
HAL Id: hal-01085321
https://hal.science/hal-01085321

Submitted on 21 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance analysis of the Disrupted Static Priority
scheduling for AFDX

R.T. Flores, Marc Boyer

To cite this version:
R.T. Flores, Marc Boyer. Performance analysis of the Disrupted Static Priority scheduling for AFDX.
ACM-IEEE International Conference on Formal Methods and Models for System Design (MEM-
OCODE’14), Oct 2014, LAUSANNE, Switzerland. �hal-01085321�

https://hal.science/hal-01085321
https://hal.archives-ouvertes.fr

Performance analysis of the Disrupted Static Priority
scheduling for AFDX

Rubén Trillo Flores, Marc Boyer

ONERA – The French Aerospace Lab
F 31055 , Toulouse, France

Abstract—The AFDX technology is used as backbone in sev-
eral aircraft. It offers a high bandwidth (commonly 100Mb/s), and
guaranteed per data flow a bound on the network traversal delay,
while being a shared resource. To do so, it uses a segregation
mechanism, the Virtual Link (VL), designed as a bus abstraction.

Nevertheless, there may exist applications with such stringent
latency requirements that a given AFDX topology can not ensure
it. To provide low latency, the AFDX technology provides priority
levels: but even in the highest priority level, the latency bound
can still be too high with regard to applicative requirements. One
cause of latency is the non-preemptive aspect of priority policy:
when a high priority frame reaches an output port, it may have
to wait the emission of a low priority frame. Then, a high priority
frame might have to face a delay equal to the maximum packet
emission time of the low priority flows per crossed switch.

The scheduling policy called Disrupted Static Priority (D-
SP) aims to improve the latency guarantees, by interrupting low
priority frames, and re-emitting them from the beginning. This
policy is a trade-off between simplicity and efficiency.

A quantitative comparison between the NP-SP and the D-
SP scheduling systems’ performance on a realistic case-study is
provided in this article.

I. INTRODUCTION

Avionics Full DupleX (AFDX) [1] is a high speed Com-
mercial Ethernet with provisions for guaranteed Deterministic
Timing and Redundancy required for Avionics applications. It
is built upon protocol specifications of IEEE 802.3 and ARINC
664 P7.

Thanks to the use of Full Duplex Ethernet, the possibility
of transmission collisions is eliminated. Also, the network is
designed in such a way that all critical traffic is prioritized
using Quality of Service (QoS) policies. Therefore, delivery,
latency, and jitter are all guaranteed to be within set parame-
ters.

On an AFDX aircraft data network we can find 3 different
types of network elements, the End systems (E/S), the Switches
and the Virtual Links (VL). An E/S is a device whose applica-
tions access the network components in order to send or receive
data from the network. A Switch is an equipment that performs
traffic policing and filtering, and forwards packets towards their
destination E/S. And a VL defines a unidirectional (logical)
connection from one source E/S to one or more destination
E/S (Uni- or Multicast communication).

In the current AFDX standard, the scheduling policy uses a
hierarchical scheme with first a Non-Preemptive Static Priority

scheduling (NP-SP), and second a First In First Out (FIFO)
withing each priority level. To each virtual link is associated
a priority, and the scheduler separates the incoming flow in
different queues according to their priority. Every queue uses
the First In First Out (FIFO) organizing method. The low
priority queue is served only if the high priority one is empty.
When a frame of the high priority is set in its queue, if a frame
of the low priority flow is being sent, it must wait until the
end of this emission before being transmitted (this is a “non
preemptive” scheduling).

This non-preemption can be the cause of some non negli-
gible delays: on 100Mb/s port, a low priority frame of 1500
bytes can create a latency of 120 µs. A high priority frame
crossing 4 switches can experience a delay of 480µs ≈ 0.5ms,
which can be too high for some applications.

The scheduling policy called Disrupted Static Priority (D-
SP) aims to improve the latency guarantees, by interrupting low
priority frames, and re-emitting it from scratch. This policy is
a trade-off between simplicity and efficiency.

The objective of this paper is to introduce and analyse this
variation of the SP called Disrupted Static Priority (D-SP).
This scheduling system intents to provide smaller latencies for
the higher priority flows and a low complexity level.

In the section II of this paper, the D-SP scheduling system
is described and compared to other similar solutions. A short
introduction to network calculus is given in Section III. The
section IV shows how to model the D-SP policy within the
network calculus framework. An experimental analysis of the
D-SP applied on a realistic AFDX case-study is carried out
and it is compared to the obtained results for the NP-SP
scheduling, in Section V. And finally, section VI summarizes
the contribution of the paper and presents some directions for
future works.

II. STATIC PRIORITY POLICY FLAVORS

The blocking problem arises when a high priority has to be
sent while a lower priority frame is being sent, as illustrated
on the top of Figure 1.

In non-preemptive scheduling, the high priority frame has
to wait until the end of the low priority frame (case NP-SP in
Fig. 1). This non-preemption in the current AFDX policy can
be the cause of some non negligible delays: on 100Mb/s port,
a low priority frame of 1500 bytes can create a latency of 120
µs. A high priority frame crossing 4 switches can experience

a delay of 480µs ≈ 0.5ms, which can be too high for some
applications.

