Jonathan Sprauel

Christel Seguin
email: christel.seguin@onera.fr

Techniques d'Aide à la Décision appliquées à la maintenance d'un avion de type Business Jet Decision Aiding Techniques applied to the maintenance of a Business Jet

Cet article propose un outil d'Aide à la Décision pour la maintenance avionique permettant de générer automatiquement des scénarios de réparations possibles, prenant en compte à la fois les contraintes logistiques (i.e. que réparer, où et quand), les contraintes de sécurité (Minimum Equipment List, Interval Check,...) et les pannes futures pouvant se produire (probabilité d'occurrence d'une panne, pronostic). Nous établissons une définition mathématique du problème ainsi que sa modélisation dans un langage formel (PPDDL) ; cette démarche nous permet alors de proposer un outil de résolution sur ce modèle, basé sur des travaux théoriques récents.

Si Monitoring et Diagnostic font l'objet de recherches communes pour leur permettre de traiter des systèmes embarqués réalistes [START_REF] Kuntz | [END_REF][START_REF] Ramohalli | The honeywell on-board diagnostic and maintenance system for the boeing 777[END_REF], Byington et al.2004), les outils d'Aide à la Décision actuels se concentrent en général sur une seule approche très spécifique, telle que du pronostic (approche statistiques Li et al.2009 ou modèles Heng et al.2009) ou la satisfaction de contraintes logistiques (Zerbe et al.2010). A notre connaissance, aucune étude existante ne permet de générer automatiquement des scénarios de réparations possibles, prenant en compte à la fois les aspects de maintenance curative (i.e. la réparation d'une panne venant de se produire) et d'anticipation (i.e. la prise en compte des futures pannes possibles).

Notre objectif est de proposer un outil d'Aide à la Décision pour la maintenance avionique permettant de générer de tels scénarios : partant du diagnostic d'un système, éventuellement avec une ambiguïté résiduelle, un tel outil produirait automatiquement une ou plusieurs solutions de réparation prenant en compte les contraintes logistiques (i.e. que réparer, où et quand), les contraintes de sécurité (Minimum Equipment List, Interval Check,...) ainsi que les pannes futures pouvant se produire (probabilité d'occurrence d'une panne, pronostic).

Sur la base de ces réflexions, cet article propose ainsi les contributions suivantes :



Dans un premier temps, nous détaillons un scénario informel de maintenance d'un Business Jet, permettant de mettre en avant les enjeux applicatifs,  Nous établissons une définition mathématique du problème ainsi que sa modélisation dans un langage formel (PPDDL)  Nous proposons un outil de résolution sur ce modèle, basé sur des travaux théoriques récents,  Enfin, nous suggérons des pistes permettant de traiter les limitations soulevées par nos travaux, telles que la traduction des solutions formelles en des consignes utilisables par un opérateur de maintenance Présentation du besoin 1 Un cadre théorique pour l'aide à la décision sur systèmes critiques L'utilisation de techniques d'Intelligence Artificielle dans des domaines tels que la maintenance avionique est bien souvent limitée par le fait que ces domaines doivent répondre à des contraintes fortes, législatives ou contractuelles. Ajouter de « l'intelligence » à un système, par le biais d'algorithmes répondant dynamiquement à une situation, est bien souvent considéré impossible ou trop risqué lorsque des considérations de certifications entrent en jeu.

C'est en partant de ce constat que nous nous sommes intéressés aux méthodes permettant de contraindre et valider l'évolution d'un système dynamiquement reconfigurable, afin de garantir qu'il respecte les critères requis aussi bien d'un système statiqueque d'un opérateur humain.

Néanmoins, nous souhaitons aller plus loin qu'une simple simulation de tous les cas possibles : à partir d'une modélisation d'un problème, nous cherchons à obtenir une garantie mathématique de la validité de nos décisions. Ce type de garantie forte peut être aujourd'hui obtenu à partir des méthodes de vérification formelles (Model-Checking), qui sont en particulier utilisées lors des étapes de vérification des systèmes avioniques ; notre but en construisant notre outil d'Aide à la décision est ainsi d'appliquer les concepts et algorithmes de ces méthodes à un autre cadre que la vérification, celui de la prise de décision dans l'incertain. Chaque système peut être réparé en utilisant un ensemble de ressources Rn need ; cette réparation a une durée fixe tn. Les ressources peuvent être indifféremment des pièces de rechange, du personnel qualifié ou des outils spécifiques nécessaires à la réparation.

L'avion a un plan de vol de M escales. A chaque escale est associée une durée Tm repair où l'avion est disponible pour une réparation, une durée Tm gate où l'avion est au sol se préparant au décollage et où aucune réparation n'est possible, ainsi qu'une durée Tm next qui est la durée en vol entre l'escale m et m+1. Au total, l'avion reste donc au sol à l'escale m pendant une durée Tm repair +Tm gate , mais seulement une partie de ce temps peut être consacrée à la réparation.

