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FILTRATIONS AND BUILDINGS

CHRISTOPHE CORNUT

En hommage à Alexander Grothendieck

Abstract. We construct and study a scheme theoretical version of the Tits
vectorial building, relate it to filtrations on fiber functors, and use them to
clarify various constructions pertaining to affine Bruhat-Tits buildings, for
which we also provide a Tannakian description.
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1. Introduction

The combinatorial Tits building of a reductive group G over a field K reflects the
incidence relations between the parabolic subgroups of G. Its geometric realization,
the spherical Tits building, is obtained by gluing spheres along common sectors.
It has an action of G(K) and can be equipped we a non-canonical G(K)-invariant
metric, which turns it into a CAT (1)-space. When K is a local field, the spherical
building can also be realized as the visual boundary of an affine building attached
to G, namely its symmetric space or Bruhat-Tits building, depending upon whether
K is archimedean or not (in the non-archimedean case, the spherical buildings of
various reductive groups over the residue field also show up in the local description
of the Bruhat-Tits building). In both cases, the affine building itself has a G(K)-
action and a non-canonical G(K)-invariant metric for which it is a CAT (0)-space,
and the cone of its visual boundary acts transitively on the affine building by non-
expanding maps [10]. Looking at things the other way around, the choice of a base
point in the affine building realizes it as a quotient of the vectorial Tits building,
the latter being the cone of the spherical Tits building.

This vectorial Tits building is the unifying theme of our somewhat eclectic paper,
whose initial intention was to clarify and canonify the above constructions. It is
yet another affine building with an action of G(K) (which can now be defined over
any field K) and it is equipped with a CAT (0)-metric canonically attached to any
choice of a faithful representation τ : G →֒ GL(V ), see section 4.2.3.

In section 2, we actually start with a reductive group G over an arbitrary base
scheme S. For a totally ordered commutative group Γ = (Γ,+,≤), we define our
fundamental G-equivariant cartesian diagram of S-schemes

GΓ(G)
Fil //

F

��

FΓ(G)
t //

F

��

CΓ(G)

F

��

OPP(G)
p1 // P(G)

t // O(G)

where P(G) and OPP(G) are respectively the S-schemes of parabolic subgroups
P of G and pairs of opposed parabolic subgroups (P, P ′) of G, O(G) is the S-
scheme of G-orbits in P(G) or OPP(G), and GΓ(G) = Hom(DS(Γ), G) where DS(Γ)
is the (diagonalizable) multiplicative group over S with character group Γ. For
Γ = Z, DS(Γ) = Gm,S and GΓ(G) is merely the scheme of cocharacters of G.
However, we do not require Γ to be finitely generated over Z, and we are in fact
particularly interested by the cases where Γ = Q or R. In the above diagram, the
facet morphisms F are unramified, surjective and separated, and they satisfy the
valuative criterion of properness. The p1 and Fil morphisms are smooth, surjective
and separated, and the type morphisms t are smooth projective with geometrically
connected fibers. Since O(G) is finite étale over S, all of the above schemes are
smooth, separated and surjective over S. We equip CΓ(G) and O(G) with S-monoid
structures, and the facet map F : CΓ(G) → O(G) is compatible with them. For
Γ = R, FΓ(G) is a scheme theoretical version of the Tits vectorial building and
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CΓ(G) is a scheme theoretical version of a closed Weyl chamber. For Γ = Z, the
S-scheme CΓ(G) classifies the G-orbits of cocharacters of G.

In section 3, we show that GΓ(G) and FΓ(G) represent functors respectively
related to Γ-graduations and Γ-filtrations on a variety of fiber functors. The main
difficulty here is to show that the Γ-filtrations split fpqc-locally on the base scheme.
For Γ = Z, this was essentially established in the thesis of Saavedra Rivano [29],
at least when S is the spectrum of a field. We strictly follow Saavedra’s proof
(which he attributes to Deligne), adding a considerable amount of details and some
patch when needed. We advise our reader to read both texts side by side, only
switching to ours when he feels uncomfortable with (the necessary generalizations
of) Saavedra’s arguments.

For Γ = Z, Ziegler recently established the fpqc-splitting of Z-filtrations on fiber
functors on arbitrary Tannakian categories [37], thereby proving a conjecture which
was left open after Saavedra’s thesis. In particular, the Z-filtrations we consider
have fpqc-splittings even when G is not reductive, but defined over a field. In the
reductive case, the final arguments in Ziegler’s proof simplify those of Saavedra’s,
but rely more on the Saavedra-Deligne theorem that all fiber functors on Tannakian
categories are fpqc-locally isomorphic [11]. According to D. Schäppi, it follows from
his own work [30, 31] and Lurie’s note on Tannaka duality that the same result holds

for any ⊗-functor Repfp(G)(S)→ QCoh(T ) where: S is affine, T is an S-scheme, G

is affine flat over S, Repfp(G)(S) is the ⊗-category of algebraic representations of G
on finitely presented OS-modules, and G has the resolution property: any finitely
presented algebraic representation of G is covered by another one which is locally
free. It then seems likely that Ziegler’s proof could yield a common generalization
of his result (Γ = Z, G affine over a field) and ours (Γ and S arbitrary, but G
reductive) on the existence of fpqc-splittings of Γ-filtrations, using a hefty dose of
the stack formalism. We have chosen to stick to the constructive, down-to-earth
original proof of Saavedra/Deligne – and to reductive groups as well.

In section 4, we study the sections of our schemes over a local ring O. We first
equip F

Γ(G) = FΓ(G)(O) with a collection of apartments F
Γ(S) indexed by the

maximal split subtorus S of G and with the collection of facets F−1(P ) indexed
by the parabolic subgroups P of G. The key properties of the resulting combina-
torial structure are well-known when O is a field and Γ = R, in which case F

Γ(G)
is the Tits vectorial building, but most of them carry over to this more general
situation, thanks to the wonderful last chapter of SGA3. We describe the behavior
of these auxiliary structures under specialization (when O is Henselian) or gener-
ization (when O is a valuation ring). When Γ is a subring of R, we also attach
to every finite free faithful representation τ of G a partially defined scalar product
on F

Γ(G) and the corresponding distance and angle functions, and we study their
basic properties. When O is a field, a theorem of Borel and Tits [7] implies that
these functions are defined everywhere, and one thus retrieves the aforementioned
non-canonical distances on the vectorial Tits building F(G) = F

R(G).
Over a field K and with Γ = R, we next define a notion of affine F(G)-spaces,

which interact with the vectorial Tits building F(G) as affine spaces do with their
underlying vector space. Strongly influenced by the formalism set up by Rousseau
in [28] and Parreau in [25], we introduce various axioms that these spaces may
satisfy, leading to the more restricted class of affine F(G)-buildings. Most of the
abstract definitions of buildings that have already been proposed involve a covering
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atlas of charts, which are bijections from a given fixed affine space onto subsets
of the building (its apartments) subject to various conditions. Our definition also
involves a covering by apartments, but their affine structure is inherited from a
globally defined G(K)-equivariant transitive operation x 7→ x + F of F(G) on the
building. It is therefore essentially a boundary-based formalism for buildings, as
opposed to the more usual apartment-based formalism.

Of course F(G) is itself an affine F(G)-building, with a distinguished point.
When K is equipped with a non-trivial, non-archimedean absolute value, we show
that the (extended) affine building B

e(G) constructed by Bruhat and Tits [7, 8] is
canonically equipped with a structure of affine F(G)-building in our sense. This
is our precise formalization of the previous all too vague assertion that the visual
boundary of the Bruhat-Tits building is a geometric realization of the combinatorial
Tits building. This being done, we may now fix a base point ◦ in the Bruhat-Tits
building B

e(G), and try to describe Be(G) as a quotient of F(G) using the surjective
map F(G) ∋ F 7→ ◦+F ∈ B

e(G). We do just this in the last subsection, assuming
that our base point ◦ is hyperspecial, i.e. corresponds to a reductive group G over
the valuation ring O of K, which we also assume to be Henselian.

More precisely, we first define a space of K-norms on the fiber functor

ω◦
G : Rep◦(G)(O)→ Vect(K)

where Rep◦(G)(O) is the category of algebraic representations of G on finite free O-
modules. This space is equipped with a G(K)-action, an explicit G(K)-equivariant
operation of F(GK) and a base point αG fixed by G(O). We show that the map
◦+F 7→ αG+F is well-defined, injective, G(K)-equivariant and compatible with the
operations of F(GK). It thus defines an isomorphism α of affine F(GK)-buildings
from B

e(GK) to a set B(ω◦
G,K) = αG + F(GK) of K-norms on ω◦

G.
This tannakian description of the extended Bruhat-Tits building immediately

implies that the assignment G 7→ B
e(GK) is functorial in the reductive group G

over O. Such a functoriality was already established by Landvogt [21], with fewer
assumptions on GK but more assumptions on K. It also suggests a possible defi-
nition of Bruhat-Tits buildings for reductive groups over valuation rings of height
greater than 1, as well as a similar tannakian description of symmetric spaces (in
the archimedean case). It is related to previous constructions as follows.

Our canonical isomorphism α : Be(GK) → B(ω◦
G,K) assigns to a point x in

B
e(GK) and an algebraic representation τ of G on a flat O-module V (τ) a K-

norm α(x)(τ) on VK(τ) = V (τ) ⊗ K. For the adjoint representation τad of G on
g = Lie(G), the adjoint-regular and regular representations ρadj and ρreg of G on
A(G) = Γ(G,OG), we obtain respectively: a K-norm αad(x) on gK = Lie(GK)
whose closed balls give the Moy-Prasad filtration of x on gK [23], the K-norm
αadj(x) in Gan

K constructed in [26], and an embedding x 7→ αreg(x) of the extended
Bruhat-Tits building in the analytic Berkovich space Gan

K attached to GK . We note
that a different Tannakian formalism for Bruhat-Tits buildings had already been
proposed by Haines and Wilson [36].

This paper grew out of a question by J-F. Dat and numerous discussions with
D. Mauger on buildings and cocharacters. I am very grateful to G. Rousseau and
A. Parreau, who always had answers to my questions. Apart from the emphasis
on the boundary, most of the definitions and results of section 4.3 are either taken
from his survey [28] or from her preprint [25]. P. Deligne kindly provided the patch
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at the very end of the proof of the splitting theorem, dealing with groups of type
G2 in characteristic 2.

2. The group theoretical formalism

2.1. Γ-graduations.

Theorem 1. Let H and G be group schemes over S, with H of multiplicative type
and quasi-isotrivial, G smooth and affine. Then the functor HomS−Gr(H,G) is
representable by a smooth and separated scheme over S.

Remark 2. When H is of finite type, it is quasi-isotrivial by [1, X 4.5]. The theorem
is then due to Grothendieck, see [1, XI 4.2]. The proof given there relies on the
density theorem of [1, IX 4.7], definitely a special feature of finite type multiplicative
groups. When H is trivial, we may still reduce the proof of the above theorem to the
finite type case, see remark 12 below. For the general case, we have to find another
road through SGA3, passing through [1, X 5.6] which has no finite type assumption
on H but requires H and G to be of multiplicative type and quasi-isotrivial:

Proposition 3. Let H and G be group schemes of multiplicative type over S, with
H quasi-isotrivial and G of finite type. Then HomS−Gr(H,G) is representable by a
quasi-isotrivial twisted constant group scheme X over S.

Proof. This is [1, X 5.6], since G is also quasi-isotrivial by [1, X 4.5]. �

Lemma 4. Let X be a quasi-isotrivial twisted constant scheme over S. Then
X → S is separated étale and satisfies the valuative criterion of properness. If
moreover S is irreducible and geometrically unibranch with generic point η, then

X =
∐

λ∈Xη
X(λ) with X(λ) = {λ} open and closed in X,

each X(λ) is a connected finite étale cover of S and Γ(X/S) = Γ(Xη/η).

Proof. The morphism X → S is separated by [17, 2.7.1] and étale by [19, 17.7.3].
Since valuation rings are normal integral domains, it remains to establish the last
claims. Suppose therefore that S is irreducible and geometrically unibranch with
generic point η. Then by [19, 18.10.7] applied to X → S,

X =
∐

λ∈Xη
X(λ) with X(λ) = {λ} open and closed in X,

thus X(λ) is already étale over S. Fix an étale covering {Si → S} trivializing X ,
so that X ×S Si = Qi,Si

for some set Qi. Using [19, 18.10.7] again, we may assume
that each Si is connected, in which case we obtain decompositions

Qi =
∐

λ∈Xη
Qi(λ) with X(λ)×S Si = Qi(λ)Si

.

Since the generic fiber λ → η of X(λ) → S is finite of degree n(λ) = [k(λ) : k(η)],
each Qi(λ) is a finite subset of Qi of order n(λ), therefore X(λ)×S Si is finite over
Si and X(λ) is finite over S by [17, 2.7.1]. Being finite and étale over the connected
S, X(λ) is a finite étale cover of S. Being irreducible, it is also connected. By
[19, 17.4.9], the map which sends a section g of X → S to its image g(S) identifies
Γ(X/S) with the set of connected components X(λ) of X for which X(λ) → S is
an isomorphism, i.e. such that n(λ) = 1. Therefore Γ(X/S) = Γ(Xη/η). �
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Lemma 5. Let f : H → G be a morphism of group schemes over S, with H of
multiplicative type and G separated of finite presentation. Then there is a unique
closed multiplicative subgroup Q of G such that f factors through a faithfully flat
morphism f ′ : H → Q. Moreover f ′ is also uniquely determined by f .

Proof. Everything being local for the fpqc topology, we may assume that S is affine
and H = DS(M) for some abstract commutative group M . Then M = lim−→M ′

where M ′ runs through the filtered set F(M) of finitely generated subgroups of
M , thus also DS(M) = lim←−DS(M

′). Since DS(M
′) is affine for all M ′ and G → S

is locally of finite presentation, it follows from [18, 8.13.1] that f factors through
f1 : DS(M

′)→ G for some M ′ ∈ F(M). Applying [1, IX 6.8] to f1 yields a closed
multiplicative subgroup Q of G such that f1 factors through a faithfully flat (and
affine) morphism f ′

1 : DS(M
′) → Q, whose composite with the faithfully flat (and

affine) morphism DS(M) → DS(M
′) is the desired factorization. Since Q is then

also the image of f in the category of fpqc sheaves on Sch/S, it is already unique
as a subsheaf of G. Since Q→ G is a monomorphism, also f ′ is unique. �

Definition 6. We call Q the image of f and denote it by Q = im(f).

Lemma 7. Let f : H → G be a morphism of group schemes over S, with H of
multiplicative type and G smooth and affine. Then the centralizer of f is equal to
the centralizer of its image, and is representable by a closed smooth subgroup of G.

Proof. Let f = ι◦f ′ be the factorization of the previous lemma. Since f ′ is faithfully
flat (and quasi-compact, being a morphism between affine S-schemes, therefore even
affine), it is an epimorphism in the category of schemes. It then follows from the
definitions in [13, VIB §6] that the centralizers of f , ι and im(f) are equal. By [1,
XI 5.3], the centralizer of ι is a closed smooth subgroup of G. �

Lemma 8. Let f : H → Q be a morphism of group schemes of multiplicative type
over S, with Q of finite type. Define U = {s ∈ S : fs is faithfully flat}. Then U is
open and closed and fU : HU → QU is faithfully flat.

Proof. Let I be the image of f . Then U is the set of points s ∈ S where Is = Qs.
Now apply [1, IX 2.9] to I →֒ Q. �

We may now prove Theorem 1. Define presheaves A,B,C on Sch/S by

C(S′) = {multiplicative subgroups of GS′} ,

B(S′) = {(Q, f ′) : Q ∈ C(S′) and f : HS′ → Q is a morphism} ,

A(S′) = {(Q, f ′) ∈ B(S′)with f ′ faithfully flat} .

Then C is representable, smooth and separated by [1, XI 4.1], B → C is relatively
representable by étale and separated morphisms by Proposition 3 and Lemma 4,
A→ B is relatively representable by open and closed immersions by Lemma 8 and
finally A is isomorphic to HomS−Gr(H,G) by Lemma 5. Therefore HomS−Gr(H,G)
is indeed representable by a smooth and separated scheme over S.

Definition 9. For an abstract commutative group Γ = (Γ,+) and a smooth and
affine group scheme G over S, we set GΓ(G) = HomS−Gr(DS(Γ), G). Therefore

GΓ(G) : (Sch/S)◦ → Set

is representable by a smooth and separated scheme over S.
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Proposition 10. Let f : DS(Γ)→ G be a morphism of group schemes over S, with
G separated and of finite presentation. Then for each s in S,

Γ(s) = {γ ∈ Γ : γ ≡ 1 on ker(fs)}

belongs to the set F(Γ) of finitely generated subgroups of Γ. For each Λ ∈ F(Γ),

S(Λ) = {s ∈ S : Γ(s) = Λ}

is open and closed in S, and finally

ker(f)S(Λ) = DS(Λ)(Γ/Λ) and im(f)S(Λ) = DS(Λ)(Λ).

Proof. We may assume that S is affine and G is of multiplicative type (using
Lemma 5 for the latter). Since DS(Γ) = lim←−DS(Λ) it follows again from [18,

8.13.1] that there is some Λ in F(Γ) such that f factors through g : DS(Λ) → G,
i.e. DS(Γ/Λ) ⊂ ker(f). But then Γ(s) ⊂ Λ for every s ∈ S, which proves (1).
Applying now [1, IX 2.11 (i)] to g gives a finite partition of S into open and
closed subset Si, together with a collection of distinct subgroups Λi of Λ such that
ker(g)Si

= DSi
(Λ/Λi) and im(g)Si

≃ DSi
(Λi). But then ker(f)Si

= DSi
(Γ/Λi),

im(f)Si
≃ DSi

(Λi) and Si = S(Λi), which proves (2). �

Corollary 11. If Γ is torsion free, then im(f) is a locally trivial subtorus of G.

