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The angle between subsequent particle displacement increments is evaluated as a function of the
timelag in isotropic turbulence. It is shown that the evolution of this angle contains two well-defined
power-laws, reflecting the multi-scale dynamics of high-Reynolds number turbulence. The proba-
bility density function of the directional change is shown to be self-similar and well approximated
by an analytically derived model assuming Gaussianity and independence of the velocity and the
Lagrangian acceleration.
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Advances in experimental devices and numerical sim-
ulations over the last two decades have opened the way
to a Lagrangian characterization of turbulent flows [1–
3]. The structural description of the statistical dynam-
ics of turbulence has thereby shifted from the investi-
gation of spatial correlations of instantaneous velocity
fields to the study of temporal correlations along fluid
particle trajectories. In the Lagrangian reference frame,
the spatio-temporal complexity of turbulence manifests
itself through the spiraling chaotic motion of fluid par-
ticles, changing direction at every timescale. This di-
rectional change of Lagrangian tracers, as a function of
the timelag between two observations, is the subject of
the present work. Instantaneous measures of the curva-
ture in turbulence have been investigated in the past five
years for academic turbulent flows, both in three [4, 5]
and in two space dimensions [6, 7]. Curvature is dom-
inated by the small-scale structures and contains only
little information on the multiscale dynamics of turbu-
lent flows. Multi-scale dynamics can be measured by
Lagrangian structure functions [1, 3], but those do not
contain any direct information on the curvature of the
trajectories.
The related measure which represents the coarse

grained curvature over a time interval was only recently
introduced by Burov et al. [8]. More precisely, in this last
work the directional change of a particle was introduced,
and the characteristics of this new measure were investi-
gated in various types of random walks. In the present
work, we will show how this measure can characterize
the time-correlation of the direction of a fluid particle
in a turbulent flow. In particular will we show how the
multi-scale character of a turbulent flow can be revealed
by considering the timelag dependence of the directional
change.
We define the Lagrangian spatial increment as

δX(x0, t, τ) = X(x0, t)−X(x0, t− τ) (1)

where X(x0, t) is the position of a fluid particle at time
t, passing through point x0 at the reference time t = t0
and advected by a velocity field u, i.e. dX/dt = u . The
cosine of the angle Θ(t, τ) between subsequent particle

FIG. 1: Top: definition of the angle between subsequent La-
grangian particle increments. Bottom: short time evolution
and definition of the lengthscales l⊥ and l‖.

increments, introduced in [8], is

cos(Θ(t, τ)) =
δX(x0, t, τ) · δX(x0, t+ τ, τ)

|δX(x0, t, τ)| |δX(x0, t+ τ, τ)|
. (2)

The angle is illustrated in Figure 1 (top). Rather than
considering its instantaneous evolution, its averaged ab-
solute value is of particular interest in an isotropic ran-
dom velocity field. The ensemble average will be denoted
in the following by

θ(τ) ≡ 〈|Θ(t, τ)|〉 . (3)

We omitted the time-dependence since we will consider
statistically stationary flow in the following. For short
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FIG. 2: The average angle θ as a function of the timelag τ
normalized by the Kolmogorov time-scale τK . In the inset the
compensated angle, θ̃(τ ) ≡ θ(τ )σu/(ǫτ )

1/2 is plotted.

time lags, θ(τ) should be close to zero, whereas for times
long compared to the correlation time associated with the
spiraling motion θ(τ) should tend to π/2 by symmetry.
For short times the instantaneous angle Θ(τ, t) is re-

lated to the curvature κ (see Figure 1 (top)) by the rela-
tion

κ(t) = lim
τ→0

|Θ(t, τ)|

2τ‖u(t)‖
, (4)

with u being the velocity. How the angle varies in be-
tween the short and long-time limits is the main subject
of the present work and we will show that the depen-
dence of θ(τ) on the timelag contains the signature of
the multi-scale dynamics of a turbulent flow.
The database used to investigate the behaviour of θ(τ)

is described in [9, 10]. The simulation was carried out us-
ing standard pseudo-spectral techniques, following 8.106

fluid particles in a statistically stationary isotropic turbu-
lent flow during 5.8 integral timescales in a periodic cube
of dimension 2π. The resolution is 10243 gridpoints. The
integral timescale is 2.1 and the Kolmogorov timescale
τK = (ν/ǫ)1/2 = 0.036, where ǫ = 0.31 is the mean
dissipation rate and ν = 4.10−4 the kinematic viscosity.
The Lagrangian integral timescale is of the order of the
Eulerian integral timescale. The Taylor-scale Reynolds
number is Rλ = 225.
Figure 2 shows θ(τ) in double-logarithmic representa-

tion. The angle increases monotonuously from zero to
π/2, and this latter value is approached for values of τ
of the order of the Lagrangian integral timescale. Two
power-laws can be identified in this graph, with a cross-
over around twice the Kolmogorov timescale. The origin
of these power-laws will now be elucidated.
For our phenomenological explanation, we consider

high-Reynolds-number isotropic turbulence, containing
flow structures on a wide range of different scales. We
consider short timelags τ ≪ T , where T is the Lagrangian