Chaque escale m possède une liste de ressources disponibles Rm available ; ces ressources sont soit déjà présentes sur le site, soit acheminées par le MCC à temps.

Modèle des actions contrôlables

A chacune des ressources de Rm available est associé un coût c(r, m) correspondant au coût de mise à disposition de la ressource r à l'escale m (par exemple le coût d'achat et d'expédition d'une nouvelle pièce de rechange). Ce coût prend en compte le temps d'expédition de la pièce compte-tenu du plan de vol : il faudra par exemple choisir une expédition en ''express'' pour pouvoir mettre à disposition une pièce de rechange à une escale m, ce qui impactera le coût correspondant.

Les actions de réparation consistant à prendre une pièce à une escale pour l'utiliser à une autre sont pré-calculées à l'aide de Rm available : cette pièce est considérée disponible aux escales successives, avec le coût de la mise à disposition dans l'escale de départ ajouté au coût de transport. On considère que le temps de chargement d'une pièce en soute à bord est négligeable. Si une escale m permet à la fois l'option de fournir une pièce directement (en expédiant sur place) ou d'utiliser une pièce emportée depuis une escale précédente, on considèrera toujours la solution ayant le moindre coût. Il est alors facile de retrouver après-coup l'origine d'une pièce de rechange, et d'effectuer les démarches pour la mettre à disposition au bon moment.

Modèle des contraintes

A chaque système est associé un nombre de jours MELn correspondant au nombre maximal de jours où ce système est autorisé à rester en panne sans être réparé. En première approximation, nous considérons que ce nombre de jours ne dépend que du système n et non de l'état global de l'avion.

Choix d'un cadre mathématique

Processus Markovien

Etant donné la présence de transitions stochastiques dans le modèle physique, le cadre mathématique de base est donc celui des processus stochastiques [START_REF] Cassandras | Discrete Event System: Modelling and Performance Analysis[END_REF]) : le principe est de considérer qu'à chaque instant le système est dans un état X; dans le cas général cet état peut être décrit par un ensemble de variables discrètes ou continues, et pour les systèmes que nous considérons toutes ces variables sont supposées observables (il est possible de connaitre leur valeur précise à chaque instant).

Ce système va évoluer, passant de l'état X à un autre état X'. , la fonction de récompense, est définie par () ∑ () lorsque l'action a est possible en s : elle représente simplement le coût des réparations prévues à l'escale courante m. Notons qu'il est possible d'enrichir la fonction de récompense avec d'autres paramètres, comme par exemple une pénalité pour les retards au décollage.

Définir la fonction de transition est en revanche plus complexe : il faut considérer le résultat global des réparations, la probabilité qu'une panne se produise durant le vol vers la prochaine escale, tout en mettant à jour les différents temps (dernière réparation et dernière panne). Bien qu'il soit possible de définir directement une telle fonction de transition, l'exercice est fastidieux, n'est pas maintenable et peu robuste aux erreurs.

Comme nous le verrons, nous avons choisi deux solutions pour palier à ce problème : (option 1) exprimer ce problème en premier lieu dans un langage de modélisation, Probabilistic Planning Domain Definition Language (Younes et al.2004) (PPDDL), qui peut alors être traduit immédiatement en Processus de Décision Markovien, ou (option 2) exprimer nativement ce problème dans le langage utilisé par le solveur, C++, et le connecter à des bases de données pour générer le problème. Nous discuterons par la suite les avantages et inconvénients de ces deux approches.

Logiques Temporelles

De la même manière, la forme des contraintes est imposée en partie par le choix d'un monde physique probabiliste, i.e. d'un processus Markovien : vérifier automatiquement des propriétés sur ce système est difficile puisqu'il existe potentiellement une infinité de chemins interdits. En exprimant des propriétés à vérifier sur les chemins d'exécution possibles, sous forme de formules d'une logique temporelle, un solveur nous permettra de dire immédiatement si une contrainte est valide ou non, voire nous fournira un contre-exemple violant cette propriété.

Ainsi, la logique LTL (Linear Temporal Logic) permet de construire des formules temporelles en combinant des formules booléennes classiques, étant vraies ou fausses dans chaque état, et des opérateurs temporels suivant s:  X pour ''next'', où (X f) est vraie si au prochain pas de temps f est vraie.  U pour ''until'', où f U g est vraie si f est vraie au moins jusqu'à ce que g soit vraie (et il existe un pas de temps où g devient vraie).

f et g sont ici des formules booléennes, qui peuvent potentiellement être d'autres formules écrites en LTL.

De nombreuses Logiques Temporelles existent dans la littérature, avec des niveaux d'expressivité et des champs d'applications variés. Nous verrons dans la section suivante que le choix de la Logique Temporelle PCTL (Hansson et al.1994) nous a ici été imposé par le choix d'un cadre permettant de résoudre des Processus décisionnels Markoviens sous contraintes, et du solveur correspondant.