In CPU scheduling, static priority is often implemented in
a preemptive way: when a high priority task is released, it
gets the CPU, after some (relatively small) delay related to
the context switch. The low priority task is then stopped and
resumed, and the execution restarts from the stopping point
(case P-SP in Fig. 1). Some context saving/switching/restoring
costs may exist, but the task does not restart from scratch.

In network scheduling, frame interruption is not so simple:
there is no common context shared by the sender and the
receiver to save: solutions may exist, but it significantly
increases the complexity of the MAC layer.

Here it is proposed another approach, called Disrupted
Static Priority, that just cancels the low priority frame emis-
sion, and restarts it from the beginning later (case D-SP in
Fig. 1).

A. Frame-preemptive Static Priority

Even if the frame preemption is not so simple as the
task preemption, some solutions are under development. The
problems to solve are quite common in network: how to
delimit, fragment and reassemble PDU.

In the US patent [2], it is proposed to introduce a “pre-
emption delimiter” to allow the receiver to detect such an
interruption [2, Fig. 6A-6B] and to resume the preempted
frame. And also to add fragment header and check code to
allow reassembling by the receiver [2, Fig. 7A]. No encoding
neither size of such elements are given.

The IEEE Time-sensitive networking (TSN) task group
continues the work of the AVB working group. One of they
proposal is the use of preemption of frames. Nevertheless, the
current draft [3] is not a public document, and only some
presentations are available, like [4]. An implementation have
been proposed in [5] using an 8b/10b physical encoder, and
some simulations have been also done.

B. Disrupted Static Priority

The Disrupted Static Priority (D-SP) scheduling policy
allows to classify the input flow into several different priorities
in order to cope with flows of different latency constraints.
Thus, a more diligent service will be provided to the higher
priority flows.

Each queue, corresponding to a certain priority, uses the
First In First Out (FIFO) organizing method. That is, the
packets will be scheduled in the queue in the same order as
they arrive. Then, the oldest packet will be the first one to be
served and so on.

High priority (HP) packets will be transmitted without
interruption as long as there are packets in the HP queue.
Therefore, only when there are no packets in the HP queue, the
Low Priority (LP) queue will be able to transmit its packets.
However, if a HP packet arrives when a LP packet is being
processed, the latter will be stopped to make way for the HP
packet. Then, contrary to a Preemptive scheduling, the amount
of data from the LP packet that was processed until the time
of interruption will be discarded. Hence, the processing of that

H

L

H

L1 H L2

L H L

NP-SP

P-SP

D-SP

L

Fig. 1. Graphic example of the NP-SP, P-SP and D-SP packet schedulers

H

L

L H L

D-SP (Theoretical)

LHL

l1

w

l2

D-SP (Real)

Fig. 2. Real behaviour of the D-SP packet scheduler

LP packet will restart from the beginning when there are no
more packets in the HP queue.

An example of the D-SP scheduling is illustrated in fig-
ure 1.

In the previous example, we see that by using the NP-SP
scheduling, the fact of having to wait for the LP packet to be
fully transmitted induces a significant delay in the transmission
of the HP packet. This delay is completely erased by using the
D-SP scheduling (and the P-SP as well). However, the D-SP
introduces a delay for the possible future incoming packets
equal to the size of the LP packet fraction that was already
processed and discarded afterwards.

So, by comparing with the P-SP, at the expense of decreas-
ing the algorithm complexity, the D-SP introduces a certain
delay each time there is a disruption.

Besides, note that, in reality, when the HP packet arrives
to the queue, it takes some time to cease the processing of the
LP packet and get the HP packet into the server. This time
will be of course implementation dependant (explicit end of
frame, on purpose carrier corruption, etc.). It is represented in
figure 2 as l2.

The time span l1 corresponds to the part of the LP packet
that has been processed but that is discarded. It is called the
discard. On the other hand, l2 is called the transition. And the
sum of both segments is called the waste, denoted as w.

C. Discussion

The D-SP policy is designed as a trade-off between effi-
ciency and simplicity, to avoid the well known blocking factor
of non preemption at frame level.

There are other solutions: one is to add mechanisms to
allow preemption, like in task scheduling, and another one is
to avoid contention, by the use of time-triggered scheduling.

The D-SP policy can be very simply implemented: a frame
must be kept in memory up to the end of transmission in
case of disruption, and some mechanism to explicitly end a
transmission must be added, like sending the common Ethernet
delimiter (the 7-bytes preamble plus the 1 byte start of frame).
It is very simple to add such basic mechanism in a MAC layer.

Nevertheless, it is not a scalable approach: each frame
disruption wastes some bandwidth. The benefit for the high
priority flow has a negative impact on the low priority one. The
proposal is then to consider three priority levels: a very-high
priority, whose frames will preempt lower priority frames, and
the current high and low priority levels, without preemption.

Another solution is to use preemption, as described in
II-A. This solution requires a more significant change to the
hardware, and also the addition of some overhead for frame
reassembling (delimiter, fragment headers, etc.). This overhead
will certainly be really smaller by re-emitting the complete
frame, as done in D-SP. If more than one level of preemption
is allowed1, the solution would become quite complex. There
is not, up to our knowledge, a complete standard solution, so,
a deeper comparison can not be done.