integral timescale of the flow. In this limit, the angle
Θ(t, τ) can be approximated using a Taylor-expansion
by,

l⊥
l‖

≈ | tan(Θ/2)| ≈ |Θ/2|. (5)

where l⊥ and l‖ are shown in Fig. 1, (bottom), and corre-
spond to the absolute values of the distance travelled par-
allel with, and perpendicular to, the initial displacement
increment, respectively, over a time interval 2τ . The val-
ues of l‖ and l⊥ can be estimated, again using a Taylor
expansion, to be

l‖ ≈ 2U(t, τ)τ l⊥ ≈ 2τ2a⊥(t, τ), (6)

with U(t, τ) and a⊥(t, τ) the absolute values of the ve-
locity and the acceleration perpendicular to the velocity,
respectively, coarse-grained over a time τ along the fluid
particle trajectory. Without loss of generality, we will
write U(t, τ) and a⊥(t, τ) as

U(t, τ) = σu(τ)ξu(t, τ) a⊥(t, τ) = σa(τ)ξa(t, τ), (7)

where σ2
u(τ) and σ2

a(τ) are the variance of the coarse-
grained velocity and perpendicular acceleration, respec-
tively. The quantities ξu(t, τ) and ξa(t, τ) are positive
random variables with unit mean value and unit mean
variance. We thereby obtain,

|Θ(t, τ)| ≈ 2τ
σa(τ)ξa(t, τ)

σu(τ)ξu(t, τ)
. (8)

We assume the velocity and the acceleration independent,
a reasonable assumption at very high Reynolds numbers,
as long as τ ≪ T . Without coarse-graining this assump-
tion was also used in reference [5] to model the curvature
in isotropic turbulence. Using this assumption we find

θ(τ) ≈ 2τ
σa(τ)

σu(τ)
. (9)

Since for τ ≪ T the velocity is roughly constant over
the time-interval, σu(τ) ≈ Urms. However, a⊥ is dom-
inantly determined by the small scales and fluctuates
rapidly. Only for τ small with respect to the smallest La-
grangian time-scale, the Kolmogorov scale, can we con-
sider σa(τ) ≈ (a⊥)rms, i.e., independent of τ . For these
very short time-scales, we have thus

θ(τ) ≈ 2τ
σa

σu
for τ ≪ τK . (10)

where σa and σu are the total rms perpendicular accel-
eration and velocity, respectively. The linear relation be-
tween θ(τ) and τ is well observed in Figure 2. We can
further express this in terms of quantities which are easy
to determine experimentally. Assuming classical scaling
[11], the acceleration variance is given by the relation

σ2
a ∼

ǫ3/2

ν1/2
, (11)
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a relation which can be refined to take into account inter-
mittency corrections [12–14]. Omitting these corrections,
expressions (10) and (11) yield,

θ(τ) ∼
τ

T
R

1/2
λ for τ ≪ τK . (12)

At timescales larger than τK , but smaller than T , i.e.,
in the inertial interval, the above approximations to ob-
tain (9) are still valid. However, the subsequent ap-
proximation, that σa(τ) is independent of τ is not valid
anymore. Indeed, the perpendicular acceleration fluctu-
ates rapidly in time, on a time-scale of the order of τK .
Coarse-graining the acceleration over an interval τ > τK ,
the influence of the more rapidly fluctuating scales is fil-
tered out. Indeed, even if their contribution to the rms
acceleration is dominant, if the coarse-graining is per-
formed before considering the norm, positive and nega-
tive contributions will cancel each other. The remaining
variance will be predominantly caused by scales with a
time-scale larger than, or comparable to τ . Following
classical Kolmogorov phenomenology [15, 16], the accel-
eration induced by inertial range structures with typical
timescale τ will be of the order

σa(τ) ∼ (ǫ/τ)1/2. (13)

This estimate is obtained by neglecting the viscous con-
tribution to the acceleration, a reasonable assumption
even near the dissipation range scales [13], and realiz-
ing that the acceleration is due to pressure forces, which
satisfy, at inertial range scales to a good approximation
Kolmogorov-scaling [17, 18]. The scale of such eddies is
proportional to

l(τ) ∼ τ3/2ǫ1/2. (14)

The reciprocal dependence of the acceleration variance
on τ in expression (13) illustrates that the smallest scales
are most efficient in accelerating the fluid particles. Af-
ter the influence of the scales smaller than τ is removed
by the coarse graining, the remaining dominant contribu-
tion is caused by the smallest scales still present, i.e., with
timescale τ . It is therefore those scales, with correlation-
time τ which will deviate particles from their trajectory
over a lengthscale of the order of the correlation-length
of the structures. This phenomenological picture is il-
lustrated in Fig. 1, bottom, where it can be understood
intuitively that scales of the size l ≪ l(τ) are too small
to efficiently contribute to a perpendicular displacement
averaged over a time-interval τ .
Combining (13) and (8) we obtain in the inertial range

θ(τ) ∼ τ1/2
ǫ1/2

σu
∼

( τ

T

)1/2

for τK ≪ τ ≪ T. (15)