Processus décisionnels Markoviens sous contraintes de Logique Temporelle

Trouver une solution au problème du Business Jet consiste à trouver un plan conditionnel qui associe un ensemble d'actions de réparation à effectuer à chaque état possible. Une solution est dite optimale si elle optimise l'espérance du coût cumulé des réparations.

Néanmoins l'optimalité n'est pas suffisante dans notre cas puisque nous devons aussi garantir deux types de contraintes : (1) les conditions MELn doivent être respectées, et donc aucune réparation anticipée ou tardive ne doit interdire à terme le Dispatch, et (2) certaines actions de maintenance programmées doivent être effectuées avant une certaine date limite.

Une solution est dite valide si le plan conditionnel permet toujours de respecter ces deux contraintes, quelles que soient les pannes pouvant survenir. Nous sommes donc en présence d'un Processus décisionnel Markovien sous contraintes : nous cherchons la meilleure solution possible, mais uniquement parmi celles qui sont valides.

De nombreux cadres mathématiques existent pour exprimer ce problème, nécessitant parfois de poser des hypothèses supplémentaires, notamment sur l'absence de boucle dans le plan de vol : il serait par exemple possible de le formuler en tant qu'un Goal-Oriented MDP (tel que GSSP, Kolobov et al.2012), puisque nous pourrions alors garantir que le modèle ne présente pas de boucles de gain infinis; dans un tel modèle, des états ou chemins sont naturellement interdis s'ils ne permettent pas de finir le plan de vol, par exemple si l'avion reste immobilisé au sol à cause des restrictions dues à la MEL.

Il serait même possible de le modéliser directement en MDP, mais la démarche serait complexe : il faudrait fixer précisément un gain obtenu en finissant le plan de vol (ou en arrivant à une étape), ainsi qu'un gain ''pénalité'' pour interdire ou forcer certains états. L'ajustement de ces valeurs de récompense serait néanmoins artificiel, est susceptible de varier au moindre changement du modèle : pour un avion de type business jet, il est difficile de trouver un sens monétaire au fait de finir le plan de vol, et encore plus difficile de trouver une valeur monétaire pouvant être additionnée ou comparée au coût des réparations.

De tels modèles ne sont néanmoins garantis valides qu'en l'absence de boucles (i.e. plan de vol linéaire, pas d'action inefficace); si l'on souhaite considérer tous les types de modèles, tels que par exemple un avion en ''turn around time'' effectuant régulièrement le même plan de vol, nous devons passer à des cadres mathématiques plus généraux. Le champ pctl est l'un des ajouts que nous avons effectués au langage PPDDL et permet d'exprimer des contraintes PCTL (Hansson et al.1994) : ''(:pctl (f) (g) p)'' correspond à une contrainte , signifiant que tous les chemins possibles doivent garantir avec une probabilité que la formule booléenne f reste vraie jusqu'à ce que g devienne vraie. Dans cet exemple, la contrainte PCTL représente ainsi le respect de la MEL : les pannes doivent être réparées avant une certaine durée fixe.

La flexibilité de ce langage formel nous a permis de produire rapidement plusieurs séries de tests avec de nombreux paramètres. Les résultats sont satisfaisants en termes de qualité de la solution, et permettent de valider notre approche. PPDDL étant un langage largement supporté par la plupart des planificateurs en environnement probabiliste, il a été très facile de l'utiliser pour représenter notre problème et de le tester immédiatement avec des planificateurs performants.

Cependant, le retour d'expérience que nous pouvons apporter sur la modélisation PPDDL est que le langage manque de flexibilité vis-à-vis de la connexion à des bases de données extérieures : utiliser des coûts de réparations différents, des temps de réparations différents, ainsi que des probabilités de panne propres à chaque système a immédiatement nécessité de générer le code PPDDL automatiquement à partir de bases de données.

Ainsi, l'extrait de code que nous avons présenté dans cet article profite par exemple du paramétrage des actions PPDDL, alors que pour le code généré nous avons dû produire manuellement un nouveau type d'action de réparation par coût différent de réparation.

Le bilan est donc mitigé, comme résumé dans le tableau (1.) : d'une part l'effort initial de modélisation est très faible, puisque PPDDL permet de s'affranchir d'une définition manuelle de la fonction de transition d'un MDP; mais d'autre part l'ajout d'informations propres à certaines instance des objets, i.e. des paramètres propres à certaines réparations ou certaines escales, semble aller à l'encontre de la philosophie du langage et nécessite de générer du code spécifique. Enfin, certains aspects plus poussés de la modélisation du problème ne pourront vraisemblablement pas être supportés par PPDDL, sans de grandes modifications de la sémantique du langage. Par exemple la paramétrisation des actions par des lois de probabilité de panne afin de pouvoir spécialiser les actions selon les composants nécessiteraient de générer automatiquement un trop grand nombre d'actions spécifiques.

