 and Proposition 47.
Finally (iii) is a consequence of (ii) and Corollary 44. �

GAP example 62. The proportion of free numerical semigroup compared with symmetric
numerical semigroups with fixed Frobenius number (or genus) is small.

gap> List([1,3..51], i ->

> [Length(FreeNumericalSemigroupsWithFrobeniusNumber(i)),

> Length(IrreducibleNumericalSemigroupsWithFrobeniusNumber(i))]);

[ [ 1, 1 ], [ 1, 1 ], [ 2, 2 ], [ 3, 3 ], [ 2, 3 ], [ 4, 6 ], [ 5, 8 ], [ 3, 7 ],

[ 7, 15 ], [ 8, 20 ], [ 5, 18 ], [ 11, 36 ], [ 11, 44 ], [ 9, 45 ], [ 14, 83 ],

[ 17, 109 ], [ 12, 101 ], [ 18, 174 ], [ 24, 246 ], [ 16, 227 ], [ 27, 420 ],

[ 31, 546 ], [ 21, 498 ], [ 35, 926 ], [ 38, 1182 ], [ 27, 1121 ] ]

3. Semigroup of an irreducible meromorphic curve

LetK be an algebraically closed field of characteristic zero and let f(x, y) = yn+a1(x)y
n−1+

· · ·+ an(x) be a nonzero polynomial of K((x))[y] where K((x)) denotes the field of meromor-
phic series in x. The aim of this section is to associate with f , when f is irreducible, a
subsemigroup of Z. The construction of this subsemigroup is based on the notion of Newton-
Puiseux exponents. These exponents appear when we solve f as a polynomial in y, and it
turns out that the roots are elements of K((x

1

n ). Two cases are of intereset: the local case,
that is, the case when f ∈ K[[x]][y], and the case when f ∈ K[x−1][y] with the condition that
F (x, y) = f(x−1, y) has one place at infinity. In the first case, the subsemigroup associated
with f is a numerical semigroup. In the second case, this subsemigroup is a subset of −N,
and some of its numerical properties have some interesting applications in the study of the
embedding of special curves with one place at infinity in the affine plane.

3.1. Newton-Puiseux theorem.

Theorem 63 (Hensel’s Lemma). Let f be as above and assume that f ∈ KJxK[y]. Assume

that there exist two nonconstant polynomials g̃, h̃ ∈ K[y] such that:
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(i) g̃, h̃ are monic in y,

(ii) gcd(g̃, h̃) = 1,

(iii) f(0, y) = g̃h̃.

Then there exist g, h ∈ KJxK[y] such that:

(i) g, h are monic in y,

(ii) g(0, y) = g̃, h(0, y) = h̃,

(iii) degy g = deg g̃, degy h = deg h̃,
(iv) f = gh.

Proof. Let r (respectively s) be the degree of g̃ (respectively h̃) and write f(x, y) =
∑

q≥0 fq(y)x
q.

Clearly f(0, y) = f0 is monic of degree n in y. Furthermore, we can assume that degy fq < n
for all q ≥ 1. For all i ≥ 0, we construct fi, gi ∈ K[y] such that:

(1) g0 = g̃, h0 = h̃,
(2) For all i ≥ 1, degy gi < r and degy hi < s,
(3) for all q ≥ 1, fq =

∑q
i=1 gihq−i.

If i = 0, then we set g0 = g̃, h0 = h̃. Suppose that we have g0, . . . , gq−1, h0, . . . , hq−1. Let

eq = fq −
∑q−1

i=0 gihq−i. Note that degy eq < n. We need to prove the existence of two monic
polynomials gq, hq such that eq = h0gq + g0hq, degy gq < r and degy hq < s. To this end, we
use Euclid’s extended algorithm for polynomials with coefficients in a field. By hypothesis,
gcd(g0, h0) = 1. Let α, β ∈ K[y] be such that αg0+βh0 = 1. We have eq = (eqα)g0+(eqβ)h0.
Let Gq = eqβ, Hq = eqα and write Gq = Qg0 +R with degy R < r. We have

eq = (eqα)g0 + (Qg0 +R)h0 = (eqα +Qh0)g0 +Rh0.

Let gq = R, hq = eqα+Qh0. Since degy gq < r, it follows that degy hq < s. Hence gq, hq fulfill
the above conditions. �

Proposition 64. Let f(x, y) ∈ K((x))[y] be as above. There exist m ∈ N and y(t) ∈ K((t))
such that f(tm, y(t)) = 0.

Proof. We shall prove the result by induction on the degree in y of f . If n = 1, then
f = y − a1(x). Hence f(t, a1(t)) = 0. Suppose that n ≥ 2. We shall assume the following.

(1) a1(x) = 0.
(2) ak(x) ∈ KJxK for all k ∈ {2, . . . , n} and ak(0) 6= 0 for some k ∈ {2, . . . , n}.

It follows that f(0, y) = yn + a2(0)y
n−2 + · · · + an(0) is not a power in K[y]. Hence there

exist nonconstant monic polynomials g̃(y), h̃(y) ∈ K[y] such that gcd(g̃(y), h̃(y)) = 1 and

f(0, y) = g̃(y)h̃(y). By Hensel’s lemma, there exist monic polynomials g, h ∈ KJxK[y] such
that degy g, degy h < n and f = gh. By induction hypothesis there exist n ∈ N and y(t) ∈
K((t)) such that g(tn, y(t)) = 0. In particular, f(tn, y(t)) = 0.

(1) Assume that a1(x) 6= 0. Let z = y + a1
n

and let F(x, z) = f(x, z − a1
n
). Let m ∈ N

and z(t) ∈ K((t)) such that F(tn, z(t)) = 0. We have f
(

tn, z(t)− a1
n

)

= 0.

(2) Let f = yn+
∑n

k=2 ak(x)y
n−k with ak(x) 6= 0 for some k ∈ {2, . . . , n} (if f(x, y) = yn,

then f(t, 0) = 0, and so it suffices to take m = 1 and y(t) = 0). For all k ∈ {2, . . . , n}
such that ak 6= 0, let uk = ordx(ak). Set u = min

{

uk

k
| ak 6= 0

}

. There exists an index
r such that u = ur

r
. Let x = wr and z = w−ury, and let g(w, z) = w−nurf(wr, y). We
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have

g(w, z) = w−nur

(

wnurzn +
n
∑

k=2

ak(w
r)wur(n−k)zn−k

)

= zn +
n
∑

k=2

ak(w
r)wur(n−k)zn−k.

Let bk(w) = ak(w
r)wur(n−k). We have ordwbk = ruk − kur ≥ 0, hence bk ∈ K[[w]].

Furthermore, ordwbr(w) = 0, that is, br(0) 6= 0. Finally, if m ∈ N and w(t) ∈ K((t))
are such that g(tm, w(t)) = 0, then f(tmr, tmurz(t)) = 0. �

Lemma 65. Let m ∈ N∗. The extension K((tm)) → K((t)) is an algebraic extension of
degree m.

Proof. The field K((t)) is a K((tm))-vector space with basis {1, t, . . . , tm−1}. �

Let y(t) ∈ K((t)) and let F (tm, y) ∈ K((tm))[y] be the minimal polynomial of y over
K((tm)). By abuse of notation we write F (x, y) ∈ K((x))[y] for F (tm, y). Then

(1) F (x, y) is a monic irreducible polynomial of K((x))[y],
(2) F (tm, y(t)) = 0,
(3) for all g(x, y) ∈ K((x))[y], if g(tm, y(t)) = 0, then F (x, y) divides g(x, y),
(4) degy F (x, y) = [K((tm))(y(t)) : K((tm))],
(5) degy F (x, y) divides m.

Write y(t) =
∑

p cpt
p. Define the support of y(t) to be Supp(y(t)) = {p | cp 6= 0}.

Proposition 66. Let the notations be as above. If gcd(m, Supp(y(t))) = 1, then the following
holds.

(i) F (tm, y) =
∏

w,wm=1(y − y(wt)), and if w1 6= w2, w
n
1 = wn

2 = 1, then y(w1t) 6= y(w2t).

(ii) degy F (x, y) = m.

Proof. Clearly (i) implies (ii).
To prove (i), note that if wm = 1, then F ((wt)m, y(wt)) = 0. Let w1 6= w2 be such that

wm
1 = wm

2 = 1. We have y(w1t) − y(w2t) =
∑

p(w
p
1 − wp

2)cpt
p. If y(w1t) = y(w2t), then

wp
1 = wp

2 for all p ∈ Supp(y(t)). But wm
1 = wm

2 , and gcd(m, Supp(y(t))) = 1, which yields
w1 = w2; a contradiction. �

Proposition 67. Suppose that f(x, y) is irreducible. There exists y(t) ∈ K((t)) such that
f(tn, y(t)) = 0. Furthermore,

(1) f(tn, y) =
∏

wn=1(y − y(wt)),
(2) if w1 6= w2, w

n
1 = wn

2 = 1, then y(w1t) 6= y(w2t),
(3) gcd(n, Supp(y(t))) = 1.

Proof. We know that there exist m ∈ N and y(t) ∈ K((t)) such that f(tm, y(t)) = 0. Let m
be the smallest integer with this property and let d = gcd(m, Supp(y(t))). If d > 1, then
y(t) = z(td) for some z(t) ∈ K((t)), hence f

(

(tm/d)d, z(td)
)

= 0 = f
(

tm/d, z(t)
)

, which is
a contradiction. The polynomial f is monic and irreducible. Thus f is consequently the
minimal polynomial of y(t) over K((tm)). In particular m = n. This with Proposition 66
completes the proof of the assertion. �
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Suppose that f is irreducible and let y(t) =
∑

p cpt
p as above. Let d1 = n = degy f

and let m1 = inf{p ∈ Supp(y(t)) | d1 ∤ p}, d2 = gcd(d1, m1). Then for all i ≥ 2, let
mi = inf{p ∈ Supp(y(t)) | di ∤ p} and di+1 = gcd(di, mi). By hypothesis, there exists
h ≥ 1 such that dh+1 = 1. We set m = (m1, . . . , mh) and d = (d1, . . . , dh+1). We also set
ei =

di
di+1

for all i ∈ {1, . . . , h}. We finally define the sequence r = (r0, . . . , rh) as follows:

r0 = n, r1 = m1 and for all i ∈ {2, . . . , h},

ri = ri−1ei−1 +mi −mi−1.

The sequence m is called the set of Newton-Puiseux exponents of f . The sequences m, d, r
are called the characteristic sequences associated with f . Note that dk = gcd(r0, . . . , rk−1)
for all 1 ≤ k ≤ h+ 1.

Lemma 68. Let k ∈ {1, . . . , h} and let i ∈ {1, . . . , ek − 1}. Then irk is not in the group
generated by {r0, . . . , rk−1}.

Proof. Assume we can write irk =
∑k−1

j=1 θjrj , for some θ0, · · · , θk−1 ∈ Z. Since gcd(r0, · · · , rk−1) =

dk, we get that dk divides irk. Hence ek = dk
dk+1

divides i rk
dk+1

. But gcd
(

ek,
rk

dk+1

)

= 1 and

i < ek. This is a contradiction. �

Lemma 69. Let the notations be as above, in particular f is irreducible and y(t) ∈ K((t))
is a root of f(tn, y) = 0.

(i) ordt(y(t)− y(wt)) ∈ {m1, . . . , mh}.
(ii) The cardinality of {y(wt) | ordt(y(t)− y(wt)) > mk} is dk+1.
(iii) The cardinality of {y(wt) | ordt(y(t)− y(wt)) = mk} is dk − dk+1.

Proof. (i) From the expression of y(t), we get y(t) − y(wt) =
∑

p(1 − wp)cpt
p. Let M =

ordt(y(t) − y(wt)). It follows that for all p < M , wp = 1. Hence, if d = gcd(n, {p ∈
Supp(y(t)) | p < M}), then wd = 1. But d = dk for some 1 ≤ k ≤ h, whenceM = mk−1.

(ii) In fact, ordt(y(t)− y(wt)) > mk if and only if wdk+1 = 1.
(iii) Observe that ordt(y(t) − y(wt)) = mk if and only if ordt(y(t) − y(wt)) > mk−1 and

ordt(y(t)− y(wt)) ≤ mk. Hence the result follows from (ii). �

Let the notations be as above and let 1 ≤ k ≤ h. Let ȳ(t) =
∑

p<mk
cpt

p and let Gk(x, y) be

the minimal polynomial of ȳ(t) over K((tn)). Since gcd(n, Supp(ȳ(t))) = dk, the polynomial

Gk is a monic irreducible polynomial of degree n
dk

in y. Furthermore, if Y (t) = ȳ(t
1

dk ), then

Gk(t
n
dk , y) =

∏

v,v
n
dk =1

(y − Y (vt)).