Remark 12. The proposition suggests another proof of Theorem 1 for H = DS(Γ).
It shows indeed that the Zariski sheaf GΓ(G) is the disjoint union of relatively open
and closed subsheaves GΓ(G)(Λ), indexed by Λ ∈ F(Γ). Moreover, GΓ(G)(Λ) is
isomorphic to the subsheaf GΛ(G)(Λ) of GΛ(G), which is representable by a smooth
and separated scheme over S by [1, XI 4.2].

2.2. Γ-filtrations. Let Γ = (Γ,+,≤) be a non-trivial totally ordered commutative
group. Let S be a scheme, G a reductive group over S, g = Lie(G) its Lie algebra.

Proposition 13. Let G : DS(Γ) → G be a morphism and write g = ⊕γgγ for
the corresponding weight decomposition of ad ◦ G : DS(Γ)→ GLS(g). There exists
a unique parabolic subgroup PG of G containing the centralizer LG of G such that
Lie(PG) = ⊕γ≥0gγ . Moreover LG is reductive, it is a Levi subgroup of PG , thus
PG = UG ⋊ LG where UG is the unipotent radical of PG , and we have

Lie(PG) = ⊕γ≥0gγ , Lie(UG) = ⊕γ>0gγ and Lie(LG) = g0.

Proof. Let Q be the image of G. Then LG is the centralizer of Q by Lemma 7 and
Q is a locally trivial subtorus of G by Proposition 10 (since Γ is torsion free). We
may assume that Q is trivial, i.e. Q ≃ DS(Λ) for some finitely generated subgroup
Λ of Γ. The proposition then follows from [12, XXVI 6.1]. �

For a parabolic subgroup P of G with unipotent radical U , we denote by R(P )
the radical of the reductive group P/U . Since G : DS(Γ) → G factors through

a central morphism DS(Γ) → LG , the morphism DS(Γ) → LG
≃
−→ PG/UG is also

central and its image (isomorphic to im(G)) is a central subtorus of PG/UG, therefore
contained in RG = R(PG). We thus obtain a morphism G : DS(Γ)→ RG .

Lemma 14. For G1,G2 : DS(Γ)→ G, the following conditions are equivalent:

(1) PG1 = PG2 and G1 = G2
(2) G2 = Int(p) ◦ G1 for some p ∈ PG1(S)
(3) G2 = Int(u) ◦ G1 for some u ∈ UG1(S)



FILTRATIONS AND BUILDINGS 8

There is then a unique such u.

Proof. Since PG1 = UG1 ⋊LG1 , (2)⇔ (3)⇒ (1) and u is unique. If PG1 = PG2 = P ,
let U be its unipotent radical, so that also U = UG1 = UG2 . By [12, XXVI 1.8], there
exists a unique u in U(S) such that Int(u)(LG1) = LG2 . But then Int(u) ◦ G1 = G2
if and only if G1 = G2. Therefore also (1)⇒ (3). �

Definition 15. The equivalence relation described in the above lemma is called
the Par-equivalence and denoted by: G1 ∼Par G2.

Recall from [12, XXVI 3.5 ] that the functor P(G) : (Sch/S)◦ → Set defined by

P(G)(S′) = {parabolic subgroups P of GS′}

is representable, smooth and projective over S. Let PP(G), UP(G) and RP(G) be
respectively the universal parabolic subgroup of GP(G), its unipotent radical and

the radical of PP(G)/UP(G). Then GΓ(RP(G)) is a quasi-isotrivial twisted constant

group scheme over P(G). The S-scheme GΓ(RP(G)) is smooth and separated and

GΓ(RP(G))(S
′) = {(P, f) : P parab. sub. of GS′ and f : DS′(Γ)→ R(P )}

for S′ → S. The maps G 7→ (PG ,G) and F = (PF , fF) 7→ PF thus give morphisms

GΓ(G)
Fil′
−→ GΓ(RP(G))→ P(G).

Definition 16. We denote by Fil : GΓ(G)→ FΓ(G) the quotient of GΓ(G) by the
equivalence relation defined by Fil′ in the category of fpqc sheaves on Sch/S.

We now have a diagram of fpqc sheaves on Sch/S,

GΓ(G)
Fil
−→ FΓ(G)

F
−→ P(G).

Proposition 17. The fpqc sheaf FΓ(G) : (Sch/S)◦ → Set is representable by a
scheme which is smooth and separated over S. The morphism Fil : GΓ(G)→ FΓ(G)
is smooth, surjective and affine; it is a principal homogeneous space under UFΓ(G).

The morphism F : FΓ(G)→ P(G) is unramified, surjective and separated.

Proof. The map (G, u) 7→ (G, Int(u) ◦ G) gives, by Lemma 14, an isomorphism

GΓ(G)×P(G) UP(G) ≃ GΓ(G)×GΓ(RP(G)) G
Γ(G).

Since UP(G) is smooth over P(G), the first projection of GΓ(G)×GΓ(RP(G)) G
Γ(G) is

smooth. Since GΓ(G) → S and GΓ(RP(G)) → S are locally of finite presentation,

so is Fil′ : GΓ(G) → GΓ(RP(G)) by [16, 1.4.3.v]. Then [1, XVI 2.1] gives: FΓ(G)

is representable and Fil : GΓ(G) → FΓ(G) is faithfully flat and locally of finite
presentation. Thus FΓ(G) is also smooth over S by [19, 17.7.5-7].

In particular, FΓ(G) →֒ GΓ(RP(G)) is locally of finite presentation by [16, 1.4.3.v].

Being a monomorphism, it is separated and unramified. Since GΓ(RP(G)) is itself

separated and étale over P(G), the morphism F : FΓ(G) → P(G) is separated and
unramified, and FΓ(G) is also separated over S. Since

GΓ(G)×FΓ(G) UFΓ(G) ≃ GΓ(G)×FΓ(G) G
Γ(G),

we find that Fil : GΓ(G)→ FΓ(G) is a principal homogeneous space under UFΓ(G),
therefore also a smooth, surjective and affine morphism.

We finally show that F is surjective. Let s → S be a geometric point, P a
parabolic subgroup of Gs. Choose a Borel B ⊂ P and a maximal torus T ⊂ B.
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Let R and RP ⊂ X∗(T ) be the set of roots of T in Lie(Gs) and Lie(P ), so that
R = RP

∐
−RU with RU = RP \ −RP . Let S ⊂ RP ⊂ R be the set of simple

roots attached to B, so that S = SU

∐
Sc
U with SU = S ∩RU . Then every β ∈ RP

(resp. −RU ) can be written as β =
∑

α∈S nαα with nα ∈ Z for α ∈ S and nα ≥ 0
(resp. < 0) for α ∈ SU . Since the elements of S are linearly independent in X∗(T ),
there is an element χ in the dual space X∗(T ) such that 〈α, χ〉 = 0 for α ∈ Sc

U and
〈α, χ〉 > 0 for α ∈ SU , in which case 〈α, χ〉 ≥ 0 ⇐⇒ α ∈ RP for every α ∈ R.
Choose an element γ > 0 in Γ and let G : Ds(Γ)→ T be the unique morphism such
that α ◦ G = 〈α, χ〉 γ for all α ∈ X∗(T ). Then PG = P , i.e. F ◦ Fil(G) = P . �

Corollary 18. If S is affine, then Fil : GΓ(G) → FΓ(G) identifies Γ(S,FΓ(G))
with the quotient of Γ(S,GΓ(G)) for the Par-equivalence relation ∼Par.

Proof. This follows from [12, XXVI 2.2]. �

Remark 19. We will show later that FΓ(G) → S satisfies the valuative criterion
of properness (Proposition 65). Then so do F : FΓ(G) → P(G) (because P(G) is
projective over S) and FΓ(G) →֒ GΓ(RP(G)) (by Proposition 3 and Lemma 4).

2.3. Opposition. The inversion of G induces an involution ι of GΓ(G). The proof
of Proposition 13 and the last statement of [12, XXVI 6.1] show that PιG is opposed
to PG , with Levi subgroup PG ∩PιG = LG = LιG . By [12, XXVI 4.3.4], the formula

OPP(G)(S′) = {(P1, P2) pair of opposed parabolic subgroups of GS′}

defines an open subscheme OPP(G) of P(G)2, giving rise to a commutative diagram

GΓ(G)
∆ //

δ

��

OFFΓ(G)
q

//
� _

��

OFPΓ(G) //
� _

��

OPP(G)
� _

��

GΓ(G)2
Fil2 // FΓ(G)2

(Id,F )
// FΓ(G)×S P(G)

(F,Id)
// P(G)2

where δ(G) = (G, ιG) and the last two squares are cartesian.

Proposition 20. ∆ is an open and closed immersion and q◦∆ is an isomorphism.

Proof. Since q is separated and unramified by Proposition 17, the second claim
implies the first one by [16, 5.4.6] and [19, 17.4.2]. Let (F , P ) be a section of

OFP
Γ(G) over some S-scheme S′. Then PF ∩ P is a Levi subgroup L of PF , the

composition L →֒ PF ։ PF/UF is an isomorphism and there is a unique morphism

G : DS′(Γ)→ L

with G = fF , where (PF , fF ) is the image of F in GΓ(RP(G)) and G = G mod UF .
We claim that q ◦ ∆(G) = (F , P ), which amounts to PF = PG and P = PιG

since already G = fF . This being now a local question on S′, we may assume
that F = Fil(G′) for some G′ : DS′(Γ) → G. Then LG′ is another Levi subgroup
of PF = PG′ , thus uLG′u−1 = L for a (unique) u ∈ UF (S

′) by [12, XXVI 1.8].
Replacing G′ by uG′u−1, we may assume that LG′ = L, in which case G′ = G since
G′ = fF . Thus PG = PG′ = PF . Since PιG = PιG′ is opposed to PG = PF and
contains L, PιG = P by [12, XXVI 4.3.2]. We have thus constructed a section
(F , P ) 7→ s(F , P ) = G to q ◦∆. One checks that also s ◦ q ◦∆ = Id. �
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Remark 21. For a shorter proof, note that q ◦∆ is a morphism of UFΓ(G)-torsors:

GΓ(G)
q◦∆

//

Fil
!!B

BB
BB

BB
B

OFP
Γ(G)

p1
||xx
xx
xx
xx

FΓ(G)

Therefore q ◦∆ is an isomorphism.

2.4. Types. The Stein factorization of P(G)→ S is given by

P(G)
t
−→ O(G)→ S

where O(G) is the S-scheme of open and closed subschemes of the Dynkin S-scheme
DYN(G) of the reductive group G/S, see [12, XXIV 3.3]. Both DYN(G) and O(G)
are twisted constant finite schemes over S, the morphism t is smooth, projective,
with non-empty geometrically connected fibers; it classifies the parabolic subgroups
of G in the following sense: two parabolic subgroups P1 and P2 of G are conjugated
locally in the fpqc topology on S if and only if t(P1) = t(P2), see [12, XXVI 3.3].

On P(G), we have the torus RP(G) = Rad(PP(G)/UP(G)). We claim that it de-
scends canonically to a torus RO(G) over O(G). Since t is faithfully flat and quasi-
compact, it is a morphism of effective descent for affine group schemes by [2, VIII
2.1], thus also for tori by definition [1, IX 1.3]. Our claim now follows from:

Lemma 22. There exists a canonical descent datum on RP(G) with respect to t.

Proof. We have to show that for any T → S and any pair of parabolic subgroups
P1 and P2 of GT such that t(P1) = t(P2), there exists a canonical isomorphism
R(P1) ≃ R(P2). Let Mi = Pi/Ui be the maximal reductive quotient of Pi, so
that Ri = R(Pi) is the radical of Mi. We may assume that T = S and, by a
descent argument, that P2 = Int(g)(P1) for some g ∈ G(S). Then Int(g) induces
isomorphisms P1 → P2, M1 → M2 and R1 → R2. Since g is well-defined up to
right multiplication by an element of P1(S) thanks to [12, XXVI 1.2], M1 → M2

is well-defined up to an inner automorphism of M1 and R1 → R2 does not depend
upon any choice: this is our canonical isomorphism. �

Since RP(G) = (RO(G))P(G), also GΓ(RP(G)) = GΓ(RO(G))P(G) and therefore

GΓ(RP(G))×GΓ(RO(G)) G
Γ(RP(G)) ≃ GΓ(RP(G))×O(G) P(G)

((P1, f1), (P2, f2)) 7→ ((P1, f1), P2) .

Lemma 23. This isomorphism restricts to an isomorphism

FΓ(G) ×GΓ(RO(G)) F
Γ(G) ≃ FΓ(G)×O(G) P(G).

Proof. We have to show that given T → S and a pair of elements

((P1, f1), P2) ∈ FΓ(G)(T )× P(G)(T )

such that t(P1) = t(P2), the canonical isomorphism between R(P1) and R(P2) maps
f1 : DT (Γ) → R(P1) to a morphism f2 : DT (Γ) → R(P2) such that (P2, f2) also
belongs to FΓ(G)(T ). We may assume that T = S, S is affine and P2 = Int(g)(P1)
for some g ∈ G(S). Then (P1, f1) = (PG ,G) for some G : DS(Γ)→ G by corollary 18
and obviously (P2, f2) = (PH,H) with H = Int(g) ◦ G. �
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Definition 24. We denote by t : FΓ(G) → CΓ(G) the quotient of FΓ(G) in the
category of fpqc sheaves on Sch/S for the equivalence relation defined by

t′ : FΓ(G) →֒ GΓ(RP(G))→ GΓ(RO(G)).

We now have a diagram of fpqc sheaves on Sch/S,

FΓ(G)
t
−→ CΓ(G)

F
−→ O(G).

Proposition 25. The fpqc sheaf CΓ(G) : (Sch/S)◦ → Set is representable by a
smooth and separated scheme over S and the following diagram is cartesian:

FΓ(G)
� � //

t

��

GΓ(RP(G)) //

t

��

P(G)

t

��

CΓ(G)
� � // GΓ(RO(G)) // O(G)

Moreover t : FΓ(G) → CΓ(G) is smooth projective with non-empty geometrically
connected fibers and F : CΓ(G)→ O(G) is unramified, separated and surjective.

Proof. Repeating the proof of Proposition 17 (with Lemma 23 instead of 14), we
obtain: CΓ(G) is representable, smooth and separated over S, t : FΓ(G) → CΓ(G)
is faithfully flat and locally of finite presentation, while F : CΓ(G) → O(G) is
separated and unramified. We then only have to show that

FΓ(G) ≃ CΓ(G) ×O(G) P(G)

This follows from Lemma 23 by descent along t : FΓ(G)→ CΓ(G). �

Remark 26. It follows from the definitions that t ◦ Fil : GΓ(G) → CΓ(G) is the
quotient of GΓ(G), in the category of fpqc sheaves on Sch/S, for the equivalence
relation defined by GΓ(G)→ GΓ(RP(G))→ GΓ(RO(G)). We have:

Lemma 27. For G1,G2 : DS(Γ)→ G, the following conditions are equivalent

(1) t ◦ Fil(G1) = t ◦ Fil(G2)
(2) t(PG1) = t(PG2 ) and the canonical isomorphism RG1 ≃ RG2 maps G1 to G2.
(3) G1 and G2 are conjugated, locally on S for the fpqc topology.
(4) (If S is semi-local) There exists g ∈ G(S) such that Int(g) ◦ G1 = G2.

Proof. Obviously (4) ⇒ (3) ⇒ (2) and (1) ⇔ (2) by definition. Suppose now
that Int(g) ◦ PG1 = PG2 and the canonical isomorphism maps G1 to G2. Then
Fil(Int(g) ◦ G1) = Fil(G2) and Int(pg) ◦ G1 = G2 for some p ∈ PG2(S) by Lemma 14.
Therefore (2)⇒ (3) and (2)⇒ (4) in the semi-local case by [12, XXVI 5.2]. �

2.5. CΓ(G) is a monoid. There is natural structure of commutative monoid on
the S-scheme O(G), given by the intersection morphism

∩ : O(G)×S O(G)→ O(G) (a, b) 7→ a ∩ b

Let O′(G) be the open and closed subscheme of O(G)×S O(G) on which a∩ b = a,
i.e. a ⊂ b. Let p1 and p2 : O′(G)→ O(G) be the two projections. We claim:

Lemma 28. There exists a canonical morphism p∗2RO(G) → p∗1RO(G).
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Proof. Let P′(G) be the inverse image of O′(G) in P(G)×S P(G), and denote by q1
and q2 : P′(G) → P(G) the two projections. Then q∗i (RP(G)) = (p∗iRO(G))P′(G) for
i ∈ {1, 2}. We have to show that there is a canonical morphism q∗2RP(G) → q∗1RP(G),
compatible with the descent data on both sides. This boils down to: for any S′ → S
and (P1, P2) ∈ P′(G)(S′), there exists a canonical morphism R(P2) → R(P1). We
may assume that S′ = S. Since t(P1) ⊂ t(P2), there exists by [12, XXVI 3.8] a
parabolic subgroup P ′

2 of G, containing P1, such that t(P2) = t(P ′
2). Using the

canonical isomorphism R(P ′
2) ≃ R(P2), we may thus assume that P ′

2 = P2, i.e.
P1 ⊂ P2. Let Ui be the unipotent radical of Pi, so that U2 ⊂ U1 is a normal
subgroup of P1. Then P1/U2 is a parabolic subgroup of P2/U2 with maximal
reductive quotient P1/U1, which reduces us further to the case where G = P2.
Then P1 contains the radical R(G) of G, and P1 → P1/U1 maps R(G) to the
radical R(P1) of P1/U1. This yields our canonical morphism R(P2)→ R(P1). �

Pulling back the above morphism through

O(G)×S O(G) → O′(G)

(a, b) 7→ (a ∩ b, b)

we obtain a morphism p∗2RO(G) → (∩)∗RO(G) of tori over O(G) ×S O(G). By
symmetry, there is also a morphism p∗1RO(G) → (∩)∗RO(G). The product of these
two yields a morphism in the fibered category of tori over Sch/S,

RO(G) ×S RO(G)
//

��

RO(G) ×O(G) RO(G)

��

O(G)×S O(G)
∩ // O(G)

Composing it with the multiplication map on the O(G)-torus RO(G), we obtain yet
another such morphism, namely

RO(G) ×S RO(G)
//

��

RO(G)

��

O(G)×S O(G)
∩ // O(G)

Applying now the GΓ(−) construction to the latter diagram yields a morphism

GΓ(RO(G))×S GΓ(RO(G)) //

��

GΓ(RO(G))

��

O(G)×S O(G)
∩ // O(G)

in the fibered category of commutative group schemes over Sch/S. The top map of
this diagram defines a commutative monoid structure on the S-scheme GΓ(RO(G)).