Again, this scaling is observable in Figure 2, even though
the power-law is less well present than in the dissipa-
tion range. This is better appreciated by considering the
compensated angle, θ̃(τ) ≡ θ(τ)σu/(ǫτ)

1/2, plotted in
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FIG. 3: PDFs of (a) Θ and (b) cos(Θ) for different timelags.
Solid black lines indicate the long time asymptotic form of
the PDFs.

the inset of the figure. The slow emergence of inertial
ranges with the Reynolds number in Lagrangian statis-
tics is fairly common [19] and is was recently even argued
that they might be non-existent [20]. In the present case,
the emergence of a plateau is undeniable. This might
be because the inertial range scaling of the mean-angle
θ(τ) is not directly related to the Lagrangian structure
functions. Indeed, the scaling is induced by considering
the coarse-grained Lagrangian acceleration, a quantity of
which the scaling is related to that of the Eulerian pres-
sure gradient.
The above arguments and results considered the av-

erage value θ(τ) only. Further information, in particu-
lar on higher order moments, is contained in the prob-
ability density function (PDF) of the instantaneous an-
gle and its evolution with τ . Those PDFs of the angle
Θ(t, τ) and its cosine are shown in Figure 3. It is ob-
served that the Pτ (Θ) for small τ consists of a peak near
zero, whereas for long-times a symmetric distribution be-
tween 0 and π is obtained. This latter distribution corre-
sponds to the distribution between two randomly chosen
vectors in three-dimensions. Its distribution is given by
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FIG. 4: (a) PDFs of 1− cos(Θ). (b) The same PDFs normal-
ized and compared to the analytical prediction.

P∞(Θ) = sin(Θ)/2. The distribution of the cosine of the
angle between two random vectors is thus equidistributed
so that P∞(cos(Θ)) = 1/2. It is observed that these two
long-time distributions are approached for long times in
Figure 3. We will now show how we can predict the
short-time, small Θ(τ, t) behaviour of the PDFs. In par-
ticular will we consider the PDF of 1− cos(Θ). Since the
cosine of small deviations in Θ gives values near unity,
1 − cos(Θ) directly measures the magnitude of the di-
rectional change. In addition, it is easy to compare the
PDF of this quantity to the long-time limit consisting
of a straight line. The PDFs of 1 − cos(Θ) are shown
in Figure 4(a) in double logarithmic representation. To
explain their shape and their evolution with τ , we use a
Taylor expansion for small Θ,

1− cos(Θ(t, τ)) ≈
1

2
Θ(t, τ)2 ≈ 2τ2

σ2
a(τ)ξ

2
a(t, τ)

σ2
u(τ)ξ

2
u(t, τ)

, (16)

where we used expression (8). If we assume a⊥ to sat-
isfy a Gaussian distribution, which is only a good ap-
proximation for the core of the PDF, and if we further
assume u to be uncorrelated with a⊥, and also multivari-
ate Gaussian [5], then both ξ2a and ξ2u satisfy a χ-squared
distribution. For a given velocity vector in 3D, having 3
degrees of freedom, the perpendicular acceleration is con-
fined to the plane perpendicular to the velocity and is a 2-
component vector. The ratio of two properly normalized
independent χ2-distributed quantities with n,m degrees
of freedom, respectively, is given by an Fn,m Fischer-
distribution. We expect 1− cos(Θ) therefore to be given
by an F2,3 distribution. More precisely,

γ(τ)P1−cos(Θ(t,τ))(x/γ(τ)) = F2,3(x), (17)

where γτ = θ(τ)2/3 and θ(τ) is shown in Figure 2. It is
observed in Figure 4(b) that the agreement with the pre-
diction is fairly satisfactory considering the assumptions
we made in the derivation of the shape of the PDF. Note
that no adjustable parameters were used to fit the PDF
to the F -distribution.

The results obtained in the present investigation show
that the time-series of the Lagrangian position can re-
veal the inertial range structure of turbulence through
the timelag-dependence of the quantity θ(τ). In partic-
ular do we show how Kolmogorov’s inertial range theory
is linked to the angular statistics of Lagrangian fluid par-
ticle trajectories.

The present framework will allow experimentalists to
verify the scaling of Lagrangian statistics in very-high-
Reynolds numbers flows, even if the measurement tech-
niques are not sufficiently rapid to resolve down to the
Kolmogorov scale. Indeed, no measurements of the in-
stantaneous velocity or acceleration are needed, only La-
grangian position measurements sufficiently sampled to
resolve the intertial range timescales. A further come-
out of this investigation are the scale-dependent measures
for the mean-angle and the probability density functions,
which will allow to more accurately model the topology
of Lagrangian trajectories in dispersion models.

The measure we investigated in the foregoing allows
a different angle of attack on the simultaneous charac-
terisation of the multi-scale character of turbulence and
the scale dependent curvature of Lagrangian fluid parti-
cle trajectories. In this light an interesting perspective is
to clarify the link between the current work and the re-
sults obtained using the recently introduced longitudinal
and transversal Lagrangian structure functions [21].
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