We call Gk a dkth pseudo root of f .

Proposition 70. Under the standing hypothesis.

(i) The sequence of Newton-Puiseux exponents of Gk is given by
(

m1

dk
, · · · , mk−1

dk

)

.

(ii) The r-sequence and d-sequence of Gk are given by
(

r0
dk
, · · · , rk−1

dk

)

and
(

d0
dk
, · · · , dk−1

dk
, 1
)

,

respectively.

Proof. (i) This follows from the expression of Y (t), using the fact that gcd( n
dk
, · · · , mk−1

dk
) =

1.
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(ii) Let R, D, E be the characteristic sequences associated with Gk. We have D1 =
R0 =degy Gk = n

dk
= r0

dk
= d1

dk
, R1 = m1

dk
= r1

dk
and D2 = gcd( r0

dk
, r1
dk
) = d2

dk
. Hence

E1 = e1. Now R2 = R1E1 +
m2

dk
− m1

dk
, hence R2 =

r2
dk
. The assertion now follows by an

easy induction on i ≤ k − 1. �

Let g be a nonzero polynomial of K((x))[y]. We define the intersection multiplicity of f
with g, denoted int(f, g), to be int(f, g) = ordtg(t

n, y(t)). Note that this definition does not
depend on the root y(t), that is, int(f, g) = ordtg(t

n, y(wt)) for all w ∈ K such that wn = 1.

Proposition 71. Let the notations be as above. We have int(f,Gk) = rk.

Proof. From Proposition 67, we can write

f(tn, ȳ(tdk)) =
∏

wn=1

(ȳ(tdk)− y(wt)).

As in the proof of Lemma 69, we deduce

ordt(ȳ(t
dk)− y(wt)) =

{

mi if ordt(y(t)− y(wt)) = mi < mk,

mk if ordt(y(t)− y(wt)) ≥ mk.

Hence ordtf(t
n, ȳ(tdk)) =

∑k−1
i=1 (di − di+1)mi +mkdk. Now

rkdk = rk−1dk−1 + (mk −mk−1)dk

= rk−2dk−2 + (mk−1 −mk−2)dk−1 + (mk −mk−1)dk

. . .

= r1d1 −m1d2 +
k−1
∑

i=2

(di − di+1)mi +mkdk

=

k−1
∑

i=1

(di − di+1)mi +mkdk.

Hence ordtf(t
n, ȳ(tdk)) = rkdk. In particular int(f,Gk) = ordtf

(

tn/dk , ȳ(t1/dk)
)

= rk. �

Let G1, . . . , Gh be the set of pseudo-roots of f constructed above and recall that for all
k ∈ {1, . . . , h}, Gk is a monic irreducible polynomial of degree n

dk
in y. Recall also that the set

of characteristic sequences associated with Gk are given by
(

m1

dk
, . . . ,

mk−1

dk

)

,
(

d1
dk
, . . . ,

dk−1

dk
, 1
)

and
(

r0
dk
, . . . ,

rk−1

dk

)

.

Proposition 72. Let g ∈ K((x))[y]. Then

g =
∑

θ

cθ(x)G
θ1
1 . . . Gθh

h f
θh+1

for some θ = (θ1, . . . , θh+1) ∈ Nh+1, with 0 ≤ θk < ek for all k ∈ {1, . . . , h}, and some
cθ(x) ∈ K((x)). We call this expression the expansion of g with respect to (G1, . . . , Gh, f).
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Proof. Write g = Qf + R where degy R < n. If degyQ ≥ n, then write Q = Q1f + R1 with
degy R

1 < n. We have g = Q1f 2 +R1f +R, then we restart with Q1. This process will stop
giving the following expression of g in terms of the powers of f :

g =
l
∑

k=0

αk(x, y)f
k,

where degy αk(x, y) < n for all k ∈ {0, . . . , l}. Fix k ∈ {0, . . . , l} and write the expression of
αk in terms of the powers of Gh:

αk =

lk
∑

i=0

αk
iG

i
h,

with degy α
k
i <

n
dh

for all i ∈ {0, . . . , lk}. Note that, since degy αk < n, we have i < eh = dh.
Finally we get

g =
∑

θ

cθ(x, y)G
θh
h f

θh+1,

with θh < eh for all θ = (θh, θh+1) ∈ N2 such that cθ 6= 0. Now we restart with the set of
polynomials cθ(x, y) and Gh−1. We get the result by induction on k ≤ h. �

Proposition 73. Let g ∈ K((x))[y]. If f ∤ g, then there exist unique λ0 ∈ Z, λ1, . . . , λh ∈ N

such that int(f, g) =
∑h

k=0 λkrk and for all k ∈ {1, . . . , h}, λk < ek.

Proof. Let g =
∑

θ cθ(x)G
θ1
1 · · ·Gθh

h f
θh+1 be the expansion of g with respect to (G1, . . . , Gh, f).

Notice that θk < ek for all k ∈ {1, . . . , h} (Proposition 72). Given a monomial cθ(x)G
θ1
1 · · ·Gθh

h f
θh+1

of g, if θh+1 = 0 and θ0 = ordxcθ(x), then

int(f, cθ(x)G
θ1
1 · · ·Gθh

h ) =

h
∑

k=0

θkrk.

Let cα(x)G
α1

1 · · ·Gαh

h and cβ(x)G
β1

1 · · ·Gβh

h be two monomials of g, and let α0 and β0 be the

orders in x of cα(x) and cβ(x), respectively. Assume that
∑h

k=0 αkrk =
∑h

k=0 βkrk and let j
be the greatest integer such that αj 6= βj . Suppose that j ≥ 0 and that αj > βj . We have

(αj − βj)rj =

j−1
∑

k=0

(βk − αk)rk

with 0 < αj − βj < ej . This contradicts Lemma 68. Finally either f | g or there is a unique

monomial cθ0(x)G
θ0
1

1 · · ·G
θ0
h

h such that

int(f, g) =
h
∑

k=0

θ0krk = inf{int(f, cθ(x)G
θ1
1 · · ·Gθh

h ), cθ 6= 0}. �

Corollary 74. Let g ∈ K((x))[y]. If degy g <
n

dk+1
for some k ∈ {1, . . . , h}, then there exist

λ0 ∈ Z, λ1, . . . , λk ∈ N such that int(f, g) =
∑k

i=0 λiri.

Proof. Let g =
∑

θ cθ(x)G
θ1
1 . . . Gθh

h f
θh+1 be the expansion of g with respect to (G1, . . . , Gh, f).

Since degy g <
n

dk+1
, we deduce that for all nonzero monomial cθ(x)G

θ1
1 . . . Gθh

h f
θh+1, θk+1 =

· · · = θh+1 = 0. This implies the result. �
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More generally, let k ∈ {1, . . . , h} and define a dkth pseudo root of f to be any monic
polynomial Gk of degree n

dk
in y such that int(f,Gk) = rk. The following proposition shows

that such a polynomial is necessarily irreducible.

Proposition 75. Let k ∈ {1, . . . , h} and let H be a monic polynomial of K((x))[y], of degree
n
dk

in y. If int(f,H) = rk, then H is irreducible.

Proof. LetH = H1 · · ·Hs be the decomposition of G into irreducible components inK((x))[y].
Suppose that s > 1 and let i ∈ {1, . . . , s}. Since degyHi <

n
dk
, by Corollary 74, there exist

λi0 ∈ Z, λi1, . . . , λ
i
k−1 such that int(f,Hi) = λi0r0 + · · ·+ λik−1rk−1. Hence rk = (

∑s
i=1 λ

i
0)r0 +

· · ·+ (
∑s

i=1 λ
i
k−1)rk−1. This contradicts Lemma 68. �

Lemma 76. Let the notations be as above. For all 1 ≤ k ≤ h, there exist λk0, . . . , λ
k
k−1 ∈ N

such that ekrk =
∑k−1

i=1 λ
k
i ri.

Proof. Let Gh be a dhth pseudo root of f . Write f = Gdh
h +α1(x, y)G

dh−1
h +· · ·+αdh(x, y). For

all k ∈ {0, . . . , dh}, int(f, αk(x, y)G
dh−k
h ) = int(f, αk(x, y)) + (dh − k)rh (where α0(x, y) = 1).

But f(tn, y(t)) = 0, and by Corollary 74, for all k ∈ {1, . . . , dh}, there exist α
k
0 , . . . , α

k
h−1 such

that int(f, αk(x, y)) =
∑h−1

i=1 α
k
i ri. Now a similar argument as in Proposition 73 shows that

if 0 ≤ k1 6= k2 ≤ dh − 1, then int(f, αk1G
dh−k1
h ) 6= int(f, αk2G

dh−k2
h ). The same argument

shows also that for all i ∈ {1, . . . , dh − 1}, if αi(x, y) 6= 0, then int(f, αi(x, y)G
dh−i
h ) 6=

int(f, αdh(x, y)). Let E = {int(f, αk(x, y)) + (dh − k)rh | k ∈ {0, . . . , dh}} and let k0 ∈
{0, . . . , dh} be such that int(f, αk0(x, y)) + (dh − k0)rh = inf(E). If k0 is unique with this
property, then ordtf(t

n, y(t)) = int(f, αk0(x, y))+(dh−k0)rh, which is a contradiction because
f(tn, y(t)) = 0. Hence there is at least one k1 6= k0 such that int(f, αk0(x, y)) + (dh− k0)rh =
int(f, αk1(x, y)) + (dh − k1)rh. This is possible only for {k0, k1} = {0, dh}, in particular

int(f,Gdh
h ) = int(f, αdh(x, y)). This proves the result for k = h. Now we use an induction on

1 ≤ k ≤ h. �

Proposition 77. Let the notations be as above. Let g be a nonzero polynomial of K((x))[y]
and let G1, . . . , Gh be a set of d1, . . . , dhth pseudo roots of f . If degy g < n

dk+1
for some

k ∈ {0, . . . , h− 1}, then int(f, g) = dk+1int(Gk+1, g).

Proof. Let g =
∑

θ cθ(x)G
θ1
1 · · ·Gθk

k be the expansion of g with respect to (G1, . . . , Gh, f). By

Proposition 73, there is a unique monomial cθ0(x)G
θ0
1

1 · · ·G
θ0
k

k such that

int(f, g) = int(f, cθ0(x)G
θ01
1 · · ·G

θ0
k

k ) = inf{int(f, cθ(x)G
θ1
1 · · ·Gθk

k , cθ 6= 0}.

Now clearly, the expansion of g above is also that of g with respect to (G1, . . . , Gk+1). Fur-

thermore, if cθ(x) 6= 0 and if θ0 = ordxcθ(x), then int(Gk+1, cθ(x)G
θ1
1 . . . Gθk

k ) =
∑k

i=0 θi
ri

dk+1
=

1
dk+1

int(f, cθ(x)G
θ1
1 · · ·Gθk

k ). This implies the result. �

Proposition 78. Let (G1, . . . , Gh) be a set of pseudo-roots of f . For all k ∈ {1, . . . , h− 1},
(G1, . . . , Gk) is a set of pseudo roots of Gk+1.

Proof. Fix k ∈ {1, . . . , h− 1} and let i ∈ {1, . . . , k}. By Proposition 77,

int(Gk+1, Gi) =
1

dk+1
int(f,Gi) =

ri
dk+1

.

Furthermore, Gi is irreducible by Proposition 75. This proves the result. �
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Let (G1, · · · , Gh) be a set of pseudo-roots of f . Let k ∈ {1, . . . , h} and write

f = Gdk
k + α1(x, y)G

dk−1
k + · · ·+ αdk(x, y),

where degy αi(x, y) < n
dk

for all i ∈ {1, . . . , dk}. Let G′
k = Gk + α1

dk
. We call G′

k the

Tchirnhausen transform of Gk and denote it by T(Gk). With these notations we have the
following.

Proposition 79. int(f,T(Gk)) = rk.

