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Abstract—Crisis management challenges decision support sys-
tems designers. One problem in the decision marking is to develop
systems able to help the coordination of the different involved
teams. Another challenge is to make the system work with a
degraded communication infrastructure. Each workstation or
embedded application must be able to help to make a decision
with a degraded network by taking into account the potential
decisions made by other agents. We propose in this article a multi-
agent model, based on an ant colony optimization, and designed
to manage the complexity in the deployment of resources to solve
a crisis. This model is able to manage data uncertainty, and its
global goal is to optimize, in a stable way, fitness functions, like
saving lives, defined by multiple users. Moreover, thanks to a
reflexive process, the model is able to manage the effects into the
environment of its decisions, in order to take more appropriate
decisions. Thanks to our transactional model, the system is also
able to take into account a large data amount without exploring
all potential solutions. The graphical interface should be able to
make the user defining rules database. Then, if the nature of the
crisis is deeply unchanged, users should be able to change rules’
databases.

I. INTRODUCTION

Today, crisis management is an important domain
throughout the world. It can concern earthquakes, industrial
accidents, nuclear crises, etc [1]. Moreover, crises can
appear as an imbrication of several emergencies, which
can produce more complex crises. One isssue is to manage
and minimize the effects of this complexity. Our work is
centered on the optimization of tasks planning and resources
deployment, through an embedded application distributed into
an asynchronous network.

This study refers to the project AidCrisis, co-financed by
the Champagne Ardenne region and FEDER. The project aims
to produce solutions for the decision making, in order to
prevent mainly from nuclear, radiological, bacteriologic and
chemical risks. Three kinds of aspects have been discrimi-
nated [2]. The first one consists of preparing or anticipat-
ing potential crises, through classification of circumstances,
identification of critical sites, training, scripting events [3],
simulation, etc. The second aspect consists of treating an
effective crisis, by identifying it, deploying resources and man-
aging the logistic, dealing with localized events, and exposing
results. The third aspect consists of analyzing the crisis after
its progression, into order to deduce lessons.

During the treatment step, several groups, like first aid
agents, police, Doctors, government delegates must collaborate
into the working site. Each group has to follow its own

organization, and its own goals, according to a categorized
event. Three kinds of groups have been segmented [1], which
are the management centers, the hospital centers, and the
agents working on the accident area. We have noticed three
kinds of problems which can obstruct the coordination of the
different teams:

1) due to a high quantity of information or queries,
decision centers or chiefs can be exceeded. Since
teams have to wait for orders and can’t always take
initiatives, this can have as a consequence dramatic
deadlocks. [1] has proposed an adaptive supervision
model which enables the decision centers to detect
and prevent anomalies into the rescue process.

2) during a crisis, a high number of victims or po-
tential victims can be concerned. Moreover, several
events can be imbricated, and several future events
can appear. Decision center has to manage uncertain
information, and make a decision according to an
environment which can be very complex. [4] has
proposed a model that organizes and summarizes
experiences gained by every agent involved by the
crisis management, this in order to screen these
experiences at the right time.

3) the network used for the communication between
each agent can be degraded, because of an overloaded
network, or because of a material degradation of the
network due to the crisis. In this case, every group
involved can be isolated. Without communication, no
decision can be taken, and no action can be deployed.

Considering this context, we work for the development of an
embedded application able to manage three aspects. Firstly,
the application must perform into several workstations/smart-
phones, through a distributed and asynchronous network. Each
workstation must be autonomous if the network is degraded,
and must manage the potential decision of every non-connected
workstation. As a consequence, every developed algorithm
must work in the perspective of these constraints, in order
to prevent the problem number 3. Secondly, the application
must optimize the assignment of tasks and the deployment of
human and material resources by regarding current events and
potential future events, described as uncertain data. This aims
to prevent the problem number 2. Thirdly, the application must
produce an avatar for each final user, so that it can constitute a
profile that describes its practices. By an emerging phenomena,
this takes into account the hierarchy decisions, even if the
network is degraded, or even if the decision center is exceeded.
This aims to prevent the problems number 1 and 3.



