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The pinch-off behavior of yield stress fluids is investigated using droplet and liquid-bridge breakup
experiments. Contrary to expectations, the neck thinning behavior depends strongly on the way the breakup
experiment is carried out. This nonuniversal behavior can be explained through an analysis of the thinning
dynamics as well as the shapes of the fluid necks. Recent nonlocal models for the rheology of yield stress
fluids are found to be compatible with the results presented.
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Yield stress fluids are used in many industrial processes
such as fracturing, the pouring of concrete, and the
preparation and packing of foodstuffs. These fluids behave
as a solid when the applied stress is below the so-called
critical yield stress but flow as a liquid above this threshold
[1–3]. Flows encountered in practical situations can have a
strong extensional component that cannot be described by
commonly used shear constitutive laws. Recent theoretical
work suggests a highly nontrivial link between shear and
extensional behavior of jammed suspensions [4]. Since
there is no constitutive equation describing yield stress
materials in both shear and extension, measurements are
needed.
We follow a simple and direct method to probe the

extensional properties of a variety of yield stress fluids by
following the capillary thinning dynamics of a fluid neck
until it breaks up [5–7]. We find that, contrary to expect-
ations, the thinning dynamics shows a nonuniversal behav-
ior that leads to fluid viscosities that depend on the imposed
initial deformation. While slow deformation experiments
can be understood using the shear constitutive relation
[8–11], the faster deformation data cannot be understood in
a simple manner. Our results can be rationalized using
recently introduced models for the nonlocal rheology of
soft glassy materials [12–14].
We make use of two experimental setups, in order to

address recent conflicting literature results on the breakup
dynamics of yield stress fluids, raising questions as to what
controls this dynamics [11,15]. The first experimental setup
probes the breakup of a liquid bridge initially squeezed
between two glass plates. The lower plate can be pulled
vertically at a constant velocity V until the bridge breaks. V
can be varied from 10−2 to 102 mm=s allowing us to
significantly vary the initial imposed stretching rate. The
initial bridge height and diameter are L0 ≃ 1 mm and
D0 ≃ 3 mm, respectively. In the second setup, a drop is
released from a capillary (inner diameter D0 ¼ 4 mm) at a

small flow rate so that the drop detaches only due to gravity.
This configuration allows for the highest initial stretching
rate. We use a camera fitted with a microscope objective
lens to record the drop profile as a function of time at a
frequency up to 30 kHz with a spatial resolution
of 4 μm=pixel.

We use aqueous dispersions of Carbopol at a concen-
tration of 2% and concentrated emulsions as ideal yield
stress fluids [3,16]. Carbopol dispersions consist of indi-
vidual elastic sponges with a diameter ranging from a few
to tens of microns [3,16]. The emulsions are dispersions of
castor oil droplets (volume fraction 74%) in 1% aqueous
SDS solutions. The droplet size is 3.1 μm. The shear
rheology of the dispersions is well described by the
Herschel-Bulkley (HB) constitutive equation σ ¼ σy;sþ
k_γn, where σy;s is the shear yield stress, k the consistency
parameter, and n the index of shear thinning [1]: n ¼
0.4� 0.03 for the systems considered. The yield stress is
120 Pa for the dispersions and 10 Pa for the emulsions (see
the Supplemental Material [17]). The measured extensional
yield stress is roughly 1.6 times σy;s (Supplemental
Material [17]) in agreement with previous estimates [18]
and theory of jammed suspensions of colloidal particles [4].
The surface tension and the density of the materials are
γ ≃ 50 mN · m−1 and ρ ¼ 1000 kg=m3 for the dispersion
and 18 mN=m and 980 kg=m3 for the emulsion [15,19,20].
Photographs of the breakup are displayed in Fig. 1.

While for low extension velocities the fluid neck has
pronounced curvature in the lateral direction, the neck is
much shallower for high velocities or for droplet pinch-off.
In order to quantify such differences, Fig. 2 displays the
minimum neck diameter 2hmin versus time to breakup
τ ¼ ðtb − tÞ. Theoretical work [8,9] and experiments
[10,11,20] suggest that the thinning dynamics for so-called
power-law shear-thinning fluids is universal and should
follow hmin ∝ τn. This result carries over to yield stress
fluids obeying the HB equation as shown in Ref. [21] since
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capillary stresses are generally higher than the critical yield
stress so that they behave as power-law fluids. Recent
experiments support this thinning law [10,11] by finding
thinning dynamics to be well described by the exponent n;
others do not [15] and find Newtonian behavior with a
linear thinning law. Our system (Fig. 1) does not display a
fracture modifying the thinning dynamics as reported in
Refs. [22,23]. Furthermore, we conclude from our experi-
ments that the thinning dynamics is sensitive to the way the
breakup is produced. Figures 2(a) and 2(b) show that
the thinning rates depend on initial conditions: the higher
the velocity, the faster the thinning. This behavior is
obtained for both the Carbopol dispersion and the castor
oil emulsion. All curves in Figs. 2(a) and 2(b) can be fit
with the power-law model but with values of n that depend
on V. While the value of n is close to the one measured in
shear flow for low velocities for either system as expected
and observed [10,11], it increases towards a value of 1 for
the droplet experiments as in Ref. [15]. This is our main
result: the same fluid behaves differently depending on the
imposed initial stretching rate, but the behavior remains
that of a power-law fluid.
To illustrate this nonuniversality, we first extract the

