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BOUNDING THE EXPECTATION OF THE SUPREMUM OF AN

EMPIRICAL PROCESS OVER A (WEAK) VC-MAJOR CLASS

Y. BARAUD

Abstract. Given a bounded class of functions G and independent random variables

X1, . . . , Xn, we provide an upper bound for the expectation of the supremum of the

empirical process over elements of G having a small variance. Our bound applies in the

cases where G is a VC-subgraph or a VC-major class and it is of smaller order than those

one could get by using a universal entropy bound over the whole class G . It also involves

explicit constants and does not require the knowledge of the entropy of G

1. Introduction

The control of the fluctuations of an empirical process is a central tool in statistics for
establishing the rate of convergence over a set of parameters of some specific estimators such
as minimum contrast ones for example. These techniques have been used over the years in
many papers among which van de Geer (1990), Birgé and Massart (1993), Barron, Birgé
and Massart (1999) and the connections between empirical process theory and statistics are
detailed at length in the book by van der Vaart and Wellner (1996). With the concentration
of measure phenomenon and Talagrand’s Theorem 1.4 (1996) relating the control of the
supremum of an empirical process over a class of functions F to the expectation of this
supremum, the initial problem reduces to the evaluation of that expectation. This can
be done under universal entropy conditions which measure the massiveness of a class F

by bounding from above and uniformly with respect to probability measures Q on F the
number N(F , Q, ε) of L2(Q)-balls of radius ε that are necessary to cover F . A ready to
use inequality is given by Theorem 3.1 in Giné and Koltchinski (2006). Roughly speaking
their result says the following. Let F admit an envelop function F ≤ 1 (which means that
|f | ≤ F ≤ 1 for all f ∈ F ) and logN(F , Q, ε) be not larger than H(‖F‖

L2(Q) /ε) for some

nondecreasing function H independent of Q and satisfying some mild conditions. Then,
given n i.i.d. random variables X1, . . . ,Xn with an arbitrary distribution P ,

(1) E [Z(F )] ≤ C(H)

[

σ

√

nH
(

2σ−1 ‖F‖
L2(P )

)

+H
(

2σ−1 ‖F‖
L2(P )

)

]

where

(2) Z(F ) = sup
f∈F

∣

∣

∣

∣

∣

n
∑

i=1

(

f(Xi)− E [f(X1)]
)

∣

∣

∣

∣

∣

,

C(H) is a positive number depending on H, and σ ∈ (0, 1] satisfies supf∈F Var(f(X1)) ≤
σ2.
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However, computing the universal entropy of a class of functions F is not an easy task
in general and inequality (1) might not be so easy to use in general. For illustration, let us
consider the case of F = G ∩ B(g0, r) where G is the set of nonincreasing functions from
[0, 1] into itself and B(g0, r) the L2(P )-ball centered at g0 ∈ G with radius r > 0. The
universal entropy of F , which depends on the choice of g0, is usually unknown. However,
one may use that of G , which is of order 1/ε, to bound the universal entropy of F ⊂ G

from above. Taking for envelope function F the constant function equal to 1, we derive
from (1) that there exists a universal constant C > 0 such that

(3) E [Z(F )] ≤ C
[√

nσ + σ−1
]

.

While this inequality provides a satisfactory upper bound for E [Z(F )] in general, Giné
and Koltchinski (2006) (Example 3.8 p.1173) noticed that E [Z(F )] was actually of smaller
order than the right-hand side of (3) when g0 = 0. This phenomenon is actually easy
to explain and we shall see that the function g0 = 0 has in fact nothing magic: if g0 is
decreasing very fast on [0, 1] then it is quite easy to oscillate around g0 and still remain
non-increasing on [0, 1]. This implies that G ∩ B(g0, r) is actually massive around g0. It
is however impossible to oscillate around a function g0 which is constant without violating
the monotonicity constraint. For a constant function g0, G ∩ B(g0, r) turns out to be
less massive and E [Z(F )] much smaller than that of the previous set. A general entropy
bound on G which allows to bound the entropies of all sets G ∩ B(g0, r) independently of
g0 therefore provides a pessimistic upper bound in the case of a constant function g0.