We present into this article a model that covers the second
aspect, centered around optimization of the tasks choice (i.e.
the constitution of a strategy to apply considering a crisis)
and the deployment optimization of the human and material
resources. The choice of the tasks, which are defined by
the user, depends on their efficiency, and the choice of the
resources depends on their availability in time and space. In
the section II, we relate the different algorithms of optimization
and we justify our choice. According to a particular data struc-
ture articulating events, goals, tasks, and resources, we propose
an adaptation of the chosen algorithm into the section III.
This model is adapted for large scale applications, manages
uncertainty, and by a reflexive process, adapts its decision
process according to the effect of its decisions over the time.
We end with a conclusion and perspectives into the section IV.

II. RELATED STUDIES

A. Critical of statistical approaches

Statistical approaches have this default that although their
predictions seem in average good, they can seriously induce
the human and computer deliberation to severe faults. For
example, Parunak et al. [5] have demonstrated how a colony
of agents, typically a prey/predator ecosystem, can prove
wrong a statistical approach. Others objections have been
done about more complex statistical approaches. For example,
the modern portfolio theory [6], which is a well known
theory of finance, was criticized for example by [7], [8]: the
theory would be elegant but would consider an environment
which does not correspond exactly to the reality, in particular
the distribution of observed random variables. [8] proposes
to prefer more stable laws like the Pareto law to deal with
random variables which does not follow a normal distribution.

The interpretation of a model is often developed according
to the model itself, and the only way to develop the criticism
and to avoid a kind of fatalism would be to construct
new models. By opposition or competition with statistical
based models, our way is to develop a simulation based
model designed for coordination and affectation of human
and material resources. Simulation based model have the
advantage to make appear empirically unlikely phenomena,
where statistical approaches could consider some potentially
important events as insignificant. However, both simulation
and statistical based model could accumulate approximations,
which should make the system producing incoherent data,
then incoherent decisions. To avoid, or at least to limit this
phenomena, we suppose that the introduction of the data
uncertainty should force the system to have a stable reaction.
Then, data should have superposed states, and used fitness
functions should return several evaluations, each of them
having a probability of apparition. To face up to unstable
events which are a signature of crises and social interactions,
and to avoid decisions which do not produce dramatic issues
as seen in previous examples, we based the combination of
our superposed evaluations on the Pareto law.

Simulation, optimizations, and finally decision making are
done according to several goals which can be independent or
correlated. We will describe now the related approaches that
deal with multi-goal optimization.

B. Combinatorial optimization

1) General approaches: A problem of combinatorial op-
timization can be defined as follow: considering a set of
combinations S and a fitness function f : S → IR, the
combinatorial optimization consists of find the combination
s ∈ S minimizing f such as: f(s) ≤ f(si),∀si ∈ S.

According the related works exposed in [9], two main
types of optimization algorithms exists: complete approaches
and heuristic approaches.

Complete approaches have to explore every combination
contained into S. Branch and bound solutions have to explore
all branches of a tree, to determine the best branch, then the
best solution. Whereas dynamic programming solutions is
to begin to resolve the shortest subproblems, and then to go
toward problems which are increasingly complex. Complete
approaches do not permit to resolve problems whose
complexity class is NP. They consume too much resources
because of the exploration of the entire combinations.

Heuristic approaches can be decomposed into two kinds
of approaches: local search approaches and constructive ap-
proaches.

Local search approaches consist of working with current
solutions, which can be chosen randomly. For a current so-
lution, the method has to parse neighboring solutions and
select the best one. The method is reiterated until no better
solution was found. Then, the best returned solution is selected
according to the comparison of all fixed current solutions. The
main difficulty of this approach is to avoid local optimum. To
do that, the Taboue algorithm [10] accepts temporarily worse
solutions in its neighboring, in order to have a more deeper
exploration. Simulated annealing method [11] was inspired
from annealing in metallurgy. It is a statistical method which
consist of virtually control the temperature of the material,
i.e. the set of solutions. If the temperature is hot (or cold),
particles are free (or not) and then solutions are free to move
from one to another (or not). Then, the method consist of
progressively decreasing the temperature, to make the system
converging to the better optimums. Inspired from observations
of the nature, genetic approaches [12] consist of making in
competition several individuals of a population. Each individ-
ual is determined by a genetic code, itself initially determined
randomly. Then according to a selection corresponding to
individuals evaluations, these last are authorized to reproduce
themselves. Moreover, mutations are possible during the repro-
duction process. Several strategies have been developed in the
genetic algorithms domain, to avoid local optimum, but global
optimum cannot be insured. Particle swarm optimization [13]
is also an evolutionary approach, but based on a stochastic
approach. The method is inspired from the observation of the
movement of organisms in a bird flock or fish school. Particles
adapt their speed and their directions according to the current
optimal solutions, to discover new potential solutions.