Proof. Let k = h and let

f = Gdh
h + α1(x, y)G

dh−1
h + · · ·+ αdh(x, y)

be theGh-adic expansion of f . Hence int(f,Gdh
h ) = rhdh and int(f, αi(x, y)G

dh−i
h = int(f, αi(x, y)+

(dh − i)rh for all i such that αi(x, y) 6= 0. Let i, j ∈ {0, . . . , dh − 1}, i 6= j, and as-
sume that αi(x, y) 6= 0 6= αj(x, y). By a similar argument as in Lemma 76, we have
int(f, αi(x, y)) + (dh − i)rh 6= int(f, αj(x, y)) + (dh − j)rh. Also if αi(x, y) 6= 0 for some

i ∈ {1, . . . , dh − 1}, then int(f, αi(x, y)G
dh−i
h ) 6= int(f, αdh(x, y). Now f(tn, y(t)) = 0. This

implies

(1) int(f, αdh) = rhdh = int(f,Gdh
h ),

(2) int(f, αi(x, y)) > irh for all 1 ≤ i ≤ dh − 1 such that αi(x, y) 6= 0.

It follows that int(f, α1(x, y) > rh, hence int(f, T (Gh)) = int(f,Gh +
α1(x,y)

dh
) = int(f,Gh) =

rh.
Let k < h and let

f = G
dk+1

k+1 + α1(x, y)G
dk+1−1
k+1 + · · ·+ αdk+1

(x, y)

be the Gk+1-adic expansion of f . Let also

Gk+1 = Gek
k + β1(x, y)G

ek−1
k + · · ·+ βek(x, y)

be the Gk-adic expansion of Gk+1. Easy calculations show that α1(x, y) = dh+1β1(x, y). Re-
peating the argument above for (Gk+1, Gk) instead of (f,Gh), we prove that int(Gk+1, β1(x, y)) >
int(Gk+1, Gk) =

rk
dk+1

, hence, by Proposition 77,

int(f, α1(x, y)) = int(f, β1(x, y)) = dk+1int(Gk+1, β1(x, y)) > rk

In particular int(f, T (Gk)) = int(f,Gk +
α1(x,y)

dk
) = int(f,Gk) = rk. �

Corollary 80. Let k ∈ {1, . . . , h} and let Gk be a dkth pseudo root of f . Then T (Gk) is a
dkth pseudo root of f .

Proof. Clearly T (Gk) is a monic polynomial of degree n
dk

in y. By Proposition 79, int(f, T (Gk)) =

rk, and by Proposition 75, T (Gk) is irreducible. This proves the result. �

Let d be a divisor of n and let g be a monic polynomial of f of degree n
d
in y. Let

f = gd + α1(x, y)g
d−1 + · · ·+ αd(x, y)

be the g-adic expansion of f . We say that g is a dth approximate root of f if α1(x, y) = 0.

Lemma 81. Let the notations be as above. A dth approximate root of f exists and it is
unique.
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Proof. Let G = y
n
d and let f = Gd + α1(x, y)G

d−1 + · · ·+ αd(x, y) be the G-adic expansion
of f . If α1(x, y) = 0, then G is a dth approximate root of f . If α1(x, y) 6= 0, then we

set G1 = T (G) = G + α1(x,y)
d

. Let f = Gd
1 + α1

1(x, y)G
d−1
1 + · · · + α1

d(x, y) be the G1-adic
expansion of f . Easy calculations show that if α1

1(x, y) 6= 0, then degy α
1
1(x, y) < degyα1(x, y).

In this case we restart with f and G2 = T (G1). Clearly there exists k such that if f =
Gd

k + αk
1(x, y)G

d−1
k + · · ·+ αk

d(x, y) is the Gk-adic expansion of f , then αk
1(x, y) = 0. Hence

Gk is a d-th approximate root of f .
Let G,H be two dth approximate roots, and let f = Gd+α2(x, y)G

d−2+ · · ·+αd(x, y) and
f = Hd+β2(x, y)H

d−2+· · ·+βd(x, y)) be the G-adic and H-adic expansion of f , respectively.
We have Gd −Hd = (G−H)(Gd−1 +HGd−2 + · · ·+Hd−1) = β2(x, y)H

d−2 + · · ·+ βd(x, y)−
(α2(x, y)G

d−2 + · · ·+αd(x, y)). If G 6= H , then degy(G−H) ≥ 0, but degy(G
d−1 +HGd−2 +

· · ·+Hd−1) = (d−1)n
d
> degy(β2(x, y)H

d−2+ · · ·+βd(x, y)− (α2(x, y)G
d−2+ · · ·+αd(x, y))).

This is a contradiction. �

It results from Lemma 81 that, given a divisor d of n, a dth approximate root exists and
it is unique. We denote it by App(f ; d).

Proposition 82. Let the notations be as above. For all k ∈ {1, . . . , h}, int(f,App(f ; dk)) =
rk.

Proof. Let 1 ≤ k ≤ h and let Gk be a dkth pseudo root of f . By Proposition 77, int(f,Gk) =
int(f, T (Gk)). But App(f, dk) is obtained by applying the operation T finitely many times
to Gk. Hence the result is a consequence of Proposition 78 and Corollary 80. �

Corollary 83. For all k ∈ {1, . . . , h}, App(f, dk) is irreducible. In particular App(f, dk) is
a dkth pseudo root of f .

Proof. This results from Propositions 75 and 82. �

Next we shall introduce the notion of contact between two irreducible polynomials of
K((x))[y]. The notion tells us how far the parametrizations of these two polynomials are
close.
Let g be a monic irreducible polynomial ofK((x))[y], of degree p in y and let z1(t), · · · , zp(t)

be the set of roots of g(tp, y) = 0. We define the contact of f with g, denoted c(f, g), to be:

c(f, g) =
1

np
max
i,j

ordt(yi(t
p)− zj(t

n))

Note that c(f, g) = 1
np

maxi ordt(yi(t
p) − z(tn)) = 1

np
maxj ordt(y(t

p) − zj(t
n)) where y(t)

and z(t) are roots of f(tn, y) = 0 and g(tp, y) = 0, respectively.

Proposition 84. Let g be an irreducible monic polynomial of K((x))[y] and let p = degyg.
We have the following.

(1) c(f, g) < m1

n
if and only if int(f, g) = npc(f, g).

(2) mk

n
< c = c(f, g) ≤ mk+1

n
for some k ∈ {1, . . . , h} (with the assumption that mh+1 =

+∞) if and only if int(f, g) = (rkdk + nc−mk)
p
n

Proof. Let z(t) be a root of g(tp, y) = 0. We have int(f, g) = ordtf(t
p, z(t)). Note that

f(tp, z(t)) = f((t
p

n )n, z(t)). Also, f(tn, y) =
∏n

i=1(y − yi(t)). Hence f((t
p

n )n, y) =
∏n

i=1(y −
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yi(t
p

n )), which implies that f(tp, z(t)) =
∏n

i=1(z(t)− yi(t
p

n )), and it follows that

int(f, g) = ordtf(t
p, z(t)) =

1

n
ordt

(

n
∏

i=1

(z(tn)− yi(t
p))

)

=
1

n

n
∑

i=1

ordt(z(t
n)− yi(t

p)).

Suppose, without loss of generality, that c(f, g) = 1
np
ordt(y1(t

p) − z(tn)). It follows that

int(f, g) ≤ ordt(y1(t
p)− z(tn)) ≤ npc(f, g).

If c(f, g) < m1

n
, then ordt(y1(t

p) − z(tn)) < m1p. Let 2 ≤ i ≤ n. We have z(tn) −
yi(t

p) = z(tn)− y1(t
p) + y1(t

p)− yi(t
p) and by Lemma 69, ordt(y1(t

p)− yi(t
p)) ≥ pm1, hence

ordt(z(t
n) − yi(t

p)) = ordt(z(t
n) − y1(t

p)). Finally ordtf(t
p, z(t)) = ordt(z(t

n) − y1(t
p)) =

npc(f, g). Conversely, if int(f, g) = npc(f, g), then ordt(yi(t)− z(t)) = ordt(y1(t)− z(t)) for
all i ∈ {2, . . . , n}. This is true only if c(f, g) < m1

n
. This proves (1).

Suppose that c(f, g) ≥ m1

n
and let k be the greatest element such that mk

n
≤ c(f, g) < mk+1

n
.

Let 2 ≤ i ≤ n. We have z(tn)− yi(t
p) = z(tn)− y1(t

p) + y1(t
p)− yi(t

p). Hence

ordt(z(t
n)− yi(t

p)) =

{

ordt(z(t
n)− y1(t

p)) if ordt(yi(t)− y1(t)) > mk,

ordt(y1(t
p)− yi(t

p)) if ordt(yi(t)− y1(t)) ≤ mk.

By Lemma 69, ordtf(t
p, z(t)) = 1

n

∑n
i=1 ordt(z(t

n) − yi(t
p)) = 1

n
(dk+1ordt(z(t

n) − y1(t
p)) +

p
∑k

i=1(di − di+1)mi) = 1
n
(dk+1npc(f, g) + p(rkdk − mkdk+1)) = p

n
(dk+1nc(f, g)) +

p
n
(rkdk −

mkdk+1) =
p
n
(rkdk + (nc(f, g)−mk)dk+1).

Conversely, suppose that int(f, g) = (rkdk + nc −mk)
p
n
for some k ≥ 1. If c < m1

n
, then

int(f, g) = npc < npm1

n
= pm1 = pr1 = (r1d1)

p
n
≤ (rkdk+nc−mk)

p
n
, which is a contradiction.

Hence c(f, g) ≥ m1

n
, and a similar argument shows that c = c(f, g). This proves (2). �

Corollary 85. Let k ∈ {1, . . . , h} and let Gk be a pseudo-root of f . We have c(f,Gk) =
mk

n
.

In particular c(f,Appdk
(f)) = mk

n
.

Proof. By Proposition 71, int(f,Gk) = rk = (rkdk + (nmk

n
−mk)dk+1)

n/dk
n

. Hence c(f,Gk) =
mk by Proposition 84. �

Proposition 86. Let g be a monic irreducible polynomial of K((x))[y] of degree p in y. If
c(f, g) > mk

n
, for some k ∈ {1, . . . , h}, then n

dk+1
divides p. In particular, if c(f, g) > mh

n
,

then n divides p.

Proof. Let z(t) be a root of g(tp, y) = 0 and assume, without loss of generality, that c(f, g) =
1
np
ordt(z(t

n)−y1(t
p)). Write y1(t) =

∑

i ait
i and z(t) =

∑

j bjt
j. The hypothesis implies that

for all i in Supp(y1(t)) with i ≤ mk, there exist j ∈ Supp(z(t)) such that jn = ip, that is,
j = i p

n
∈ N. But gcd(i ∈ Supp(y1(t)), i ≤ mk) = dk+1, whence dk+1

p
n
∈ N, which implies that

n
dk+1

divides n. �

Proposition 87. Let g be a monic polynomial of K((x))[y] and assume that degy g = n. If
int(f, g) > rhdh, then g is irreducible.

Proof. Let g = g1 · · · gr be the decomposition of g into irreducible components in K((x))[y].
If r > 1 then, by Proposition 86, degy gi < n for all 1 ≤ i ≤ r. Thus c(f, gi) < mh for all 1 ≤

i ≤ r. By Proposition 84, int(f, gi) < rhdh
degygi

n
, hence int(f, gi) =

∑r
i=1 int(f, gi) < rhdh,

which is a contradiction. This proves our assertion. �
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3.2. The local case. In the following we shall assume that f(x, y) is an irreducible polyno-
mial of KJxK[y]. Note that in this case, for all k ∈ {1 . . . , h}, mk > 0 and Gk ∈ KJxK[y] for
every dkth pseudo root Gk of f .
Let g(x, y) be a nonzero element of KJxK[y] and recall that the intersection multiplicity of f

with g, denoted int(f, g), is defined to be the order in t of g(tn, y(t)). Note that this definition
does not depend on the choice of the root y(t) of f(tn, y) = 0 and also that int(f, g) ≥ 0.
The set {int(f, g) : g ∈ KJxK[y]} is a semigroup of N. We call it the semigroup of f and

denote it by Γ(f).
Let gk = App(f, dk) for all 1 ≤ k ≤ h. Recall that int(f, gk) = rk.

Proposition 88. Under the standing hypothesis.

(i) The semigroup Γ(f) is generated by r0, . . . , rh.
(ii) Γ(f) is a numerical semigroup.
(iii) Γ(f) is free for the arrangement (r0, . . . , rh).
(iv) For all k ∈ {1, . . . , h}, rkdk < rk+1dk+1.