By construction, the structural morphism GΓ(RO(G)) → O(G) is compatible with
the monoid structures on both sides.

Lemma 29. The S-scheme CΓ(G) is a submonoid of GΓ(RO(G)).

Proof. Using additive notations, we have to show that for S′ → S and c1, c2 in
CΓ(G)(S′), there exists an fpqc cover S′′ → S′ and an element G ∈ GΓ(G)(S′′)
such that c1 + c2 = t′ ◦ Fil′(G) in GΓ(RO(G)). We may assume that S′ = S and
ci = t ◦ Fil(Gi) for some Gi : DS(Γ) → G. Using [12, XXVI 1.4 and XXIV 1.5],
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we may also assume that there is an épinglage (G, T,∆, · · · ) which is adapted
to P1 = PG1 and P2 = PG2 . Then by [12, XXVI 1.6 and 1.8], we may assume
that L1 = LG1 and L2 = LG2 both contain the maximal torus T of G, so that
both G1 and G2 factor through T . Let G = G1 + G2 : DS(Γ) → T →֒ G and
P = PG . We claim that c1 + c2 = t′ ◦ Fil′(G). By [12, XXVI 3.2], t(Pi) = ∆(Pi)S
where ∆(Pi) ⊂ ∆ ⊂ Hom(T,Gm,S) is the set of simple roots occurring in Lie(Li),
i.e. ∆(Pi) = {α ∈ ∆ : α ◦ Gi = 0 ∈ Γ}. By construction, α ◦ Gi ≥ 0 in Γ for every
α ∈ ∆, thus also α ◦ G = α ◦ G1 + α ◦ G2 ≥ 0 in Γ for every α ∈ ∆ with α ◦ G = 0 if
and only if α ◦ G1 = 0 = α ◦ G2. It follows that our épinglage is also adapted to P ,
with ∆(P ) = ∆(P1) ∩∆(P2), i.e. t(P ) = t(P1) ∩ t(P2) in O(G)(S). The inclusion
P ⊂ Pi induces the canonical morphism cani : R(Pi)→ R(P ) and one checks easily
that G = can1 ◦ G1 + can2 ◦ G2. Thus by definition,

c1 + c2 = t′(P, can1 ◦ G1 + can2 ◦ G2) = t′(P,G) = t′ ◦ Fil′(G)

as was to be shown. �

2.6. Isogenies. Suppose that Γ is uniquely divisible, i.e. is a Q-vector space.

Proposition 30. The cartesian diagram below is invariant under central isogenies:

GΓ(G)
Fil //

F
��

FΓ(G)
t //

F
��

CΓ(G)

F
��

OPP(G)
p1 // P(G)

t // O(G)

Proof. The bottom line only depends upon the adjoint group Gad = G/Z(G): this
is true for O(G) because DYN(G) = DYN(Gad) by definition of the Dynkin S-
scheme [12, XXIV 3.3] in view of [12, XXII 4.3.7], and the maps P 7→ P/Z(G)

and P ad 7→ ad−1(P ad) (where ad : G→ Gad is the quotient map) induce mutually
inverse bijections between parabolic subgroups of G and parabolic subgroups of
Gad, which are compatible with the type maps and with opposition. For the top
line, let f : G1 → G2 be a central isogeny [12, XXII 4.2.9]. We first claim that
composition with f yields an isomorphism GΓ(G1) → GΓ(G2): for split tori, this
immediately follows from [13, VIII 1.5] and our assumption on Γ; for tori, our
claim is local in the fpqc topology on S by [17, 2.7.1], which reduces us to the
previous case; for arbitrary reductive groups, use Lemma 5 and [1, XVII 7.1.1].
If now P1 is a parabolic subgroup of G1 with image P2 in G2, then f induces an
isogeny R(P1)→ R(P2). Thus f yields an isogeny Rf : RP(G1) → RP(G2) of tori over

P(G1) ≃ P(G2). The induced isomorphism GΓ(RP(G1)) ≃ GΓ(RP(G2)) is compatible

with the morphisms GΓ(Gi)→ GΓ(RP(Gi)), therefore also FΓ(G1) ≃ FΓ(G2). Since
Rf is compatible with the canonical descent data of Lemma 22, it descends to
an isogeny Rf : RO(G1) → RO(G2) of tori over O(G1) ≃ O(G2). The induced

isomorphism GΓ(RO(G1)) ≃ GΓ(RO(G2)) is again compatible with the morphisms

FΓ(Gi)→ GΓ(RO(Gi)), therefore also CΓ(G1) ≃ CΓ(G2). �

Plainly, the above diagrams are also compatible with products. Considering the
canonical diagram of central isogenies [12, XXII 4.3 & 6.2]

R(G)×Gder → G→ Gab ×Gss → Gab ×Gad

where R(G) is the radical of G, Gder its derived group, Gab = G/Gder its coradical,
Gss = G/R(G) its semi-simplification and Gad = G/Z(G) its adjoint group, we
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obtain compatible canonical decompositions

GΓ(G) = GΓ(G)r × GΓ(G)c

FΓ(G) = FΓ(G)r × FΓ(G)c

CΓ(G) = CΓ(G)r × CΓ(G)c

with GΓ(G)c = FΓ(G)c = CΓ(G)c = GΓ(R(G)) = GΓ(Gab) = GΓ(Z(G)) and

GΓ(G)r = GΓ(Gder) = GΓ(Gss) = GΓ(Gad),
FΓ(G)r = FΓ(Gder) = FΓ(Gss) = FΓ(Gad),
CΓ(G)r = CΓ(Gder) = CΓ(Gss) = CΓ(Gad).

The decomposition of CΓ(G) is compatible with its monoid structure.

3. The Tannakian formalism

Let G be an affine and flat group scheme over S and let Γ = (Γ,+,≤) be a non-
trivial, totally ordered commutative group. We will define below an equivariant
diagram of fpqc sheaves (Sch/S)◦ → Group or (Sch/S)◦ → Set:

G

ι
��

acting on GΓ(G)

ι
��

Fil // FΓ(G)

ι
��

Aut⊗(V )

��

· · · GΓ(V )

��

Fil // FΓ(V )

��

Aut⊗(V ◦) or Aut⊗(ω)

��

· · · GΓ(V ◦) or GΓ(ω)

��

Fil // FΓ(V ◦) or FΓ(ω)

��

Aut⊗(ω◦) · · · GΓ(ω◦)
Fil // FΓ(ω◦)

Our main result for this section will then be the following Theorem:

Theorem 31. If G is a reductive group over S, then

G = Aut⊗(V ) = Aut⊗(V ◦) = Aut⊗(ω)
GΓ(G) = GΓ(V ) = GΓ(V ◦) = GΓ(ω)
FΓ(G) = FΓ(V ) = FΓ(V ◦) ⊂ FΓ(ω)

If moreover G is isotrivial and S quasi-compact, then also

G = Aut⊗(ω◦), GΓ(G) = GΓ(ω◦) and FΓ(G) = FΓ(ω) = FΓ(ω◦).

More precisely, we will first show that for any affine flat group scheme G over S,

G = Aut⊗(V ) = Aut⊗(ω)
GΓ(G) = GΓ(V ) = GΓ(ω)
FΓ(G) ⊂ FΓ(V ) ⊂ FΓ(ω)

Then, under technical assumptions which are satisfied by all reductive groups (resp.
all isotrivial reductive groups over quasi-compact bases), we will also establish that

Aut⊗(V ) = Aut⊗(V ◦)
GΓ(V ) = GΓ(V ◦)
FΓ(V ) ⊂ FΓ(V ◦)


resp.

Aut⊗(ω) = Aut⊗(ω◦)
GΓ(ω) = GΓ(ω◦)

FΓ(ω),FΓ(V ◦) ⊂ FΓ(ω◦)


 .
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We will finally show that for G reductive and isotrivial over a quasi-compact S, the
morphism GΓ(G)→ FΓ(ω◦) is an epimorphism of fpqc sheaves on S. Thus

FΓ(G) = FΓ(V ) = FΓ(V ◦) = FΓ(ω) = FΓ(ω◦)

in this case, and the remaining statement, namely

FΓ(G) = FΓ(V ) = FΓ(V ◦)

for a reductive group G over an arbitrary S easily follows.

3.1. Γ-graduations and Γ-filtrations on quasi-coherent sheaves.

3.1.1. LetM be a quasi-coherent sheaf on a scheme X . A Γ-graduation onM is a
collection G = (Gγ)γ∈Γ of quasi-coherent subsheaves ofM such thatM = ⊕γ∈ΓGγ .
A Γ-filtration on M is a collection F = (Fγ)γ∈Γ of quasi-coherent subsheaves
of M such that, locally on X for the fpqc topology, there exists a Γ-graduation
G = (Gγ)γ∈Γ on M for which Fγ = ⊕η≥γGη. We call any such G a splitting of F
and write F = Fil(G). We set Fγ

+ = ∪η>γFη and GrγFM = Fγ/Fγ
+.

Lemma 32. Let F be a Γ-filtration on M. Then γ 7→ Fγ is non-increasing,
exhaustive (∪Fγ =M), separated (∩Fγ = 0), and for every γ ∈ Γ,

0→ Fγ →M→M/Fγ → 0 and 0→ Fγ
+ → F

γ → GrγF (M)→ 0

are pure exact sequences of quasi-coherent sheaves (see 3.12).

Proof. Everything is local in the fpqc topology on X , trivial if F has a splitting. �

3.1.2. These definitions give rise to a diagram of fpqc stacks over Sch

GrΓQCoh
Fil //

FilΓQCoh
Gr

oo
forg

// QCoh

whose fiber over a scheme X is the diagram of exact ⊗-functors

GrΓQCoh(X)
Fil // FilΓQCoh(X)
Gr

oo
forg

// QCoh(X)

where QCoh(X) is the abelian ⊗-category of quasi-coherent sheaves M on X ,

GrΓQCoh(X) is the abelian ⊗-category of Γ-graded quasi-coherent sheaves (M,G)
on X , and FilΓQCoh(X) is the exact (in Quillen’s sense) ⊗-category of Γ-filtered
quasi-coherent sheaves (M,F) on X . The morphisms in these last two categories
are the morphisms of the underlying quasi-coherent sheaves which preserve the
given collections of subsheaves, and the ⊗-products are given by the usual formulas

(M1,G1)⊗ (M2,G2) = (M1 ⊗M2,G) with Gγ = ⊕γ1+γ2=γG1,γ1 ⊗ G2,γ2 ,
(M1,F1)⊗ (M2,F2) = (M1 ⊗M2,F) with Fγ =

∑
γ1+γ2=γ F

γ1

1 ⊗F
γ2

2 .

The second formula makes sense by the purity mentioned above, and indeed defines
a Γ-filtration onM1 ⊗M2: if Gi splits Fi for i ∈ {1, 2}, then G splits F . We have

Fγ
+ =

∑
γ1+γ2>γF

γ1

1 ⊗F
γ2

2

and GrγF(M1 ⊗M2) ≃ ⊕γ1+γ2=γGrγ1

F1
(M1)⊗Grγ2

F2
(M2).



FILTRATIONS AND BUILDINGS 16

The first formula is trivial and gives the morphism (from right to left) in the second
formula, which is easily seen to be an isomorphism by localization to an fpqc cover
of X over which F1 and F2 both acquire a splitting. The neutral object for ⊗ are

1X = (OX ,G of F) with Gγ =

{
OX for γ = 0,

0 otherwise
and Fγ =

{
OX for γ ≤ 0,

0 otherwise.

A morphism (M1,F1) → (M2,F2) is strict if Im(Fγ
1 ) = F

γ
2 ∩ Im(M1) in M2 for

every γ ∈ Γ. The short exact sequences of FilΓQCoh(X) are those made of strict
arrows whose underlying sequence of sheaves is short exact. The formulas

Fil(M,G) = (M,Fil(G)), Gr(M,F) = ⊕γGrγFM and forg(M,−) =M

define the exact ⊗-functors between our three categories. Finally the “base change
functors” defining the fibered category structures on GrΓQCoh and FilΓQCoh are
induced by the base change functors on QCoh (thanks to the purity of the sub-
sheaves). It is well-known that QCoh is an fpqc stack over Sch (see for instance [34,
Theorem 4.23]) and it follows rather formally from their definitions that the other
two fibered categories are also fpqc stacks over Sch. We denote by

GrΓQCoh/S
Fil // FilΓQCoh/S
Gr

oo
forg

// QCoh /S

the corresponding stacks over Sch/S where S is any base scheme.

3.2. Γ-graduations and Γ-filtrations on fiber functors.

3.2.1. Let s : G→ S be an affine and flat group scheme. We denote by Rep(G) the
fpqc stack over Sch/S whose fiber over T → S is the abelian ⊗-category Rep(G)(T )
of quasi-coherent GT -OT -modules as defined in [13, I 4.7.1]. Set A(G) = s∗OG.
Then A(G) is a quasi-coherent Hopf algebra over S and Rep(G)(T ) is ⊗-equivalent
to the category of quasi-coherent A(GT )-comodules where A(GT ) = A(G)T . Let

V : Rep(G)→ QCoh/S

be the forgetful functor. For any S-scheme q : T → S, we denote by

VT : Rep(GT )→ QCoh/T and ωT : Rep(G)(S)→ QCoh(T )

the induced morphism of fpqc stack over Sch/T and fiber functor. Note that ωT

is a right exact ⊗-functor. It also commutes with arbitrary colimits and preserves
pure monomorphisms and pure short exact sequences, where purity in Rep(G)(S)
refers to purity of the underlying objects in QCoh(S).

3.2.2. A Γ-graduation G on VT : Rep(GT )→ QCoh/T is a factorization

Rep(GT )
G

// GrΓQCoh/T
forg

// QCoh/T

of VT such that if Gγ : Rep(GT )→ QCoh/T is the γ-component of G,

(G0) For every T -morphism f : X → Y , ρ ∈ Rep(G)(Y ) and γ ∈ Γ,

f∗(Gγ(ρ)) = Gγ(f
∗ρ).

(G1) For every T -scheme X → T , ρ1, ρ2 ∈ Rep(G)(X) and γ ∈ Γ,

Gγ(ρ1 ⊗ ρ2) = ⊕γ1+γ2=γGγ1(ρ1)⊗ Gγ2(ρ2).
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Thus (G0) says that each Gγ is a morphism of fibered categories over Sch/T . Then
(G1) implies that G0(ρ) = M and Gγ(ρ) = 0 for γ 6= 0 when ρ is the trivial
representation of GX onM ∈ QCoh(X) (one proves it first forM = OX).

3.2.3. A Γ-graduation G on ωT : Rep(G)(S)→ QCoh(T ) is a factorization

Rep(G)(S)
G

// Gr
Γ
QCoh(T )

forg
// QCoh(T )

of ωT such that if Gγ : Rep(G)(S)→ QCoh(T ) is the γ-component of G,

(G1) For every ρ1, ρ2 ∈ Rep(G)(S) and γ ∈ Γ,

Gγ(ρ1 ⊗ ρ2) = ⊕γ1+γ2=γGγ1(ρ1)⊗ Gγ2(ρ2).

(G2) For the trivial representation ρ of G onM ∈ QCoh(S),

G0(ρ) =M and Gγ(ρ) = 0 if γ 6= 0.

Note that each Gγ is right exact, commutes with arbitrary colimits and preserves
pure monomorphisms and pure short exact sequences.

3.2.4. A Γ-filtration F on VT : Rep(GT )→ QCoh/T is a factorization

Rep(GT )
F // FilΓQCoh/T

forg
// QCoh/T

of VT such that if Fγ : Rep(GT )→ QCoh/T is the γ-component of G,

(F0) For every T -morphism f : X → Y , ρ ∈ Rep(G)(Y ) and γ ∈ Γ,

f∗(Fγ(ρ)) = Fγ(f∗ρ).

(F1) For every X → T , ρ1, ρ2 ∈ Rep(G)(X) and γ ∈ Γ,

Fγ(ρ1 ⊗ ρ2) =
∑

γ1+γ2=γF
γ1(ρ1)⊗F

γ2(ρ2).

(F3) For every X → T and γ ∈ Γ, Fγ : Rep(G)(X)→ QCoh(X) is exact.

Thus (F0) says that each Fγ is a morphism of fibered categories over Sch/T . Then
again (F1) and (F3) imply that Fγ(ρ) = M for γ ≤ 0 and Fγ(ρ) = 0 for γ > 0
when ρ is the trivial representation of G on M ∈ QCoh(X).

3.2.5. A Γ-filtration F on ωT : Rep(G)(S)→ QCoh(T ) is a factorization

Rep(G)(S)
F // FilΓQCoh(T )

forg
// QCoh(T )

of ωT such that if Fγ : Rep(G)(S)→ QCoh(T ) is the γ-component of G,

(F1) For every ρ1, ρ2 ∈ Rep(G)(S) and γ ∈ Γ,

Fγ(ρ1 ⊗ ρ2) =
∑

γ1+γ2=γF
γ1(ρ1)⊗F

γ2(ρ2).

(F2) For the trivial representation ρ of G onM ∈ QCoh(S),

Fγ(ρ) =M if γ ≤ 0 and Fγ(ρ) = 0 if γ > 0.

(F3) For every γ ∈ Γ, Fγ : Rep(G)(S)→ QCoh(T ) is right exact.