Constructive approaches start with empty solutions, and
construct them incrementally. Greedy algorithms aims to
construct incrementally solutions until obtaining a complete
solution. The choice of each element can be made randomly,
or according to a heuristic, called gradient criterion. The



performance of this approach depends highly on the gradient
criterion. So it is not adapted for all applications. Estimation
of distribution algorithms [14] are evolutionary models based
on the progressive construction of probabilities defining the
quality of the choice of some elements. If the model evolves
initially randomly, it gradually construct solutions whose
elements have produced good solutions on the past. Initially
proposed in [15], optimizations by ant colony consist of
taking advantage in the use of the potential of the intelligence
emerging from a collective work of an ant colony. The ant
colony optimization (ACO) consist for ants in founding the
shortest path between the anthill and the nearest located
food. Ant colony algorithms are well adapted for problems
whose complexity class is NP. We will see how this algorithm
is mathematically formalized for multi-goal optimization
problems.

In most time, our application should coordinate local
resources to manage a crisis. Moreover, every combination
of task and every strategy do not have to use all human and
material resources. But sometimes, in a severe crisis context,
the system could take into account a large set of resources.
For example, in a forest fire context, the system could have to
call firemen which come from other regions, and sometimes
from other countries. Taking account of every resource of every
region could become a very complex problem. But the ant
colony algorithm let show us that ants do not really explore
all their environment and become near from their anthill.
Moreover it is possible to limit the exploration of the ants
according to the best current obtained path. For this reason,
ant colony algorithm appears for us well adapted. Moreover,
since this algorithm is also well adapted for routing the Internet
traffic [16], it is also adapted for an embedded application
encapsulated into a distributed cloud, as we are trying to
develop. Then, even if a workstation does not have the entire
data of the entire regions, the ants can move from a workstation
to another to look for their goal. And because, they don’t have
to explore all their environment, the system can resolve a goal
without making all workstations contributing to the problem.

III. THE PROPOSED APPROACH

A. Overview of our approach

1) Goals: Thanks to a rules database, the system has
to generate a plan of actions and a plan of deployment of
the different human and material resources to manage the
crisis ongoing, its uncertainty, and its dynamical reaction to
human intervention. Another challenge is to develop an ACO
algorithm that do not explore all the space of solutions, when
it is not necessary.

2) Data structure: Structurally, the input data is organized
as follow. From a graphical interface, and before a crisis
appears, different actors into the management center can enter
into the system different kind of possible events. These events
correspond to possible real events like fire, health problem,
aggression, etc. Then, each of these events/problems can be
specialized into sub-events. For example, fire can be specified
as a house fire, a public building fire or a nuclear power station
fire. Moreover, a set of events can be a superposed state. For
example, during a crisis, if a user has entered that a fire has

appeared, and if he has not got time to specify if the fire
concerns a public building or a house, than two events are in a
superposed state with their respective probability of apparition.
Each event parameter can be fuzzy. For example, the fire
can be described by a parameter named ’importance’, and
this importance can be ’low’, ’normal’, or ’high’. Moreover,
each event can trigger other events. For example, a fire into
nuclear power station can trigger several events like ’irradiation
events’. More generally, trigger functions are available for the
user to trigger an event according to the evolution of the
parameters of another event. For each event, the system has
to solve a goal. A goal can have several fitness functions to
minimize. To reach this goal, the user has to enter a graph of
possible tasks to apply. For each task, a list of resources can be
used. Moreover, each task can be localized or not. If it is the
case, the system generates tasks of transportation of resources.
Fitness functions are dependent from event parameters. The
application of the main tasks alter the event parameters. Then,
this have directly an effect to the results returned by fitness
functions.

3) Algorithm: The first step of our method is to decompose
according to a discrete grid, events which have superposed
time position and space position, into superposed events
which have unique positions.