Proof. (i) Follows from Proposition 73.
(ii) Follows from the fact that dh+1 = gcd(r0, · · · , rh) = 1.
(iii) Is a consequence of Lemma 68 and Lemma 76.
(iv) For all k ∈ {1, . . . , h}, we have rk+1dk+1 = rkdk + (mk+1 − mk)dk+1 and mk < mk+1,

whence rkdk < rk+1dk+1. �

Conversely we have the following.

Proposition 89. Let r0 < r1 < · · · < rh be a sequence of nonzero elements of N and let
d1 = r0 and dk+1 = gcd(rk, dk) for all 1 ≤ k ≤ h. Assume that the following conditions hold:

(1) dh+1 = 1,
(2) for all k ∈ {1, . . . , h}, rkdk < rk+1dk+1,
(3) the semigroup Γ = 〈r0, . . . , rh〉 is free for the arrangement (r0, . . . , rh).

Then there exists a monic irreducible polynomial f(x, y) ∈ KJxK[y] of degree r0 in y such that
Γ(f) = Γ.

Proof. Let r0 = n and m1 = r1, and for all 1 ≤ k ≤ h let mk+1 = rk+1− rk
dk

dk+1
+mk. Finally

let y(t) = tm1 + tm2 + · · · + tmh ∈ KJtK. Let f(x, y) is the minimal polynomial of y(t) over
K((tn)). We have

f(x, y) =
∏

wn=1

(y − y(wt)).

Now Supp(y(t)) = {m1, . . . , mh}, hence m = (m1, . . . , mh) is nothing but the sequence of
Newton-Puiseux exponents of f , and consequently Γ(f) = 〈r0, . . . , rh〉. �

Let fx, fy denote the partial derivatives of f . Let H be an irreducible component of fy.
Let degyH = nH and write H(tnH , y) =

∏nH

i=1(y − zi(t)). By the chain rule of derivatives we
have:
d

dt
f(tnH , z1(t)) =

df

dx
(tnH , z1(t))(nHt

nH−1) +
df

dy
(tnH , z1(t))(z

′
1(t)) =

df

dx
(tnH , z1(t))(nHt

nH−1).

It follows that int(f,H) − 1 = int(fx, H) + nH − 1. Adding this equality over the set of
irreducible components of fy, we get that

int(f, fy) = int(fx, fy) + n− 1.
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Write f(tn, y) =
∏n

i=1(y−yi(t)). We have fy(t
n, y) =

∑n
i=1

∏

k 6=i(y−yk(t)). Hence fy(t
n, y1(t)) =

∏n
k=2(y1(t) − yk(t)), and int(f, fy) =

∑n
k=2 ordt(y1(t) − yk(t)) =

∑h
k=1(dk − dk+1)mk (see

Lemma 69). But
∑h

k=1(dk − dk+1)mk = rhdh −mh =
∑h

k=1(ek − 1)rk. Finally

int(f, fy) =

h
∑

k=1

(ek − 1)rk = int(fx, fy) + n− 1.

Note that the conductor C(Γ(f)) =
∑h

k=1(ek − 1)rk − n+ 1. Hence

C(Γ(f)) = int(fx, fy).

3.3. The case of curves with one place at infinity. Let the notations be as above and
assume that f(x, y) ∈ K[x−1][y] and also that f(x, y) is irreducible in K((x))[y].
Let g(x, y) be a nonzero element of K[x−1][y]. As above, we define the intersection mul-

tiplicity of f with g, denoted int(f, g), to be the order in t of g(tn, y(t)). Note that this
definition does not depend on the choice of the root y(t) of f(tn, y) = 0.
The set {int(f, g) : g ∈ K[x−1][y]} is a semigroup of −N. We call it the semigroup of f and

we denote it by Γ(f). For all k ∈ {1, . . . , h}, let gk = Appdk
(f), and let −rk = int(f, gk).

Proposition 90. Under the standing hypothesis.

(i) The semigroup Γ(f) is generated by −r0, . . . ,−rh.
(ii) −Γ(f) = {−r | r ∈ Γ(f)} is a numerical semigroup.
(iii) −Γ(f) is free for the arrangement (r0, . . . , rh).
(iv) For all 1 ≤ k ≤ h,−rkdk < −rk+1dk+1.

Proof. (i) follows from Proposition 73, while (ii) holds because dh+1 = 1.
(iii) is a consequence of Lemma 76.
Finally, for all k ∈ {1, . . . , h}, −rk+1dk+1 = −rkdk + (mk+1 − mk)dk+1 and mk < mk+1.

Hence −rkdk < −rk+1dk+1 and (iv) follows. �

Let fx, fy denote the partial derivatives of f . Let H be an irreducible component of fy. Let
degyH = nH and write H(tnH , y) =

∏nH

i=1(y − zi(t)). Arguing as above, by the chain rule of
derivatives we have:

d

dt
f(tnH , z1(t)) =

df

dx
(tnH , z1(t))(nHt

nH−1) +
df

dy
(tnH , z1(t))(z

′
1(t)) =

df

dx
(tnH , z1(t))(nHt

nH−1).

It follows that int(f,H) − 1 = int(fx, H) + nH − 1. Adding this equality over the set of
irreducible components of fy, we get that

int(f, fy) = int(fx, fy) + n− 1.

Now write f(tn, y) =
∏n

i=1(y − yi(t)). We have fy(t
n, y) =

∑n
i=1

∏

k 6=i(y − yk(t)). Hence

fy(t
n, y1(t)) =

∏n
k=2(y1(t) − yk(t)), and int(f, fy) =

∑n
k=2 ordt(y1(t) − yk(t)) =

∑h
k=1(dk −

dk+1)mk (see Lemma 69). But
∑h

k=1(dk − dk+1)mk = (−rh)dh −mh =
∑h

k=1(ek − 1)(−rk).
Finally

int(f, fy) =
h
∑

k=1

(ek − 1)(−rk) = int(fx, fy) + n− 1.

Let F = yn+a1(x)y
n−1+ · · ·+an(x) be a nonzero polynomial of K[x][y] and assume, possibly

after a change of variables, that degx ai(x) < i for all i ∈ {1, . . . , n} such that ai(x) 6= 0.
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Let C = V(F ) be the algebraic curve F = 0 and let hF (u, x, y) = unF (x
u
, y
u
). The projective

curve V(hF ) is the projective closure of C in P2
K. By hypothesis, (0, 1, 0) is the unique point

of V(hF ) at the line at infinity u = 0. We say that F has one place at infinity if hF is
analitycally irreducible at (0, 1, 0). Set F∞(u, y) = hF (u, 1, y). Then F has one place at
infinity if and only if the formal power series F∞(u, y) is irreducible in KJuK[y].

Lemma 91. Let the notations be as above. Let f(x, y) = F (x−1, y) ∈ K[x−1, y].

(1) f(x, x−1y) = x−nF∞(x, y).
(2) F has one place at infinity if and only if f(x, y) is irreducible in K((x))[y].

Proof. Write F (x, y) = yn +
∑

i+j<n aijx
iyj. We have f(x, y) = yn +

∑

i+j<n aijx
−iyj. Hence

f(x, x−1y) = x−nyn +
∑

i+j<n aijx
−i−jyj = x−n(yn +

∑

i+j<n aijx
n−i−jyj) = x−nF∞(x, y).

This proves (1).
Now suppose that f is irreducible in K((x))[y]. If F∞(x, y) is not irreducible in KJxK[y],

then F = F1F2, F1, F2 ∈ KJxK[y] and degy Fi = ni > 0. But f̃(x, y) = f(x, x−1y) =

x−nF∞(x, y) = x−n1F1x
−n2F2 and f(x, y) = f̃(x, xy) = x−n1F1(x, xy)x

−n2F2(x, y) = f1(x, y)f2(x, y)
with f1, f2 ∈ K((x))[y] and degy f1 = n1, degy f2 = n2. This is a contradiction. A similar
argument proves the converse. �

Assume that F (x, y) has one place at infinity. Let G(x, y) be a nonzero element of K[x, y]
and denote by Int(F,G) the rank of the K-vector space K[x, y]/(F,G). After possibly a
change of variables (y = Y q − x, x = Y , q ≫ 0, for example), we may assume that G(x, y) =
yp +

∑

i+j<p bijx
iyj.

Proposition 92. Let the notations be as above, in particular G(x, y) = yp+
∑

i+j<p bijx
iyj ∈

K[x, y]. Let f(x, y) = F (x−1, y) and g(x, y) = G(x−1, y). We have Int(F,G) = −int(f, g).

Proof. Let y(t) be a root of f(tn, y) = 0. We have int(f, g) = ordtg(t
n, y(t)). Also,

F∞(x, y) = xnf(x, x−1y) and G∞(x, y) = xpg(x, x−1y). It follows that F∞(tn, tny(t)) =
t2nf(tn, t−ntny(t)) = t2nf(tn, y(t)) = 0. Hence tny(t) is a root of F∞(tn, y) = 0. Now

int(F∞, G∞) = ordtG∞(tn, tny(t)) = ordt(x
pg(x, x−1y))(tn, tny(t))

= ordt(t
np) + ordtg(t

n, y(t)) = np + int(f, g).

Finally int(F∞, G∞)− int(f, g) = np. By Bézout’s Theorem, int(F∞, G∞) + Int(F,G) = np.
This implies that Int(F,G) = −int(f, g). �

More generally we have the following:

Proposition 93. Assume that F (x, y) has one place at infinity and let G(x, y) be a nonzero
element of K[x, y]. Let f(x, y) = F (x−1, y) and g(x, y) = G(x−1, y). We have Int(F,G) =
−int(f, g).

Proof. Let G(x, y) = Gp + Gp−1 + · · · + G0 be the decomposition of G into homogeneous
components. Write Gp =

∏s
k=1(aky + bkx)

pk .
i) If for all 1 ≤ k ≤ s, bk 6= 0, then F and G do not have common points at infinity.

By Bézout theorem, Int(F,G) = np. For all 0 ≤ i ≤ p, write gp−i(x, y) = Gp−i(x
−1, y).

We have g(x, y) =
∑p

i=0 gp−i(x, y), and if y(t) is a root of f(tn, y) = 0, then gp(t
n, y(t)) =

∏s
k=1(aky(t) + bkt

−n)pk , hence ordtgp(t
n, y(t)) = −np = ordt(x

−p)(tn, y(t)). Furthermore, if
gp−i(x, y) =

∑

k+l=p+i bklx
−kyl, then ordtgp−i(t

n, y(t)) ≥ mink,l(−kn − lm) ≥ mink,l(−kn −
ln) = −(p− i)n > −pn for all 1 ≤ i ≤ p. It follows that Int(F,G) = −int(f, g).
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ii) Suppose that b1 = 0, and that, without loss of generality, a1 = 1. We have Gp =
yp1
∏s

k=2(aky + bkx)
pk and bk 6= 0 for all 2 ≤ k ≤ s. Let P (0 : 1 : 0) be the unique

common point of F and G at infinity. We have int(F∞, G∞) = intP (F,G), and by Bézout
theorem, Int(F,G) + intP (F,G) = np. Clearly F∞(x, y) is the local equation of F at P . Let
gp(x, y) = Gp(x

−1, y) and write g(x, y) = gp(x, y) +
∑

k+l<p bklx
−kyl. We have

g(x, x−1y) = x−p1yp1
s
∏

k=2

(akx
−1y + bkx

−1)pk +
∑

k+l<p

bklx
−kx−lyl

= x−p(yp1
s
∏

k=2

(aky + bk)
pk +

∑

k+l<p

xp−k−lyl).

Hence the local equation of G at P , denoted GP , is given by GP (x, y) = xpg(x, x−1y). Now
the same calculations as in Proposition 92 show that int(F∞, GP ) = np + int(f, g), hence
Int(F,G) = −int(f, g).

�

Proposition 94. Let the notations be as above. If F has one place at infinity, then so is for
F (x, y)− λ, for all λ ∈ K∗.

Proof. Clearly Int(F, F − λ) = 0 = int(f, f − λ) > −rhdh. By Proposition 87, f − λ is
irreducible in K((x))[y], hence F −λ has one place at infinity by Lemma 91. This proves our
assertion. �

Remark 95. The result of Proposition 94 is proper to curves with one place at infinity. More
precisely, for all N > 1, there exist a polynomial F with N places at infinity and λ ∈ K∗

such that the number of places of F − λ at infinity is not equal to N .

Let
Γ∞(F ) = {Int(F,G) | G ∈ K[x][y]}.