Modélisation UML & C++

La seconde option de modélisation que nous avons explorée est celle d'une représentation du problème directement dans l'API native du solveur PCMDP utilisé, écrit en langage C++. Une modélisation directe correspond à définir explicitement l'espace d'état, l'espace d'action, la fonction de récompense et la fonction de transition associée.

Utilisabilité

L'autre limitation principale du solveur actuel concerne la traduction inverse : un solveur de PCMDP retourne un plan conditionnel, qui est en réalité un processus Markovien. Un plan solution est alors un arbre avec potentiellement autant de branchements qu'il n' y a de pannes possibles. Ceci est inacceptable pour un outil d'aide à la décision, qui doit présenter de manière synthétique les avantages et inconvénients de plusieurs plans de réparation possibles.

Nos prochains travaux se concentreront sur une méthode permettant de résumer automatiquement le plan solution, permettant au MCC, au pilote et à l'opérateur de maintenance de comprendre de manière immédiate et claire quelles sont les options de réparations possibles, quels sont les évènements qui peuvent venir perturber ces réparations, et quels sont les paramètres qu'ils doivent prendre en compte dans leur prise de décision.

Même s'il existe des travaux visant à résumer de manière automatique un processus Markovien, par exemple en le factorisant autour de points de passages obligatoires (landmarks) ou en traduisant les valeurs possibles de variables individuelles, nous cherchons à résumer nos solutions sous une forme plus spécifique, s'appuyant sur la connaissance de notre domaine : en se concentrant sur la chaine d'exécution la plus probable, nous pouvons isoler les actions et schémas importants pour l'opérateur, comme par exemple le fait d'emporter une pièce depuis Berlin pour effectuer une réparation à Nice.

Faisabilité

Enfin, une question critique que nous n'avons pas abordée dans cet article est celui de l'obtention de données précises, permettant de paramétrer les modèles : en effet, en pratique certaines des données requises sont difficiles d'accès, telles que les coûts des différentes actions et leur impact financier. Le calcul de ces modèles de coût et d'impact opérationnel d'une défaillance ou d'un retard au décollage est un domaine à part entière, et peut s'avérer l'un des points majeurs bloquant l'utilisation de notre outil d'aide à la décision.

En particulier, la question se pose de mesurer l'impact d'une imprécision ou de l'absence de telles données : dans le cadre d'un engagement contractuel envers une compagnie aérienne, il est impératif d'évaluer dans quelle mesure nous pouvons assurer que la solution choisie est optimale, et quel sera l'impact d'une donnée d'entrée erronée sur la solution proposée. Il s'agit là d'autant de questions qui devront être abordées, en partenariat avec des acteurs réels, avant de pouvoir appliquer les techniques que nous proposons au sein des infrastructures de maintenance existantes.

Conclusion

Cet article présente un nouveau type d'outil d'aide à la décision pour la maintenance avionique, permettant de générer automatique des plans de réparations prenant en compte de multiples critères (coût, MEL, pannes futures, pronostic, maintenance opportuniste, ...).

Nous avons défini un cas d'application, le problème du Business Jet, pour appuyer notre réflexion et proposer un retour d'expérience sur la modélisation. Nous avons enfin utilisé des outils de résolution récents basés sur le cadre mathématique des Path-Constrained Markov Decision Processes pour obtenir des solutions respectant tous nos critères.

Bien que les résultats soient satisfaisants en preuve de concept, deux composantes théoriques limitent l'utilisation de cette méthode face à des problèmes réels : le temps de résolution, fortement lié au nombre de systèmes pouvant tomber en panne que nous considérons, et la forme des solutionsun processus Markovien. Comme prochaine étape, nous prévoyons donc d'aborder ces deux problèmes en utilisant des techniques plus efficaces, en réduisant avec pertinence notre modèle d'entrée, et en exploitant notre connaissance du problème pour extraire à partir des solutions les informations qui pourront réellement assister un opérateur dans la mise en place du meilleur plan de réparation possible.

2 Un cas particulier : maintenance d'un Business Jet Considérons

 Un solveur tel quel présenté dans ce cas d'étude a donc comme objectif principal de générer automatiquement des plans conditionnels menant à la réparation de la panne considérée, en prenant en compte les bases de données disponibles, les contraintes de sécurité imposées par la législation et les pannes futures éventuelles pouvant changer le plan initial : nous parlons de plan conditionnel puisqu'un plan solution doit prévoir le cas où un nouveau système tomberait en panne entre Berlin et Nice, empêchant de réaliser la réparation prévue à Nice ; il doit proposer dans ce cas une autre action de réparation prenant en compte cette éventualité.