Once we get events with unique space and time positions,
the system deduces the list of goals it have to solve. For each
goal, the system will have to plan the allocation of resources
according to time and space, and without conflict with other
goals. One solution to solve these goals is to consider them
as a global multi-goal optimization problem. However, this
solution will force the system to process a global optimization
centralized into one server, and making the entire network
dependent from this server. We propose instead of this solution
a transactional model. Our solution consists of optimizing each
individual goal as bubble of realities. Then, if two bubbles
have conflicts of resources, a parent bubble will be generated
to solve these conflicts by generating sets of constraints
adapted for each possible alternative solution. Thanks to this
transactional model, resources data which can be located
only into some servers, workstations, or smart-phones, are
explored during the goal optimization step only when no close
free resource have been detected. As for the transactional
memory programming [17], this method should give in most
cases, better performances. When all bubbles have been
optimized, and when all bubbles have any conflict with any
bubbles, than the system goes to the dynamical projection step.

When a task is applied into the environment, the state
of the system is likely of changing. With our data structure,
the application of a task, or the application of another task
will change the evolution of the events, and those of the
triggered events. So deliberation of the system can alter the
variables responsible of this deliberation, and then alter this
deliberation. Since we do not consider global exploration (see
previous paragraph), we have developed the next strategy.
When all bubbles have been optimized, the system project
for each bubble their related decisions over time, i.e. for each
bubble, the system deduces new events from the application
of tasks into the environment. These deduced events are



merged with equivalent events which have been deduced in
the previous loops. The fusion process consists of considering
a same deduced event as an event which has superposed
states. From this set of deduced events, is deduced a new
set of bubbles, with new bubbles and/or bubbles that have
changed. If changes have been detected, the system goes back
to the bubble optimization step. Else, it proposes its plan of
resources deployment and its plan of tasks to apply.

The figure 1 summarizes the working of our system.
The sub-section III-B describes the data structure of our
system. The sub-section III-C describes an ant colony opti-
mization algorithm for multi-goal optimization problem. The
sub-section III-D describes how we adapted this algorithm into
the context of our application.

Select goal i to solve it

Decompose according time and space into m alternatives

transform alternative ij to a bubbleOptimize alternative i0 to a buble optimize alternative im to buble

wait for events

deduce new goals

new events appeared

Select goal n to solve itSelect goal 0 to solve it

Optimize buble iOptimize buble 0 Optimize buble n

Select set of bubbles not optimized or bubles which have changed

Project decision over time

deduce new needs or update already present deduced needs (use of uncertainty)

deduce new bubles or update already present deduced bubles

Determine conflicts between bubbles

Determine new set of bubles and/or update constraints 

Is there new bubbles not optimized ?

yes

no

Select buble iSelect buble 0 Select buble n

Transactional model

Determine new set of bubles

Is there new changes ?

yes

no

Screen human and material ressource planning

Dynamical propection

Fig. 1. Overview of our system (diagram of activities).

B. Data structure

The data structure of our model is composed of events,
goals and tasks.

1) Events: When events are triggered, their occurrences
define each property content and each probability related to
each superposed state. However, an event can see some of its
properties, like its position, predefined. The occurrence of an
event E is noticed OE .

There are different types of events E:

• atomic events AE: they are not reducible. Moreover,
the occurrence of these events can have a location
which is a superposed state:
|L(OAE)〉 =

∑||L(OAE)〉|
i=1 λOAE ,i|L(OAE)i〉, where

|λOAE ,i|2 is the probability that the location
|L(OAE)i〉 is valid.

• list of events that must occurs at the same time which
is a set SE of events, whatever their types.

• superposed events are events, whatever their types,
which are exclusives. They are defined as follow
|SIE〉 = λSIE,φ|φ〉 +

∑||SIE〉|
i=1 λSIE,i|Eventi〉,

|Eventi〉 are the alternative states of the super im-
posed event |SIE〉, and |λSIE,i|2 are their probability
of apparition, with
|λSIE,φ|2 +

∑||SIE〉|
i=1 |λSIE,i|2 = 1 and |λSIE,φ| the

probability that the event |SIE〉 is not an event/is
nothing. The occurence of superposed events, is a
superposed occurences of events.

Events are triggered after relative time T (E), with respect to
time of apparition of the parent event. The absolute time of an
event is defined as follow: TA(E) = T (E)+T (Parent(E)),
where Parent(E) = ∅ if the current event has no parent, and
where T (∅) = 0. The time T (E) can be a superposed state
|T (E)〉.

In addition to location and time properties, atomic events
have customized properties P (AE) defined by the user. Each
property |p(OAE , t)j〉 ∈ P (OAE) can be a superposed state.