The above argument is not only valid when G consists of monotone functions but more
generally when G is a bounded VC-major class on R for instance. For such a class, the
level sets {g > c} with g ∈ G and c ∈ R form a VC-class of subsets of R. When g oscillates
around c, the level set {g > c} is a union of disjoint intervals and since the class of all
unions of disjoint intervals is not VC, the elements of G cannot oscillate arbitrarily around
the constant function g0 = c.

The aim of this paper is to provide an upper bound for E [Z(F )] when F consists
of the elements of a class G (including the cases of VC-major and VC-subgraph classes)
which satisfy some suitable control of their L2-norms or variances. The bounds we get are
non-asymptotic, involve explicit numerical constants and are true as long as the random
variables X1, . . . ,Xn are independent but not necessarily i.i.d.. They allow to improve the
bounds one could obtain by using a naive upper bound on the entropy of the whole class
G .

As already mentioned, the expectations of suprema of empirical processes play a central
role in statistics and it is well known (we refer the reader to Theorem 5.52 in the book of
van der Vaart (1998) and to the historical references therein) that, given a sampling model
indexed by a metric space Θ, the rate of convergence of a minimum contrast estimator
toward a parameter θ0 ∈ Θ is governed by the expectation of the supremum of an empirical
process over the elements gθ of a class G = {gθ, θ ∈ Θ} for which the parameters θ lie in a
small ball around θ0. Such connections between suprema of empirical processes and rates of
convergence (or more generally risk bounds) of an estimator are not restricted to minimum
contrast estimators and have also recently proved, in Baraud, Birgé and Sart (2014), to
be an essential tool for the study of ρ-estimators. In all these cases, the distance between
the parameters θ and θ0 in the metric space Θ controls the L2-distance between the func-
tions gθ and gθ0 so that what we need to control is in fact the supremum of the empirical
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process over the intersection of G with a small L2-ball around gθ0 . Under suitable assump-
tions on G and because of the phenomenon we have explained above, one can expect some
faster rates of convergence for minimum contrast estimators (as well as ρ-estimators) to-
ward specific parameters θ0. For example, the Grenander estimator of a monotone density
converges at parametric rate when the target density is piecewise constant, as noticed by
Birgé (1989), while the minimax rate is of order n−1/3. The statistical implications of the
results established in the present paper will be detailed in a forthcoming one.

Our paper is organized as follows. The main definitions, including those of VC-classes,
VC-major and weak VC-major classes, as well as some basic properties relative to these
classes are given in Section 2.1. The main results are presented in Section 2.2. The proof
of our main theorem, namely Theorem 1, is postponed to Section 3 where we also establish
upper bounds for E[Z(F )] in the special case of a class F consisting of indicator functions
since these bounds may be of independent interest. Finally Section 4 gathers the proofs of
our propositions and that of Corollary 2 which is specific to the case of F being a VC-major
class and X1, . . . ,Xn i.i.d.

In the sequel, we shall use the following conventions and notations. The word countable
will always mean finite or countable and, given a set A, |A| and P(A) will respectively
denote the cardinality of A and the class of all its subsets. By convention,

∑

∅
= 0.

2. The setting and the main result

Throughout the paper, X1, . . . ,Xn are independent random variables defined on a proba-
bility space (Ω,W,P) with values in a measurable space (X ,A ), F is a class of real-valued
measurable functions on (X ,A ) and ε1, . . . , εn are i.i.d. Rademacher random variables
(which means that εi takes the values ±1 with probability 1/2) independent of the Xi. We
recall that Z(F ) is defined by (2) and set

Z(F ) = sup
f∈F

∣

∣

∣

∣

∣

n
∑

i=1

εif(Xi)

∣

∣

∣

∣

∣

.