Since Fγ preserves arbitrary direct sums (as a subfunctor of ωT which does), this
last axiom implies that Fγ commutes with arbitrary colimits. It also preserves pure
monomorphisms and pure short exact sequences.
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3.2.6. We may now introduce a diagram of fpqc sheaves (Sch/S)◦ → Set,

GΓ(V )
res //

Fil
��

GΓ(ω)

Fil
��

FΓ(V )
res // FΓ(ω)

The four presheaves map an S-scheme T to the corresponding set of Γ-graduations
or Γ-filtrations on VT or ωT , the Fil-morphisms are given by post-composition with
the eponymous functors, and the res morphisms map G or F on VT to

Rep(G)(S)→ Rep(G)(T )
GT−→ GrΓQCoh(T ) or · · ·

FT−→ FilΓQCoh(T ).

The fact that all four presheaves are actually fpqc sheaves on S is essentially a formal
consequence of the fact that the corresponding fibered categories of Γ-graded and
Γ-filtered quasi-coherent sheaves are fpqc stacks over Sch/S.

3.2.7. The above diagram is equivariant with respect to a morphism

Aut⊗(V )
res // Aut⊗(ω)

of fpqc sheaves of groups on Sch/S, with Aut⊗(⋆) acting on GΓ(⋆) and FΓ(⋆) and
mapping an S-scheme T to a group Aut⊗(⋆T ) defined as follows: Aut⊗(VT ) is the
group of all automorphisms η : VT → VT such that:

(A0) For every T -morphism f : X → Y and ρ ∈ Rep(G)(Y ),

ηf∗(ρ) = f∗(ηρ).

(A1) For every T -scheme X → T and ρ1, ρ2 ∈ Rep(G)(X),

ηρ1⊗ρ2 = ηρ1 ⊗ ηρ2 .

These conditions imply as above that ηρ = IdM when ρ is the trivial representation

of GX on a quasi-coherent OX -moduleM. Similarly, Aut⊗(ωT ) is the group of all
automorphisms η : ωT → ωT such that:

(A1) For every ρ1, ρ2 ∈ Rep(G)(S),

ηρ1⊗ρ2 = ηρ1 ⊗ ηρ2 .

(A2) For the trivial representation ρ of G onM ∈ QCoh(S),

ηρ = IdM.

The fact that these two presheaves are actually fpqc sheaves on S is essentially a
formal consequence of the fact that QCoh/S is a stack over Sch/S. The morphism
between them sends η ∈ Aut⊗(VT ) to the automorphism of ωT which maps ρ
in Rep(G)(S) to the automorphism ηρT

of V (ρT ) = ωT (ρ), the actions mentioned
above are the obvious ones, and the claimed equivariance is equally straightforward.

3.2.8. For ⋆ ∈ {V, ω} and X ∈ GΓ(⋆)(T ) or FΓ(⋆)(T ), we denote by

Aut⊗(X ) : (Sch/T )◦ → Group

the stabilizer of X in the restriction Aut⊗(⋆)|T of Aut⊗(⋆) to Sch/T . It is an fpqc
subsheaf of Aut⊗(⋆)|T . For X = F in FΓ(⋆)(T ), there is also a morphism

Gr• : Aut⊗(F)→ Aut⊗(Gr•F).
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Here Aut⊗(Gr•F ) is an fpqc sheaf of groups on Sch/T which maps X → T to a
group of automorphisms of Gr•FX

= Gr• ◦ FX subject to conditions whose precise
formulation will be left to the reader. The kernel of this morphism is an fpqc sheaf

Aut⊗!(F) : (Sch/T )◦ → Group.

If G is a splitting of F , then Gr•F ≃ G, thus Aut⊗(Gr•F) ≃ Aut⊗(G) and

Aut⊗(F) ≃ Aut⊗!(F)⋊Aut⊗(G).

3.2.9. There is finally another equivariant diagram of fpqc sheaves on S,

G

ι

��

GΓ(G)
Fil //

ι

��

FΓ(G)

ι

��
acting on

Aut⊗(V ) GΓ(V )
Fil // FΓ(V )

The morphism ι : G → Aut⊗(V ) sends g ∈ G(T ) to the automorphism ι(g) of VT

which maps ρ ∈ Rep(G)(X) to the automorphism ρ(gX) of V (ρ) – for an S-scheme
T and a T -scheme X . The morphism ι : FΓ(G) →֒ FΓ(V ) is the image of

GΓ(G)
ι // GΓ(V )

Fil // FΓ(V )

where ι : GΓ(G) → GΓ(V ) is defined as follows. Recall from [13, I 4.7.3] that the

fpqc stacks GrΓQCoh and RepD(Γ) over Sch are ⊗-equivalent: A Γ-graded quasi-
coherent sheafM = ⊕γ∈ΓGγ on a scheme X is mapped to the unique representation
ρ of DX(Γ) on M such that for every f : Y → X and α : Γ → Γ(Y,O∗

Y ) in
DX(Γ)(Y ), ρ(α)(x) equals α(γ) · x for every γ ∈ Γ and x ∈ Γ(Y, f∗Gγ). Conversely,
a representation ρ of DX(Γ) on a quasi-coherent OX -module M is sent to the
Γ-grading on M defined by the eigenspace decomposition of ρ. Then ι maps a
morphism χ : DT (Γ)→ GT in GΓ(G)(T ) to the Γ-graduation on VT defined by

Rep(GT )
−◦χ

// Rep(DT (Γ)) ≃ GrΓQCoh/T
forg

// QCoh/T.

3.3. The subcategories of rigid objects. We briefly discuss the −◦ variants of
the above definitions, mostly mentioning the new features.

3.3.1. Finite locally free sheaves. Let LF→ Sch be the fibered category whose fiber
over X is the full subcategory LF(X) of QCoh(X) whose objects are the finite
locally free sheaves on X . Then LF is a substack of QCoh by [17, 2.5.2]. Pulling
back everything through LF →֒ QCoh, we obtain a diagram of fpqc stacks over Sch,

Gr
Γ
LF

Fil //
Fil

Γ
LF

Gr
oo

forg
// LF

whose fiber over a scheme X is a diagram of exact (in Quillen’s sense) ⊗-functors

GrΓLF(X)
Fil // FilΓLF(X)
Gr

oo
forg

// LF(X).

An aternative and useful description of the objects of FilΓLF(X) is provided by
Proposition 33 below, which also implies that the Gr functor is indeed well-defined.
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Over a base scheme S, there is the corresponding diagram of fpqc stacks:

GrΓLF/S
Fil //

FilΓLF/S
Gr

oo
forg

// LF/S

3.3.2. These categories have compatible inner Hom’s and duals given by

Hom(x, y) = x∨ ⊗ y with (M,G)∨ = (M∨,G∨) and (M,F)∨ = (M∨,F∨)

whereM∨ is the dual ofM, (G∨)γ = (G−γ)
∨ and (F∨)γ = (F−γ

+ )⊥ = (M/F−γ
+ )∨.

Thus if G is a splitting of F , then G∨ is a splitting of F∨. Moreover, we have

(F∨)γ+ = (F−γ)⊥ ≃ (M/F−γ)∨ and GrγF∨(M∨) ≃ Gr−γ
F (M)∨.

For the inner Homs, we obtain the following formula:

GrγF (Hom(M1,M2)) ≃ ⊕γ2−γ1=γHom
(
Grγ1

F1
(M1),Grγ2

F2
(M2)

)
.

3.3.3. Γ-filtrations on finite locally free sheaves.

Proposition 33. Let M be a finite locally free sheaf on X. Let (Fγ)γ∈Γ be a
non-increasing collection of quasi-coherent subsheaves of M. Then the following
conditions are equivalent:

(1) For every affine open subset U of X, there is a Γ-graduationMU = ⊕γ∈ΓGγ
such that Fγ

U = ⊕η≥γGη for every γ ∈ Γ.
(2) Locally on X for the Zariski topology, there is a Γ-graduationM = ⊕γ∈ΓGγ

such that Fγ = ⊕η≥γGη for every γ ∈ Γ.
(3) Locally on X for the fpqc topology, there exists a Γ-graduationM = ⊕γ∈ΓGγ

such that Fγ = ⊕η≥γGη for every γ ∈ Γ, i.e. F is a Γ-filtration on M.
(4) For every γ ∈ Γ, GrγF(M) is finite locally free and for every x ∈ X,

dimk(x)M(x) =
∑

γ dimk(x) GrγF(x)(M(x)).

In (4), F(x) is the image of F in M(x) =M⊗ k(x) and GrγF(M), GrγF(x)(M(x))

are defined as usual. Under the above equivalent conditions, for all γ ∈ Γ: Fγ, Fγ
+

and GrγF (M) are finite locally free sheaves on X and for every x ∈ X,

Fγ(x) ≃ Fγ ⊗ k(x), Fγ
+(x) ≃ F

γ
+ ⊗ k(x), GrγF(x)(M(x)) ≃ GrγF(M)⊗ k(x).

Proof. Plainly (1) ⇒ (2) ⇒ (3). Moreover (3) ⇒ (4) is easy (using [17, 2.5.2.iii])
and the last assertions follow from (1). To prove that (4) ⇒ (1), we may assume
that X = U is affine. Since GrγF(M) is finite locally free by assumption, it is
then projective in QCoh(X) by [22, Corollary of 7.12]. Therefore, there exists a
quasi-coherent subsheaf Gγ of Fγ such that Fγ = Gγ ⊕F

γ
+. We will show that

M = ⊕γ∈ΓGγ and ∀γ : Fγ = ⊕η≥γGη.

This being now a local question in the Zariski topology of X , we may assume that
the rank of M is constant on X , and also nonzero. Fix x ∈ X and define

Γ(x) = {γ : GrγF(x)(M(x)) 6= 0} = {γ1 < · · · < γr}.

Define U0 = Supp(M/Fγ1)c, Ui = Supp(Fγi

+ /Fγi+1)c ∩ Ui−1 for 0 < i < r and
Ur = Supp(Fγr

+ )c∩Ur−1. SinceM is finite locally free,M/Fγ1 is finitely generated
and U0 is open in X . Since M = Fγ1 over U0 and Fγ1 = Fγ1

+ ⊕ Gγ1 over X ,
M = Fγ1

+ ⊕ Gγ1 over U0. Therefore Fγ1

+ is finite locally free over U0. Repeating
this argument successively with (M, X) replaced by (Fγ1

+ , U0), (F
γ2

+ , U1) etc. . . we
obtain: Ur is open in X ,M = ⊕iGγi

and Fγ = ⊕i:γi≥γGγi
over Ur for every γ ∈ Γ,
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with everyone finite locally free over Ur. All we have to do now is to show that the
formula of (4) implies that x belongs to Ur. The formula is equivalent to:

Fγ(x) =





M(x) if γ ≤ γ1,

Fγi+1(x) if γ ∈]γi, γi+1],

0 if γ > γr.

Since M is finitely generated over X , Fγ1(x) = M(x) implies Fγ1
x = Mx by

Nakayama’s Lemma, thus x belongs to U0. Since M = Fγ1 = Fγ1

+ ⊕ Gγ1 over U0,
Fγ1

+ (x) = Fγ2(x) inM(x) implies Fγ1

+,x = Fγ2
x by Nakayama’s Lemma, therefore x

belongs to U1. Repeating the argument, we find that indeed x belongs to Ur. �

Remark 34. The whole proof becomes much simpler over a Noetherian base.

Lemma 35. Let Mα be a finite collection of locally free sheaves of finite rank
on X and for each α, let (Fγ

α)γ∈Γ be a non-increasing collection of quasi-coherent
subsheaves of Mα. Set M = ⊕Mα and Fγ = ⊕Fγ

α . Then (M, (Fγ)) satisfies the
above equivalent conditions if and only if each (Mα, (Fγ

α)) does.

Proof. For every γ ∈ Γ and x ∈ X , GrγF(M) = ⊕αGrγFα(Mα) and

M(x) = ⊕αMα(x), GrγF(x)(M(x)) = ⊕αGrγFα(x)(Mα(x)).

Moreover for every α and x ∈ X ,

dimk(x)Mα(x) ≥
∑

γ dimk(x) GrγFα(x)(Mα(x)).

The lemma easily follows. �

3.3.4. Let Rep◦(G)→ Sch/S be the substack of Rep(G)→ Sch/S whose fiber over
T → S is the exact, rigid, full sub-⊗-category Rep◦(G)(T ) of Rep(G)(T ) whose
objects are the representations of GT on finite locally free sheaves on T . We write

V ◦ : Rep◦(G)→ LF/S

for the forgetful functor. For an S-scheme T → S, we denote by

V ◦
T : Rep◦(GT )→ LF/T and ω◦

T : Rep◦(G)(S)→ LF(T )

the induced morphism of fpqc stack over Sch/T and fiber functor. Note that ω◦
T is

now an exact ⊗-functor, since all short exact sequences in Rep◦(G)(S) are pure.

3.3.5. We obtain yet another equivariant diagram of fpqc sheaves on S, namely

Aut⊗(V ◦)

res

��

GΓ(V ◦)
Fil //

res

��

FΓ(V ◦)

res

��
acting on

Aut⊗(ω◦) GΓ(ω◦)
Fil // FΓ(ω◦)

where everything is defined as before, using V ◦ and ω◦ instead of V and ω. The only
differences worth mentioning are as follows: for any S-scheme T , the Γ-graduations
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or Γ-filtrations on ω◦
T are automatically compatible with inner Homs and duals,

and there γ-components are exact functors. We also have equivariant diagrams

Aut⊗(V )

res

��

GΓ(V )
Fil //

res

��

FΓ(V )

res

��
acting on

Aut⊗(V ◦) GΓ(V ◦)
Fil // FΓ(V ◦)

and similarly for ω and ω◦, where all the vertical maps are induced by pre-composition
with the full embedding Rep

◦(G) →֒ Rep(G).

3.3.6. Finally, the definitions of Aut⊗(G), Aut⊗(F), Aut⊗!(F) and Aut⊗(Gr•F)
given in section 3.2.8 carry over to the situation considered here.

3.4. Skalar extensions. The whole diagram at the beginning of this section has
now been defined. It is covariantly functorial in G but not entirely compatible with
base change on S: if S̃ → S is any morphism, G̃ = G ×S S̃ and Ṽ , ω̃ . . . are the
relevant functors for G̃, then GΓ(G̃) = GΓ(G)|S̃ , FΓ(G̃) = FΓ(G)|S̃ and

Aut⊗(X̃) = Aut⊗(X)|S̃ , GΓ(X̃) = GΓ(X)|S̃ and FΓ(X̃) = FΓ(X)|S̃

for X ∈ {V, V ◦}, but the natural morphisms of fpqc sheaves on S̃,

Aut⊗(Ỹ )→ Aut⊗(Y )|S̃ , GΓ(Ỹ )→ GΓ(Y )|S̃ and FΓ(Ỹ )→ FΓ(Y )|S̃

may not be isomorphisms for Y ∈ {ω, ω◦}. We investigate this issue.

3.4.1. When C is a category and B is a ring object in C, we can form the category
C(B) of (left) B-modules in C. Here C will be an additive ⊗-category and the ring
object will be given by its multiplication morphism µ : B⊗B → B and unit 1→ B,
where 1 is the neutral object for the tensor product, the abelian group structure
on B being provided by the additive structure of C. Then C(B) is the category of
pairs (M, ν) where M is an object of C and ν : B ⊗M →M is a morphism in C

subject to certain natural conditions. There is an adjunction

f∗ : C↔ C(B) : f∗ given by f∗(M, ν) =M and f∗(N ) = (B ⊗N , µ⊗ Id).

In many cases, it is also possible to equip C(B) with a ⊗-product inherited from
the ⊗-product on C, with (B, µ) as neutral object. Instead of trying to develop this
formal theory more rigorously, let us list some of the relevant examples:

C = QCoh(S) and B = f∗OT where f : T → S is an affine morphism. There is an
equivalence of ⊗-categories C(B) ≃ QCoh(T ) which is compatible with the usual
adjunctions f∗ : QCoh(S)↔ QCoh(T ) : f∗, see [15, 1.4].

C = GrΓQCoh(S) and B as above with the trivial Γ-graduation. The first example

induces an equivalence of ⊗-categories C(B) ≃ GrΓQCoh(T ) which is again compat-
ible with the natural adjunctions.

C = FilΓQCoh(S) and B as above with the trivial Γ-filtration. The first example now

only induces a fully faithful exact ⊗-functor C(B) →֒ FilΓQCoh(T ). The essential
image is made of those Γ-filtered quasi-coherent sheaves (M,F) on T such that,
locally on S (as opposed to T ) for the fpqc topology, F has a splitting.
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C = Rep(G)(S) and B as above with the trivial action of G. The first example again
induces an equivalence of ⊗-categories C(B) ≃ Rep(G)(T ) which is compatible with
the adjunctions given on the comodules by the following formulas

f∗
(
V (ρ)

cρ
−→ V (ρ)⊗OS

A(G)
)

=
(
V (f∗ρ)

cf∗ρ
−→ V (f∗ρ)⊗OT

A(GT )
)
,

f∗

(
V (ρ)

cρ
−→ V (ρ)⊗OT

A(GT )
)

=
(
V (f∗ρ)

cf∗ρ
−→ V (f∗ρ)⊗OS

A(G)
)
.

C = LF(S) and B = f∗OT where f : T → S is a finite étale morphism. The first
example induces an equivalence of ⊗-categories C(B) ≃ LF(T ). We have to show
that for a quasi-coherent sheaf M on T , M is a finite locally free OT -module if
and only if f∗M is a finite locally free OS-module (the direct implication is easy,
and only requires f to be finite and locally free). By [17, 2.5.2], our claim is local
in the fpqc topology on S. But, locally on S for the étale topology, our finite étale
morphism f is simply a finite disjoint union of open and closed embeddings (this
follows from [19, 17.9.3]), for which the claim is now obvious.

Combining this last example with the previous three, we obtain:

C = GrΓLF(S) and B as above with the trivial Γ-graduation. Then C(B) ≃ GrΓLF(T ).