The function EEP (p(OE)j , t) makes evolve event param-
eter p(OE)j at relative time t. This function is defined by the
user. It can be defined for example as an affine function, but it
can also be defined by a simulation based model. For example,
it is possible to add for a radioactive cloud, a simulation model
that make evolving parameters according to time.

The function DE(E, t) deduces new events from event E
at time t. This deduction is dependant from the evolution of
the event parameters. This function is defined by the user.

The function |CE(E, t)〉 tells if the event is closed at
time t. This function depends from the evolution of the event
parameters.

2) Decomposition of atomic events: Atomic events are
decomposed into superposed events if they have superposed
location in the space |L(OAE)〉, and/or if they have superposed
time of triggering |T (E)〉. The decomposition is done through
the algorithm III-B2.

3) Goals and fitness functions: They are defined by
users according to predefined fitness functions. For each
atomic event AE, a global fitness function to minimize
FAE(strategy) is defined. This last evolves according to
events parameters which are altered after applying a plan of
deployment of resources. It can be composed of several local
fitness functions to minimize:
FAE(x) = (fAE(x)1, fAE(x)2, . . . , fAE(x)m) m ≥ 1

with F = (f1 : D → R, f2 : D → R, . . . , fm : D → R)
(1)



Algorithm 1 Decomposition of occurrences of events accord-
ing to their superposed states of position and time.
LSTOE is the list of current occurrences of events.
for all OE ∈ LSTOE do

if OE is an occurrence of atomic event then
if |L(OE)| > 1 or |T (OE)| > 1 then

(if the event have several positions in the space or
over the time)
|OSIE〉 ← new superposed event with |L(OE)| ×
|T (OE)| superposed states.
for i = 1 to i = |L(OE)| do

for j = 1 to j = |T (OE)| do
|OSIEi+j×|L(OE)|〉 ← OE where:

L(|OSIEi+j×|L(OE)|〉) = |L(OE)i〉
T (|OSIEi+j×|L(OE)|〉) = |T (OE)j〉
λOSIE ,i+j×|L(OE)| ← λL(OE),i × λT (OE),j

end for
end for
Add |OSIE〉 to LSTOE .
Remove OE from LSTOE .

end if
end if

end for

where m if the number of functions to optimize, and x being
the vector of decision variables. In our case, x corresponds to
the resulting event parameters after the application of a strategy
of ressources deployment.

Each of these fitness functions is classified according to
an integer greater or equal than zero. The class i is optimized
independently and primarily versus class i+1, and the class i+
1 is optimized only when the class i was optimized, taking only
remaining resources. This classification enables us to say that
a life-threatening like heart attack is managed independently
and primarily than a less critical problem, like an angina. FAE
is now defined by a set of functions, each of them defined by
a class and a set of functions:
FAE(x) = {CiAE(x)} with i ∈ CAE , CAE ⊂ N,
CiAE(x) = (fCi,AE(x)1, fCi,AE(x)2, . . . , fCi,AE(x)mCi

)

with mCi ≥ 0
(2)

with CAE being the set of classes.

a) Superposed scores: since events parameters are su-
perposed, fitness functions can also be a superposed state.
Let |fCi,AE(x)j〉 being the superposed score of the efftects
produced by the strategy x related to the atomic event AE and
the fitness function fj (see equation 2). We say for the effects
x and y that |fCi,AE(x)j〉 ≺ |fCi,AE(y)j〉, i.e. x is a better
situation than y regarding the fitness function fCi,AE()j , if
∀v ∈ R, p(|fCi,AE(x)j〉 < v) > p(|fCi,AE(y)j〉 < v) where
p(|fCi,AE(x)j〉 < v) is the probability that the superposed
state |fCi,AE(x)〉 gives values lower than v. This formula is
directly inspired from the Pareto law, and is justified by the
necessity to manage uncertainty in a stable way.

b) Domination: Domination of a strategy versus an-
other strategy enables to know if a strategy is better from
another. According our fitness functions classification, the
algorithm III-B3b defines how between two strategies x and

y, we can say if x dominates y, if y dominates x, or if x and
y are equivalent. If x dominates y, we notice x ≺ y.