In order to avoid measurability issues, E [Z(F )] and E
[

Z(F )
]

mean supF ′ E [Z(F ′)] and

supF ′ E
[

Z(F ′)
]

, respectively, where the suprema run among all countable subsets F ′ of F .

The relevance of the random variable Z(F ) is due to the following classical symmetrization
argument (see van der Vaart and Wellner (1996), Lemma 2.3.6) :

Lemma 1. For all a1, . . . , an ∈ R,

(4) E

[

sup
f∈F

∣

∣

∣

∣

∣

n
∑

i=1

(f(Xi)− E [f(Xi)])

∣

∣

∣

∣

∣

]

≤ 2E

[

sup
f∈F

∣

∣

∣

∣

∣

n
∑

i=1

εi (f(Xi)− ai)

∣

∣

∣

∣

∣

]

In particular,

(5) E [Z(F )] ≤ 2E
[

Z(F )
]

.

For the sake of completeness, we provide a proof in Section 3 below.

2.1. Basic definitions and properties. We recall the following.

Definition 1. A class C of subsets of some set Z is said to shatter a finite subset Z of Z
if {C ∩ Z,C ∈ C } = P(Z) or, equivalently, |{C ∩ Z,C ∈ C }| = 2|Z|. A non-empty class
C of subsets of Z is a VC-class if there exists a finite subset Z of Z which is not shattered
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by C . The dimension d ≥ 0 of this VC-class is the smallest integer k ∈ N for which there
exists Z of cardinality k + 1 not shattered by C .

Of special interest is the case of (X ,A ) = (R,B(R)) for which the class C of all intervals
is a VC-class with dimension 2.

We extend this definition from classes of sets to classes of functions in the following way.

Definition 2. Let F be a non-empty class of functions on a set X . We shall say that F

is weak VC-major with dimension d ∈ N if d is the smallest integer k ∈ N such that, for all
u ∈ R, the class

Cu(F ) =
{

{x ∈ X such that f(x) > u}, f ∈ F
}

is a VC-class of subsets of X with dimension not larger than k.

If F consists of monotone functions on (X ,A ) = (R,B(R)), Cu(F ) consists of intervals
of R and F is therefore weak VC-major with dimension not larger than 2. For the same
reasons, this is also true for the class F of nonnegative functions f on R which are monotone
on an interval of R (depending on f) and vanish elsewhere.

There exist other ways of extending to classes of functions the concept of a VC-class of
sets. The two main ones encountered in the literature are the following:

Definition 3. Let F be a non-empty class of functions on a set X .

• The class F is VC-major with dimension d ∈ N if

C (F ) =
{

{x ∈ X such that f(x) > u}, f ∈ F , u ∈ R
}

is a VC-class of subsets of X with dimension d.
• The class F is VC-subgraph with dimension d if

C×(F ) =
{

{(x, u) ∈ X × R such that f(x) > u}, f ∈ F
}

is a VC-class of subsets of X × R with dimension d.

These two notions are related to that of weak VC-major class in the following way.

Proposition 1. If F is either VC-major or VC-subgraph with dimension d then F is weak
VC-major with dimension not larger than d.

An alternative definition for a weak VC-major class can be obtained from the following
proposition.

Proposition 2. The class F is weak VC-major with dimension d if and only if d is the
smallest integer k ∈ N such that, for all u ∈ R, the class

C
+
u (F ) =

{

{x ∈ X such that f(x) ≥ u}, f ∈ F
}

is a VC-class of subsets of X with dimension not larger than k.

The following permanence properties can be established for weak VC-major classes.

Proposition 3. Let F be weak VC-major with dimension d. Then for any monotone
function F , F ◦ F = {F ◦ f, f ∈ F} is weak VC-major with dimension not larger than
d. In particular {−f, f ∈ F} and {f ∨ 0, f ∈ F} are weak VC-major with respective
dimensions not larger than d.
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2.2. The main result. Let us first introduce some combinatoric quantities. For u ∈ (0, 1),
let

(6) Eu(X) = {{i, Xi ∈ C}, C ∈ Cu(F )} and Γu = E [log(2 |Eu(X)|] .