Lemma 91 and the calculations above imply the following.

Proposition 96. Under the standing hypothesis.

(i) The semigroup Γ∞(F ) is generated by r0, . . . , rh.
(ii) Γ∞(F ) is a numerical semigroup.
(iii) Γ∞(F ) is free for the arrangement (r0, . . . , rh).
(iv) For all k ∈ {1, . . . , h}, rkdk > rk+1dk+1.

(v) Int(F, Fy) = Int(Fx, Fy) + n− 1 =
∑h

k=1(ek − 1)rk.

(vi) The conductor C(Γ∞(F )) = Int(Fx, Fy) = (
∑h

k=1(ek − 1)rk)− n+ 1.

Example 97. Sequences fulfilling the Condition (iv) in Proposition 96 are known as δ-sequences.

gap> DeltaSequencesWithFrobeniusNumber(11);

[ [ 5, 4 ], [ 6, 4, 9 ], [ 7, 3 ], [ 9, 6, 4 ], [ 10, 4, 5 ], [ 13, 2 ] ]

gap> List(last, CurveAssociatedToDeltaSequence);

[ y^5-x^4, y^6-2*x^2*y^3+x^4-x^3, y^7-x^3, y^9-3*x^2*y^6+3*x^4*y^3-x^6-y^2,

y^10-2*x^2*y^5+x^4-x, y^13-x^2 ]

gap> List(last,SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity);

[ <Modular numerical semigroup satisfying 5x mod 20 <= x >,

<Numerical semigroup with 3 generators>,
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<Modular numerical semigroup satisfying 7x mod 21 <= x >,

<Numerical semigroup with 3 generators>,

<Numerical semigroup with 3 generators>,

<Modular numerical semigroup satisfying 13x mod 26 <= x > ]

gap> List(last,MinimalGeneratingSystemOfNumericalSemigroup);

[ [ 4, 5 ], [ 4, 6, 9 ], [ 3, 7 ], [ 4, 6, 9 ], [ 4, 5 ], [ 2, 13 ] ]

Corollary 98. Let the notations be as above. If Int(Fx, Fy) = 0, then rk = dk+1 for all
k ∈ {1, . . . , h}. In particular, Γ∞(F ) = N and r1 divides n.

Proof. For all 1 ≤ k ≤ h, rk ≥ dk+1. If ri > di+1 for some 1 ≤ i ≤ h, we get
∑h

k=1(ek−1)rk)−

n+1 > (
∑h

k=1(dk−dk+1))−n+1 = 0, which contradicts the hypothesis. This proves the first
assertion. Since rh = dh+1 = 1, then Γ∞(F ) = N. On the other hand, r1 = d2 = gcd(n, r1),
whence r1 divides n. �

Proposition 99. Let the notations be as above. If d2 < r1 (that is, r1 does not divide n),
then Int(Fx, Fy) ≥ n− 1 with equality if and only if rk = 2dk+1 for all 1 ≤ k ≤ h.

Proof. We have Int(Fx, Fy) + n − 1 = (
∑h

k=1(ek − 1)rk). But rk ≥ 2dk+1 for all 1 ≤ k ≤ n.

Hence
∑h

k=1(ek − 1)rk ≥ 2
∑h

k=1(ek − 1)dk+1 ≥ 2
∑h

k=1(dk − dk+1) = 2(n− 1). In particular.
Int(Fx, Fy) ≥ n− 1. Clearly, if rk > 2dk+1 for some k ∈ {1, . . . , n}, then Int(Fx, Fy) > n− 1.
This proves our assertion. �

Corollary 100. (i) Let h = 1, then Int(Fx, Fy) = n− 1 if and only if Γ∞(F ) = 〈n, 2〉.
(ii) Let h ≥ 2 and suppose that d2 < r1. If 2 does not divide n, then Int(Fx, Fy) > n− 1.

Proof. (i) follows from Proposition 96. If 2 does not divide n, then r2 > 2d3. Hence
Int(Fx, Fy) > n− 1. This proves (ii). �

Let the notations be as above and assume that F has one place at infinity. It follows
that F∞(u, y) is a monic irreducible polynomial of KJuK[y] of degree n in y. Let f(tn, y) =
∏n

i=1(y−yi(t)). We have, as in the proof of Proposition 92, f(tn, t−ny) =
∏n

i=1(t
−ny−yi(t)) =

t−n2∏n
i=1(y − tnyi(t)). Also F∞(x, y) = xnf(x, x−1y), and thus

F∞(tn, y) =

n
∏

i=1

(y − tnyi(t)).

In particular, the roots of F (tn, y) = 0 are given by Yi(t) = tnyi(t).

Proposition 101. (i) The set of characteristic exponents of F∞ is given by m̄k = n+mk.
(ii) The d-sequence of F∞ is equal to the d-sequence of f .
(iii) The r-sequence of F∞ is given by r̄k = n n

dk
− rk

(iv) For all k ∈ {1, . . . , h}, App(F∞, dk) = hGk
(u, 1, y), where we recall that Gk = App(F, dk).

Proof. (i) The formal power series Y1(t) = tny1(t) is a root of F∞(tn, y) = 0. Hence
Supp(Y1(t)) = {n + i, i ∈ Supp(y1(t))} = n + Supp(y1(t)). Now the proof of (i) follows
immediately.

(ii) In fact, for all k with 1 ≤ k ≤ h, we have gcd(n,m1, . . . , mk) = gcd(n, n +m1, . . . , n +
mk).

(iii) We shall prove the result by induction on k, with 1 ≤ k ≤ h. We have r̄0 = n and
r̄1 = n +m1 = n− r1 = n n

d1
− r1. Suppose that r̄k = n n

dk
− rk for some 1 < k ≤ h. We
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have r̄k+1dk+1 = r̄kdk +(n+mk+1− (n+mk))dk+1 = (n n
dk

− rk)dk +(mk+1−mk)dk+1 =

(−rkdk + (mk+1 −mk)dk+1) + n2 = −rk+1dk+1 + n2. Hence r̄k+1 = n n
dk+1

− rk+1.

(iv) Easy exercise.
�

Proposition 102. Let the notations be as above and let Γ(F∞) be the numerical semigroup
associated with F∞. We have the following:

(i) The conductor of Γ(F∞) is given by C(Γ(F∞)) = (
∑h

k=1(ek−1)r̄k)−n+1 = (
∑h

k=1(ek−
1)(n n

dk
− rk))− n+ 1.

(ii) C(Γ(F∞)) + C(Γ∞(F )) = (n− 1)(n− 2).

Proof. (i) Follows from Proposition 96.

(ii) C(Γ(F∞)) +C(Γ∞(F )) = (
∑h

k=1(ek − 1)(n n
dk

− rk))− n+1+
∑h

k=1(ek − 1)rk − n+1 =

(
∑h

k=1(ek − 1)(n n
dk
))− 2(n− 1) = n(n− 1)− 2(n− 1) = (n− 1)(n− 2). �

Corollary 103. Let the notations be as above. The following are equivalent.

(i) C(Γ∞(F )) = 0.
(ii) C(Γ(F∞)) = (n− 1)(n− 2).
(iii) For all k ∈ {1, . . . , h}, rk = dk+1.
(iv) For all k ∈ {1, . . . , h}, r̄k = n n

dk
− dk+1.

Proof. This follows from Corollary 98 and Proposition 102. �

Corollary 104. Let the notations be as above. Then C(Γ(F∞)) ≤ (n − 1)(n − 3) and the
following are equivalent.

(i) C(Γ(F∞)) = (n− 1)(n− 3).
(ii) C(Γ∞(F )) = n− 1.
(iii) For all k ∈ {1, . . . , h}, rk = 2dk+1.
(iv) For all k ∈ {1, . . . , h}, r̄k = n n

dk
− 2dk+1.

Proof. This follows from Corollary 99 and Proposition 102. �

4. Minimal presentations

It is usual in Mathematics to represent objects by means of a free object in some generators
under certain relations fulfilled by these generators. The reader familiar to Group Theory
surely has used many times definitions of groups by means of generators and relations. Re-
lations are usually represented by means of equalities, or simply words in the free group on
the generators (this means that they are equal to the identity element; this is due to the fact
that we have inverse in groups). Here we represent relations by pairs.
Let S be a numerical semigroup minimally generated by {n1, . . . , np}. Then the monoid

morphism

ϕ : Np → S, ϕ(a1, . . . , ap) =

p
∑

i=1

aini,

known as the factorization homomorphism of S, is an epimorphism, and consequently S is
isomorphic to Np/ kerϕ, where kerϕ is the kernel congruence of ϕ:

kerϕ = {(a, b) ∈ Np × Np | ϕ(a) = ϕ(b)}.
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Notice that for groups, vector spaces, rings . . . the kernel is defined by the elements mapping
to the identity element. This is because there we have inverses and from f(a) = f(b) we get
f(a − b) = 0. This is not the case in numerical semigroups, and this is why the kernel is a
congruence, and not a “subject” of the domain.
Given τ ⊂ Np × Np, the congruence generated by τ is the smallest congruence on Np

containing τ , that is, the intersection of all congruences containing τ . We denote by cong(τ)
the congruence generated by τ . Accordingly, we say that τ is a generating system of a
congruence σ on Np if cong(τ) = σ.
The congruence generated by a set is just the reflexive, symmetric, transitive closure (this

would just make the closure an equivalence relation), to which we adjoin all pairs (a+c, b+c)
whenever (a, b) is in the closure; so that we make the resulting relation a congruence. This
can be formally written as follows.

Proposition 105. Let ρ ⊆ Np × Np. Define

ρ0 = ρ ∪ {(b, a) | (a, b) ∈ ρ} ∪ {(a, a) | a ∈ Np},

ρ1 = (v + u, w + u), (v, w) ∈ ρ0, u ∈ Np.

Then cong(ρ) is the set of pairs (v, w) ∈ Np×Np such that there exist k ∈ N and v0, . . . , vk ∈
Np with v0 = v, vk = w and (vi, vi+1) ∈ ρ1 for all i ∈ {0, . . . , k − 1}.

Proof. We first show that the set constructed in this way is a congruence. Let us call this
set σ.

(1) Since (a, a) ∈ ρ0 ⊆ σ for all a ∈ Np, the binary relation σ is reflexive.
(2) If (v, w) ∈ σ, there exist k ∈ N and v0, . . . , vk ∈ Np such that v0 = v, vk = w and

(vi, vi+1) ∈ ρ1 for all i ∈ {0, . . . , k−1}. Since (vi, vi+1) ∈ ρ1 implies that (vi+1, vi) ∈ ρ1,
by defining wi = vk−i for every i ∈ {0, . . . k}, we obtain that (w, v) ∈ σ. Hence σ is
symmetric.

(3) If (u, v) and (v, w) are in σ, then there exists k, l ∈ N and v0, . . . , vk, w0, . . . , wl ∈ Np

such that v0 = u, vk = w0 = v, wl = w and (vi, vi+1), (wj, wj+1) ∈ ρ1 for all suitable
i, j. By concatenating these we obtain (u, w) ∈ σ. Thus σ is transitive.

(4) Finally, let (v, w) ∈ σ and u ∈ Np. There exists k ∈ N and v0, . . . , vk ∈ Np such that
v0 = v, vk = w and (vi, vi+1) ∈ ρ1 for all i ∈ {0, . . . , k − 1}. By defining wi = vi + u
for all i ∈ {0, . . . , k} we have (wi, wi+1) ∈ ρ1 and consequently (v + u, w + u) ∈ σ.

It is clear that every congruence containing ρ must contain σ and this means that σ is the
least congruence on Np that contains ρ, whence, σ = cong(ρ). �

A presentation for S is a generating system of kerϕ as a congruence, and a minimal
presentation is a presentation such that none of its proper subsets is a presentation.

Example 106. For instance, a minimal presentation for S = 〈2, 3〉 is {((3, 0), (0, 2))}. This
means that S is the commutative monoid generated by two elements, say a and b, under the
relation 3a = 2b.

For s ∈ S, the set of factorizations of s in S is the set

Z(s) = ϕ−1(s) = {a ∈ Np | ϕ(a) = s}.