C = FilΓLF(S) and B as above with the trivial Γ-filtration. Then C(B) ≃ FilΓLF(T ).

C = Rep
◦(G)(S) and B as above with the trivial action. Then C(B) ≃ Rep

◦(G)(T ).

3.4.2. The point of this abstract nonsense is that, if α : C→ D is a ⊗-functor and
B is a ring object in C, then α(B) is a ring object in D and α extends to a ⊗-functor
α(B) : C(B) → D(α(B)) which we call the skalar extension of α. Similarly, if η is
a ⊗-isomorphism of α such that ηB is the identity of α(B), then η extends to a
⊗-isomorphism η(B) of α(B) which we call the skalar extension of η.

Proposition 36. (1) Let f : S̃ → S be a finite étale morphism and denote by ω̃

the fiber functors for G̃ = GS̃. Then we have isomorphisms of fpqc sheaves on S̃:

Aut⊗(ω◦)|S̃ = Aut⊗(ω̃◦), GΓ(ω◦)|S̃ = GΓ(ω̃◦) and FΓ(ω◦)|S̃ = FΓ(ω̃◦).

(2) If f is merely affine, then FΓ(ω)|S̃ = FΓ(ω̃).

Proof. (1) Let T be an S̃-scheme. We have to define mutually inverse maps

α :
Aut⊗(ω̃◦)(T ) ←→ Aut⊗(ω◦)(T )

GΓ(ω̃◦)(T ) ←→ GΓ(ω◦)(T )
FΓ(ω̃◦)(T ) ←→ FΓ(ω◦)(T )

: β

functorial in T . The α maps are induced by precomposition with the base change

map Rep◦(G)(S)→ Rep◦(G)(S̃). The β maps are defined by composing the skalar

extension maps with the base change maps for the S̃-section ι : T → T̃ of the
projection fT : T̃ = T ×S S̃ → T given by the structural morphism T → S̃:

β :

Aut⊗(ω◦)(T ) −→ Aut⊗(ω̃◦)(T̃ ) −→ Aut⊗(ω̃◦)(T )

GΓ(ω◦)(T ) −→ GΓ(ω̃◦)(T̃ ) −→ GΓ(ω̃◦)(T )

FΓ(ω◦)(T ) −→ FΓ(ω̃◦)(T̃ ) −→ FΓ(ω̃◦)(T )

Explicitly, for η, G and F in the source sets and ρ̃ ∈ Rep◦(G̃)(S̃), we first view f∗ρ̃
as a B-module in Rep

◦(G)(S) where B = f∗OS̃ with trivial G-action. Then:
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• ηf∗ ρ̃ is a BT -linear isomorphism of ω◦
T (f∗ρ̃) = (fT )∗ω̃

◦
T̃
(ρ̃). It thus corre-

sponds to an isomorphism of ω̃◦
T̃
(ρ̃) whose pull-back to ι∗ω̃◦

T̃
(ρ̃) = ω̃◦

T (ρ̃) is

an isomorphism β(η)ρ̃. By construction, there is a commutative diagram

ω◦
T (f∗ρ̃) = ω̃◦

T (f
∗f∗ρ̃) // //

ηf∗ρ̃

��

ω̃◦
T (ρ̃)

β(η)ρ̃

��

ω◦
T (f∗ρ̃) = ω̃◦

T (f
∗f∗ρ̃) // // ω̃◦

T (ρ̃)

where the horizontal map comes from the adjunction morphism f∗f∗ρ̃→ ρ̃.
• G(f∗ρ̃) is a BT -stable Γ-graduation on (fT )∗ω̃

◦
T̃
(ρ̃), giving a Γ-graduation on

ω̃◦
T̃
(ρ̃) whose pull-back is a Γ-graduation β(G)(ρ̃) on ω̃◦

T (ρ̃). Thus β(G)γ(ρ̃)

is the image of Gγ(f∗ρ̃) under the adjunction morphism ω◦
T (f∗ρ̃) ։ ω̃◦

T (ρ̃).
• F(f∗ρ̃) is a BT -stable Γ-filtration on (fT )∗ω̃

◦
T̃
(ρ̃), giving a Γ-filtration on

ω̃◦
T̃
(ρ̃) whose pull-back is a Γ-filtration β(F)(ρ̃) on ω̃◦

T (ρ̃). Thus B(F)γ(ρ̃) is

the image of Fγ(f∗(ρ̃)) under the adjunction morphism ω◦
T (f∗ρ̃) ։ ω̃◦

T (ρ̃).

One checks easily that α ◦ β = Id and β ◦ α = Id. The proof of (2) is similar. �

Remark 37. We have not mentioned Aut⊗(ω) and GΓ(ω) in part (2) of the above
Proposition, because we will establish a stronger result for them in the next section.

3.5. The regular representation. The single most important representation of
G is the regular representation ρreg. We shall use it to establish the classical:

Theorem 38. The above morphisms of fpqc sheaves induce isomorphisms

G ≃ Aut⊗(V ) ≃ Aut⊗(ω) and GΓ(G) ≃ GΓ(V ) ≃ GΓ(ω).

3.5.1. The regular representation ρreg of G on V (ρreg) = A(G) is defined by

(g · a)(h) = a(hg)

for T → S, a ∈ Γ(T,A(G)T ) = Γ(GT ,OGT
) and g, h ∈ G(T ). The corresponding

A(G)-comodule structure morphism is the comultiplication map:

(
V (ρreg)

creg
−→ V (ρreg)⊗OS

A(G)
)
=

(
A(G)

µ♮

−→ A(G)⊗OS
A(G)

)

The OS-algebra structure morphisms on A(G), namely the unit OS → A(G) and
the multiplication A(G) ⊗A(G)→ A(G) correspond to G-equivariant morphisms

1S → ρreg and ρreg ⊗ ρreg → ρreg.

For any ρ ∈ Rep(G)(S), we denote by ρ0 ∈ Rep(G)(S) the trivial representation of
G on V (ρ0) = V (ρ). We may then view the A(G)-comodule structure morphism
cρ : V (ρ)→ V (ρ)⊗OS

A(G) of ρ as a G-equivariant morphism in Rep(G)(S)

cρ : ρ→ ρ0 ⊗ ρreg

The underlying morphism of quasi-coherent sheaves on S is a split monomorphism

since (Id⊗ 1♮G) ◦ cρ = Id on V (ρ) where 1♮G : A(G)→ OS is the counit of A(G).
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3.5.2. It follows that any η ∈ Aut⊗(ωT ), G ∈ GΓ(ωT ) or F ∈ FΓ(ωT ) is uniquely
determined by its value ηreg, Greg or Freg on ρreg. Indeed for any ρ ∈ Rep(G)(S),
ηρ, G(ρ) and F(ρ) will then be the automorphism, Γ-graduation and Γ-filtration on

ωT (ρ)
� � ωT (cρ)

// ωT (ρ0)⊗ ωT (ρreg)

which are respectively induced by the corresponding objects for ρ0 ⊗ ρreg, namely

ηρ0⊗ρreg = Id⊗ ηreg,

G(ρ0 ⊗ ρreg) = ωT (ρ0)⊗ Greg,

F(ρ0 ⊗ ρreg) = ωT (ρ0)⊗Freg.

We have here used the defining axioms (A1) and (A2) for η, (G1) and (G2) for G
and (F1) and (F2) for F , as well as the fact that for every γ ∈ Γ, the functors Gγ
and Fγ : Rep(G)(S)→ QCoh(T ) both preserve pure short exact sequences.

3.5.3. By the same token, we find that the morphisms of fpqc sheaves

Aut⊗(V )→ Aut⊗(ω), GΓ(V )→ GΓ(ω) and FΓ(V )→ FΓ(ω)

are monomorphisms. For instance if η ∈ Aut⊗(VT ) induces the identity of ωT , then
for any f : X → T and ρ ∈ Rep(G)(X), ηρ is the identity of V (ρ) because

ηρ0⊗ρreg,X = ηρ0 ⊗ ηρreg,X = IdV (ρ0) ⊗ f∗(ηρreg,T )

and ηρreg,T is the trivial automorphism of V (ρreg,T ) = ωT (ρreg).

3.5.4. We now show that G = Aut⊗(ω). Let T be an S-scheme and η ∈ Aut⊗(ωT ).
Recall that ηreg is the OT -linear automorphism of ωT (ρreg) = A(GT ) induced by
η. Since η1S = IdOT

on ωT (1S) = OT by (A2) and ηρreg⊗ρreg = ηreg ⊗ ηreg on

ωT (ρreg ⊗ ρreg) = A(GT )⊗A(GT )

by (A1), the functoriality of η applied to 1S → ρreg and ρreg ⊗ ρreg → ρreg implies
that ηreg is an automorphism of the quasi-coherent OT -algebra A(GT ). Similarly
for any ρ ∈ Rep(G)(S), the G-equivariant morphism cρ : ρ → ρ0 ⊗ ρreg induces a
commutative diagram of quasi-coherent OT -modules

ωT (ρ)
(cρ)T

//

ηρ

��

ωT (ρ0)⊗OT
A(GT )

Id⊗ηreg

��

ωT (ρ)
(cρ)T

// ωT (ρ0)⊗OT
A(GT )

Composing ηreg with the counit 1♮G,T : A(G)T → OT , we obtain a morphism of

OT -algebras s(η)♮ : A(G)T → OT , i.e. a T -valued point s(η) ∈ G(T ). Now for any
g ∈ G(T ) corresponding to g♮ : A(G)T → OT and mapping to ι(g) ∈ Aut⊗(ωT ),
the automorphism ι(g)ρ = ρT (g) of ωT (ρ) is obtained by composing (cρ)T with

Id⊗ g♮ : ωT (ρ)⊗OT
A(G)T → ωT (ρ).

We thus find that s ◦ ι(g) = g since

s ◦ ι(g)♮ = 1♮G,T ◦ ι(g)reg = 1♮GT
◦ (Id⊗ g

♮) ◦ µ♮
T = (1♮GT

⊗ g
♮) ◦ µ♮

T = (1GT · g)♮ = g
♮
.
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On the other hand, ι ◦ s(η) = η since for any ρ ∈ Rep(G)(S),

(ι ◦ s)(η)ρ =
(
Id⊗ 1♮G,T

)
◦ (Id⊗ ηreg) ◦ (cρ)T

=
(
Id⊗ 1♮G,T

)
◦ (cρ)T ◦ ηρ

= ρ(1G)
♮
T ◦ ηρ = ηρ.

Thus G = Aut⊗(ω) and by 3.5.3, also G = Aut⊗(V ).

3.5.5. We now show that GΓ(G) = GΓ(ω). Let T be an S-scheme, G ∈ GΓ(ωT ).
Then for any T -scheme X , the Γ-graduation G on ωT and the ⊗-equivalence

GrΓQCoh(T ) ≃ Rep(DT (Γ))(T )

together induce a factorization

ω1
X : Rep(G)(S)

G′

−→ Rep(DT (Γ))(T )
ω2

X−→ QCoh(X)

of the fiber functor ω1
X for the group scheme G over S through the fiber functor ω2

X

for the group scheme DT (Γ) over T . Moreover G′ is a ⊗-isomorphism preserving
trivial representations by (G1) and (G2). It thus induces a group homomorphism

DT (Γ)(X)
3.5.4
≃ Aut⊗(ω2

X)→ Aut⊗(ω1
X)

3.5.4
≃ G(X).

The latter being functorial in X gives a morphism s(G) : DT (Γ) → GT of group
schemes over T , i.e. an element s(G) of GΓ(G)(T ). Since G 7→ s(G) is itself functorial
in T , it gives a morphism of fpqc sheaves s : GΓ(ω)→ GΓ(G) which is the inverse
of ι : GΓ(G)→ GΓ(ω). Thus GΓ(G) = GΓ(ω) and by 3.5.3, also GΓ(G) = GΓ(V ).

3.6. Relating Rep(G)(S) and Rep◦(G)(S).

3.6.1. While Rep(G)(S) already contains the interesting regular representation, it
could be that Rep◦(G)(S) contains no representations beyond the trivial ones, in
which case Aut⊗(ω◦), GΓ(ω◦) and FΓ(ω◦) are the trivial sheaves represented by S.

For instance, let S be one of the two curves considered in [1, X 6.4], whose
enlarged fundamental group equals Z. Let n ≥ 2 and A ∈ GLn(Z) be any matrix
with no roots of unity as eigenvalue. Then by [1, X 7.1], this determines an n-
dimensional torus G over S, and all representations ρ ∈ Rep◦(G)(S) are trivial
because Zn contains no finite A-orbit except {0}.

3.6.2. When S is quasi-compact, we also consider the full subcategory Rep′(G)(S)
of Rep(G)(S) whose objects are the representations ρ for which ρ = lim−→ τ where

τ runs through the partially ordered set X(ρ) of all subrepresentations of ρ which
belong to Rep◦(G)(S). For such ρ’s, V (ρ) = lim−→V (τ) is a flat OS-module and

the quasi-compactness of S implies that X(ρ) is a filtered set. This subcategory is
stable under tensor product and the ρ 7→ ρ0 construction, it contains Rep◦(G)(S)
as a full subcategory, and for any ρ1, ρ2 ∈ Rep′(G)(S),

(3.1) HomRep(G)(ρ1, ρ2) = lim←−τ1∈X(ρ1)lim−→τ2∈X(ρ2)HomRep◦(G)(τ1, τ2).

We denote by ω′
T : Rep′(G)(S)→ QCoh(T ) the restriction of ωT to Rep′(G)(S) and

define the fpqc sheaf Aut⊗(ω′) : (Sch/S)◦ → Group as before, with automorphisms
of ω′

T satisfying the axioms (A1) and (A2), thus obtaining a factorization

Aut⊗(ω)→ Aut⊗(ω′)→ Aut⊗(ω◦).
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On the other hand, it is obvious that Aut⊗(ω′) = Aut⊗(ω◦).

3.6.3. The following assumption implies that Rep
◦(G)(S) is sufficiently big:

HYP(ω◦) There exists a covering {Si → S} by finite étale morphisms such that
for every i, GSi

/Si satisfies HYP′(ω◦) where:
HYP′(ω◦) S is quasi-compact and ρreg belongs to Rep′(G)(S).

Proposition 39. If G/S satisfies HYP(ω◦), then

G = Aut⊗(ω◦), GΓ(G) = GΓ(ω◦) and FΓ(ω) ⊂ FΓ(ω◦).

Proof. These being fpqc sheaves on S, it is sufficient to establish the Proposition for
their restriction to the Si’s, which by Proposition 36 reduces us to the case where
S is quasi-compact and ρreg belongs to Rep

′(G)(S). The proof of Theorem 38 then

shows that G = Aut⊗(ω′
T ). Thus G = Aut⊗(ω◦). To prove that GΓ(G) = GΓ(ω◦),

we may test this on quasi-compact schemes, and then the proof of section 3.5.5
carries over to this case. Finally: a Γ-filtration F on ωT is uniquely determined by
its value on ρreg by 3.5.3, thus FΓ(ω) ⊂ FΓ(ω◦) since ρreg ∈ Rep′(G)(S). �

3.6.4. For the V ◦ variants of these, one needs a weaker assumption:

HYP(V ◦) Locally on S for the fpqc topology, ρreg belongs to Rep′(G)(S).

Proposition 40. If G/S satisfies HYP(V ◦), then

G = Aut⊗(V ◦), GΓ(G) = GΓ(V ◦) and FΓ(V ) ⊂ FΓ(V ◦).

Proof. This being local in the fpqc topology on S, we may assume that S is quasi-
compact and ρreg is in Rep′(G)(S), then GT /T satisfies HYP′(ω◦) for every quasi-
compact T over S and the proposition easily follows from the previous one. �

3.6.5. It remains to give some cases where our assumptions are met.

Definition 41. A reductive group G over S is called isotrivial if and only if there
exists a covering {Si → S} by finite étale morphisms such that each GSi

is splittable.

For tori, this definition is slightly more general than that given in [1, IX 1.1], which
requires a single finite étale cover S′ → S. If S is quasi-compact, both notions
coincide. For arbitrary reductive groups, [12, XXIV 4.1] only defines local and
semi-local isotriviality. If S is local, these two notions coincide with ours.

Proposition 42. If S is local and geometrically unibranch, then G is isotrivial.

Proof. We may assume that G is a torus by [12, XXIV 4.1.5]. We then have to
show that the connected components of R = HomS(G,Gm,S) are open and finite
over S by [13, X 5.11], and this follows from Proposition 3 and Lemma 4. �

Proposition 43. (1) If S = Spec(A) for a Prüfer domain A and ρ ∈ Rep(G)(S),

ρ ∈ Rep′(G)(S) ⇐⇒ V (ρ) is a flat OS-module.

(2) A split reductive group over a quasi-compact S satisfies HYP′(ω◦)
(3) An isotrivial reductive group over a quasi-compact S satisfies HYP(ω◦)
(4) A reductive group over any S satisfies HYP(V ◦)

Proof. (1) is exactly [35, Corollary 5.10]. For (2), we may assume that G is of
constant type [12, XXII 2.8], thus isomorphic [12, XXIII 5.2] to the base change
of a reductive group G0 over Spec(Z) [12, XXV 1.2] to which (1) now applies.
Obviously (2)⇒ (3), and (2)⇒ (4) by [12, XXII 2.3]. �
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3.6.6. Together with Theorem 38, Proposition 39 and 40 give many cases where
automorphisms or Γ-graduations automatically extend from ω◦ or V ◦ to ω or V . As-
suming that S is quasi-compact, we will now do something similar for Γ-filtrations.