When F is weak VC-major with dimension d, the quantity Γu can be bounded indepen-
dently of u as follows. For u ∈ (0, 1), the class Cu(F ) being VC with dimension not larger
than d, Sauer’s lemma (see van der Vaart and Wellner (1996), Section 2.6.3 p.136) asserts
that for all n ≥ 1

|Eu(X)| ≤
d∧n
∑

j=0

(

n

j

)

and therefore for all u ∈ (0, 1), Γu ≤ Γ(d) with

(7) Γ(d) = log



2
d∧n
∑

j=0

(

n

j

)



 ≤ log 2 + (d ∧ n) log
( en

d ∧ n

)

and the convention 0×log(+∞) = 0. The bound on Γ(d) comes from the classical inequality
∑k

j=0

(n
j

)

≤ (en/k)k for k ≤ n (see Barron, Birgé and Massart (1999), Lemma 6). The

following result holds.

Theorem 1. If F is a class of functions with values in [0, 1] and

(8) σ = sup
f∈F

[

1

n

n
∑

i=1

E
[

f2(Xi)
]

]1/2

,

then,

(9)
1

2
E [Z(F )] ≤ E

[

Z(F )
]

≤
√
2nσ

[

1

σ

∫ σ

0

√

Γudu+

∫ 1

σ

√
Γu

u
du

]

+ 4

∫ 1

0
Γudu

with Γu defined by (6). In particular, if F is weak VC-major with dimension d,

E [Z(F )] ≤ 2E
[

Z(F )
]

≤ 2

[

σ log(e/σ)

√

2nΓ(d) + 4Γ(d)

]

with Γ(d) given by (7).

For the sake of comparison, consider the case where the Xi are i.i.d. with values in [0, 1]
and F consists of nondecreasing functions from [0, 1] into [0, 1] which satisfy E[f2(X1)] ≤
σ2. The class F is weak VC-major with dimension 1 and, since Γ(1) = log(2(n + 1)),
Theorem 1 gives

(10) E [Z(F )] ≤ 2σ log(e/σ)
√

2n log(2(n + 1)) + 8 log(2(n + 1)).

For σ < e−e, Giné and Koltchinskii (2006) (Example 3.8 p.1173) obtained an upper bound
for E [Z(F )] of order

(11) B(n, σ) = σ
√

nL(σ) + L(σ) +
√

log n with L(σ) =
[

log
(

σ−1
)]3/2

log log
(

σ−1
)

.

If σ ≥
√

log n/n, then B(n, σ) ≥ √
nσ while B(n, σ) ≥

√
log n for σ ≤

√

log n/n. In any
case, B(n, σ) ≥ max{√nσ,

√
log n}, which shows that the bound (11) can only improve

ours by some power of log n.
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Giné and Koltchinskii’s bound is based on the fact that the envelop function F =
supf∈F f is smaller than the crude bound 1 for this specific class of functions. This is
no longer true for the class F ′ = {f(· − t)1l[0,1], t ∈ R, f ∈ F} the elements of which also

satisfy E[f2(X1)] ≤ σ2 when the Xi are uniformly distributed on [0, 1] for instance. While
their trick fails for the class F ′, our Theorem 1 still applies: since F ′ is weak-VC major
with dimension not larger than 2 and Γ(2) ≤ 2Γ(1), E [Z(F ′)] is actually not larger than
twice the right-hand side of (10).

When the elements of F take their values in [−b, b] for some b > 0, one should rather
use the following result.

Corollary 1. Assume that F is a weak VC-major class with dimension d consisting of
functions with values in [−b, b] for some b > 0. Then,

E [Z(F )] ≤ 4

[

σ log(eb/σ)

√

2nΓ(d) + 4bΓ(d)

]

with σ given by (8).