fluid viscosity from the thinning dynamics using
ηs ¼ 2n−1nnϕ0ðnÞγ½ðdhminÞ=ðdτÞ�−1. Here, ϕ0ðnÞ is a con-
stant; as tabulated in Ref. [9], its value for n ¼ 1 matches
the relation governing viscous fluid pinch-off, i.e.,
ηs ¼ 0.07γ½ðdhminÞ=ðdτÞ�−1 [6,24,25]. The prefactor
2n−1nnϕ0ðnÞ is discussed in the Supplemental Material

[17]. Figures 2(c) and 2(d) show viscosity (ηs) versus
extension rate [_ϵM ¼ ð2=hminÞðdhmin=dτÞ]. The viscosity
matches the shear rheology (obtained as σ=_γ) for low
velocities as expected since the thinning dynamics follows
the predicted behavior for a power-law fluid; the exten-
sional rheology of the fluid follows the shear rheology, and
the pinch-off behavior is due to a balance between viscous
and capillary forces. For higher velocities and for the
droplet, the viscosity is significantly lower and the power-
law dependence of ηs versus _ϵM changes. Shear rheology
and extensional rheology differ in this case.
Second, the spatial profiles of the fluid necks (interface

position h versus vertical coordinate z) near the minimum
neck location zmin are supposed to be similar for both
Newtonian and power-law fluids [6,9]. A proper rescaling
of hðzÞ and z allows us to collapse the profiles for
different τ onto a universal curve independent of initial
conditions. The profiles are extracted from images as in
Fig. 1 and rescaled according to the following form:
hðzÞ=hmin ¼ F½ðz − zminÞ=τδ�; the normalization by τδ

accounts for the scaling of the axial coordinate during
thinning [9]. For the value of n considered here (n ¼ 0.4),
δ ¼ 0.4 [9]. We have used hδ=nmin, which scales as τ

δ [9,10] to
avoid uncertainty in the determination of the rupture time
tb. This rescaling is shown in Figs. 3(a) and 3(b) and
gives δ≃ 0.36 for the lowest velocity. The function
F is quadratic as shown by the solid lines leading to
hðzÞ=hmin ¼ C½ðz − zminÞ=hδ=nmin�2 þ 1 (C is a constant),
which gives a good description of the data for both systems.
The higher-velocity experiments require different values of
n and δ. The value of n increases as V increases with δ, in
reasonable agreement with predictions [9] as shown in the

FIG. 1. Liquid bridges and detaching drops of a 2% Carbopol
solution at different extension velocities V and times to breakup τ:
(a) V ¼ 0.018 mm=s at τ ¼ 3.59, 1.2, 0.08, and 0.0001 s.
(b) V ¼ 1.8 mm=s at τ ¼ 0.15, 0.065, 0.0095, and 0.0001 s.
(c) Droplet breakup at τ ¼ 0.0067, 0.0035, 0.0005, and 0.0001 s.
The scale bar is 500 μm.
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FIG. 2 (color online). [(a),(b)] Minimum neck diameter
2hminðτÞ for different values of V. Fits are power laws with
exponent n: The faster stretching rates have their time scale
indicated on the upper axis (vertical arrow). [(c),(d)] ηs versus _ϵM
for different V values along with the rheology. Fluids used: (a),
(c), 2% Carbopol dispersion; (b), (d), 74% castor oil emulsion.
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Supplemental Material [17]. The good agreement between
expected behavior for power-law fluids and our experi-
ments for the profiles and thinning dynamics supports
us in neglecting inertia, elasticity, and normal stress effects
[26]. Note that while profiles for each velocity can be
collapsed onto a master curve, these master curves are
different for each velocity due to the velocity dependence
of n.
Why do the profiles for different velocities differ, and

why are the resulting viscosities so different from the shear
rheology? In literature, experiments using dense suspen-
sions showed that the viscosity in the final instants before
breakup can be smaller than the expected viscosity and
dilution effects have been invoked [27,28]. If dilution were
at work, the local concentration of our suspensions would
need to be decreased by a factor of 10 in these jammed
suspensions of soft objects, which seems unlikely. Also,
theoretical and numerical work give no hint as to possible
changes of fluid behavior as observed here [21,29].