3.6.7. Let F be a Γ-filtration on ω◦
T . For each γ ∈ Γ, we may extend

Fγ : Rep◦(G)(S)→ LF(T ) to Fγ : Rep′(G)(S)→ QCoh(T )

by the formula Fγ(ρ) = lim−→F
γ(τ), where τ runs through X(ρ). It defines a functor

by (3.1), and gives back Fγ(ρ) = Fγ(τ) when ρ = τ belongs to Rep◦(G)(S).
In general, Fγ(ρ) is a pure quasi-coherent subsheaf of V (ρ)T = lim−→V (τ)T since

filtered colimits are exact and commute with base change. While γ → Fγ(ρ) is
non-increasing, it may not be a Γ-filtration on V (ρ)T in our sense. However:

Lemma 44. We have the following properties:

(F1) For every ρ1, ρ2 ∈ Rep
′(G)(S) and γ ∈ Γ,

Fγ(ρ1 ⊗ ρ2) =
∑

γ1+γ2=γF
γ1(ρ1)⊗F

γ2(ρ2).

(F2) For the trivial representation ρ ∈ Rep′(G)(S) on M ∈ QCoh(S),

Fγ(ρ) =M if γ ≤ 0 and Fγ(ρ) = 0 if γ > 0.

(F3r) If ρ ։ τ is an epimorphism with ρ ∈ Rep′(G)(S) and τ ∈ Rep◦(G)(S), then
Fγ(ρ) ։ Fγ(τ) is an epimorphism in QCoh(T ) for every γ ∈ Γ.

(F3l) If ρreg belongs to Rep′(G)(S) and ρ1 →֒ ρ2 is a pure monomorphism in
Rep′(G)(S), then Fγ(ρ1) = Fγ(ρ2) ∩ VT (ρ1) in VT (ρ2) for every γ ∈ Γ.

Proof. (F2) is obvious and (F1), (F3r) follow from the eponymous properties of F
on ω◦

T because, since S is quasi-compact, {τ1 ⊗ τ2 : (τ1, τ2) ∈ X(ρ1) ×X(ρ2)} and
{τ ′ ∈ X(ρ) : τ ′ ։ τ} are respectively cofinal in X(ρ1 ⊗ ρ2) and X(ρ). For (F3l),
we first treat the special case of the pure monomorphism cρ : ρ →֒ ρ0 ⊗ ρreg for an
arbitrary ρ ∈ Rep′(G)(S). Given (F1) and (F2), we have to show that

Fγ(ρ) = ker

[
ωT (ρ)

ωT (cρ)
−→ ωT (ρ0)⊗ (ωT (ρreg)/F

γ(ρreg))

]
.

Since both sides are filtered limits over τ ∈ X(ρ), we may assume that ρ = τ
belongs to Rep◦(G)(S). The right hand side is then the filtered limit of

ker

[
ωT (ρ)

ωT (cρ,τ )
−→ ωT (ρ0)⊗ (ωT (τ)/F

γ(τ))

]
= Fγ(ρ, τ)

where τ ranges through the cofinal set X ′ of X(ρreg) defined by

X ′ =
{
τ : cρ factors as ρ

cρ,τ
−→ ρ0 ⊗ τ →֒ ρ0 ⊗ ρreg

}
.

Note that ρ0 ⊗ τ →֒ ρ0 ⊗ ρreg since V (ρ0) is a flat OS-module. For each τ in
X ′, the cokernel σρ,τ of cρ,τ : ρ →֒ ρ0 ⊗ τ is an object of Rep◦(G)(S): the counit

1♮G : A(G) → OS gives a retraction of V (cρ,τ ), whose kernel is a direct factor of
V (ρ0 ⊗ τ) isomorphic to V (σρ,τ ). Since Fγ is exact on Rep

◦(G)(S), it follows that

Fγ(ρ) = ker

[
ωT (ρ)

ωT (cρ,τ )
−→ ωT (ρ0 ⊗ τ)/Fγ(ρ0 ⊗ τ)

]
= Fγ(ρ, τ)
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for every τ ∈ X ′, which proves our claim. For any morphism ρ1 → ρ2 in Rep′(G)(S)
and any γ ∈ Γ, we now have a commutative diagram with exact rows

0 → Fγ(ρ1) → ωT (ρ1) → ωT (ρ1,0)⊗ ωT (ρreg)/F
γ(ρreg)

↓ ↓ ↓
0 → Fγ(ρ2) → ωT (ρ2) → ωT (ρ2,0)⊗ ωT (ρreg)/Fγ(ρreg)

If V (ρ1)→ V (ρ2) is a pure monomorphism, the vertical maps are monomorphisms,
therefore Fγ(ρ1) = F

γ(ρ2) ∩ ωT (ρ1) in ωT (ρ2): this proves (F3l). �

3.6.8. As before, for every ρ ∈ Rep′(G)(S) and γ ∈ Γ, we define

Fγ
+(ρ) = ∪η>γF

η(ρ) and GrγF(ρ) = F
γ(ρ)/Fγ

+(ρ).

Since again filtered limits are exact, we find that

Fγ
+(ρ) = lim−→F

γ
+(τ) and GrγF (ρ) = lim−→GrγF(τ)

where τ ranges through X(ρ). In particular, the formula

GrγF (ρ1 ⊗ ρ2) ≃ ⊕γ1+γ2=γGrγ1

F (ρ1)⊗Grγ2

F (ρ2)

also holds for ρ1 and ρ2 in Rep′(G)(S). All of the above constructions commute with
arbitrary base change on T . Finally if the original Γ-filtration F on ω◦

T already was
the restriction of some Γ-filtration F ′ on ωT , the restriction of the latter is equal
to the extension of the former on ω′

T since F ′γ commutes with arbitrary colimits.

3.6.9. We first use the above device to show that:

Proposition 45. If G/S satisfies HYP(ω◦), then FΓ(V ◦) →֒ FΓ(ω◦).

Proof. By Proposition 36, we may assume: S is quasi-compact, ρreg ∈ Rep′(G)(S).

We have to show that for an S-scheme T and F ∈ FΓ(V ◦
T ) with image F̃ ∈ FΓ(ω◦

T ),
for any U → T , the Γ-filtration FU on Rep◦(GU )(U) → LF(U) induced by F is

determined by F̃ . We may assume that T and U are quasi-compact. Then: FU is
determined by its extension to Rep′(GU )(U)→ QCoh(U), which itself is determined
by its value on ρreg,U ∈ Rep

′(GU )(U) thanks to (F1-2) and (F3l) applied to the pure
monomorphisms cρ : ρ → ρ0 ⊗ ρreg,U for all ρ’s in Rep′(GU )(U). Since U is quasi-
compact, X(ρreg)U = {τU : τ ∈ X(ρreg)} is cofinal in X(ρreg,U ), thus FU (ρreg,U) is
determined by the restriction of FU to X(ρreg)U . By the axiom (F0) for F , the

latter is determined by the values of FT on X(ρreg)T , which are the values of F̃ on

X(ρreg). Thus F̃ determines FU and F uniquely. �

3.6.10. Here is another useful assumption: we say that G/S is linear if there
exists τ ∈ Rep◦(G)(S) inducing a closed immersion τ : G →֒ GL(V (τ)). Note that
upon replacing τ with τ ⊕ (det τ)−1, we may then also assume that det τ = 1.

Lemma 46. The affine and flat group G over S is linear in the following cases:

(1) G is of finite type over a noetherian regular S with dimS ≤ 2.
(2) HYP(ω◦) holds and moreover S is quasi-separated.
(3) G is an isotrivial reductive group over a quasi-compact S.
(4) G is a reductive group of adjoint type over any S.
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Proof. (1) is [13, VIB 13.2]. For (2), let f : S′ → S be a finite étale cover such
that HYP′(ω◦) holds for G′ = GS′ . Then S′ is also quasi-compact and quasi-
separated, thus by [16, 1.7.9], the finitely generated quasi-coherent OS′ -algebra
A(G′) is generated by a finitely generated quasi-coherent OS′-submodule E . By
assumption HYP′(ω◦) for G′, we may replace E by a larger V (τ ′) for some τ ′ in
X(f∗ρreg). The proof of [13, VIB 13.2] then shows that τ ′ : G′ → GL(V (τ ′))
is a closed immersion. Put τ = f∗τ

′, so that τ belongs to Rep◦(G)(S). Then
τ : G → GL(V (τ)) is a closed immersion. Indeed, it is sufficient to show that
f∗τ : G′ → GL(V (f∗τ)) is a closed immersion by [17, 2.7.1]. But f∗τ = ρ⊗ τ ′ in
Rep◦(G′)(S′), where ρ = f∗f∗1G′ is the trivial representation on V (ρ) = f∗f∗OS′ ,
i.e. f∗τ is the composition

G′ ρ′

// GL(V (τ ′))
Id⊗−

// GL(V (ρ)⊗ V (τ ′))

of two closed immersions, therefore itself a closed immersion. For (3): it is well-
known that the Chevalley groups over SpecZ are linear (a complete overkill: use
(1)), so are therefore also the split reductive groups over any base by [12, XXII 2.8,
XXIII 5.2 and XXV 1.2], to which one reduces as in (2). For (4), simply take τ to
be the adjoint representation ρad of G on its Lie algebra Lie(G) = g = V (ρad). �

3.7. The stabilizer of a Γ-filtration, I.

3.7.1. Let G be a reductive group over S and let ρad ∈ Rep◦(G)(S) be the adjoint
representation of G on V (ρad) = g = Lie(G). Let T be an S-scheme.

Theorem 47. Let F be a Γ-filtration on VT . Then Aut⊗(F) is a parabolic subgroup

PF of GT with unipotent radical UF ⊂ Aut⊗!(F). Moreover,

Lie(UF ) = F
0
+(ρad) and Lie(PF ) = F

0(ρad) in VT (ρad) = gT .

Remark 48. Let χ : DT (Γ)→ GT be a morphism, G the corresponding Γ-graduation
and F the induced Γ-filtration. Let Pχ = Uχ ⋊Lχ be the subgroups of GT defined

in Proposition 13. Since Aut⊗(F) = Aut⊗!(F) ⋊ Aut⊗(G) with Aut⊗(G) equal to
Lχ and isomorphic to Aut⊗(Gr•F ) (because G ≃ Gr•F), the theorem implies that

Pχ = Aut⊗(F), Uχ = Aut⊗!(F) and Pχ/Uχ ≃ Aut⊗(Gr•F ).

Corollary 49. The quotients Fil : GΓ(G) ։ FΓ(G) of GΓ(G) defined in sec-
tions 2.2 and 3.2.9 are canonically isomorphic, and for any F ∈ FΓ(G)(T ),

PF = Aut⊗(ιF), UF = Aut⊗!(ιF) and PF/UF ≃ Aut⊗(Gr•ιF)

where ιF is the image of F in FΓ(VT ).

Proof. For the first assertion, we only have to show that for χ1, χ2 : DT (Γ)→ GT ,

χ1 ∼Par χ2 ⇐⇒ Fil ◦ ι(χ1) = Fil ◦ ι(χ2) in FΓ(VT ).

Put Gi = ι(χi), Fi = Fil(Gi) and Pi = Aut⊗(Fi) = Pχi
. If χ1 ∼Par χ2, then

χ2 = Int(p) ◦ χ1 for some p ∈ P1(T ), thus F2 = pF1 = F1. If F1 = F2 = F , then
P1 = P2 = P and the canonical isomorphism G1 ≃ Gr•F ≃ G2 gives an element of
Aut⊗(VT ) preserving F and mapping G1 to G2, i.e. an element p ∈ P (T ) such that
χ2 = Int(p) ◦ χ1, thus χ1 ∼Par χ2. The remaining assertions are local in the fpqc
topology on T and thus follow from the above remark. �



FILTRATIONS AND BUILDINGS 31

3.7.2. For Γ-filtrations on ωT , we need a technical assumption on G/S:

TA There exists an fpqc cover {fi : Si → S} such that (a) each fi is an affine
morphism, and (b) each Gi = GSi

is linear (3.6.10).

This is true for any reductive group G over a separated S: starting from a Zariski
covering of S by affine Ui’s, we pick fpqc covers {Ui,j → Ui} splitting GUi

, and again
cover the Ui,j ’s by affine Ui,j,k’s. The resulting fpqc cover {Ui,j,k → S} satisfies our
assumption: Ui,j,k → Ui is affine as a morphism between affine schemes, Ui →֒ S is
affine because S is separated, and GUi,j,k

is linear by Lemma 46 since it is split.

Theorem 50. Under this assumption, let F be a Γ-filtration on ωT . Then Aut⊗(F)
is a parabolic subgroup PF of GT with unipotent radical UF ⊂ Aut⊗!(F). Moreover,

Lie(UF ) = F
0
+(ρad) and Lie(PF ) = F

0(ρad) in VT (ρad) = gT .

3.7.3. If F ′ is a Γ-filtration on VT and F is the induced Γ-filtration on ωT , then
Aut⊗(F ′) = Aut⊗(F) as subsheaves of GT by 3.5.3 and Theorem 38. Therefore:
(a) Theorem 50 holds without the technical assumption for such filtrations on ωT ,
and (b) Theorem 47, which is local on S, follows from Theorem 50 applied to any
affine cover of S. We thus only have to consider the case of a Γ-filtration F on ωT .
The technical assumption will be used only once below, in section 3.7.9.

3.7.4. The adjoint-regular representation ρadj of G on V (ρadj) = A(G) is given by

(g · a)(h) = a(g−1hg)

for T → S, a ∈ Γ(T,A(GT )) and g, h ∈ G(T ). The unit, counit 1♮G, multiplication,

comultiplication µ♮ and inversion inv♮ of A(G) define morphisms in Rep(G)(S):

1S → ρadj, ρadj → 1S , ρadj ⊗ ρadj → ρadj, ρadj → ρadj ⊗ ρadj, ρadj → ρadj.

For any ρ in Rep(G)(S), we may also view cρ as a split monomorphism

cρ : ρ→ ρ⊗ ρadj in Rep(G)(S).

If τ belongs to Rep◦(G)(S), cτ gives a morphism τ∨ ⊗ τ → ρadj which induces a
G-equivariant morphism of quasi-coherent G−OS-algebras

Sym•(τ∨ ⊗ τ)→ ρadj

whose underlying morphism of quasi-coherent OS-algebras is given by

Sym•
OS

(V (τ)∨ ⊗ V (τ)) →֒ Sym•
OS

(
EndOS

(τ)
) [

1
det

]
= A (GL(V (τ)))

τ♮

−→ A(G)

where τ ♮ is the morphism attached to τ : G→ GL(V (ρ)). In particular, if the latter
is a closed embedding and det(τ) = 1, then Sym•(τ∨⊗τ) ։ ρadj is an epimorphism.

3.7.5. Let ρ◦adj the kernel of 1♮G : ρadj → 1S . Thus ρadj = ρ◦adj ⊕ 1S and V (ρ◦adj)

is the augmentation ideal I(G) of A(G). For any n ≥ 1, the multiplication map
I(G)⊗n+1 → I(G) defines a morphism (ρ◦adj)

⊗n+1 → ρ◦adj in Rep(G)(S). We denote

by ρn ∈ Rep◦(G)(S) its cokernel, a representation of G on V (ρn) = I(G)/I(G)n+1,
and by ρn = (ρn)∨ ∈ Rep◦(G)(S) the dual of ρn. Thus ρ1 = ρad, the adjoint
representation of G on V (ρad) = g.
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3.7.6. Let now I(F) and J (F) be the quasi-coherent ideals of A(GT ) which are
respectively generated by the quasi-coherent subsheaves F0

+(ρ
◦
adj) and F0(ρ◦adj) of

the augmentation ideal I(GT ) = ωT (ρ
◦
adj) of A(GT ). Then

UF
def
= Spec (A(GT )/J (F)) →֒ PF

def
= Spec (A(GT )/I(F))

are closed subgroup schemes of GT , because J (F) and I(F) are compatible with

the comultiplication µ♮
T and inversion inv♮T of A(GT ), since µ♮ : ρadj → ρadj ⊗ ρadj

and inv♮ : ρadj → ρadj are morphisms in Rep(G)(S). It follows from their definition
that the formation of UF and PF commutes with arbitrary base change on T .

3.7.7. Let N(UF) and N(PF ) be the normalizers of UF and PF in GT . Then

PF ⊂ Aut⊗(F) ⊂ N(UF), N(PF ) and UF ⊂ Aut⊗!(F)

as fpqc subsheaves of GT . We have to check this on sections over an arbitrary
T -scheme X , but we may assume that X = T . Since G = Aut⊗(ω) by Theorem 38,

Aut⊗(F)(T ) = {g ∈ G(T )| ∀ρ, γ : ρ(g) (Fγ(ρ)) = Fγ(ρ)} .

On the other hand, for any ρ in Rep(G)(S), the morphism cρ : ρ → ρ ⊗ ρadj gives
a morphism ωT (cρ) : ωT (ρ)→ ωT (ρ)⊗ ωT (ρadj) in QCoh(T ) mapping Fγ(ρ) into

Fγ(ρ⊗ ρadj) =
∑

α+β=γF
α(ρ)⊗Fβ(ρadj).

(a) For g in Aut⊗(F)(T ), ρ◦adj(g) fixes F0
+(ρ

◦
adj) = ∪γ>0Fγ(ρ◦adj) as well as the

A(GT )-ideal I(F) which it spans. It follows that the inner automorphism of GT

defined by g fixes PF . Thus g belongs to N(PF )(T ). Similarly, g ∈ N(UF)(T ).
(b) For g in PF (T ), g

♮ : A(GT ) → OT is trivial on Fβ(ρadj) for every β > 0 and
thus ρ(g) = (Id ⊗ g♮) ◦ ωT (cρ) maps Fγ(ρ) into

∑
α≥γ F

α(ρ) = Fγ(ρ). Since g−1

also belongs to PF (T ), ρ(g) fixes Fγ(ρ). Thus g belongs to Aut⊗(F)(T ).
(c) For g in UF(T ), g

♮ − 1♮ : A(GT )→ OT is trivial on F0(ρadj) = OT ⊕F0(ρ◦adj),

thus ρ(g)−ρ(1) =
(
Id⊗

(
g♮ − 1♮

))
◦ωT (cρ) maps Fγ(ρ) into

∑
α>γ F

α(ρ) = Fγ
+(ρ).

Thus g belongs to Aut⊗!(F)(T ).