Notice that the set of factorizations of s has finitely many elements. This can be shown in
different ways. For instance the ith coordinate of a factorization is smaller than or equal to
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s/ni. Also, two factorizations are incomparable with respect to the usual partial ordering on
Np, and thus Dickson’s lemma ensures that there are finitely many of them.
We define, associated to s, the graph ∇s whose vertices are the elements of Z(s) and ab is

an edge if a · b 6= 0 (dot product).
We say that two factorizations a and b of s are R-related if they belong to the same

connected component of ∇s, that is, there exists a chain of factorizations a1, . . . , at ∈ Z(s)
such that

• a1 = a, at = b,
• for all i ∈ {1, . . . , t− 1}, ai · ai−1 6= 0.

Example 107. Let S = 〈5, 7, 11, 13〉. We draw ∇26.

(1,3,0,0)

(3,0,1,0)

(0,0,0,2)

This graph has two connected components. Also, we have that ((3, 0, 1, 0), (0, 0, 0, 2)) ∈ kerϕ,
and as ((3, 0, 1, 0), (1, 3, 0, 0)) ∈ kerϕ, we also have that removing the common part we
obtain a new element in the kernel: ((2, 0, 1, 0), (0, 3, 0, 0)). This new element corresponds to
21 = 2× 5 + 11 = 3× 7. If we draw ∇21, we obtain

(0,3,0,0) (2,0,1,0)

which is another nonconnected graph.

Let τ ⊂ Np × Np. We say that τ is compatible with s ∈ S if either ∇s is connected or if
R1, . . . , Rt are the connected components of ∇s, then for every i ∈ {1, . . . , t} we can choose
ai ∈ Ri such that for every i, j ∈ {1, . . . , t}, i 6= j, there exists i1, . . . , ik ∈ {1, . . . , t} fulfilling

• i1 = i, ik = j,
• for every m ∈ {1, . . . , k − 1} either (aim , aim+1

) ∈ τ or (aim+1
, aim) ∈ τ .

Even though this definition might seem strange, we are going to show next that we only have
to look at those ∇n that are nonconnected in order to construct a (minimal) presentation.
Denote by ei the ith row of the p× p identity matrix.

Theorem 108. Let S be a numerical semigroup minimally generated by {n1, . . . , np}, and
let τ ⊆ Np × Np. Then τ is a presentation of S if and only if τ is compatible with s for all
s ∈ S.

Proof. Necessity. If ∇s is connected, then there is nothing to prove.
Let R1, . . . , Rt be the R-classes contained in Z(s). Let i and j be in {1, . . . , t} with

i 6= j. Let a ∈ Ri and b ∈ Rj. As a, b ∈ Z(n), (a, b) ∈ kerϕ. Since cong(τ) = kerϕ, by
Proposition 105, there exist b0, b1, . . . , br ∈ Np, such that a = b0, b = br and (bi, bi+1) ∈ β1

for i ∈ {0, . . . , r − 1}. Hence there exist for all i ∈ {0, . . . , r − 1}, zi ∈ Np and (xi, yi) ∈ τ
such that either (bi, bi+1) = (xi + zi, yi + zi) or (bi, bi+1) = (yi + zi, xi + zi). If zi 6= 0, then
biRbi+1. And if zi = 0, then {bi, bi+1} ⊆ Z(s). Hence the pairs (bi, bi+1) 6∈ R yield the ai’s
we are looking for.
Sufficiency. It suffices to prove that for every s ∈ S and a, b ∈ Z(s), (a, b) ∈ cong(τ). We

use induction on s. The result follows trivially for s = 0, since Z(0) = {0}.
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If aRb, then there exists a1, . . . , ak ∈ Z(s) such that a1 = a, ak = b and ai · ai+1 6= 0 for all
i ∈ {1, . . . , k− 1}. Hence for every i, there exists j ∈ {1, . . . , p} such that ai − ej , ai+1− ej ∈
Z(s−nj). By induction hypothesis (ai−ej , ai+1−ej) ∈ cong(τ), whence (ai, ai+1) ∈ cong(τ)
for all i. By transitivity (a, b) ∈ τ .
Assume now that a and b are in different connected components of ∇s. If R1, . . . , Rt are

the connected components of ∇s, we may assume without loss of generality that a ∈ R1 and
b ∈ R2. As τ is compatible with s, there exists a chain a1, . . . , ak such that either (ai, ai+1) ∈ τ
or (ai+1, ai) ∈ τ , a1 ∈ R1 and a2 ∈ R2. Hence (ai, ai+1) ∈ cong(τ), and by the above
paragraph, (a, a1), (ak, b) ∈ cong(τ). By transitivity we deduce that (a, b) ∈ cong(τ). �

Observe that as a consequence of this theorem, in order to obtain a presentation for S we
only need for every s ∈ S with nonconnected graph ∇s and every connected component R
choose a factorization x and pairs (x, y) such that every two connected components of ∇s are
connected by a sequence of these factorizations with consecutive elements either a chosen pair
or its symmetry. The least possible number of edges we need is when we choose the pairs so
that we obtain a tree connecting all connected components. Thus the least possible number
of pairs for every s ∈ S with associated nonconnected graph is the number of connected
components of ∇s minus one.

Corollary 109. Let S be a numerical semigroup. The cardinality of any minimal presenta-
tion of S equals

∑

s∈S(nc(∇s)− 1), where nc(∇s) is the number of connected components of
∇s.

We now show that this cardinality is finite by showing that only finitely many elements of
S have nonconnected associated graphs.

Proposition 110. Let S be a numerical semigroup minimally generated by {n1, . . . , np}, and
let s ∈ S. If ∇s is not connected, then s = ni + w with i ∈ {2, . . . , p} and w ∈ Ap(S, n1).

Proof. Observe that ∇ni
= {ei}. Hence s 6∈ {n1, . . . , np}, and thus there exists i ∈ {1, . . . , p}

such that s− ni ∈ S∗. If s ∈ Ap(S, n1), then s− ni ∈ Ap(S, n1), and we are done.
Now assume that s − n1 ∈ S. There exists an element a ∈ Z(s) with a − e1 ∈ Np. Take

b ∈ Z(s) in a different connected component of∇s than the one containing a. Clearly a·b = 0,
and thus b − e1 6∈ Np. Since b 6= 0, there exists i ∈ {2, . . . , p} such that b − ei ∈ Np, and
consequently s− ni ∈ S. We prove that s− (ni + n1) 6∈ S, and thus s = (s− ni) + ni with
s − ni ∈ Ap(S, n1). Suppose to the contrary that s − (n1 + ni) ∈ S. Hence there exists a
factorization of c of s such that c− (e1 + ei) ∈ Np. Then a · c 6= 0 and c · b 6= 0. This force a
and b to be in the same connected component of ∇s, a contradiction. �

We say that s ∈ S is a Betti element if ∇s is not connected.

Example 111. We continue with the semigroup in Example 107.

gap> s:=NumericalSemigroup(5,7,11,13);;

We can use the following to compute a minimal presentation for this semigroup.

gap> MinimalPresentationOfNumericalSemigroup(s);

[ [ [ 0, 1, 1, 0 ], [ 1, 0, 0, 1 ] ], [ [ 0, 3, 0, 0 ], [ 2, 0, 1, 0 ] ],

[ [ 1, 3, 0, 0 ], [ 0, 0, 0, 2 ] ], [ [ 2, 2, 0, 0 ], [ 0, 0, 1, 1 ] ],

[ [ 3, 1, 0, 0 ], [ 0, 0, 2, 0 ] ], [ [ 4, 0, 0, 0 ], [ 0, 1, 0, 1 ] ] ]
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Let us have a look at ∇50.

gap> FactorizationsElementWRTNumericalSemigroup(50,s);

[ [ 10, 0, 0, 0 ], [ 3, 5, 0, 0 ], [ 5, 2, 1, 0 ], [ 0, 4, 2, 0 ],

[ 2, 1, 3, 0 ], [ 6, 1, 0, 1 ], [ 1, 3, 1, 1 ], [ 3, 0, 2, 1 ],

[ 2, 2, 0, 2 ], [ 0, 0, 1, 3 ] ]

gap> RClassesOfSetOfFactorizations(last);

[ [ [ 0, 0, 1, 3 ], [ 0, 4, 2, 0 ], [ 1, 3, 1, 1 ], [ 2, 1, 3, 0 ],

[ 2, 2, 0, 2 ], [ 3, 0, 2, 1 ], [ 3, 5, 0, 0 ], [ 5, 2, 1, 0 ],

[ 6, 1, 0, 1 ], [ 10, 0, 0, 0 ] ] ]

gap> Length(last);

1

And this means that ∇50 has a single connected component, and thus is not a Betti element.
We can compute the set of Betti elements.

gap> BettiElementsOfNumericalSemigroup(s);

[ 18, 20, 21, 22, 24, 26 ]

So for instance ∇26 has two connected components as we already saw in Example 107.

gap> FactorizationsElementWRTNumericalSemigroup(26,s);

[ [ 1, 3, 0, 0 ], [ 3, 0, 1, 0 ], [ 0, 0, 0, 2 ] ]

gap> RClassesOfSetOfFactorizations(last);

[ [ [ 1, 3, 0, 0 ], [ 3, 0, 1, 0 ] ], [ [ 0, 0, 0, 2 ] ] ]

We now show an alternative method to compute a presentation based on what is known
in the literature as Herzog’s correspondence ([15]).
Let S be a numerical semigroup minimally generated by {n1, . . . , np}. For K a field, the

semigroup ring associated to S is the ring K[S] =
⊕

s∈S Kt
s, where t is a symbol or an

indeterminate. Addition in K[S] is performed componentwise, while multiplication is done
by using distributivity and the rule tsts

′

= ts+s′, for s, s′ ∈ S. We can see the elements in
K[S] as polynomials in t whose nonnegative coefficients correspond to exponents in S. Also
K[S] = K[tn1 , . . . , tnp] ⊆ K[t]. Thus, K[S] can be seen as the coordinate ring of a curve
parametrized by monomials.
Let x1, . . . , xp be indeterminates, and K[x1, . . . , xp] be the polynomial ring over these in-

determinates with coefficients in the field K. For a = (a1, . . . ap) ∈ Np write

Xa = xa11 · · ·xapp .

Let ψ the ring homomorphism determined by

ψ : K[x1, . . . , xp] → K[S], xi 7→ tni .

This can be seen as a graded morphism if we grade K[x1, . . . , xp] in the following way: a
polynomial p is S-homogeneous of degree s ∈ S if p =

∑

a∈A caX
a for some A ⊂ Np with

finitely many elements and ϕ(a) = s for all a ∈ A. Observe that K[S] is also S-graded in a
natural way, and so ψ is a graded epimorphism.
For A ⊆ K[x1, . . . , xp], denote by (A) the ideal generated by A.

Proposition 112. kerψ = (Xa −Xb | (a, b) ∈ kerϕ).
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Proof. Clearly ψ(Xa) = tϕ(a). Hence for (a, b) ∈ kerϕ, ψ(Xa − Xb) = 0. This implies
that (Xa − Xb | (a, b) ∈ kerϕ) ⊆ kerψ. Since ψ is a graded morphism, for the other
inclusion, it suffices to proof that if f ∈ kerψ is S-homogeneous of degree s ∈ S, then
f ∈ (Xa − Xb | (a, b) ∈ kerϕ). Write f =

∑

a∈A caX
a, with ca ∈ K and a ∈ Z(s) for

all a ∈ A, and A a finite set. Then ϕ(f) = ts
∑

a∈A ca = 0, and consequently
∑

a∈A ca = 0.

Choose a ∈ A. Then f =
∑

a′∈A\{a} ca(X
a′−Xa), and thus f ∈ (Xa−Xb | (a, b) ∈ kerϕ). �

From Proposition 105, it can be easily derived that for any τ ∈ Np × Np

(Xa −Xb | (a, b) ∈ τ) = (Xa −Xb | (a, b) ∈ cong(τ)).

Hence, we get the following consequence.

Corollary 113. Let S be a numerical semigroup and τ a presentation of S. Then

kerψ = (Xa −Xb | (a, b) ∈ τ).

Observe that the generators of kerψ can be seen as the implicit equations of the curve
whose coordinate ring is K[S]. In this way we can solve the implicitation problem without
the use of elimination theory nor Gröbner bases.

Example 114. Let S = 〈3, 5, 7〉. Then Ap(S, 3) = {0, 5, 7}. According to Proposition 110,
Betti(S) ⊆ {10, 12, 14}. The sets of factorizations of 10, 12 and 14 are {(0, 2, 0), (1, 0, 1)},
{(4, 0, 0), (0, 1, 1)} and {(3, 1, 0), (0, 0, 2)}, respectively. Hence Betti(S) = {10, 12, 14}, and
by Theorem 108,

{((0, 2, 0), (1, 0, 1)), ((3, 1, 0), (0, 0, 2)), ((4, 0, 0), (0, 1, 1))}

is a minimal presentation of S. The implicit equations of the curve parametrized by (t3, t5, t7)
are











xz − y2 = 0,

x3y − z2 = 0,

x4 − yz = 0.