Algorithm 2 Relation of dominance between between the
effects produced by two strategies x and y.
x and y are strategies to compare
for all i ∈ CAE with CAE ordered do
xdom← true
ydom← true
for all j ∈ [1,mCi] do

if |fCi,AE(x)j〉 ≺ |fCi,AE(y)j〉 then
ydom← false

end if
if |fCi,AE(y)j〉 ≺ |fCi,AE(x)j〉 then
xdom← false

end if
end for
if xdom = true and ydom = false then

Returns “x dominates y.”
end if
if xdom = false and ydom = true then

Returns “y dominates x.”
end if

end for
Returns “x and y are equivalent.”

c) Fusion: when two managed events needs the same
resources, a transactional model is used to managed conflicts of
resources. During this process, the fitness functions related to
the two events are merged. Let FAE0

being the fitness function
related to the event AE0 and FAE1

being the fitness function
related to event AE1. The merging of the two fitness functions
FAE0

∪ FAE1
is done as follow:

FAE0+1 = {CiAE0+1(x)}
with i ∈ CAE0+1

,

CAE0+1
= CAE0

∪ CAE1
,

CAE0+1
⊂ N

(3)

CiAE0+1(x) =(|fCi,AE0(x)1〉, . . . , |fCi,AE0(x)mCi,AE0
〉,

|fCi,AE1
(x)1〉, . . . , |fCi,AE1

(x)mCi,AE1
〉)

with mCi,AE0
≥ 0,mCi,AE1

≥ 0

4) Resources and tasks: A resource Or can be a material,
a human, or an autonomous material. Each resource can be
organized according to types r, and each type can generalize
several types. A resource must be used during the application
of a task, and each resource can be used into several tasks.
The percentage U(d, r) defines in which proportion the task
d use the resource r. A resource can be transportable or not.
Moreover, a resource may need other resources to work. For
example, ambulances need a driver to be used.

For every atomic event AE, a directed graph
GAE(EAE , VAE) of possible tasks to apply is defined
by the user. This graph have a starting node SN and
a ending node EN . It corresponds to a set of possible
alternatives to apply during a crisis. For example, for a
specific health problem, it is possible to send a doctor to
treat patient, or it is possible to give instructions through



phone conversation, if no doctor is available. Each node
dGAE

∈ EAE , dGAE
6= SN 6= EN represents a possible task

to apply. A task need resources R to be applied. When a task
is applied, the system alter event parameters according to the
function Influence(P (OAE), dGAE

, OR), where P (OAE) is
the properties of the occurrence of an atomic event AE, and
OR is the set of resources used for this tasks.

The association of successive tasks, starting from the node
SN and ending to the node EN , determines a plan plAE ∈
PLAE where PLAE is the set of all possible plans to apply.

The task of human and material transportation need a
specific implementation. The objective of our system is to
optimize this task according to a specific implementation.
Moreover, several alternatives can be generated. For example,
a task of transportation of resources used to apply a task A
can also be the same task of transportation of resources used
into the next task B. The goal of our system is to automatically
generate these alternatives as nodes into the graph GAE . Then,
for each alternative, the system looks for the best path between
a location and the available resources, without exploring paths
for each resource.

C. Ant colony optimization (ACO) for multi-goal optimization
problems

Our system must be able to solve problems which are
formalized according to several goals, i.e. several fitness
functions (see section III-B3). [18] discussed several ACO
approaches adapted to multi-goal problems. Experimentations
have been done in [9] and it appears that the best of these
approaches (m-ACO6) is also a Pareto based approach.
m-ACO6 appears also better [9] than several evolutionary
algorithms. We will present in this subsection the mathematical
formalism of the m-ACO6 approach [9], that will enable us
to develop our model.

Considering that ants construct solutions through a graph
G = (V,E) whose definition depends on the problem to solve,
pheromones are associated to each node of the graph. The algo-
rithm 3 show how an anthill loop is repeated until optimization
has found a stable state, or has reached a maximum number
of loops. Pheromones are initialized to τmax values. When
the algorithm evolves, pheromones who evaporates along time
cannot be lower than τmin, with 0 < τmin < τmax. This is
done to avoid the system converging too quickly.

To construct a solution, a node υi from G is chosen
according to the probability p(υi). It is added to the solution
S. Considering the constraints of the graph G, several nodes
are added to S until the solution S is considered as complete.
The probability to choose a node υi is defined as follow:

pc(υi) =
τ c(υi)

α × ηc(υi)β∑
υj∈G τ

c(υj)α × ηc(υj)β
(4)

where τ c(υi) is the pheromone factor and ηc(υi) is the
heuristic factor of the candidate υi. α and β are the parameters
that determine the importance of each of these factors. c corre-
sponds to the cth structure of pheromone, which corresponds
the cth fitness function.