But one may also want to avoid the blocking problem by
the use of more complex mechanism to ensure low latency, like
the integration of Time Triggered (TT) flow within AFDX-
like solution in the TTEthernet standard [6], [7]. In a time
triggered approach, each frame has some reserved time slots
(often assigned on a periodic way) on each link. If the global
schedule between links is correctly done, the waiting time in
the switch is null: for a frame entering a switch on a link l and
forwarding to a link l′, for each time slot on link l, it exists
a time slot on l′ such that the waiting time is reduced to the
switching delay. Such Time Triggered solution ensures very
low network latency.

Nevertheless, it requires a tight synchronisation between
the applications producing the data and the network. Other-
wise, if the data production is independent of the network
schedule, a data could be computed just after a dedicated
network time slot and would have to wait to the next slot.
In a periodic system, it means that the delay from application
to application can be larger than a period. This situation is
illustrated in figure 3: a data flow must be sent on one link,
and forwarded to a second one. Time slots are allocated such
that the waiting time in the switch is quite null. Consider the
data “A”, produced just before its time slot: its application to
application latency is somehow equal to the network latency,
reduced to twice the emission latency (frame size divided by
the bandwidth). But the data “B” is produced independently on
the network schedule. Then, it has to wait to the next time slot,

1That is to say, a frame of high priority may preempt a low priority frame,
and be itself preempted by a very high priority frame.

Fig. 3. TTEthernet scheduling example

and even if the network latency is quite small, the application
to application latency can be larger than a period.

On the opposite, with an asynchronous solution, the net-
work delay is bigger than in the time triggered solution, but
the data is put in sending queue as soon as it is produced. If
the network delay is smaller than the period, the asynchronous
solution gives a lower application to application delay.

Moreover, TTEthernet also suffers from the non-
preemptive aspect of Ethernet. When mixing rate-constrained
(RC) traffic (AFDX-like) and TT traffic, it may happen that
a RC frame is being sent when a TT slot begins. To face it,
three solutions are proposed in [7]: “preemption”, where the
low priority frame is discarded and relayed later (as in D-SP),
“timely block” where no low priority frame can be sent just
before a TT slot, and “shuffling” that just shifts the TT frame
just after the blocking one. The shuffling suffers from the same
drawback than non-preemptive SP: on each link, a frame can
encounter a blocking of a low priority frame. The two other
solutions lead to bandwidth waste, like the D-SP proposal.

The D-SP solution is quiet simple, and since it “wastes”
some bandwidth, it is not a scalable approach. But it could
offer a reasonable trade-off to integrate some flows enquiring
very stringent latencies on AFDX. Our bet is that there are
not so many such flows. Currently, such flows can not use the
AFDX backbone: they have to use a dedicated bus.

The trade-off is then between: using a separated bus,
switching to a very different solution, like TTEthernet, or
making minor modifications to AFDX. The pros and cons
of each solution can be listed, but when comparing the
different options for a given aircraft, several parameters must
be evaluated: costs, weight, consumption, maintenance, etc.

This paper is just about the evaluation of delays, making
only small update to the AFDX standard.

III. NETWORK CALCULUS

As [8], [9] describes, Network Calculus is a network
analysing method which aims to compute network memory
and delay bounds that characterize the worst-case scenario.

Notations: Let R denotes the set of real numbers, and
R≥0 the subset of non-negative real numbers. Let be [x]

+
=

max(0, x), and dxe the ceiling function. The non-decreasing
closure f↑ is defined as f↑(t) = sup0≤x≤t f(x), and [f]

+
↑ =

([f]
+

)↑.

A node S is modelled by an arrival/input A(t) and a
departure/output D(t) data flow, cumulative functions which
are the number of bits seen on the flow up to time t with

SA D

Fig. 4. Server with arrival and departure flows

the convention that A(0) = D(0) = 0 and that A,D are left
continuous2. Since the output can be done only after the input,
it is required that D ≤ A.

A
D

t

b(A,D, t)

d(A,D, t)

b(R,R′)

d(A,D)

Fig. 5. Arrival and departure cumulative curves

Concretely, the network boundaries that Network Calculus
computes are:

• Backlog - it represents the maximum number of
bits that are inside the node at the time t. When
considering the whole flow, the maximum on any
instant must be taken into account.

b(A,D, t) = {A(t)−D(t)} (1)
b(A,D) = sup

t≥0
{A(t)−D(t)} (2)

• Virtual Delay - it represents the maximal period of
time that the output data flow needs to reach the same
value of the input data flow.

d(A,D, t) = inf{τ ≥ 0|A(t) ≤ D(t+ τ)} (3)
d(A,D) = sup

t≥0
{d(A,D, t)} (4)

Before presenting the notions of contracts on flows and
servers, a specific operator must be presented, the (min,plus)
convolution.

• Convolution/deconvolution Let be f, g : R≥0 → R
two functions. Their convolution and deconvolution
are defined as

(f ∗ g)(t) = inf
0≤s≤t

{f(t− s) + g(s)}

(f � g)(t) = sup
0≤s
{f(t+ s)− g(s)}

Owing to the fact that the exact input/output data flows are
in general unknown at design time, or can have a stochastic
nature, the calculus of these bounds cannot be obtained.
Therefore, Network Calculus characterizes the evolution of
these flows using deterministic curves:

• Arrival curve α(t) - it characterizes the maximum
number of bits that arrive at the node during a period
of time ∆t. A flow A has an arrival curve α iff

∀t,∆t ≥ 0 : A(t+ ∆t)−A(t) ≤ α(∆t) (5)

2For a discussion on continuity in network calculus, see [10].