Proof. By homogeneity, we may assume that b = 1. Since F is weak VC-major with
dimension d, F+ = {f ∨0, f ∈ F} and F− = {(−f)∨0, f ∈ F} are both weak VC-major
with dimension not larger than d by Proposition 3. The elements of F+ and F− take their
values in [0, 1] and

max
ǫ∈{−,+}

sup
f∈Fǫ

1

n

n
∑

i=1

E
[

f2(Xi)
]

≤ σ2.

We may therefore bound E
[

supf∈Fǫ
|∑n

i=1 εif(Xi)|
]

from above for ǫ ∈ {−,+} by applying
Theorem 1. To conclude we use that f = f ∨ 0− (−f) ∨ 0 for all f ∈ F so that

E

[

sup
f∈F

∣

∣

∣

∣

∣

n
∑

i=1

εif(Xi)

∣

∣

∣

∣

∣

]

≤ E

[

sup
f∈F+

∣

∣

∣

∣

∣

n
∑

i=1

εif(Xi)

∣

∣

∣

∣

∣

]

+ E

[

sup
f∈F−

∣

∣

∣

∣

∣

n
∑

i=1

εif(Xi)

∣

∣

∣

∣

∣

]

.

�

Finally, we end this section with the particular situation when the Xi are i.i.d. and F

is VC-major. In this case, it is possible to replace the control of the L2(P )-norm of the
elements of F by a control of their variances. More precisely, the following holds.

Corollary 2. Assume that X1, . . . ,Xn are i.i.d and F is VC-major with dimension d. Let
Γ(d) be given by (7). Then,

E [Z(F )] ≤ 2

[

σ log(2eb/σ)

√

2nΓ(d) + 8bΓ(d)

]

with σ = sup
f∈F

√

Var[f(X1)] ∈ (0, b].
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3. Proof of Theorem 1

3.1. Proof of Lemma 1. Let (X ′
1, . . . ,X

′
n) be an independent copy of X = (X1, . . . ,Xn).

Then

E

[

sup
f∈F

∣

∣

∣

∣

∣

n
∑

i=1

(

f(Xi)− E [f(Xi)]
)

∣

∣

∣

∣

∣

]

= E

[

sup
f∈F

∣

∣

∣

∣

∣

n
∑

i=1

(

f(Xi)− E
[

f(X ′
i)
∣

∣X
])

∣

∣

∣

∣

∣

]

= E

[

sup
f∈F

∣

∣

∣

∣

∣

E

[

n
∑

i=1

(

f(Xi)− f(X ′
i)
)

∣

∣

∣

∣

∣

X

]∣

∣

∣

∣

∣

]

≤ E

[

sup
f∈F

∣

∣

∣

∣

∣

n
∑

i=1

(

f(Xi)− f(X ′
i)
)

∣

∣

∣

∣

∣

]

.

By symmetry supf∈F |∑n
i=1 (f(Xi)− f(X ′

i))| and supf∈F |∑n
i=1 εi (f(Xi)− f(X ′

i))| have
the same distribution. Therefore

E

[

sup
f∈F

∣

∣

∣

∣

∣

n
∑

i=1

(

f(Xi)− f(X ′
i)
)

∣

∣

∣

∣

∣

]

= E

[

sup
f∈F

∣

∣

∣

∣

∣

n
∑

i=1

εi
(

f(Xi)− ai −
[

f(X ′
i)− ai

])

∣

∣

∣

∣

∣

]

≤ 2E

[

sup
f∈F

∣

∣

∣

∣

∣

n
∑

i=1

εi (f(Xi)− ai)

∣

∣

∣

∣

∣

]

.

3.2. The particular case of a class F of indicator functions. Let us first consider the
situation of F being a class of indicator functions and start with the following elementary
situation.

Lemma 2. Let E be a non-empty subset of P({1, . . . , n}) with elements E of cardinality
bounded by m ≤ n. Then

(12) E

[

max
E∈E

∣

∣

∣

∣

∣

∑

i∈E

εi

∣

∣

∣

∣

∣

]

≤
√

2 log(2 |E |)m.