	En particulier, il est impératif d'interdire certains scénarios, qui pourraient mener à des situations inacceptables, comme se
	retrouver dans l'impossibilité de décoller à une escale (No-Go) suite à une panne imprévue qu'il est impossible de réparer ici.
	Nous avons donc le modèle suivant :
		Modèle du monde physique : probabilité et effets des défaillances de chaque système, logistique et pièces disponibles,
		plan de vol…
		Modèle des actions contrôlables : actions de réparations et d'approvisionnement en pièces de rechange,… associées à
		un modèle de coût.
		Modèle des contraintes : MEL, Interval check, Interval repair,…
		un
		message est envoyé immédiatement au MCC.
	(2) Le MCC évalue la criticité de la panne selon la MEL, confirme la prise en charge de la panne et commence à planifier la
		réparation avant même que l'avion n'ait atterri à Berlin.
	(3) Le MCC consulte différentes bases de données : plan de vol, Logbook (historique des pannes), statistiques sur les
		temps de réparation de chaque panne, occurrences de panne des autres systèmes, pièces de rechanges et personnels
		disponibles à chaque escale, ...
	(4) Le MCC utilise un solveur pour proposer des solutions de réparation : réparer à Berlin mais avec un retard
		supplémentaire au sol, réparer à Nice mais demander au client d'emporter une pièce de rechange depuis Berlin, ...
	(5) Le solveur classe ces solutions selon plusieurs critères de préférence. Le MCC sélectionne celle qui lui semble la plus
		appropriée.
	(6) Le MCC demande confirmation au pilote, réserve les différentes ressources et génère les Job-cards résumant la
		procédure aux opérateurs de maintenance.

Nous partons ainsi d'une approche fondée sur l'utilisation de Modèles formels de représentation des connaissances sur le système pour appliquer de telles techniques. Les modèles que nous considérons peuvent être aussi bien de niveau composant, système ou sous-système, voire représentatif du cadre opérationnel ou d'une mission. Ils présentent plusieurs catégories d'informations, pouvant être modélisées séparément ; on peut en particulier établir la séparation suivante :  Modèle du monde physique : il représente l'évolution du système dans son environnement, ses lois dynamiques indépendamment de tout agent et de toute décision.  Modèle des actions contrôlables: il représente les choix «intelligents » que l'on donne au système, ainsi que les impacts de ces choix sur l'environnement. La définition de ces actions est associée intimement à des objectifs qui vont guider les décisions de l'agent dans une direction ou une autre  Modèle des contraintes : il représente les critères que nous souhaitons garantir sur notre système. Les contraintes concernent des évolutions du système qui sont possibles physiquement, mais que l'on souhaite éviter. Notons qu'une telle séparation recouvre un vaste panel de cadres mathématiques, selon les hypothèses que nous choisissons sur chacun de ces modèles : déterministe, probabiliste, non déterministe, temps discret ou continu, actions concurrentes ou séquentielles,… Nous détaillerons dans une partie ultérieure quelles hypothèses s'appliquent à notre cas d'étude et comment s'expriment les critères à optimiser selon le cadre mathématique retenu. la maintenance d'un avion de type Business Jet. Pour cette classe d'avion, il est particulièrement difficile de garantir qu'il n'y aura pas d'interruption au sol pour cause technique (i.e. annulation du Dispatch de l'avion) : le plan de vol est susceptible de subir de nombreuses modifications, et la programmation des actions de réparations doit donc être aussi souple et adaptative que possible. De plus, à l'inverse d'un avion de compagnie aérienne, qui peut bénéficier d'infrastructures et de pièces de rechange dans plusieurs escales ou se permettre de consacrer quelques heures de sa rotation journalière pour effectuer des réparations, un Business Jet doit optimiser au mieux le lieu et le temps de chaque réparation pour réduire le coût total. Une solution est de confier cette gestion à une tierce partie de type Maintenance Control Center (MCC), qui se charge de gérer la réservation et l'acheminement des ressources aux escales appropriées. Dans ce contexte, notre cas d'étude est le suivant :

(1) Un Business Jet effectue un trajet Paris -Berlin -Nice -Athènes. Une panne survient en vol entre Paris et Berlin;

Formalisation : Modèle logistique de la maintenance En

 se basant sur ce scénario et ces exigences informelles, la démarche de modélisation est alors simple : dans un premier temps nous devons définir les données du problème, ce qui nous amènera à poser quelques approximations pour délimiter le périmètre de la résolution. Ceci nous permet dans un second temps de choisir un cadre mathématique approprié pour modéliser ce type de problème.

3 Données du problème 3.1 Modèle du monde physique

	Avec quelques simplifications, nous définissons le problème du Business Jet de la manière suivante : Un avion est composé de N
	systèmes. Chaque système n peut tomber en panne avec une probabilité pn; celle-ci est exprimée soit relativement à une durée
	fixe de temps, par exemple la probabilité de tomber en panne par heure de vol (Flight Hour), ou soit à partir d'un taux de
	défaillance λn si nous faisons l'hypothèse d'une loi sans mémoire.	
	De manière plus générale, il est possible de prendre en compte un pronostic plus précis sur la défaillance d'un système en
	considérant	la fonction de répartition de la loi de défaillance, tel que ()	() soit la probabilité qu'une
	défaillance du système n se produise entre les temps t0 et t1.	
	Remarquons qu'une telle fonction de répartition peut alors même dépendre d'autres paramètres, tels que la date de dernière
	réparation ou vérification du système, permettant d'optimiser la maintenance préventive dans notre modèle : lors d'une escale, un
	solveur nous indiquerait		

s'il est pertinent d'effectuer une vérification plus approfondie de l'état d'un système, pour obtenir des informations plus précises sur sa probabilité de défaillance, voire un remplacement anticipé d'une pièce.