Algorithm 3 Generic ACO algorithm for multi-goal optimiza-
tion problems

initialize pheromones marks to τmax
repeat

processing an anthill loop...
for all ant k ∈ colony do

construct a solution
simulating the application of this solution into the
environment through Influence(P (OAE), Si, OR)
choose randomly a fitness function to optimize
fCi,AE0(x)c
evaluating the results of this simulation thanks to
chosen fitness function
forgive the effects of the simulation

end for
for all c ∈pheromones structures do

update the cth structure of pheromones
if one mark is lower than τmin, set it to τmin
if one mark is higher than τmax, set it to τmax

end for
until A maximum number of cycles is reached or the
optimization process is stable

To update pheromones, when ants have constructed their
solutions, each mark of pheromone is evaporated from a con-
stant factor. Then, new pheromones are deposited on elements
of G constituting the best solutions:

τ c(υi)← (1− ρ)× τ c(υi) +∆τ c(υi) (5)

where ρ is the factor of evaporation such as 0 ≤ ρ ≤ 1.
∆τ c(υi) is the quantity of deposited pheromones for the
component υi. Let Sc the solution of the colony that maxi-
mizes the cth goal, in our case defined by fCi,AE0

(x)c (see
section III-B3), let Scbest the solution that maximizes the cth
goal from the beginning of the optimization process, and let Sp
being the set of non-dominated solutions produced during the
anthill loop. The quantity of pheromones deposited for each
element υi ∈ Sc, is defined as follow:

∆τ c(υi) =


1

1+fCi,AE(Sc)c−fCi,AE(Sc
best)c

if υi ∈ Sc,
1 if υi ∈ Sp,
0 else.

D. Optimization

When each atomic event has been decomposed according
to time and space (see section III-A and section III-B2), each
atomic event is transformed into a bubble of reality where
optimization are done according to the limited context of the
event. When each bubble is optimized, conflicts of resources
are analyzed between bubbles and if necessary, bubbles are
merged according to the transactional model described into
the section III-D2.

1) Bubble optimization: Two kinds of bubbles exists. Leaf
bubbles represent atomic events, whereas node bubbles rep-
resent peer of bubbles. Peer of bubbles are generated by
the transactional model when resources conflicts are detected.
Node bubbles contains peer of constraints related to each sub-
bubble.



Leaf bubbles are optimized according to the generic algo-
rithm 3. The construction of a solution by an ant, which is a
part of the previous enumerated algorithm, is described by the
algorithm 4. The leaf bubbles have to produce a plan plAE
of tasks to apply to solve the problem related to the atomic
event AE. This plan results from the optimization of series of
possible tasks represented by the graph GAE(EAE , VAE) (see
section III-B4). Some of these possible tasks consists of opti-
mizing a topographic path by choosing the nearest resources
from next chosen path. The construction of this topographic
path follow the generic algorithm 3, by constructing solutions
defined by the algorithm 5. During the path construction, if
the path becomes too long, regarding the best already got path,
then the path construction is restarted until a sufficiently short
path is got. The path is considered too long if f(Pathbest)

f(Path) < µ,
where µ is an empirically determined threshold, and f(x) is
the value given by a path, finished or not.

Algorithm 4 Constructing a solution for one ant associated to
a leaf bubble

Mark A
constructing a solution where Sk is the set of elements of
this solution:
choose randomly a function fAE(x)j to optimize.
CurrentNode ← SN , where SN is the start node of the
graph GAE corresponding the atomic event AE.
repeat

choose a task dGAE ,i from CurrentNode with probabil-
ity pj(dGAE ,j)
if dGAE ,i 6= EN then

if dGAE ,i is a transport mission then
Optimize this task (see algorithm 5).
EEP (p(OE)j , T imeEnddi), where timedi is the
time corresponding the end of the task dGAE ,i

end if
add dGAE ,i to Sk
Influence(P (OAE), dGAE

, OR) (see section III-B4).
CurrentNode← dGAE ,i

end if
until dGAE ,i = EN
evaluate the simulation of the solution Sk
forgive AE event modifications until up to mark A.