This relation is equivalent with A ≤ A ∗ α.

The contract on flow can be seen either from an engineering
point of view (bound on any interval) or from a mathematician
point of view (convolution-based relation). For the service
definition, the two points of view exist, but lead to slightly
different definition.

• Strict minimal service - it characterizes the minimum
number of bits that are served during a backlogged
period of time ∆t. A backlogged period is an interval
where D(t) < A(t), i.e. it exists some backlog in the
server. Then, a server offers a minimal strict service
of curve β iff for all input/output A,D and

∀t,∆t ≥ 0 : (∀x ∈ (t, t+ ∆t], D(x) < A(x)

=⇒ D(t+ ∆t)−D(t) ≥ β(∆t)) (6)

• Min-plus minimal service - it also characterizes the
service, but based on the convolution. A server offers
a min-plus minimal service of curve β iff for all
input/output A,D

D ≥ A ∗ β (7)

These two notions of service are of interests and are related:
for example, a server offering a minimal strict service β also
offers the minimal min-plus service β. A complete overview
can be found in [11].

The basic results of network calculus allows, considering
contracts, to compute bounds and to propagate delays. Let S
be a server offering a min-plus minimal service β, a min-plus
maximal service βM and a shaping curve σ. If the input flow
A has arrival curve α, then, the delay and memory can be
bounded, and an arrival curve α′ of the output flow D can be
computed:

d(R,R′) ≤ d(α, β) b(R,R′) ≤ b(α, β)

α′ = min(σ, (α ∗ βM)� β)

IV. MODELLING DISRUPTED STATIC PRIORITY

To evaluate the impact of a scheduling policy, simulation
is often used. Whereas simulation is a good strategy to
evaluate mean behaviour, it does not provide any guaranteed
information on the worst case, especially when this worst case
is a rare event [12]. In embedded critical systems, guaranteed
bounds have to be provided. The network calculus is one
method computing such bounds.

In this section, the D-SP policy is modelled within the
network calculus theory. The general case is considered in
section IV-A, for completeness, however, in the AFDX context,
a simpler and tighter analysis can be done, presented in
section IV-B.

A. General case

Theorem 1 (Residual services with D-SP): Let S be a
server which offers a strict minimal service β, shared by 2
flows (High Priority and Low Priority), with respective arrival

curves αH and αL, and scheduling flows with a D-SP policy,
then the corresponding residual services are:

βH = β − l2 (8)

βL = β − (lmax
L + l2)

⌈
αH
lmin
H

⌉
(9)

≥ β −
(
lmin
H + lmax

L + l2
lmin
H

)
αH (10)

Where l2 is the data size corresponding to the stopping time
of the Low priority packet processing, ı.e the transition; lmin

H
is the minimum packet size of the High Priority flow and lmax

L
is the maximum packet size of the Low Priority flow.

Sketch of Proof:: By looking at figure 2 we can state
that for the HP flow, the behaviour of the D-SP scheduling is
equivalent to that of a non pre-emptive scheduling where l2
would be the LP packet. Therefore, by using the expression
of the residual service for a non pre-emptive scheduling [11],
we already can affirm:

βH = [β − l2]+↑

Note that the size of the transition is subtracted from the
minimal service of the server and always ensuring that we take
non-negative and non-decreasing expressions.

With respect to the LP flow, the result is not so direct. First,
after a data flow analysis of the system, we can state that the
residual service for the LP flow has the following expression:

βL = [β − αH − αw]+↑

It seems a logical result, as by looking at figure 2 we can
see that it is like the LP flow is competing against two HP
flows; the actual HP packet and the disrupted LP packet (also
called waste packet).

The arrival curve of the HP flow is a given parameter but
the arrival curve of the waste flow is unknown. As we know
that each HP packet will generate as most one waste packet, we
finally can get the following expression, valid for any interval
time ∆:

αw(∆) ≤ (lmax
L + l2)

⌈
αH(∆)

lmin
H

⌉

So, lastly by substituting in the previous expression, the
residual service of the LP flow is obtained:

βL = β − (lmax
L + l2)

⌈
αH
lmin
H

⌉

See more details of the Proof in the Appendix A.

TABLE I. CHARACTERISTICS OF THE AFDX CASE-STUDY

Entities Number
End systems 104

Routers 8
Virtual Links 920

Latency constraints 5700

TABLE II. CHARACTERISTICS OF THE TRAFFIC FLOW

Minimum Average Maximum
VL destinations 1 6.2 83

BAG 2 ms 87.3 ms 128 ms
Maximal packet size 100 bytes 550.5 bytes 1500 bytes
Traversed Routers 1 1.67 4
Latency Constraints 2 ms 10.87 ms 30 ms

B. AFDX case

In the D-SP policy, each high priority frame can disrupt
a lower priority one. To evaluate the number of high priority
frames, one can divide the amount of data by the minimal
frame size, leading to the expression

⌈
αH

lmin
H

⌉
. Nevertheless, in

the AFDX context, a better evaluation of the frame number
can be done.

From the point of view of the Low Priority flow, it can be
assumed that the waste packet in the D-SP policy corresponds
also to a higher priority flow because it comes always attached
to the High Priority packet, preceding it. Moreover, it can be
considered that the waste packet is part of the HP packet. Thus,
in order to get the worst-case timing performance for the Low
Priority flow, we simply have to increase the maximum size of
the HP packet size by the maximum size of the waste packet.