3.7.8. We will establish below that the neutral components [13, VIB 3.1] U◦
F and

P ◦
F of UF and PF are smooth over S, using the following criterion:

Proposition 51. Let G be affine and smooth over S, A = A(G) and I = I(G).
Let H ⊂ G be a closed subgroup defined by a quasi-coherent ideal J of A such that

(1) J is finitely generated,
(2) J ∩ I2 = I · J in A, and
(3) I/J + I2 is finite locally free on S.

Then H◦ is representable by a smooth open subgroup scheme of H.

Proof. By [13, VIB 3.10], we have to show that H is smooth at all points of its
unit section. Let thus x ∈ H be the image of s ∈ S under 1H : S → H . By [16,
1.4.3 and 1.4.5], we already know from (1) that H is locally of finite presentation
over S. Thus by [19, 17.5.1] and the Jacobian criterion [16, 0IV 22.6.4], we have
to show that Jx/J 2

x ⊗OH,x
k → Ω1

OG,x/OS,s
⊗OG,x

k is injective, where k is the

common residue field of s and x, and the morphism is induced by the universal
derivation d : OG,x → Ω1

OG,x/OS,s
. This map factors through the corresponding
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map for Ix, namely Ix/I2x⊗OS,s
k → Ω1

OG,x/OS,s
⊗OG,x

k, which is injective (because

OG,x/Ix = OS,x is formally smooth over itself!). We thus have to show that

Jx/J
2
x ⊗OH,x

k = Jx/mxJx → Ix/mxIx = Ix/I
2
x ⊗OS,s

k

is injective, where mx is the maximal ideal of OG,x. The latter map is base-changed
from the morphism Jx/JxIx → Ix/I

2
x, which itself is the localization at x of the

morphism I/JI → I/I2, which is a pure monomorphism by assumption. �

3.7.9. We now show that I(F) and J (F) are finitely generated, focusing on I(F)
to simplify the exposition. Let {Si → S} be an fpqc cover as in assumption (TA),
{fi : Ti → T } the corresponding fpqc cover of T , ωi the fiber functor for Gi = GSi

and Fi the extension of FTi
to a Γ-filtration on ωi,Ti

– which exists by Proposition 36
since fi is affine. By [17, 2.5.2], it is sufficient to show that f∗

i I(F) is finitely
generated. Since fi is flat, f∗

i I(F) = I(FTi
) and obviously I(FTi

) = I(Fi). We
may thus assume that G is linear over S: there exists τ ∈ Rep◦(G)(S) inducing a
closed embedding τ : G →֒ GL(V (τ)) with det τ ≡ 1, thus also an epimorphism
S•(τ) = Sym•(τ∨⊗ τ) ։ ρadj of quasi-coherent G-OS-algebras. By the axiom (F3)
for F , I(F) is the image of the ideal I(τ) spanned by F0

+(S
•(τ)) in V (S•(τ))T .

By Proposition 33, there is splitting V (τ∨ ⊗ τ)T = ⊕γGγ of F on τ∨ ⊗ τ . By the
axioms (F1) and (F3), it induces a splitting of F on S•(τ), namely

V (Sn(τ))T = ⊕γ ⊕γ1+···+γn=γ Gγ1 · · · Gγn
.

It follows easily that I(τ) is spanned by the finite locally free subsheaf ⊕γ>0Gγ of
V (τ∨ ⊗ τ)T , therefore I(τ) and I(F) are indeed finitely generated.

3.7.10. We now show that I(F) ∩ I(GT )
2 = I(F) · I(GT ) – the proof for J (F)

is similar. Plainly, I(F) · I(GT ) ⊂ I(F) ∩ I(GT )
2. For the other inclusion, we

may assume that T is affine and work with global sections. Let thus s be a (global)
section of I(F), so that s = a+ b with a a section of F0

+(ρ
◦
adj) and b a section of

I(GT ) · F
0
+(ρ

◦
adj) ⊂ I(GT ) · I(F) ⊂ I(GT )

2.

Then s belongs to I(GT )
2 if and only a does, i.e. a is a section of F0

+(ρ
◦
adj)∩I(GT )

2.
The pure short exact sequence and epimorphism of quasi-coherent sheaves on S

0→ I(G)2 → I(G)→ I(G)/I(G)2 → 0 and I(G)⊗2
։ I(G)

correspond to a pure short exact sequence and epimorphism in Rep(G)(S),

0→ ρ
◦(2)
adj → ρ◦adj → ρ1 → 0 and (ρ◦adj)

⊗2
։ ρ◦adj

which together give, using the axioms (F1) and (F3) for F ,

F0
+(ρ

◦
adj) ∩ I(GT )

2 = F0
+(ρ

◦(2)
adj ) =

∑
γ1+γ2>0F

γ1(ρ◦adj) · F
γ2(ρ◦adj)

which is contained in I(F) · I(GT ), thus I(F) ∩ I(GT )
2 ⊂ I(F) · I(GT ).

3.7.11. We show that I(GT )/I(F) + I(GT )
2 is finite locally free – the proof

for J (F) is similar. By the axiom (F3), I(F) + I(GT )
2/I(GT )

2 is the A(GT )-
submodule of I(GT )/I(GT )

2 = ωT (ρ
1) generated by F0

+(ρ
1), i.e. thisOT -submodule

itself since A(GT ) acts on I(GT )/I(GT )
2 through OT . We are thus claiming that

ωT (ρ
1)/F0

+(ρ
1) is finite locally free, which follows from Proposition 33.
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3.7.12. We have just established that U◦
F and P ◦

F are representable by smooth
open subschemes of UF and PF . They are also finitely presented over T : they
are separated over T as compositions of affine morphisms and open immersions,
and they are quasi-compact over T by [13, VIB 3.9], since UF and PF are finitely
presented over S, being locally of finite presentation by 3.7.9 and [16, 1.4.5], and
affine by definition. From 3.7.7, we obtain the following chain of inclusions

U◦
F ⊂ UF ⊂ Aut⊗!(F)
∩ ∩ ∩
P ◦
F ⊂ PF ⊂ Aut⊗(F)

and
Aut⊗(F) ⊂ N(PF ) ⊂ N(P ◦

F )
‖

Aut⊗(F) ⊂ N(UF ) ⊂ N(U◦
F )

The Lie algebras of U◦
F ⊂ UF and P ◦

F ⊂ PF are respectively given by

Lie(U◦
F) = Lie(UF ) =

(
I(GT )/J (F) + I(GT )

2
)∨

and Lie(P ◦
F ) = Lie(PF ) =

(
I(GT )/I(F) + I(GT )

2
)∨

As quasi-coherent OT -submodules of

Lie(GT ) = gT =
(
I(GT )/I(GT )

2
)∨

they correspond to the OT -linear forms on ωT (ρ
1) = I(GT )/I(GT )

2 vanishing on

F0(ρ1) = J (F) + I(GT )
2/I(GT )

2 and F0
+(ρ1) = I(F) + I(GT )

2/I(GT )
2.

We thus find that, as OT -submodules of gT = ωT (ρad),

Lie(U◦
F) = Lie(UF ) = F

0
+(ρad) and Lie(P ◦

F ) = Lie(PF ) = F
0(ρad).

3.7.13. We show that P ◦
F is a parabolic subgroup of GT with unipotent radical

U◦
F . Since both groups are finitely presented and smooth over T with U◦

F ⊂ N(P ◦
F ),

we may assume that T = Spec(k) for some algebraically closed field k by [12, XXVI
1.1 and 1.6]. Since then T → S is affine, we may also assume that S = Spec(k)
by part (2) of Proposition 36, in which case G is linear by lemma 46. Using the
criterion of [29, IV 2.4.3.1], we now have to verify that

(a) dimU◦
F = dimG/P ◦

F and (b)U◦
F is unipotent.

The equality of dimensions follows from Proposition 52 below since

dimU◦
F = dimk Lie(U

◦
F ) = dimk F

0
+(ρad) =

∑
γ>0 dimk Grγk(ρad)

and

dimG/P ◦
F = dimk g/F

0(ρad) = dimk F
0
+(ρ

∨
ad) =

∑
γ>0 dimk Grγk(ρad).

For (b), pick a finite dimensional faithful representation τ of G. Then

U◦
F ⊂ UF ⊂ Aut⊗!(F) ⊂ U(F(τ))

where U(F(τ)) is the unipotent subgroup of GL(V (τ)) defined by the Γ-filtration
F(τ) on V (τ). Therefore U◦

F is unipotent by [1, XVII 2.2.ii].

3.7.14. By [12, XXII 5.8.5], P ◦
F = N(P ◦

F ), therefore also

P ◦
F = PF = Aut⊗(F) = N(PF ) = N(P ◦

F ).

On the other hand, the above proof of (b) shows that UF has unipotent – thus
connected – geometric fibers, therefore also UF = U◦

F , and this finishes the proof of

our theorem. Note that we can not say much more about Aut⊗!(F) at this point –
we do not even know that it is actually representable.
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3.8. Grothendieck groups. Let again G be affine and flat over S. Let T be an
S-scheme and let F be a Γ-filtration on ω◦

T . Since F and Gr are exact ⊗-functors,

Gr•F : Rep◦(G)(S)
F
−→ FilΓLF(T )

Gr
−→ GrΓLF(T )

is also an exact ⊗-functor. It thus induces a morphism between the Grothendieck
ring K0(G) of Rep◦(G)(S) and the Grothendieck ring of GrΓLF(T ). The rank func-
tion on finite locally free sheaves over T defines a morphism from the latter ring to
the ring C(T,Z[Γ]) of locally constant functions on T with values in the group ring
Z[Γ] of Γ. The Γ-filtration F on ω◦

T thus defines a ring homomorphism

κ(F) : K0(G)→ C(T,Z[Γ])

which maps the class of ρ ∈ Rep◦(G)(S) in K0(G)(S) to the function

t 7→
∑

γ∈Γ dimk(t) (GrγF (ρ)⊗ k(t)) · eγ

where eγ is the basis element of Z[Γ] corresponding to γ. We have:

∀z ∈ K0(G) : κ(F)(z∨) = κ(F)(z)∨

where the involutions z 7→ z∨ are induced by the duality ρ 7→ ρ∨ on Rep◦(G)(S)
and by

∑
xλe

λ 7→
∑

xλe
−λ on Z[Γ]. When G is smooth over S, we define

κ(G) = [ρad]− [ρ∨ad] ∈ K0(G)

and κ(G,F) = image of κ(G) in C(T,Z[Γ])

The formation of κ(G,F) is compatible with arbitrary base change on T .

Proposition 52. If (1) G is an isotrivial reductive group over a quasi-compact S,
or if (2) G is a reductive group over S and F comes from a filtration on ωT , then

κ(G,F) = 0 in C(T,Z[Γ]).

Proof. (1) Let {Si → S} be a covering of S by finite étale morphisms such that each
Gi = GSi

splits. Let {Ti → T } be the corresponding covering of T . By part (1) of
Proposition 36, FTi

extends to a Γ-filtration Fi on ω◦
i : Rep◦(Gi)(Si)→ LF(Ti), and

obviously κ(Gi,Fi) = κ(G,F) ◦ (Ti → T ). We may thus assume that G splits over
S, in which case the Proposition follows from Lemma 53 below. The proof of (2)
is similar: let {t → T } be a covering of T by geometric points, thus Gt splits. By
part (2) of Proposition 36, Ft extends to a Γ-filtration on ω◦

t : Rep(Gt)(t)→ LF(t)
which we also denote by Ft, and obviously κ(Gt,Ft) = κ(G,F) ◦ (t→ T ). �

Lemma 53. If G is a split reductive group over a quasi-compact S, then κ(G) = 0.

Proof. By [12, XXII 2.8], there is a decomposition S =
∐

i∈I Si into open and closed
subschemes Si 6= ∅ of S such that for each i ∈ I, GSi

is of constant type, thus
isomorphic [12, XXIII 5.2] to the base change of a split reductive group G0,i over
Spec(Z) [12, XXV 1.2]. Since S is quasi-compact, the indexing set I is finite and
K0(G) ≃ ⊗i∈IK0(GSi

) with κ(G) =
∑

i∈I κ(G)i where κ(G)i is the image of κ(G0,i)
under K0(G0,i) → K0(GSi

) → K0(G). We may thus assume that S = Spec(A)
where A a principal ideal domain. By [32, Théorème 5], we may even assume that
A = K is a field. Let H be a split maximal torus in G, with character group M and
Weyl group W . The restriction Rep◦(G)→ Rep◦(H) induces a ring homomorphism
K0(G) → K0(H) ≃ Z[M ] which yields an isomorphism from K0(G) to Z[M ]W

by [32, Théorème 4]. Let R ⊂ M be the set of roots of H in the Lie algebra
g = V (ρad). The weight decomposition of ρad|H is then given by g = g0⊕⊕α∈Rgα
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with dimK gα = 1 for every α ∈ R (and g0 = h is the Lie algebra of H). Since
R = −R, we find that ρad|H ≃ ρ∨ad|H . Therefore indeed κ(G) = 0 in K0(G). �

3.9. The stabilizer of a Γ-filtration, II. We have the following variant of The-
orem 47 and 50. Let G be an isotrivial reductive group over a quasi-compact S.

Theorem 54. For an S-scheme T and a Γ-filtration F on V ◦
T or ω◦

T , Aut⊗(F) is

a parabolic subgroup PF of GT with unipotent radical UF ⊂ Aut⊗!(F). Moreover,

Lie(UF ) = F
0
+(ρad) and Lie(PF ) = F

0(ρad) in VT (ρad) = gT .

Corollary 55. For any S-scheme T and F ∈ FΓ(G)(T ),

PF = Aut⊗(ιF), UF = Aut⊗!(ιF) and PF/UF = Aut⊗(Gr•ιF)

where ιF stands for the image of F in either FΓ(V ◦
T ) or FΓ(ω◦

T ).

The proof of the Corollary is identical to that of its earlier counterpart.

3.9.1. By Propositions 43, 39, 40 and 45, it is sufficient to establish the Theorem
for a Γ-filtration F on ω◦

T . For any X-scheme T , we have

Aut⊗(F)(X) = {g ∈ G(X)|∀τ, γ ∈ Rep
◦(G)(S)× Γ : ρX(g) (Fγ(τ )X) = Fγ(τ )X} ,

=
{

g ∈ G(X)|∀ρ, γ ∈ Rep
′(G)(S)× Γ : ρX(g) (Fγ(ρ)X) = Fγ(ρ)X

}

.

We have to show that the fpqc subsheaf Aut⊗(F) : (Sch/T )0 → Set of GT is
representable by a parabolic subgroup with the specified Lie algebra: this is a local
question in the fpqc topology on T . Let {Si → S} be a covering of S by finite
étale morphisms such that Gi = GSi

is split, let {Ti → T } be the induced covering
of T , let ωi denote the fiber functors for Gi and let Fi be the unique extension of
FTi

to a Γ-graduation on ω◦
i,Ti

. Going back to its actual definition in the proof

of Proposition 36, one checks easily that Aut⊗(F)|Ti
= Aut⊗(FTi

) is equal to
Aut⊗(Fi) as a subsheaf of G|Ti

= Aut⊗(ω◦)|Ti
= Aut⊗(ω◦

i )|Ti
. We may (and do)

therefore assume that G is a split reductive group over a quasi-compact S. By [12,
XXII 2.8, XXIII 5.2 and XXV 1.2], we then have a finite partition of S =

∐
Si into

open and closed subschemes such that each Gi = GSi
arises from a split group over

Spec(Z), and repeating the above argument with that covering, we may thus also
assume that G is the base change of a split reductive group G0 over Spec(Z).

3.9.2. In particular, the proof of part (2) of Proposition 43 now shows that with
ρreg, also ρadj and ρ◦adj belong to Rep′(G)(S), to which we have extended F in
section 3.6.6. We may thus define subschemes UF and PF of GT as in section 3.7.6,
and try to follow from there on the subsequent steps of the proof of Theorem 47.
Of course, we have to check that we are only using our filtration where it is defined,
namely on Rep′(G)(S), and that whenever the axiom (F3) was used, we could have
replaced it with the weaker left and right axioms (F3l) or (F3r).

3.9.3. In 3.7.9 and 3.7.10, we used the right exactness of F for (respectively)

A : S•(τ) = Sym•(τ∨ ⊗ τ) ։ ρadj and B : (ρ◦adj)
⊗2

։ ρ◦adj.

To deal with the first one, it would be sufficient to know that there is a cofinal set
Σ ∈ X(ρadj) such that for all σ ∈ Σ, A−1(σ) is still in Rep′(G)(S): then

Fγ(ρadj) = lim−→F
γ(σ)

F3r
= lim−→A(Fγ(A−1(σ)))

= A(Fγ(lim−→A−1(σ))) = A(Fγ(S•(σ))).
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Over a Dedekind domain, we have Wedhorn’s criterion: a ρ is in Rep′(G)(S) if and
only V (ρ) is flat, i.e. torsion free: thus over such a domain, A−1(σ) still belongs to
Rep′(G)(S) for any σ ∈ X(ρadj). Applying this to G0 and choosing τ in 3.7.9 to
also be defined over Spec(Z) settles the case of A, and that of B is similar.

3.9.4. Everything then goes through up to 3.7.13: U◦
F and P ◦

F are smooth sub-
groups of GT with the good Lie algebras, etc. . . In 3.7.13, we may still reduce to the
case where T = Spec(k) for some algebraically closed field k and use the criterion
of [29, IV 2.4.3.1], but we can not change S to Spec(k). However, since we have
already reduced to the split case, Proposition 52 (or Lemma 53) deals perfectly well
with condition (a), and Lemma 46 with condition (b).

3.10. Splitting filtrations. We now come to the main statement of Theorem 31.
Let thus G be a reductive isotrivial group over a quasi-compact S, let T be an
S-scheme and let F be a Γ-filtration on ω◦

T . We will then show that: locally on T
for the étale topology, F has a splitting χ : DT (Γ)→ GT .