Proof. The result is clear when E = {∅} in view of our convention
∑

∅
= 0. Therefore we

may restrict ourselves to the case of maxE∈E |E| ≥ 1. Let us now fix some λ > 0. For all
E ∈ E ,

exp

[

λ

∣

∣

∣

∣

∣

∑

i∈E

εi

∣

∣

∣

∣

∣

]

= max

{

exp

[

λ
∑

i∈E

εi

]

, exp

[

−λ
∑

i∈E

εi

]}

≤ exp

[

λ
∑

i∈E

εi

]

+ exp

[

−λ
∑

i∈E

εi

]

.

Taking expectations on both sides and using that E
[

eλε
]

= cosh(λ) ≤ eλ
2/2, we get

E

[

exp

[

λ

∣

∣

∣

∣

∣

∑

i∈E

εi

∣

∣

∣

∣

∣

]]

≤ 2E

[

exp

[

λ
∑

i∈E

εi

]]

= 2
∏

i∈E

E [exp [λεi]] ≤ 2 exp

[

λ2|E|
2

]

.
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It follows from Jensen’s Inequality that

E

[

max
E∈E

∣

∣

∣

∣

∣

∑

i∈E

εi

∣

∣

∣

∣

∣

]

=
1

λ
log

(

exp

[

E

[

λmax
E∈E

∣

∣

∣

∣

∣

∑

i∈E

εi

∣

∣

∣

∣

∣

]])

≤ 1

λ
logE

[

exp

[

λmax
E∈E

∣

∣

∣

∣

∣

∑

i∈E

εi

∣

∣

∣

∣

∣

]]

=
1

λ
logE

[

max
E∈E

exp

[

λ

∣

∣

∣

∣

∣

∑

i∈E

εi

∣

∣

∣

∣

∣

]]

≤ 1

λ
log

(

∑

E∈E

E

[

exp

[

λ

∣

∣

∣

∣

∣

∑

i∈E

εi

∣

∣

∣

∣

∣

]])

≤ 1

λ
log

(

2
∑

E∈E

exp

[

λ2|E|
2

]

)

≤ log(2 |E |)
λ

+
λ

2
max
E∈E

|E| .

We then conclude by minimizing this upper bound with respect to λ. �

Let us now prove an analogue of Theorem 1 when F is a family of indicator functions.

Theorem 2. Let X = (X1, . . . ,Xn) be a random vector with independent components taking
their values in the measurable space (X ,A ) and let C be a countable family of measurable
subsets of X . Let F = {1lC , C ∈ C }, E (X) =

{

{i, Xi ∈ C}, C ∈ C
}

and

σ = sup
C∈C

[

1

n

n
∑

i=1

P(Xi ∈ C)

]1/2

.

Then

E [Z(F )] ≤ 2
[

σ
√
2nΓ + 4Γ

]

with Γ = E [log(2 |E (X)|)] .

This result is of the same flavour as the one Pascal Massart established in Massart (2007)
(see his Lemma 6.4). The bound he gets can be smaller than ours when σ is not too small.
Unlike his, our bound contains explicit constants.

Proof. By the symmetrization argument (4),

E

[

sup
C∈C

n
∑

i=1

1lC(Xi)

]

≤ E

[

sup
C∈C

n
∑

i=1

(1lC (Xi)− P(Xi ∈ C))

]

+ nσ2

≤ 2E

[

sup
C∈C

∣

∣

∣

∣

∣

n
∑

i=1

εi1lC (Xi)

∣

∣

∣

∣

∣

]

+ nσ2 = 2E
[

Z(F )
]

+ nσ2.(13)

Let us denote by Eε the conditional expectation given X = (X1, . . . ,Xn). By (12),

Eε

[

sup
C∈C

∣

∣

∣

∣

∣

n
∑

i=1

εi1lC(Xi)

∣

∣

∣

∣

∣

]

= Eε

[

max
E∈E (X)

∣

∣

∣

∣

∣

∑

i∈E

εi

∣

∣

∣

∣

∣

]

≤

√

√

√

√2 log(2 |E (X)|) sup
C∈C

n
∑

i=1

1lC (Xi).