Therefore, the current Lmax of the VLs for the D-SP High
Priority will be increased by the maximum length of the waste
packet, which is equal to the maximum size of the LP flow plus
the transition size. Consequently, Lmax ← Lmax+(Lmax

LP +l2).

V. EXPERIMENTS ON THE USE OF D-SP IN AVIONICS

A. Experimental setup

In order to analyse the performance of the D-SP schedul-
ing, a realistic industrial size configuration is used. Table I
summarizes the main characteristics of the AFDX network
under study. This configuration is distributed in the RTaW-
PEGASE tool as “AFDX Big” sample.

Each VL has on average 6 destination end systems, that
is why we have so many latency constraints. In the following
table II the characteristics of the traffic flows are detailed.

This AFDX configuration has four different priority flows
(this is not conform with the AFDX standard). Therefore, the
network is modified with respect to the standard so that it
contains the same amount of HP and LP Virtual Links. Priority
is uniformly randomly distributed.

B. RTaW-PEGASE: timing analysis for AFDX networks

RTaW-PEGASE [13] computes tight upper bounds on
communication delays and buffer utilization, and provides
optimization algorithms that ensure correctness and efficiency.
It relies on the Network Calculus formalism.

TABLE III. PRELIMINARY RESULTS

VHP HP LP
VLs 46 414 460

Total Delay D-SP (ms) 140.63 6582.43 13197.60
Total Delay NP-SP (ms) 170.21 5421.06 12060.22
Total throughput (Mb/s) 37.43 733.02 742.16

This tool will allow us to compute the delays produced
in the AFDX case-study for both packet schedulers, the D-SP
and the NP-SP.

C. Performance of D-SP scheduling: 10% of very high priority
flows

Our assumption is that it exists a small amount of flows
requiring very stringent latencies. Then, a (small) subset of
“very high priority” flows will be extracted from the HP class.

To evaluate the impact of the D-SP policy, the configuration
will be analyzed with two different policies: one with a
“classical” static priority analysis and another one with the
D-SP scheduling, where only the VHP flows can disrupt other
flows, and classical SP arbitration between HP and LP flows.

Notice that the “classical” SP analysis is not standard, since
it uses 3 levels of priority whereas the AFDX standard requires
only 2 [1]. Nevertheless, this is a quite small improvement.

The transition delay, l2, is of course implementation de-
pendent. In this experiment, it is set to 20 bytes, which is a
quite big value (the Ethernet CRC is 4 bytes large, the inter-
frame GAP is 12 bytes large and the preamble+start of frame
is 8 bytes large). In [4], N. Finn make the assumption “that
preempting a frame adds only an extra of 20 bytes; this is
the minimum practical penalty”. If 20 bytes are sufficient for
preemption, they are also sufficient to disruption.

We will take the configuration described in section V-A, but
a 10% of the High Priority flow will become the Very High
Priority (VHP) flow or the D-SP High Priority flow. Therefore,
the LP flow will cover the 50% of the total flow, the HP flow
the 40% and the VHP flow the 10%.

As stated in eq. 8 from theorem 1, by looking to the D-
SP High Priority flow, the behaviour of the D-SP scheduling
is equivalent to that of a non preemptive scheduling where l2
would be the lower priority packet. So, first the Lmax of both
the High and Low Priority VLs will be set to l2. Thus, we will
get the delay for the D-SP High Priority flow.

Then, by looking to the lower priority flows, for the specific
case of AFDX (cf. section IV-B) we can state that they are
competing against the D-SP High Priority flow and also against
the waste packet. So, in second place the current Lmax of the
D-SP High Priority VLs will be increased by the maximum
length of the waste packet, which is equal to the maximum
size of the LP or HP flow plus the transition length. Therefore,
Lmax ← Lmax +(Lmax

(LP/HP) + l2). Thus, we will get the delay
for the High and Low Priority flows.

Finally both solutions will be merged in order to get the
resulting delay for the D-SP packet scheduler.

By summing up, table III shows the preliminary results for
each priority class.

Virtual Links
0

0,5

1

1,5

2

D
e
la

y
 (

m
s)

Delay D-SP
Delay NP-SP

Fig. 6. Delay comparison. D-SP vs SP-NP for VHP flows

TABLE IV. GAIN PRODUCED ON THE DELAY BY D-SP OVER NP-SP
FOR THE HIGHEST PRIORITY FLOW

Gain Percentage
Minimum 11.3%
Average 17.6%

Maximum 33%

First, have a look on the impact of the D-SP vs. NP-SP for
the very high priority flows (VHP).

Then, figure 6 shows the comparison of delays between the
Very High Priority flow with the D-SP scheduling and the same
flows with NP-SP scheduling. Each x value is a VL identifier
and the two curves are the values of the delay bounds. The
VLs have been sorted by NP-SP delay: this is why the NP-SP
curve is more regular than the D-SP one.

As expected, the VHP flow with the D-SP scheduling
presents lower delays than with the NP-SP. This obviously
lies in the fact that in the D-SP scheduling a VHP packet is
always processed as soon as it arrives, except if another VHP
packet is being processed at that moment. And on the other
hand, in the NP-SP scheduling, such packet must wait its turn
if a lower priority packet is being processed.