A probable cause, as reported for the shear rheology of
yield stress fluids in confined geometries, is the existence
of a finite length scale over which the apparent viscosity of
the fluid can be much smaller than the bulk viscosity
[12–14]. This decrease is the result of local plastic events
fluidizing the suspension over a cooperativity length
scale ξ. This has been rationalized by defining [12]
ξ2Δf ¼ f − fb, with fluidity f the inverse of the local
viscosity, fb the inverse of the bulk shear viscosity
ηshear, and Δ the Laplacian operator (here, Δf ¼
½ð∂2fÞ=ð∂r2Þ� þ ð1=rÞð∂f=∂rÞ þ ½∂2f=ð∂z2Þ�, r is in the
radial direction and the azimuthal variation of f is
neglected). For concentrated emulsions and for Carbopol
dispersions, ξ is of the order of a few droplet or object sizes,
respectively [12,14].
To examine this model, we use the power-law fluid

model to write the local viscosity as ηðz; τÞ ¼ β½_ϵðz; τÞ�n−1,
with β a constant. This viscosity depends on z since the
local extension rate _ϵðz; τÞ ¼ ½2=hðz; τÞ�½dhðz; τÞ=dτ�
(Supplemental Material [17]) depends on z, reaching a
maximum at zmin and decreasing away from it. Our estimate
of η uses an _ϵ that is averaged over r, so our estimate of the
fluidity denoted f̄ is also an average over r: f̄ ¼ 1=ηðz; τÞ.
As shown in Fig. 4(a), f̄ goes through a maximum at z ¼
zmin and is much higher than fb for the two examples
shown and for all the runs we have carried out for the two
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FIG. 3 (color online). Fluid bridge profiles (bottom axis) for
different values of V and droplet profiles (top axis, indicated by
arrows) for Carbopol dispersions (a) and castor oil emulsions (b).
V ranges from 0.018 mm=s [red symbols in panel (a)] to
50 mm=s [brown symbols in panel (b)]. For each value of V
and for the droplet curve, we probed four profiles, as indicated
by four symbols (x, þ, open, closed) in the same color. The
corresponding values of hmin vary per profile but are typically
between 35 and 500 μm. Solid lines are quadratic fits.
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systems. In the fluidity equation above, the right-hand side
is positive while the left-hand side has a negative term,
∂2f=∂z2, since f goes through a maximum at z ¼ zmin.
This excludes using the fluidity model if f is independent
of r, as the model would predict a viscosity that is larger
than the bulk viscosity [30,31] in contradiction with our
results.
One way to reconcile our results with the model is to

introduce a variation of f in the direction r. In this case, f
needs to go through a minimum versus r while it goes
through a maximum versus z. Let us rewrite the fluidity

equation averaged over r as ∂2f̄=∂z2 ¼ ½−ð∂2f=∂r2Þ þ
f̄=ξ2� − fb=ξ2 (Supplemental Material [17]). As the varia-
tion of f versus r cannot be obtained experimentally due to
averaging over r, the fluidity equation can be tested only
partially: as shown in the insets of Fig. 4(a), a linear relation
is obtained between ∂2f̄=∂z2 and fb using the spatial
fluidity profiles of Fig. 4(a) taken at a single instant. The
equation can also be tested using data at different velocities
and evaluating ∂2f̄=∂z2 and fb at z ¼ zmin at different
times as shown in Figs. 4(b) and 4(c) for the two systems
used and two different velocities. The linearity of the results

can have two reasons. The first is that ½−∂2f=∂r2 þ f̄=ξ2�
is proportional to fb making it difficult to extract ξ without
knowing the variation of f versus r. The second is that
∂2f=∂r2 ≃ f=ξ2 giving ∂2f̄=∂z2 ≃ −ðfb=ξ2Þ. Under the
latter assumption (Supplemental Material [17]), the value
of ξ obtained from the slope of the linear variation (see
Fig. 4) is roughly constant, independent of time for each
experiment, and consistent with the values determined
using the spatial profiles. ξ also increases as the velocity
increases in agreement with the differences in behavior
observed for the different rates. The order of magnitude of ξ
is 100 μm, which is larger than the values obtained from
shear flow experiments. The significance of these values
and their variation with velocity remain to be understood in
the absence of a model for the variation of f versus r. While
our experiments cannot validate this variation, we can
conclude it to be small: for the fluidity profiles in Fig. 4(a),
the viscosity is at most 15% smaller at the surface than at
the center of the neck (Supplemental Material [17]). A final
point concerns the predicted variation of ξ close to yielding
[12,13]. Within the precision of our experiments, no
variation is observed here as in Ref. [12]. All these points
merit further experiments with better precision and cer-
tainly further theoretical work to explore the significance of
our findings and the limitations of the model.
In conclusion, we studied the extensional flow of yield

stress fluids in liquid-bridge breakup experiments. The
bridge thinning is very sensitive to the initial conditions,
leading to nonuniversal thinning dynamics, which cannot
be rationalized by a simple shear constitutive law. Upon
extension, the fluid behaves as a power-law fluid with an
exponent depending on the initial stretching rate. We have

examined whether nonlocal effects can describe the strong
deviations from bulk rheology. While the analysis of our
data using this phenomenology is only partial, it suggests
two things. First, the cooperativity length depends on the
applied stretching rate: the higher the stretching rate, the
larger the cooperativity length and, hence, the larger
the deviations from bulk rheology. Second, the viscosity
at the neck needs to vary, albeit mildly, in the radial
direction, giving a nontrivial neck structure which remains
to be tested. The nonlocal rheology model therefore gives
rise to nontrivial consequences whose significance remains
to be fully understood to validate the model or point to its
possible limitations.
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