The figure 2 show how node bubbles are optimized. To
optimize the two sub-bubbles, fitness functions of each sub-
bubble is merged according to equation 3.

2) Transactional resolution of independent goals: When
each bubble has been optimized, the system checks if there are
conflicts of resources between each bubbles. However, instead
of checking all bubbles of all related events in all regions,
the system checks resources numerically localized into one
workstation. Then, if one resource is used by several bubbles,
more than it can be used, the system generates a parent bubble
destined to solve conflicts between the two bubbles. In this
case, considering the conflict, it generates peer of constraints.
Each set of constraints should correspond to one sub-bubble.
For example, if a resource is managed by two bubbles at
the same time, two peers of constraints will be generated.
The first one will consider that the first bubble can’t use the
conflicting resource, and the second one will consider that this

Algorithm 5 Constructing a solution for one ant associated
to optimization of topographic path between located resources
and a located task to apply.

Let Paths being the set of paths to follow
repeat

choose randomly a transportable resource Rj ∈ R to look
for.
remove Rj from R.
constructing a path Path according to the ACO algo-
rithm, until a free occurrence O(Rj)k of the resource
type Rj was found. Reset construction if the path is too
long.
if O(Rj)k must be transported thanks to another resource
Rt then

repeat
constructing a path PathT according to the ACO
algorithm from the located resource O(Rj)k until
an occurrence O(Rt)tk of the resource type Rt was
found.
valid← true
if O(Rt)tk is used by another resource but not
located at the same place than O(Rj)k then
valid← false

end if
if valid and O(Rt)tk has not sufficient space to
transport O(Rj)k then
valid← false

end if
until valid
Mark the resource O(Rt)tk as transporting the re-
source O(Rj)k. Note that the resource of transportation
O(Rt)tk will have finally only one path to follow.
if O(Rt)tk is not already used by another resource
then
PathT ← concatenate Path with PathT
add PathT to Paths

end if
else

add Path to Paths
end if

until R is empty
Returns the different paths to follow, with their correspond-
ing resources.

is the second bubble that cannot use the conflicting resource.
This operation is repeated for each peer of conflicting bubbles,
and for each conflicting resources. After that, each bubble is
optimized another time, until no new bubble is generated and
until no constraints set is altered.

3) Dynamical projection: When all bubbles are optimized,
and when no more resources conflicts are detected, the system
projects its plan of resource deployment over time. Each task
will have an effect to the current events, but some events
will evolve by producing new events. For example, if an
epidemic is not treated quickly enough, then this epidemic
will be propagated over space and time. This propagation is
formalized by the generation of new events, each of them
being uncertain. This generation is obtained thanks to the
function DE(E, t) (see section III-B1), which trigger events
according to user’s definitions. Then, the system had to opti-



Inherit from parent bubble constraints

Optimize sub-buble A (one anthill loop) Optimize sub-buble A (one anthill loop)

Choose a peer of constraints sets

Transactional model: determines new ressources conflicts

Update set of constraints

Current bubble has parent bubble ?

no, is optimization stabilized or is maximum number of loop reached ?
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no
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Update pheromones

ant 1... ant k go for constructing a solution ant n...

Fig. 2. Node bubble optimization process (diagram of activities).

mize a plan for the likely future events, which can generate
themselves new events, then new bubbles. For each loop of
optimization/projection, the system updates events uncertainty
according to their occurrences.

IV. CONCLUSION AND PERSPECTIVES

We have proposed a model able to plan a set of tasks and
able to deploy a set of resources according to declared events
during a crisis, but also according to a set of simulated events
over the future. The system processes a reflexive deliberation
by applying a projection of its decisions over time, and by
deducing related issues to deal with. Moreover, it manages
data uncertainty, according to a formalism based on the Pareto
law that produces stable results, in the context of a stochastic
environment. Finally, the model produces a global optimum
by exploring solutions locally in a first step, and globally if
necessary. This solution is then adapted to large scale systems,
that should be a huge distributed network of workstations. This
work can then be introduced into a more global project, i.e.
the conception of an asynchronous and distributed embedded
application able to manage the deployment of human and
material resources in the context of a crisis.

Future works should be centered into: the introduction of
a user avatar taking into account the preferences of the user;
the management of uncertainty related to avatars when work-
stations are disconnected from the network; the simplification
of data managed by users through a participative solution
and through an ergonomic interface [19], [20]; the process of
experimentations and evaluations.
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