We can see that the delays in the case of the D-SP
scheduling are always below 1.6 ms!

The gain of D-SP is to avoid the blocking factor of non-
preemption. This gain increases linearly with the number of
crossed switches. To illustrate it, the figure 6 is redrawn,
sorting VLs by the number of crossed switches, and also
drawing the number of crossed switches (cf. figure 7).

It must be noticed that the worst bound for flows crossing
3 or 4 switches with the D-SP policy is lower than most of
the bounds for flows crossing 2 switches with classical NP-SP
policy. Moreover, the delays for flows crossing 3 or 4 switches
are comparable with the ones crossing only two switches. The
D-SP policy somehow allows to extend a flow path without
increasing the delays.

Table IV shows the positive gain that experiment the
latencies if we use the D-SP scheduling instead of the NP-
SP scheduling.

Second, have a look on the impact of D-SP vs. NP-SP for
the high priority flows (HP).

The figure 8 shows the comparison of delays for the High

Virtual Links
0

1

2

3

4

5
D

e
la

y
 (

m
s)

Delay D-SP
Delay NP-SP
Traversed Routers

Fig. 7. Delay comparison. D-SP vs SP-NP for VHP flows augmented with
path length

Virtual Links
0

2

4

6

8

10

12

D
e
la

y
 (

m
s)

Delay D-SP
Delay NP-SP

Fig. 8. Delay comparison. D-SP vs SP-NP for HP flows

Priority flow between the D-SP scheduling and the NP-SP
scheduling.

In this case, the NP-SP scheduling clearly offers a better
timing performance than the D-SP scheduling. Undoubtedly,
in the cases where the HP packets of the D-SP have been
disrupted, the delays must be way larger. We can see that by
using the D-SP scheduling increases the bound on delays in a
reasonable way, even if it can double for some flows.

Table V shows that the use of the D-SP scheduling instead
of the NP-SP scheduling increases the bound of delay by 20%
on average.

As we can see there are some flows where the loss is
very important (up to 112.1%), but on average the loss is
somehow equivalent to the average gain produced in the VHP
flow detailed in table IV. However, this loss affects to more
data flows than the gain produced in the VHP flow.

Finally, figure 9 shows the comparison of delays between
the Low Priority flow of the D-SP scheduling and the NP-SP.

As expected, in this case the NP-SP also presents better
delay results than the D-SP scheduling. However, the differ-

TABLE V. LOSS PRODUCED ON THE DELAY BY D-SP OVER NP-SP
FOR THE HP FLOW

Loss Percentage
Minimum 0%
Average 19.4%

Maximum 112.1%

Virtual Links
0

2

4

6

8

10

12

14

16

D
e
la

y
 (

m
s)

Delay D-SP
Delay NP-SP

Fig. 9. Delay comparison. D-SP vs SP-NP for LP flows

TABLE VI. LOSS ON THE DELAY PRODUCED BY D-SP OVER NP-SP
FOR THE HP FLOW

Loss Percentage
Minimum 0%
Average 9.3%

Maximum 73.9%

ence is even smaller this time. We can check the result of the
negative losses in the following table.

In order to get an idea of the global impact produced by
using the D-SP scheduling instead of using the NP-SP we
compute the total delay for both scheduling systems.

The sum of all the delays in every VL for the D-SP
turns out to be a 19920.66 ms, while for the NP-SP it is
17651.49 ms. Thus, the timing performance for the D-SP
experiments a global loss of 12.9% over the NP-SP.

D. Performance of D-SP scheduling: changing very high pri-
ority flow proportion

The previous section has done a precise analysis of D-SP
impact when 10% of the High Priority (HP) flow is scheduled
in the D-SP Very High Priority class.

This section analyzes more coarsely this impact with
different proportions of VHP class. The 5%, 10%, 15%, 25%,
50%, 75% and 100% proportions have been tested. Of course,
the D-SP scheduling is designed to be used only for a small
proportion of the total amount of flow: high proportions have
been plotted only for completeness.

The effect of both the average gain and the average delay
(printed in milliseconds) for every class priority is studied.

In figure 10 we can see that, as expected, for the VHP
flow the more it is increased the proportion of D-SP HP flow
over the HP flow, the timing performance gets worse, i.e. the
average gain decreases almost linearly and the average delay
increases.

Regarding the HP flow, we can see in figure 11 that again
the more it is increased the proportion of VHP flow, the poorer
the timing performance. As the average loss increases and so it
does the delay. Obviously, by increasing the number of VHP
flow, the HP has more competence against which it cannot
really compete so its timing performance decreases.

5 10 15 25 50 75 100

Proportion of VHP flow over HP flow (%)

0

0,5

1

1,5

2

Average Gain
Average Delay (ms)

Fig. 10. Effect in the average gain and delay for the VHP flow

5 10 15 25 50 75 100

Proportion of VHP flow over HP flow (%)

0

1

2

3

4

5

6

Average Loss
Average Delay (ms)

Fig. 11. Effect in the average gain and delay for the HP flow

Note that when the proportion of the VHP flow over the
HP flow is 100%, actually the HP flow disappears that is why
its average loss and average delay goes down to zero.

And finally, the same analysis is represented for the LP
flow in figure 12. Once again, as the proportion of VHP flow
increases the timing performance for the LP flow decreases.