Taking expectations with respect to X on both sides of this inequality, we derive from
Cauchy-Schwarz’s Inequality and (13) that

E
[

Z(F )
]

≤

√

√

√

√2ΓE

[

sup
C∈C

n
∑

i=1

1lC(Xi)

]

≤
√

2Γ
(

2E
[

Z(F )
]

+ nσ2
)

.
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Solving the last inequality with respect to E
[

Z(F )
]

leads to

E
[

Z(F )
]

≤
√

2Γnσ2 + (2Γ)2 + 2Γ ≤
√
2Γnσ2 + 4Γ

and the conclusion follows from (5). �

Of particular interest is the situation when C is VC with dimension d. In this case, we
derive from Sauer’s lemma that for all n ≥ 1

|E (X)| ≤
d∧n
∑

j=0

(

n

j

)

.

This shows that, if C is a VC-class with dimension not larger than d, log(2 |E (X)|) ≤ Γ(d)
where Γ(d) is given by (7). We immediately deduce from Theorem 2 the following corollary.

Corollary 3. Let X = (X1, . . . ,Xn) be a random vector with independent components
taking their values in the measurable space (X ,A ) and let C be a countable family of
measurable subsets of X which is a VC-class with dimension d. If F = {1lC , C ∈ C } and
Γ(d) is given by (7), then

E
[

Z(F )
]

≤ σ

√

2nΓ(d) + 4Γ(d) with σ = sup
C∈C

[

1

n

n
∑

i=1

P(Xi ∈ C)

]1/2

.

3.3. End of the proof of Theorem 1. In view of our convention about the definition of
E [Z(F )] we may assume with no loss of generality that F is countable. Let us fix u ∈]0, 1[
and write for simplicity, Cu(F ) = Cu. Since F is weak VC-major with dimension d, Cu is
a VC-class with dimension not larger than d. Besides, Cu is countable since F is and, by
Markov’s Inequality and concavity,

sup
C∈Cu

n
∑

i=1

P(Xi ∈ C) = sup
f∈F

n
∑

i=1

P(f(Xi) > u) ≤ sup
f∈F

n
∑

i=1

[

E
(

f2(Xi)
)

u2
∧ 1

]

≤ n

[

σ2

u2
∧ 1

]

.

Applying Corollary 3 to the class of sets Cu leads to

(14) E

[

sup
C∈Cu

∣

∣

∣

∣

∣

n
∑

i=1

εi1lC (Xi)

∣

∣

∣

∣

∣

]

≤
(σ

u
∧ 1
)

√

2nΓu + 4Γu.

Since the elements f ∈ F take their values in [0, 1],
∣

∣

∣

∣

∣

n
∑

i=1

εif(Xi)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ 1

0

n
∑

i=1

εi1lf(Xi)>u du

∣

∣

∣

∣

∣

≤
∫ 1

0

∣

∣

∣

∣

∣

n
∑

i=1

εi1lf(Xi)>u

∣

∣

∣

∣

∣

du.

Moreover,

sup
f∈F

∣

∣

∣

∣

∣

n
∑

i=1

εi1lf(Xi)>u

∣

∣

∣

∣

∣

= sup
C∈Cu

∣

∣

∣

∣

∣

n
∑

i=1

εi1lC(Xi)

∣

∣

∣

∣

∣

and it follows that

sup
f∈F

∣

∣

∣

∣

∣

n
∑

i=1

εif(Xi)

∣

∣

∣

∣

∣

≤
∫ 1

0
sup
C∈Cu

∣

∣

∣

∣

∣

n
∑

i=1

εi1lC (Xi)

∣

∣

∣

∣

∣

du.
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Using (14) and taking expectations on both sides lead to

E
[

Z(F )
]

= E

[

sup
f∈F

∣

∣

∣

∣

∣

n
∑

i=1

εif(Xi)

∣

∣

∣

∣

∣

]

≤
∫ 1

0

[(σ

u
∧ 1
)

√

2nΓu + 4Γu

]

du

=
√
2nσ

[

1

σ

∫ σ

0

√

Γudu+

∫ 1

σ

√
Γu

u

]

+ 4

∫ 1

0
Γudu

and the conclusion follows from (5).