Let us reproduce this example with the use of polynomials. Take ψ : K[x, y, z] → K[t] be
determined by x 7→ t3, y 7→ t5 and z 7→ t7. We consider now the ideal (x− t3, y − t5, z − t7).
We now compute a Gröbner basis with respect to any eliminating order on t. We can for
instance do this with Singular, [9].

> ring r=0,(t,x,y,z),lp;

> ideal i=(x-t^3,y-t^5,z-t^4);

> std(i);

_[1]=y4-z5

_[2]=xz3-y3

_[3]=xy-z2

_[4]=x2z-y2

_[5]=x3-yz

_[6]=tz-y

_[7]=ty-x2

_[8]=tx-z

_[9]=t3-x

Now we choose those not having t, or we can just type:



38 ABDALLAH ASSI AND PEDRO A. GARCÍA-SÁNCHEZ

> eliminate(i,t);

_[1]=y7-z5

_[2]=xz-y2

_[3]=xy5-z4

_[4]=x2y3-z3

_[5]=x3y-z2

_[6]=x4-yz

Which by Herzog’s correspondence yields a presentation for S. However this is not a minimal
presentation. In order to get a minimal presentation we can use minbase in Singular, but
this applies only to homogeneous ideals. To solve this issue, we give weights 3,5,7 to x, y, z,
respectively.

> ring r=0,(t,x,y,z),(dp(1),wp(3,5,7));

> ideal i=(x-t^3,y-t^5,z-t^7);

> ideal j=eliminate(i,t);

> minbase(j);

_[1]=y2-xz

_[2]=x4-yz

_[3]=x3y-z2

5. Factorizations

Let S be a numerical semigroup minimally generated by {n1, . . . , np}. For s ∈ S, recall
that the set of factorizations of s is Z(s) = ϕ−1(s).
For a factorization x = (x1, . . . , xp) of s its length is defined as

|x| = x1 + · · ·+ xp,

and the set of lengths of s is
L(s) = {|x| | x ∈ Z(s)}.

Since Z(s) has finitely many elements, so has L(s). A monoid is half factorial if the
cardinality of L(s) is one for all s ∈ S.

Example 115. Let S = 〈2, 3〉. Here 6 factors as 6 = 2×3 = 3×2, that is, Z(6) = {(3, 0), (0, 2)}.
The length of (3, 0) is 3, while that of (0, 2) is 2. So S is not a unique factorization monoid,
and it is not either a half factorial monoid. The only half factorial numerical semigroup is N.

5.1. Length based invariants. One of the first nonunique factorization invariants that
appeared in the literature was the elasticity. It was meant to measure how far is a monoid
from being half factorial. The elasticity of a numerical semigroup is a rational number greater
than one. Actually, half factorial monoids are those having elasticity one.
Let s ∈ S. The elasticity of s, denoted by ρ(s) is defined as

ρ(s) =
max L(s)

min L(s)
.

The elasticity of S is defined as
ρ(S) = sup

s∈S
ρ(s).

The computation of the elasticity in finitely generated cancellative monoids requires the
calculation of primitive elements of kerϕ. However in numerical semigroups, this calculation
is quite simple, as the following example shows.
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Theorem 116. Let S be a numerical semigroup minimally generated by {n1, . . . , np} with
n1 < · · · < np. Then

ρ(S) =
np

n1
.

Proof. Let s ∈ S and assume that a = (a1, . . . , ap) and b = (b1, . . . , bp) are such that |a| =
max L(S) and |b| = min L(S). We know that ϕ(a) = ϕ(b), that is, a1n1 + · · · + apnp =
b1n1 + · · ·+ bpnp = s. Now by using that n1 < · · · < np, we deduce that

n1|a| ≤ s ≤ np|b|,

and thus

ρ(s) =
|a|

|b|
≤
np

n1
.

This implies that ρ(S) ≤ np

n1
. Also ρ(n1np) ≥

np

n1
, since npe1, n1ep ∈ Z(n1np). Hence

np

n1
≤ ρ(n1np) ≤ ρ(S) ≤

np

n1
,

and we get an equality. �

Another way to measure how far we are from half factoriality, is to measure how distant
are the different lengths of factorizations. This is the motivation for the following definition.
Assume that L(s) = {l1 < · · · < lk}. Define the Delta set of s as

∆(s) = {l2 − l1, . . . , lk − lk−1},

and if k = 1, ∆(s) = ∅. The Delta set of S is defined as

∆(S) =
⋃

s∈S

∆(s).

So, the bigger ∆(S) is, the farther is S from begin half factorial.
A pair of elements (a, b) ∈ Np × Np is in kerϕ if a and b are factorizations of the same

element in S. As a presentation is a system of generators of kerϕ it seems natural that the
information on the factorizations could be recovered from it. We start showing that this is
the case with the Delta sets, and will see later that the same holds for other invariants.
Let MS = {a − b | (a, b) ∈ kerϕ} ⊆ Zp. Since kerϕ is a congruence, it easily follows that

MS is a subgroup of Zp.

Lemma 117. Let σ be a presentation of S. Then MS is generated as a group by {a − b |
(a, b) ∈ σ}.

Proof. Let z ∈ MS. Then there exists (a, b) ∈ kerϕ. From Proposition 105, there exists
x1, . . . , xt such that x1 = a, xt = b, and for all i ∈ {1, . . . , t − 1} there exists (ai, bi) and
ci ∈ Np such that (xi, xi+1) = (ai + ci, bi + ci) with either (ai, bi) ∈ σ or (bi, ai) ∈ σ. Then

a− b = (x1 − x2) + (x2 − x3) + · · ·+ (xt−1 − xt) =

t−1
∑

i=1

(ai − bi),

and the proof follows easily. �

For a given z = (z1, . . . , zp) ∈ Zp, we also use the notation |z| = z1 + · · ·+ zp.
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Lemma 118. Let σ = {(a1, b1), . . . , (at, bt)} be a presentation of S, and set δi = |ai − bi|,
i ∈ {1, . . . , s}. Then every element in ∆(S) is of the form

λ1δ1 + · · ·+ λtδt,

for some integers λ1, . . . , λt.

Proof. The proof follows easily from the proof of Lemma 117. �

Theorem 119. Let S be a numerical semigroup and let σ be a presentation of S. Then

min∆(S) = gcd{|a− b| | (a, b) ∈ σ}.

Proof. In order to simplify notation, write d = gcd{|a − b| | (a, b) ∈ σ}. If δ ∈ ∆(S), then
by Lemma 118, we know that δ is a linear combination with integer coefficients of elements
of the form |a − b| with (a, b) ∈ σ. Hence d | δ, and consequently d ≤ min∆(S). Now let
(a1, b1), . . . , (ak, bk) ∈ σ and λ1, . . . , λk ∈ Z be such that λ1|a1 − b1| + · · ·+ λk|ak − bk| = d.
If λi < 0, change (ai, bi) with (bi − ai), so that we can assume that all λi are nonnegative.
The element s = ϕ(λ1a1 + · · · + λkak) = ϕ(λ1b1 + · · · + λkbk) has two factorizations z =
λ1a1 + · · ·+ λkak and z′ = λ1b1 + · · · + λkbk such that the differences in their lengths is d.
Hence

min∆(S) ≤ min∆(s) ≤ d ≤ min∆(S),

and we get an equality. �

Theorem 120. Let S be a numerical semigroup. Then

max∆(S) = max{max∆(b) | b ∈ Betti(S)}.

Proof. The inequality maxn∈Betti(S)max∆(n) ≤ max∆(S) is clear.
Assume to the contrary max∆(S) > max∆(b) for all Betti elements b of S. Take x, y

factorizations of an element s ∈ S so that |y| − |x| = max∆(S), and consequently no other
factorization z of s fulfills |x| < |z| < |y|. As ϕ(x) = ϕ(y), Proposition 105, ensures the
existence of x1, . . . , xt in Z(s) such that x = x1, xt = y and (xi, xi+1) = (ai + ci, bi + ci), with
either (ai, bi) ∈ σ or (bi, ai) ∈ σ for all i ∈ {1, . . . , t − 1}. From the above discussion, there
exists i ∈ {1, . . . , t − 1}, with |xi| ≤ |x| < |y| ≤ |xi+1|. Both ai and bi are factorizations of
an element n with Z(n) having more than one R-class. So there is a chain of factorizations,
say z1, . . . , zu, of n such that ai = z1, . . . , zu = bi, and |zj+1| − |zj| ≤ max∆(n), which
we are assuming smaller than ∆(S). But then ϕ(zj + ci) = ϕ(x) = ϕ(y) for all j, and
from the choice of x and y, there is no j such that |x| < |zj + ci| < |y|. Again, we can find
j ∈ {1, . . . , u−1} such that |zj+ci| ≤ |x| < |y| ≤ |zj+1+ci|. And this leads to a contradiction,
since max∆(S) = |y|− |x| ≤ |zj+1+ ci| − |zj + ci| = |zi+1− zi| ≤ max∆(n) < max∆(S). �

Example 121. Let us go back to S = 〈2, 3〉. We know that the only Betti element of S
is 6. The set of factorizations of 6 is Z(6) = {(3, 0), (0, 2)}, and L(S) = {2, 3}. Whence
∆(6) = {1}. The above theorem implies that ∆(S) = {1}. This is actually the closest we
can be in a numerical semigroup to be half factorial.

Example 122. Now we do some computations with a numerical semigroup with four genera-
tors.

gap> s:=NumericalSemigroup(10,11,17,23);;

gap> FactorizationsElementWRTNumericalSemigroup(60,s);

[ [ 6, 0, 0, 0 ], [ 1, 3, 1, 0 ], [ 2, 0, 1, 1 ] ]
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gap> LengthsOfFactorizationsElementWRTNumericalSemigroup(60,s);

[ 4, 5, 6 ]

gap> ElasticityOfFactorizationsElementWRTNumericalSemigroup(60,s);

3/2

gap> DeltaSetOfFactorizationsElementWRTNumericalSemigroup(60,s);

[ 1 ]

gap> BettiElementsOfNumericalSemigroup(s);

[ 33, 34, 40, 69 ]

gap> Set(last, x->DeltaSetOfFactorizationsElementWRTNumericalSemigroup(x,s));

[ [ ], [ 1 ], [ 2 ], [ 3 ] ]

gap> ElasticityOfNumericalSemigroup(s);

23/10

5.2. Distance based invariants. We now introduce some invariants that depend on dis-
tances between factorizations. These invariants will measure how spread are the factorizations
of elements in the monoid.
The set Np is a lattice with respect to the partial ordering ≤. Infimum and supremum

of a set with two elements is constructed by taking minimum and maximum coordinate by
coordinate, respectively. For x = (x1, . . . , xp), y = (y1, . . . , yp) ∈ Np, inf{x, y} will be denoted
by x ∧ y. Thus

x ∧ y = (min{x1, y1}, . . . ,min{xp, yp}).

The distance between x and y is defined as

d(x, y) = max{|x− (x ∧ y)|, |y − (x ∧ y)|}

(equivalently d(x, y) = max{|x|, |y|} − |x ∧ y|).
The distance between two factorizations of the same element is lower bounded in the

following way.

Lemma 123. Let x, y ∈ Np with x 6= y and ϕ(x) = ϕ(y). Then

2 +
∣

∣|x| − |y|
∣

∣ ≤ d(x, y).

Proof. We can assume that x ∧ y = 0, since distance is preserved under translations, ||x| −
|y|| = ||x − (x ∧ y)| − |y − (x ∧ y)|| and ϕ(x − (x ∧ y)) = ϕ(y − (x ∧ y)). As ϕ(x) = ϕ(y)
and x 6= y, in particular we have that |x| ≥ 2 and the same for |y|. Also, as x ∧ y = 0,
d(x, y) = max{|x|, |y|}. If |x| ≥ |y|, then 2 + ||x| − |y|| = |x|(2 − |y|) ≤ |x| = d(x, y). A
similar argument applies for |x| ≤ |y|. �

Example 124. The factorizations of 66 ∈ 〈6, 9, 11〉 are

Z(66) = {(0, 0, 6), (1, 3, 3), (2, 6, 0), (4, 1, 3), (5, 4, 0), (8, 2, 0), (11, 0, 0)}.