VI. CONCLUSIONS AND FUTURE WORK

The Disrupted Static Priority scheduling aims to improve
the latency guarantees of any AFDX network, which currently
uses the Non Pre-emptive Static Priority scheduling. Also, it is
intended to keep the same low level of implementation com-
plexity unlike the Pre-emptive Static Priority, which requires
the splitting of a packet.

By means of an experimental realistic study-case using
RTaW-PEGASE [13] it has been proven that the D-SP packet

5 10 15 25 50 75 100

Proportion of VHP flow over HP flow (%)

0

2

4

6

8

10

12

14

Average Loss
Average Delay (ms)

Fig. 12. Effect in the average gain and delay for the LP flow

scheduler provides way better performance in the latencies of
the highest priority flow with respect to the NP-SP scheduling.

The gain is about 17% when VHP represents only 10% of
the “high priority” flows, that is to say, 5% of the total number
of flows. This gain is quite good, but especially, it allows to
extend the path length, a hard constraint in system design when
placing applications on computers.

However, this improvement also implies an increase in the
delays for the lower priorities. Of course, favouring some flow,
i.e. decreasing their latency, implies to hinder the others ones.
In D-SP case, this is worth since some bandwidth is wasted.

So, finally the D-SP scheduling is a compromise between
complying with lower latency constraints with some flows and
keeping implementation simple. Our experiment shows that, as
expected, the solution does not scale, but when considering that
only a limited subset of flows (10% of the high-priority subset)
requires very stringent latencies, a realistic AFDX network can
offer very small latencies (from 0.5ms to 1.6ms) even for flows
crossing 3 or 4 switches. Moreover, the impact on other flows
is quite reasonable (20% for the high-priority flows and 9%
for the low priority flows).

Adding complex mechanisms, either in hardware or soft-
ware, always has a cost: in development, in power consump-
tion, but also on efforts to ensure the correctness of the
solution, for critical system requiring such certification.

This paper has presented one of the simplest solution to
avoid frame blocking, and shown that it may be sufficient in
some cases.

REFERENCES

[1] AEEC, “Arinc 664 p7-1: Aircraft data network, part 7, avionics full-
duplex switched ethernet network,” Airlines Electronic Engineering
Committee, Tech. Rep., september 2009.

[2] B. Matthews, H. Frazier, Y. Kim, and M. Teener, “Packet preemption
for low latency,” Oct. 27 2011, uS Patent App. 13/174,518. [Online].
Available: http://www.google.com/patents/US20110261814

[3] I. Computer Society, “Standard for local and metropolitan area
networks-media access control (MAC) bridges and virtual bridged local
area networks - amendment: Frame preemption,” IEEE, Tech. Rep.
802.1Qbu, Draft 1.0, 2014.

[4] N. Finn, “Preemptive transmission advantages,”
http://www.ieee802.org/1/files/public/docs2012/new-avb-nfinn-
preempt-advantage-0112-v02.pdf, 2012.

[5] W.-K. Jia, G.-H. Liu, and Y.-C. Chen, “Performance evaluation of
ieee 802.1qbu: Experimental and simulation results,” in 38th IEEE
Conference on Local Computer Networks (LCN 2013), Oct 2013, pp.
659–662.

[6] SAE, “Time-triggered ethernet,” SAE, Tech. Rep. AS6802, 2011.
[7] W. Steiner, G. Bauer, B. Hall, M. Paulitsch, and S. Varadarajan,

“Ttethernet dataflow concept,” in Proc. of Eighth IEEE International
Symposium on Network Computing and Applications (NCA 2009), july
2009, pp. 319 –322.

[8] J.-Y. Le Boudec and P. Thiran, Network Calculus, ser. LNCS. Springer
Verlag, 2001, vol. 2050, http://lrcwww.epfl.ch/PS files/NetCal.htm.

[9] C.-S. Chang, Performance Guarantees in communication networks, ser.
Telecommunication Networks and Computer Systems. Springer, 2000.

[10] M. Boyer, G. Dufour, and L. Santinelli, “Continuity for network
calculus.” in Proc of the 21th International Conference on Real-Time
and Network Systems (RTNS 2013). Sophia Antipolis, France: ACM,
October 16-18 2013, pp. 235–244.

S, β
DH , α

′
H

DL, α
′
L

DW , αW

AH , αH
AL, αL

Fig. 13. Data flow through the server S

[11] A. Bouillard, L. Jouhet, and E. Thierry, “Comparison of different
classes of service curves in network calculus,” in Proc. of the 10th
International Workshop on Discrete Event Systems (WODES 2010),
Technische Universität Berlin, August 30 - September 1 2010.

[12] H. Charara, J.-L. Scharbarg, and C. Fraboul, “Analysing end-to-end
delays on an AFDX network by simulation,” in Communication Systems
and Networks (IASTED-CSN), Palma de Mallorca, Spain, 28/08/2006-
30/08/2006, ser. ISBN 0-88986-606-6. http://www.ieee.org/: IEEE,
2006, pp. 171–176.

[13] M. Boyer, J. Migge, and M. Fumey, “PEGASE, a robust and efficient
tool for worst case network traversal time,” in Proc. of the SAE 2011
AeroTech Congress & Exhibition. Toulouse, France: SAE International,
2011.

APPENDIX

On this section the full proof of the theorem 1 is explained.