2 Processus de Décision Markovien Ajouter

 Puisque nous considérons que nous prenons la décision d'effectuer ou non des réparations à l'atterrissage de l'avion, cet espace est en réalité discret puisque les temps ne peuvent prendre qu'un nombre fini de valeurs.L'espace d'actionest alors l'ensemble des réparations qu'il est possible d'effectuer aux escales : est le fait de réparer ou non chacun des systèmes.

	Définition 1 (MDP)	
	Un processus de décision markovien est un vecteur (S, A, R, T, I) où :
	 S est un espace d'états dénombrable
	 A est un ensemble dénombrable d'actions
		est une fonction de récompense
		est une fonction de transition, donnant une probabilité de transition
		est une distribution de probabilité initiale

Cette évolution n'est pas déterministe : à partir de l'état x, le système a une certaine probabilité d'arriver dans l'état x'1, une probabilité d'arriver dans x'2, ... Il n'est plus possibles de dire précisément quels sont les états successifs du système, et on définit alors l'état du système au temps t comme la variable aléatoire Xt. On parlera de temps continu si t prend une valeur réelle positive, et de temps discret lorsque t prend ses valeurs dans un ensemble discret.

Si on considère un temps discret et un espace d'état discret (i.e. toutes les variables considérées sont discrètes), on obtient donc un arbre dont les noeuds sont les états successifs possibles et les branches sont les transitions entre ces états, étiquetés par une probabilité de transition. Cet arbre, de profondeur infinie, est appelé processus Markovien lorsque ces probabilités de transitions respectent une certaine propriété : elles ne doivent dépendre que de l'état courant, et non de l'exécution passée du système.

Dans les cas d'applications que nous considérons, un processus Markovien représente ainsi l'évolution d'un système lorsqu'il n'est pas contrôlé : un état est décrit par l'ensemble des systèmes fonctionnant ou non, et une transition est généralement l'arrivée d'une défaillance, avec une certaine probabilité connue. L'hypothèse de Markov se traduit alors par le fait que la loi de défaillance, i.e. la probabilité qu'une panne survienne durant une certaine durée, ne dépend ni de l'historique du système ni du temps écoulé depuis la mise en service du système : il s'agit d'une loi exponentielle, décrite à partir d'un taux de défaillance.

4.des actions contrôlables à ce modèle nous fait alors passer d'un processus Markovien à un Processus de Décision

Markovien (MDP : Markov Decision Process, Puterman 1994) : le système est représenté par un automate; à chaque instant il est dans un état précis s et passe d'un état à un autre par des actions effectuées par l'utilisateur.

Le résultat de l'action a est alors stochastique : le système a une certaine probabilité p1 de se retrouver dans un état s'1, une autre probabilité p2 d'être dans l'état s'2,... A l'issu d'une action, l'utilisateur reçoit une récompense, positive ou négative représentant un gain ou un coût.

Dans le cas du Problème du Business Jet, un certain nombre de ces paramètres peuvent être définis naturellement. L'espace d'états peut être défini comme l'ensemble des () tels que :

 est pour chaque système le temps depuis la dernière réparation,  est le temps depuis la dernière panne non réparée,  m est l'escale courante.

 Nous avons ainsi choisi d'exprimer ce problème sous la forme d'un Path-Constrained Markov Decision Process (PC MDP Teichteil 2012) et un solveur approprié. PC MDP est un cadre mathématique alliant planification en environnement probabiliste (MDP, Puterman 1994) et contraintes de Logique Temporelle (LTL, PCTL,...)(Hansson et al.1994) : la solution d'un PC MDP est un plan conditionnel qui est garanti optimal et valide, i.e. qui mènera sur le long terme au meilleur coût financier tout en étant sûr de respecter les contraintes dans toutes les conditions.Certains fluents peuvent être paramétrés par plusieurs objets, ainsi ''repairable'' représente le fait qu'un système soit réparable à une escale donnée. Des variables plus complexes paramétrées peuvent être définies, appelées functions, comme par exemple ''ft'' qui représente la durée depuis laquelle un système donné est en panne. Ces variables ont des valeurs entières ou décimales.PPDDL permet aussi de paramétrer de la manière suivante: une action peut être appliquée si des conditions, définies dans le champ precondition, sont remplies; appliquer une action produit des effets, potentiellement probabilistes, qui sont d'ajouter ou retirer des fluents, ainsi que de modifier la valeur de fonctions dans l'état suivant. Ainsi, dans l'exemple (1.), l'action ''repair'' concerne un système s et une escale donnée loc ; elle s'applique lorsque l'avion est à cette escale et que le système est réparable à cet endroit; son effet est alors de retirer le fluent ''failed'' du système s et de diminuer la fonction ''reward'' de 1. ''reward'' est une fonction particulière, définie directement dans le langage et correspondant à la récompense pour les MDP.L'une des plus-values principale de PPDDL est de pouvoir définir séparément une version générique, appelée domaine, et un problème instancié correspondant. L'exemple (2.) montre par exemple une instance du problème du business jet correspondant à un plan de vol Paris-Berlin-Nice-Athene et 3 systèmes pouvant tomber en panne. Le champ init désigne tous les étant vrais à l'état initial.