4. Additional proofs

4.1. Proof of Proposition 1. If F is VC-major with dimension d, C (F ) is a VC-class
with dimension d therefore, whatever u ∈ R, its subset Cu(F ) is also a VC-class with
dimension not larger than d. Let us now turn to the case where F is VC-subgraph with
dimension d. Let u ∈ R, if Cu shatters {x1, . . . , xk}, for any subset E of {1, . . . , k} one can
find a function f ∈ F , such that

E =
{

i ∈ {1, . . . , k} such that f(xi) > u
}

which exactly means that C×(F ) shatters {(x1, u), . . . , (xk, u)} and implies that k ≤ d.

4.2. Proof of Proposition 2. For all f ∈ F and u ∈ R, we can write

1l{f≥u}(x) = lim
m→+∞

1l{f>u−(1/m)}(x) for all x ∈ X .

This means that C+
u is the sequential closure of Cu for the pointwise convergence of indicator

functions. Lemma 2.6.17 (vi) in van der Vaart and Wellner (1996) (and its proof) asserts
that C+

u (F ) is a VC-class with dimension not larger than that of Cu. For the reciprocal,
note that for all f ∈ F and u ∈ R,

1l{f>u}(x) = lim
m→+∞

1l{f≥u+(1/m)}(x) for all x ∈ X

and conclude in the same way.

4.3. Proof of Proposition 3. Let u ∈ R. If Cu(F ◦ F ) cannot shatter at least one
point, its dimension is 0 and there is nothing to prove since d ≥ 0. Otherwise, there
exist k ≥ 1 points x1, . . . , xk in X and m functions f1, . . . , fm ∈ F such that the set
{

{F ◦ fj > u}, j = 1, . . . ,m
}

shatters {x1, . . . , xk}. In particular, there exists a point xi
and a function fj such that F ◦ fj(xi) ≤ u so that

s = max
i,j

{fj(xi) such that F ◦ fj(xi) ≤ u}

is well-defined. Clearly, for all i = 1, . . . , k and j = 1, . . . ,m,

F ◦ fj(xi) > u if and only if fj(xi) > s

and Cs(F ) therefore shatters {x1, . . . , xk}, which implies that k ≤ d.
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4.4. Proof of Corollary 2. Let G be the class of all functions gf , f ∈ F , defined on X

and with values in [−b, b] given by

gf (x) =
1

2

(

f(x)− E [f(X1)]
)

.

Since

sup
g∈G

E
[

g2f (X1)
]

=
1

4
sup
f∈F

Var(f(X1)) ≤
σ2

4
,

Corollary 2 will follow from Corollary 1 if we can prove that G is weak VC-major, which is
a consequence of the next lemma.

Lemma 3. If F is VC-major with dimension d, G is weak VC-major with dimension not
larger than d.

Proof. Let u ∈ R and {x1, . . . , xk} be a nonempty subset of X which is shattered by Cu(G )
(if no such set exists then the dimension of Cu(G ) is 0 and there is nothing to prove). For
any E ⊂ {1, . . . , k}, there exists f ∈ F such that

E =
{

i ∈ {1, . . . , k} such that gf (xi) > u
}

=
{

i ∈ {1, . . . , k} such that f(xi) > t
}

with t = 2(u+E[f(X1)]). Consequently, the class of sets C (F ) =
{

{f > t}, f ∈ F , t ∈ R
}

shatters {x1, . . . , xk} which implies that k ≤ d. �
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