First, let’s consider the following system represented in
figure 6. We have two input flows, the High Priority flow and
the Low Priority flow, passing through a server S with a service
curve β. Then, three output flows depart the server, the High
Priority and Low Priority flows and the waste flow.

Regarding the High Priority output flow, it can be directly
bounded. By looking at figure 2 we can state that for the HP
flow, the behaviour of the D-SP scheduling is equivalent to
that of a non pre-emptive scheduling where l2 would be the LP
packet size. Therefore, by using the expression of the residual
service for a non pre-emptive scheduling [11], we can affirm:

βH = [β − l2]+↑ (11)

With respect to the LP flow, the result is not a direct
application of existing results. A data flow approach will be
used in order to reach the solution.

First, as illustrated in figure 13, the output of the server
can be modeled as the aggregation of three kinds of flows:
the high priority flow, DH , the low priority flow DL that is
the subpart of the low priority flow correctly received, and
Dw, the “wasted” part, that is the subpart of the low priority
flow canceled plus the overhead of preemption (denoted w in
figure 2).

The critical part of the proof is the evaluation of the wasted
part. It is given as a separate lemma.

Lemma 1 (Arrival curve of waste flow): Let S be a server
which offers a strict minimal service β, shared by 2 flows
(High Priority and Low Priority), with respective arrival curves
αH and αL, and scheduling flows with a D-SP policy, l2
is the data size corresponding to the stopping time of the
Low priority packet processing, ı.e the transition; lmin

H is the
minimum packet size of the High Priority flow and lmax

L is the
maximum packet size of the Low Priority flow.

Then, an arrival curve of the waste flow is given by

αw(∆) = (lmax
L + l2)

⌈
αH(∆)

lmin
H

+ 1

⌉
(12)

H1

L

L

w
1

t
1 t1+Δ1

H1 L

H2

H2

t
2 t

2
+Δ

2

w
2

Fig. 14. First zoom on the D-SP scheduling policy

H

L

L H L

w

t t+Δ
1 t+Δ2

Fig. 15. Second zoom on the D-SP scheduling policy

Proof: The aim if to compute a bound on expression
DH(t+ ∆)−DH(t) for any non negative t and ∆.

Figure 14 and figure 15 show different possibilities regard-
ing the position and duration of the interval ∆ in the D-SP
scheduling policy.

First, assume that there is no HP packet (i.e. not any bit of
any HP packet) in interval [t, t+ ∆], then: it can nevertheless
have one “waste” packet (cf. interval [t1, t1+∆1], in figure 14).

When this occurs, we can assure that:

Dw(t+ ∆)−Dw(t) ≤ lmax
w ≤ lmax

L + l2 (13)

Second, consider that there is at least one HP packet in
interval [t, t+∆]. Let n be the number of first bit of HP packet
in the interval. Then, each first bit can interrupt a low priority
packet and generate lmax

w bits of waste data flow. Moreover, at
the end of the interval, it can exists a low priority packet that
will be interrupted after t+ ∆.

Then, n is the number of starting packets from the AH

flow in interval [t, t+ ∆],

Dw(t+ ∆)−Dw(t) ≤ (n+ 1)lmax
w (14)

That is because each arriving HP packet generates as most
one waste packet, plus one more after t+ ∆.

Then, from the definition of the arrival curve (eq. 5), as it
upper bounds the amount of data sent on any interval of width
∆, we can get a maximum number of packets transmitted
during ∆:

nb.packetsmax(∆) =

⌈
α(∆)

lmin

⌉
(15)

where lmin is the minimum packet size, which depends on the
network characteristics.

To conclude:

Dw(t+ ∆)−Dw(t) ≤ (lmax
L + l2)

⌈
αH(∆)

lmin
H

+ 1

⌉
(16)

With this lemma, the proof of theorem 1 can be given. It
is done in a quite classical way.

Proof of theorem 1:

Let be t,∆ ≥ 0 such that (t, t + ∆] is a backlog period.
From the definition of the strict service for our particular
system:

DH(t+ ∆) +DL(t+ ∆) +Dw(t+ ∆)

−DH(t)−DL(t)−Dw(t) ≥ β(∆) (17)

Let be s the start of the backlog period of the high priority
flow, as represented in figure 16, formally defined as

s = sup {x ≤ t AH(x) = DH(x)} (18)

Being both AH and DH left-continuous functions, then
AH(s) = DH(s). Moreover, we know that AH ≥ DH , then

DL(s+ ∆)−DL(s) ≥ β(∆)−AH(s+ ∆) +AH(s)

−Dw(s+ ∆) +Dw(s) (19)

By using the definition of an arrival curve (eq. 5) for
the particular case of the AH flow and for the interval ∆:
AH(s + ∆) − AH(s) ≤ αH(∆). And by substituting in the
main equation:

DL(s+ ∆)−DL(s) ≥ β(∆)− αH(∆)

−Dw(s+ ∆) +Dw(s) (20)

Now, using lemma 1, Dw(t+ ∆)−Dw(t) ≤ αw(∆)

DL(s+ ∆)−DL(s)

≥ β(∆)− αAH
(∆)− αw(∆)

≥ β(∆)− αAH
(∆)− (lmax

L + l2)

⌈
αH(∆)

lmin
H

+ 1

⌉

A
H

D
H

s t t+Δ

Fig. 16. Backlog period representation