	(:types location system)	(define (problem business-jet-3)
	(:predicates	(:domain business-jet)
	(at ?loc -location)	(:objects
	(failed ?s -system)	Paris Berlin Nice Athene -location
	(repairable ?s -system ?loc -location)	s1 s2 s3 -system
	(in-flight ?l1 ?l2 -location))
	(true)	(:init
)	(at Paris)
	(:functions	(= (next Paris Berlin) 2)
	(ft ?s -system)	(= (next Berlin Nice) 1)
	(next ?l1 ?l2 -location)	(= (next Nice Athene) 1)
)	(= (next Athene Paris) 1)
	(:action repair	(repairable s1 Paris) (repairable s1 Nice)
	:parameters (?s -system ?loc -location)	(repairable s2 Paris) (repairable s2 Nice)
	:precondition (and	(repairable s3 Paris) (repairable s3 Nice)
	(failed ?s)	(= (ft s1) 0) (= (ft s2) 0) (= (ft s3) 0)
	(at ?loc)	(true)
	(repairable ?s ?loc))
)	(:pctl
	:effect (and	(true)
	(not (failed ?s))	(or (> (ft s1) 2) (> (ft s2) 2) (> (ft s3) 2))
	(decrease reward 1)	0
))
)	(:metric maximize (reward))
)

Déploiement : Synthèse automatique de plan de réparation

Il nous faut à présent exprimer les différents modèles constituant notre problème. Comme évoqué précédemment, nous devons modéliser trois aspects : (1) la fonction de transition du Processus Décisionnel Markovien, exprimant le modèle physique et les actions possibles, (2) la fonction de récompense, portant les objectifs et (3) les contraintes en Logique Temporelle (PCTL).

Cette section détaille ainsi un retour d'expérience sur ce type de modélisation, à travers la comparaison de deux options : PPDDL, langage formel spécifiquement conçu pour les MDPs, et C++/UML utilisé par l'API du solveur que nous avons choisi. 5 Langage d'expression des données 5.1 Modélisation PPDDL Exprimer ce problème en PCMDP nécessite une étape de traduction supplémentaire : nous avons saisi le modèle précédent dans le langage formel PPDDL (Probabilistic Planning Domain Definition Language Younes et al.2004}), qui est l'un des langages de référence dans la communauté de planification en environnement probabiliste. En particulier, ce langage permet d'établir une description haut-niveau de notre problème, i.e. avec des variables abstraites n et m, puis de l'instancier en spécifiant la valeur des variables abstraites. Comme nous le voyons sur l'exemple (1.), il est très intuitif d'exprimer un problème en PPDDL : la première ligne type définit les objets que nous pouvons manipuler, la seconde predicates définit les « fluents » qui représentent l'état du système. Par exemple, pour représenter un avion à Paris avec le système IRS1 en panne, on pourra simplement dire que les fluents ''(at Paris)'' et ''(failed IRS1)'' sont vrais. Par défaut, tous les fluents non mentionnés explicitement sont considérés faux.

Figure 1. PPDDL domain --extrait simplifié Figure 2. PPDDL problem

Table 1 .