The distance between (11, 0, 0) and (0, 0, 6) is 11. However we can put other factorizations
of 66 between them so that the maximum distance of two consecutive links is at most 4:
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(3, 0, 0)

(11, 0, 0) (8, 2, 0)

(0, 2, 0)|(3, 0, 0)

(5, 4, 0)

(0, 2, 0)|(3, 0, 0)

(2, 6, 0)

(0, 2, 0)|(1, 3, 0)

(1, 3, 3)

(0, 0, 3)|(1, 3, 0) (0, 0, 3)

(0, 0, 6)

3 3 3 4 4

In the above picture the factorizations are depicted in the top of a post, and they are linked
by a “catenary” labeled with the distance between two consecutive sticks. On the bottom
we have drawn the factorizations removing the common part with the one on the left and
that of the right, respectively. We will say that the catenary degree of 66 in 〈6, 9, 11〉 is at
most 4.

Given s ∈ S, x, y ∈ Z(s) and a nonnegative integer N , an N-chain joining x and y is a
sequence x1, . . . , xk ∈ Z(s) such that

• x1 = x, xk = y,
• for all i ∈ {1, . . . , k − 1}, d(xi, xi+1) ≤ N .

The catenary degree of s, denoted c(s), is the least N such that for any two factorizations
x, y ∈ Z(s), there is an N -chain joining them. The catenary degree of S, c(S), is defined as

c(S) = sup
s∈S

c(S).

Example 125. Let us compute the catenary degree of 77 ∈ S = 〈10, 11, 23, 35〉. We start with
a complete graph with vertices the factorizations of 77 and edges labeled with the distances
between them. Then we remove one edge with maximum distance, and we repeat the process
until we find a bridge. The label of that bridge is then the catenary degree of 77.

(0, 7, 0, 0)

(1, 4, 1, 0)

(2, 1, 2, 0)

(2, 2, 0, 1)3

6

23
5 2

(0, 7, 0, 0)

(1, 4, 1, 0)

(2, 1, 2, 0)

(2, 2, 0, 1)3

23
5 2

(0, 7, 0, 0)

(1, 4, 1, 0)

(2, 1, 2, 0)

(2, 2, 0, 1)3

23
2

(0, 7, 0, 0)

(1, 4, 1, 0)

(2, 1, 2, 0)

(2, 2, 0, 1)

23
2
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Thus the catenary degree of 77 is 3.

If one looks at Proposition 105 and Example 124, one sees some interconnection between
the transitivity and the way we can move from one factorization to another to minimize
distances. This idea is exploited in the following result.

Theorem 126. Let S be a numerical semigroup. Then

c(S) = max{c(b) | b ∈ Betti(S)}.

Proof. Set c = maxb∈Betti(S) c(b). Clearly c ≤ c(S). Let us prove the other inequality. Take
s ∈ S and x, y ∈ Z(s). Let σ be a minimal presentation of S. Then by Proposition 105, there
exists a sequence x1, . . . , xk such that x1 = x, xk = y, and for every i there exists ci ∈ Np

(with p the embedding dimension of S) such that (xi, xi+1) = (ai+ ci, bi+ ci) for some (ai, bi)
such that either (ai, bi) ∈ σ or (bi, ai) ∈ σ. According to Theorem 108, ai, bi are factorizations
of a Betti element of S. By using the definition of catenary degree, there is a c-chain joining
ai and bi (also bi and ai). If we add ci to all the elements of this sequence, we have a c-chain
joining xi and xi+1 (distance is preserved under translations). By concatenating all these
c-chains for i ∈ {1, . . . , k − 1} we obtain a c-chain joining x and y. And this proves that
c(S) ≤ c, and the equality follows. �

Example 127. With the package numericalsgps the catenary degree of an element and of
the whole semigroup can be obtained as follows.

gap> s:=NumericalSemigroup(10,11,17,23);;

gap> FactorizationsElementWRTNumericalSemigroup(60,s);

[ [ 6, 0, 0, 0 ], [ 1, 3, 1, 0 ], [ 2, 0, 1, 1 ] ]

gap> CatenaryDegreeOfElementInNumericalSemigroup(60,s);

4

gap> CatenaryDegreeOfNumericalSemigroup(s);

6

5.3. How far is an irreducible from being prime. As the title suggests, the last invariant
we are going to present measures how far is an irreducible from being prime. Recall that a
prime element is an element such that if it divides a product, then it divides one of the factors.
Numerical semigroups are monoids under addition, and thus the concept of divisibility must
be defined accordingly.
Given s, s′ ∈ S, recall that we write s ≤S s

′ if s′ − s ∈ S. We will say that s divides s′.
Observe that s divides s′ if and only if s′ belongs to the ideal s + S = {s+ x | x ∈ S} of S.
If s ≤S s

′, then ts divides ts
′

in the semigroup ring K[S], in the “multiplicative” sense.
The ω-primality of s in S, denoted ω(S, s), is the least positive integer N such that

whenever s divides a1 + · · · + an for some a1, . . . , an ∈ S, then s divides ai1 + · · · + aiN for
some {i1, . . . , iN} ⊆ {1, . . . , n}.
Observe that an irreducible element in S (minimal generator) is prime if its ω-primality is

1. It is easy to observe that a numerical semigroup has no primes.
In the above definition, we can restrict the search to sums of the form a1 + · · ·+ an, with

a1, . . . , an minimal generators of S as the following lemma shows.

Lemma 128. Let S be numerical semigroup and s ∈ S. Then ω(S, s) is the smallest N ∈
N ∪ {∞} with the following property:
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For all n ∈ N and a1, . . . , an minimal generators of S, if b divides a1 + · · ·+ an, then
there exists a subset Ω ⊂ [1, n] with cardinality less than or equal to N such that

b ≤S

∑

i∈Ω

ai.

Proof. Let ω′(S, s) denote the smallest integer N ∈ N0 ∪ {∞} satisfying the property men-
tioned in the lemma. We show that ω(S, s) = ω′(S, s). By definition, we have ω′(S, s) ≤
ω(S, s).
In order to show that ω(S, s) ≤ ω′(S, s), let n ∈ N and a1, . . . , an ∈ S with s ≤S a1+· · ·+an.

For every i ∈ [1, n] we pick a factorization ai = ui,1 + · · ·+ ui,ki with ki ∈ N and ui1 , . . . , ui,ki
minimal generators of S. Then there is a subset I ∈ [1, n] and, for every i ∈ I, a subset
∅ 6= Λi ⊂ [1, ki] such that

#I ≤
∑

i∈I

#Λi ≤ ω′(S, s) and s ≤S

∑

i∈I

∑

ν∈Λi

ui,ν,

and hence s ≤S

∑

i∈I ai. �

In order to compute the ω-primality of an element s in a numerical semigroup S, one
has to look at the minimal factorizations (with respect to the usual partial ordering) of the
elements in the ideal s+ S; this is proved in the next result.

Proposition 129. Let S be a numerical semigroup minimally generated by {n1, . . . , np}. Let
s ∈ S. Then

ω(S, s) = max {|m| | m ∈ Minimals≤(Z(s+ S))} .

Proof. Notice that by Dickson’s lemma, the set Minimals≤(Z(s + S)) has finitely many ele-
ments, and thus N = max {|m| | m ∈ Minimals≤(Z(s+ S))} is a nonnegative integer.
Choose x = (x1, . . . , xp) ∈ Minimals≤(Z(s + S)) such that |x| = N . Since x ∈ Z(s + S),

s divides s′ = x1n1 + · · · + xpnp. Assume that s divides s′′ = y1n1 + · · · + ypnp with
(y1, . . . , yp) < (x1, . . . , xp) (that is, s divides a proper subset of summands of s′) . Then
s′′ ∈ s + S, and (y1, . . . , yp) ∈ Z(s+ S), contradicting the minimality of x. This proves that
ω(S, s) ≥ N .
Now assume that s divides x1n1 + · · · + xpnp for some x = (x1, . . . , xp) ∈ Np. Then

x ∈ Z(s + S), and thus there exists m = (m1, . . . , mp) ∈ Minimals≤(Z(s + S)) with m ≤ x.
By definition, m1n1 + · · ·+mpnp ∈ s+ S, and |m| ≤ N . This proves in view of Lemma 128
that N ≤ ω(S, s). �

For S a numerical semigroup minimally generated by {n1, . . . , np}, the ω-primality of S is
defines as

ω(S) = max{ω(S, ni) | i ∈ {1, . . . , p}}.

We are going to relate Delta sets with catenary degree and ω-primality. To this end we
need the following technical lemma.
For b = (b1, . . . , bp) ∈ Np, define Supp(b) = {i ∈ {1, . . . , p} | bi 6= 0}.

Lemma 130. Let S be a numerical semigroups minimally generated by {n1, . . . , np}, and let
n ∈ Betti(S). Let a, b ∈ Z(n) in different R-classes. For every i ∈ Supp(b) it follows that
a ∈ Minimals≤Z(ni + S).
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Proof. Assume to the contrary that there exists c ∈ Z(ni + S) and x ∈ Nk \ {0} such that
c + x = a. From c < a, a · b = 0 and i ∈ Supp(b), we deduce that i 6∈ Supp(c). As
c ∈ Z(ni + S), there exists d ∈ Z(ni + S) with i ∈ Supp(d) and ϕ(c) = ϕ(d). Hence
ϕ(d+ x) = ϕ(c+ x) = ϕ(a). Moreover (d+ x) · (c+ x) = (d+ x) · a 6= 0, and (d+ x) · b 6= 0,
which leads to aRb, a contradiction. �

Theorem 131. Let S be a numerical semigroup. Then

max∆(S) + 2 ≤ c(S) ≤ ω(S).

Proof. Assume that d ∈ ∆(S). Then there exists s ∈ S and x, y ∈ Z(s) such that |x| < |y|,
d = |y| − |x| and there is no z ∈ Z(s) with |x| < |z| < |y|. From the definition of c(S), there
is a c(S)-chain z1, . . . , zk joining x and y. As in the proof of Theorem 120, we deduce that
there exists i such that |zi| < |x| < |y| < |zi+1|. Then 2 + d = 2+ |y| − |x| ≤ 2 + |zi+2| − |zi|,
and by Lemma 123, 2 + |zi+2| − |zi| ≤ d(zi, zi+1). The definition of c(S)-chain implies that
d(zi, zi+1) ≤ c(S). Hence 2 + d ≤ c(S), and consequently max∆(S) + 2 ≤ c(S).
Let σ be a minimal presentation of kerϕ. For every (a, b) ∈ σ, there exists ni and nj

minimal generators such that a ∈ Minimals≤Z(ni +S) and b ∈ Minimals≤Z(nj +S) (Lemma
130). From the definition of ω(S), both |a| and |b| are smaller than or equal to ω(S). Set
c = max{max{|a|, |b|} | (a, b) ∈ σ}. Then c ≤ ω(S). Now we prove that c(S) ≤ c. Let
s ∈ S and x, y ∈ Z(s). Then ϕ(x) = ϕ(y) and as σ is a presentation, by Proposition 105,
there exists a sequence x1, . . . , xk ∈ Np (p = e(S)) such that x1 = x, xk = y and for every
i there exists ai, bi, ci ∈ Np such that (xi, xi+1) = (ai + ci, bi + ci), with either (ai, bi) ∈ σ
or (bi, ai) ∈ σ. Notice that d(xi, xi+1) = d(ai, bi) = max{|ai|, |bi|} (ai and bi are in different
R-classes and thus ai · bi = 0, or equivalently, ai ∧ bi = 0). Hence d(xi, xi+1) ≤ c, and
consequently x1, . . . , xk is a c-chain joining x and y. This implies that c(S) ≤ c, and we are
done. �

Example 132. Let us go back to S = 〈10, 11, 17, 23〉. From Example 122 and Theorem 120,
we know that max∆(S) = 3.

gap> OmegaPrimalityOfNumericalSemigroup(s);

6

From Theorem 131, we deduce that c(S) ∈ {5, 6}. Recall that by Example 127, we know
that c(S) = 6.

The are many other nonunique factorization invariants that can be defined on any nu-
merical semigroup. It was our intention just to show some of them and the last theorem
that relates these invariants coming from lengths, distances and primality (respectively), and
at the same time show how minimal presentations can be used to study them. The reader
interested in this topic is referred to [14].
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