 1 Comme nous l'avons évoqué précédemment, une telle définition est complexe et difficile à maintenir. Pour alléger ces défauts, nous nous sommes orientés vers une modélisation en deux temps : (1) représenter le problème sous une forme haut-niveau dans le langage UML, permettant de mettre en avant les différentes bases de données, les formats d'échanges avec celles-ci basés sur des schémas XML définis, ainsi qu'une définition générique des actions de réparations possibles; puis (2) traduire ces diagrammes UML en classe C++, permettant de générer à la volée les états et probabilités de transitions du MDP.Cette approche permet donc une maintenabilité accrue (i.e. capacité au changement de paramètres) et une robustesse aux changements de modèles, puisqu'il suffit de modifier les données haut niveau (UML) pour en voir directement les impacts sur l'implémentation bas niveau (C++). La traduction UML/C++ n'a cependant pas été effectuée automatiquement, puisqu'il nous a fallu utiliser l'API spécifique au solveur.A nouveau, le bilan est mitigé, comme le montre le tableau (1.) : le principal point positif est que nous avons pu ainsi modéliser avec beaucoup de détails notre problème, en prenant en compte des fonctions de coûts complexe et des cas particuliers associés à certaines escales. Bien que l'effort de modélisation initial soit plus élevé, une modélisation native en C++ permet immédiatement d'utiliser le solveur dans des cas réels d'application, avec des bases de données réelles, ce qui permet de valider plus efficacement notre concept d'outil d'aide à la décision; à l'inverse, la modélisation en PPDDL aurait nécessité une étape supplémentaire de réflexion sur l'échange d'informations à partir de bases de données. Techniques de modélisation : PPDDL vs UML/C++ Néanmoins, même avec la vision haut niveau UML, le code natif bas-niveau est très peu lisible par un non initié. Son écriture, et son maintien en cas de changement du modèle, nécessite une connaissance non triviale des MDP et de l'API du solveur : nous avons par exemple dû réécrire une partie de la sémantique de PPDDL en C++ pour pouvoir utiliser des fonctions ressemblant à l'opérateur ''forall''. Enfin, les deux options de modélisation se sont avérées similaires sur le plan de la performance, avec un léger avantage pour C++ dû à la possibilité d'optimisation de certaines structures de données et l'utilisation de clés de hachage.Le bilan de cette modélisation est donc que ni PPDDL ni UML/C++ ne sont pleinement satisfaisants pour nos besoins : PPDDL pourrait être qualifié de langage orienté utilisateur, facile à maintenir et concevoir mais limité en expressivité ; alors qu'à l'inverse C++ avec une couche de conception UML serait un langage orienté solveur, expressif et parfaitement adapté à la manipulation des données d'entrée et de sortie, mais illisible pour quelqu'un d'extérieur au domaine.Comme nous l'avons brièvement évoqué, l'approche finalement adoptée s'est avérée mixte : nous avons proposé une séparation des vues utilisateurs / solveur à travers une génération automatique des modèles PPDDL et C++. En concevant des schémas de saisie type XML ou DSL (Domain Specific Language) au travers desquels un utilisateur peut facilement peupler le modèle de contraintes (MEL) ou les paramètres du modèle physique (plan de vol, logistique,…), il a été possible de pallier les limites de ces deux langages, en générant automatiquement les aspects les plus fastidieux. L'inconvénient principal de cette méthode est son coût de mise en oeuvre initial : elle nécessite une réflexion approfondie sur les besoins et la forme des données d'entrée.

		Critères	PPDDL	C++
	Lisibilité		+
	Maintenabilité (changement des paramètres)	+	+
	Facilité de modélisation	+
	Robustesse aux changements de modèle	+
	Temps de résolution		+
	Niveau de détail du modèle		+
	5.3	Génération automatique à partir de DSL	

6 Limites de la résolution 6.1 Efficacité La

 principale limitation concerne le temps de calcul : puisque ce type de problème est NP-difficile, le nombre d'états explose de manière exponentielle en fonction de la taille des données d'entrée. La figure (3.) montre que le facteur déterminant est bien le nombre N de systèmes (croissance exponentielle), et non la taille du plan de vol (croissance linéaire). Ainsi, pour 6 systèmes pouvant tomber en panne le solveur explore par exemple plus d'un million d'états et trouve une solution optimale et valide en 32s. modèle présente très peu de boucles, et s'apparente dans presque tous les cas à un GSSP(Kolobov et al.2012), qui peut être résolu à la volée de manière bien plus rapide.Toutefois, la piste principale d'évolution concerne la réduction des données d'entrée : lorsqu'une panne d'un instrument de localisation survient, il n'est par exemple pas pertinent de considérer une panne possible de la ventilation; il est donc possible d'effectuer un tri en amont des systèmes pouvant impacter la réparation de la panne venant de survenir. Ce tri peut concerner par exemple les critères suivants :Considérer les systèmes faisant partie de la chaine de redondance et/ou mentionnés dans la MEL  Considérer les systèmes pouvant prochainement tomber en panne (pronostic)  Considérer les systèmes dont une panne potentielle serait critique et pourrait retarder ou empêcher une réparation à temps Des comparaisons sont en cours pour déterminer dans quelle mesure le choix de ces hypothèses impacte nos résultats : il nous faut déterminer si une solution obtenue avec ces réductions est toujours optimale et toujours sûre.

		10 100	t (M=4 fixe)				12 14 16	t (N=5 fixe)		
	t(s) -log	0,1 1					t(s)	6 10 8			
		0,01						2 4			
		0,001						0			
		1	2	3	4	5	6	1	3	5	7	9
				N(s)						N(s)	

Figure 3. Comparaison des temps de résolution selon N (nombre des systèmes) et M (nombres d'escales).

Deux pistes d'amélioration peuvent être envisagées : réduire de manière pertinente le nombre de systèmes en entrée ; ou trouver un solveur plus rapide, voire non-optimal. Un tel solveur pourrait en particulier profiter de la structure très particulière du problème : notre