3.10.1. Let f : S̃ → S be a finite étale cover splitting G and denote by F̃ the
unique extension of FT̃ to a Γ-filtration on ω̃◦

T̃
(see Proposition 36), where T̃ = TS̃

and ω̃ is the fiber functor for G̃ = GS̃ . If χ : DT̃ (Γ)→ GT̃ is a splitting of F̃ , it is
a fortiori a splitting of FT̃ : we may thus assume that G splits over S.

3.10.2. For a positive integer k, there is a cartesian diagram of fpqc sheaves on S,

GΓ(G)
Prop. 39

k1

��

GΓ(ω◦)
Fil //

k2

��

FΓ(ω◦)

k3

��

GΓ(G)
Prop. 39

GΓ(ω◦)
Fil // FΓ(ω◦)

where the ki’s map χ, G and F to respectively k1(χ) = χ ◦ DT (k),

k2(G)γ(ρ) =

{
0 if γ /∈ kΓ,

Gη(ρ) if γ = kη,
and k3(F)

γ(ρ) =

{
0 if γ /∈ kΓ,

Fη(ρ) if γ = kη.

They are all obviously well-defined monomorphisms, and the image of k2 is the
subsheaf of GΓ(ω◦) made of those Γ-graduation G′ for which G′γ ≡ 0 for γ /∈ kΓ.

The diagram is cartesian because if G′ splits k3(F), then G′γ ≃ Grγk3(F) ≡ 0 for

γ /∈ kΓ, thus G′ = k2(G) for a unique G, which has to also split F since

k3(F) = Fil(G′) = Fil (k2(G)) = k3(Fil(G)).

3.10.3. For a central isogeny f : G→ G′, there is a commutative diagram

GΓ(G)
Prop. 39

f1

��

GΓ(ω◦)
Fil //

f2

��

FΓ(ω◦)

f3

��

GΓ(G′)
Prop. 39

GΓ(ω′◦)
Fil // FΓ(ω′◦)

where ω′ = ω ◦ f∗ denotes the fiber functor for G′ and the fi’s map χ, G and F to
respectively f1(χ) = f ◦ χ, f2(G) = G ◦ f∗ and f3(F) = F ◦ f∗, with

f∗ : Rep(G′)(S)→ Rep(G)(S) f∗(ρ) = ρ ◦ f.



FILTRATIONS AND BUILDINGS 38

We claim that (1) all fi’s are monomorphisms, and (2) the diagram is cartesian.
This is local in the finite étale topology on S by Proposition 36, and we may thus
assume that the kernel C of f is isomorphic to DS(X) for some finite commutative
group X . We fix an S-scheme T and consider sections of the above sheaves over T .
If f ◦ χ1 = f ◦ χ2, then χ−1

1 χ2 is a morphism DT (Γ)→ CT , which has to be trivial
since X is finite and Γ torsion free: f1 is injective. Any ρ ∈ Rep◦(G)(S) has a finite
sum decomposition ρ = ⊕ρ(x) according to the characters x ∈ X of C, and C acts
trivially on ρ(x)⊗k(x) where k(x) ≥ 1 is the order of x in X . If two Γ-filtrations F1

and F2 on ω◦
T induce the same Γ-filtration on ω′◦

T , then F1(ρ) = F2(ρ) for every ρ
on which C acts trivially, thus F1(ρ(x)) = F2(ρ(x)) for every ρ and x by Lemma 56
below, therefore F1(ρ) = F2(ρ) since ρ = ⊕ρ(x): f3 is injective. Similarly: f2
is injective. Finally, suppose that G′ splits f3(F). Let χ′ : DT (Γ) → G′

T be the
corresponding morphism. Fix k ≥ 1 such that k1(χ

′) lifts to χk : DT (Γ) → GT ,
giving a Γ-graduation Gk and a Γ-filtration Fk on ω◦

T . They respectively map to

f2(Gk) = f2 ◦ ι(χk) = ι ◦ f1(χk) = ι ◦ k1(χ
′) = k2 ◦ ι(χ

′) = k2(G
′)

where ι is the isomorphism GΓ(G) ≃ GΓ(ω◦), and

f3(Fk) = f3 ◦ Fil(Gk) = Fil ◦ f2(Gk) = Fil ◦ k2(G
′) = k3 ◦ Fil(G

′) = k3 ◦ f3(F).

Thus f3(Fk) = f3 ◦ k3(F) and Fk = k3(F) since f3 is a monomorphism. Since
Gk splits k3(F), there is a unique G such that F = Fil(G) and k2(G) = Gk by the
cartesian diagram of the previous subsection. Moreover f2(G) = G

′ since

k2 ◦ f2(G) = f2 ◦ k2(G) = f2(Gk) = k2(G
′)

and k2 is a monomorphism: our diagram is indeed cartesian.

Lemma 56. Let M be a finite locally free sheaf on a scheme S, k ≥ 1.

(1) Let F1 and F2 be local direct factors of M. Then:

F⊗k
1 = F⊗k

2 in M⊗k =⇒ F1 = F2 in M.

(2) Let F1 and F2 be Γ-filtrations on M. Then:

F⊗k
1 = F⊗k

2 on M⊗k =⇒ F1 = F2 on M.

Proof. (1) Fix s ∈ S with residue field k(s). We have to show that F1 = F2 in a
neighborhood of s. Shrinking S if necessary, we may assume that F1 and F2 are
free of constant rank n1 and n2. By assumption, nk

1 = nk
2 , therefore n1 = n2 = n.

If n = 0, F1 = 0 = F2 and we are done. Suppose n > 0, and choose a linear form
f : M(s) → k(s) which is non-zero on F1(s) and F2(s). Shrinking S further, we
may lift f to an OS-linear map f :M→OS such that f(F1) = OS = f(F2). Then
for the OS-linear map F = Id⊗ fk−1 :M⊗k →M, we have

F1 = F (F⊗k
1 ) = F (F⊗k

2 ) = F2.

(2) The question is local for the Zariski topology on S. By Proposition 33, we may
thus assume that both filtrations split, say

Fγ
1 = ⊕η≥γG

η
1 and Fγ

2 = ⊕η≥γG
η
2

with Gγi locally free of constant rank nγ
i for every i ∈ {1, 2} and γ ∈ Γ. We then

argue by induction on the constant rank n =
∑

nγ
1 =

∑
nγ
2 ofM. For n = 0, there

is nothing to prove. Suppose n > 0. By assumption, for every γ ∈ Γ,
∑

a1+···+ak=γ

Fa1
1 ⊗ · · · ⊗ F

ak

1 =
∑

a1+···+ak=γ

Fa1
2 ⊗ · · · ⊗ F

ak

2
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which means that
⊕

a1+···+ak≥γ

Ga1
1 ⊗ · · · ⊗ G

ak

1 =
⊕

a1+···+ak≥γ

Ga1
2 ⊗ · · · ⊗ G

ak

2

Let γi be the largest element of the (non-empty!) finite set {a : Gai 6= 0}. Then

⊕a1+···+ak≥γG
a1

i ⊗ · · · ⊗ G
ak

i =





0 if γ > kγi,

Gγi

i ⊗ · · · ⊗ G
γi

i for γ = kγi,

6= 0 if γ ≤ kγi.

Thus kγ1 = kγ2, γ1 = γ2 = γ0 and Gγ0

1 ⊗ · · · ⊗ G
γ0

1 = Gγ0

2 ⊗ · · · ⊗ G
γ0

2 in M⊗k,
therefore Fγ0

1 = Gγ0

1 = Gγ0

2 = Fγ0

2 = N inM by the previous lemma. We conclude
by our induction hypothesis applied to the images of F1 and F2 in M/N . �

3.10.4. Suppose that G = G1 ×S G2. Let F be a Γ-filtration on ω◦
T . Then F

induces a Γ-filtration Fi on the fiber functor ω◦
i,T for Gi by the formulas:

Fγ
1 (ρ1) = F

γ(ρ1 ⊠ 1G2) and Fγ
2 (ρ2) = F

γ(1G1 ⊠ ρ2)

We claim that if χi splits Fi, then χ = (χ1, χ2) splits F . Indeed, we may as above
assume that G1 and G2 are split, and we extend F to Rep′(G)(S). We then have
to show that the Γ-filtration F ′ associated to χ equals F on ρreg. Since

ρreg = ρ1,reg ⊠ ρ2,reg = lim−→ τ1 ⊠ τ2

where ρi,reg is the regular representation of Gi and the colimit is over τi ∈ X(ρi,reg),
it is also sufficient to establish that F ′ equals F on ρ = τ1 ⊠ τ2, τi ∈ Rep◦(G)(S).
Note that ρ = ρ1 ⊗ ρ2 where ρ1 = τ1 ⊠ 1G2 and ρ2 = 1G1 ⊠ τ2. We thus find

Fγ(ρ) =
∑

γ1+γ2=γF
γ1(ρ1)⊗F

γ2(ρ2)

=
∑

γ1+γ2=γF
γ1

1 (τ1)⊗F
γ2

2 (τ2)

= ⊕γ1+γ2≥γG
γ1

1 (τ1)⊗ G
γ2

2 (ρ2)

= ⊕η≥γG
η(ρ1 ⊠ ρ2)

= F ′γ(ρ)

where G and the Gi’s are the Γ-graduations induced by χ and the χi’s.

3.10.5. Applying 3.10.1, 3.10.3 with the central isogeny from G to the product of
its adjoint group and its coradical, and finally 3.10.4, we may assume that G is
either a split torus or a split reductive group of adjoint type.

3.10.6. Let thus first G = DS(M) for some M ≃ Zd and let F be a Γ-filtration on
ω◦
T for an S-scheme T , which we may assume to be (absolutely) affine. Let ρm be

the representation of G on V (ρm) = OS on which G acts by the character m ∈M .
By Proposition 33, there exists a Γ-graduation OT = ⊕γIγ(m) such that

∀γ ∈ Γ : Fγ(ρm) = ⊕η≥γIη(m).

Let Tγ(m) be the support of Iγ(m). Thus T =
∐

γ Tγ(m) and Tγ(m) is open and

closed in T . For t ∈ T and m ∈M , we denote by f(t)(m) the unique element γ in Γ
such that t belongs to Tγ(m). Thus Fγ

t (ρm) = k(t) if γ ≤ f(t)(m) and 0 otherwise,
where k(t) is the residue field at t. Since ρ0 = 1G, f(t)(0) = 0 by the axiom (F2) for
F . Since ρm1 ⊗ρm2 = ρm1+m2 , f(t)(m1+m2) = f(t)(m1)+f(t)(m2) by the axiom
(F1) for F . Thus f(t) : M → Γ is a group homomorphism. Since M is finitely
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generated, f : T → HomGroup(M,Γ) is locally constant, and thus corresponds to a
global section χ : DT (Γ)→ GT of the locally constant sheaf (see [1, VIII 1.5])

Hom(M,Γ)T = Hom(MT ,ΓT ) = Hom(DT (Γ),DT (M)) = Hom(DT (Γ), GT ).

Let F ′ be the corresponding Γ-filtration on ωT . For any morphism φ : M → Γ, let
T (φ) be the open and closed subset of T where f ≡ φ. Thus T =

∐
T (φ) and

T (φ) = ∩m∈MTφ(m)(m) = ∩ri=1Tφ(mi)(mi)

if {m1, . . . ,mr} ⊂M spans M . On T (φ), we find that

F ′γ
T (φ)(ρm) =

{
OT (φ) if γ ≤ φ(m)
0 if γ > φ(m)

}
= Fγ

T (φ)(ρm).

Thus F ′(ρm) = F(ρm) for everym. Extending F as in 3.6.6, alsoF ′(ρreg) = F(ρreg)
since ρreg = ⊕m∈Mρm . Finally F ′(ρ) = F(ρ) for any ρ by (F3l) applied to cρ.
Therefore χ is a splitting of F – it is in fact the unique such splitting.

3.10.7. Suppose finally that G is a split reductive group of adjoint type over S,
let T be an S-scheme, and let F be a Γ-filtration on ω◦

T . We have just recalled that
F is uniquely determined by the value of its extension to Rep′(G)(S) on ρreg, but
we now also have this: there is at most one Γ-filtration F ′ on ωT which equals F
on the adjoint representation ρad of G on V (ρad) = g = Lie(G). In particular, any
morphism χ : DT (Γ)→ GT inducing F on ρad is a splitting of F . To establish our
claim, we consider the G-equivariant epimorphism of quasi-coherent G-OS-algebras

f : Sym•
OS

(ρ∨ad,0 ⊗ ρad)→ ρreg

which is defined as in section 3.7.4, starting from cad : ρad → ρad,0 ⊗ ρreg for the
closed embedding ρad : G → GL(g). If F ′ equals F on ρad, they are also equal on

Sym•
(
ρ∨ad,0 ⊗ ρad

)
by the axioms (F1-3) for Γ-filtrations on ω◦

T , thus also

F ′γ(ρreg) ⊂ F
γ(ρreg)

for every γ ∈ Γ by the axiom (F3) for the Γ-filtration F ′ on ωT — it is not yet
known to be satisfied by the extension of F to Rep′(G)(S), unless we appeal to the
arguments of section 3.9.3, which is not necessary: then F ′γ(ρ) ⊂ Fγ(ρ) for every ρ
in Rep◦(G)(S) by (F3l) with cρ, therefore also F ′γ

+ (ρ) ⊂ Fγ
+(ρ); applying the latter

inclusion to ρ∨ and dualizing gives Fγ(ρ) ⊂ F ′γ(ρ). Thus F = F ′ on ω◦
T .

3.10.8. By Theorem 54, PF = Aut⊗(F) is a parabolic subgroup of GT . Since
our problem is local for the étale topology on T , we may assume that T is affine
and the pair (GT , PF ) has an épinglage E = (H,M,R, · · · ) [12, XXVI 1.14]. Thus
H = DT (M) is a trivialized split maximal torus of GT contained in PF , R ⊂M is
the set of roots of H in gT and if gT = g0 ⊕ ⊕α∈Rgα is the corresponding weight
decomposition (so that g0 = Lie(H)), then Lie(PF ) = g0 ⊕ ⊕α∈R′gα for some
subset R′ of R as in [12, XXVI.1.4]. The maximal torus H ⊂ PF gives rise to a
Levi decomposition PF = UF ⋊ LF with H ⊂ LF , Lie(LF) = g0 ⊕ ⊕α∈R′

1
gα and

Lie(UF ) = ⊕α∈R′

2
gα where R′

1 = {α ∈ R′ : −α ∈ R′} and R′
2 = {α ∈ R′ : −α /∈ R′}

[12, XXII.5.11.3]. We will then show that F has a splitting χ : DT (Γ)→ GT .
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3.10.9. Since H ⊂ PF = Aut⊗(F), the Γ-filtration F is stable under H and

∀γ ∈ Γ, ρ ∈ Rep◦(G)(S) : Fγ(ρ) = ⊕m∈MF
γ
m(ρ)

where Fγ
m(ρ) is the m-th eigenspace of Fγ(ρ), viewed as a representation of H .

Since Lie(UF ) = F0
+(ρad) and Lie(PF ) = F0(ρad) by Theorem 54, Fγ

α(ρad) = 0 for
(γ > 0 and α /∈ R′

2) or (γ = 0 and α /∈ R′ ∪ {0}) while Fγ
α(ρad) = gα when γ ≤ 0

and α ∈ R′ ∪ {0}. This determines Fγ
α(ρad) for α ∈ R′

1 ∪ {0}:

∀α ∈ ±R′
1 ∪ {0} : Fγ

α(ρad) =

{
gα if γ ≤ 0,

0 if γ > 0.

For the remaining α’s (those in ±R′
2), gα is free of rank 1. Using lemma 35, we

obtain a partition T =
∐

T (f) into non-empty open and closed subschemes T (f)
of T indexed by certain functions f : ±R′

2 → Γ such that, over T (f),

∀α ∈ ±R′
2 : Fγ

α(ρad) =

{
gα if γ ≤ f(α),

0 if γ > f(α).

We extend these functions to R ∪ {0} by setting f(R′
1 ∪ {0}) = 0. Thus over T (f),

Fγ(ρad) = ⊕α∈R∪{0}:f(α)≥γgα

Moreover f(α) > 0 (resp. < 0) if and only if α ∈ R′
2 (resp. −R′

2).

3.10.10. We will establish below that each of these f ’s extends to a group homo-
morphism f : M → Γ. The locally constant function T → Hom(M,Γ) mapping
t ∈ T (f) to f thus defines a morphism χ : DT (Γ) → DT (M) = H →֒ GT . By
construction, χ splits F on ρad, therefore χ splits F everywhere by 3.10.7.

3.10.11. To show that f extends to a group homomorphism f : M → Γ, we may
assume that T = Tf = Spec(k) where k is a field. By the definition of adjoint
groups in [12, XXII.4.3.3] and using [12, XXI.3.5.5], we have to show that

(1) f(−α) = −f(α) for every α ∈ R and
(2) f(α+ β) = f(α) + f(β) for every α, β ∈ R such that also α+ β ∈ R.

3.10.12. Since again H ⊂ PF = Aut⊗(F) fixes F , there is a factorization of Gr•F :

Rep◦(G)(S) // GrΓRep◦(H)(k) // GrΓLF(k)

where GrΓRep◦(H)(k) is the abelian ⊗-category of Γ-graded objects in Rep◦(H)(k).
Both functors are exact ⊗-functors, and we thus obtain a factorization of κ(F):

K0(G)
κ // K0(H)[Γ] = Z[M ][Γ] // Z[Γ]

The morphism κ maps the class of ρ ∈ Rep◦(G)(S) to

κ[ρ] =
∑

m,γx
γ
m[ρ] · ǫmeγ

where ǫm ∈ Z[M ] and eγ ∈ Z[Γ] are the basis elements corresponding to m ∈ M
and γ ∈ Γ and xγ

m[ρ] is the dimension of the m-th eigenspace of GrγF(ρ). Thus

κ[ρad] =


dimk(g0) · ǫ

0 +
∑

α∈R′

1

ǫα


 · e0 +

∑

α∈±R′

2

ǫαef(α).
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Since the above functors are compatible with dualities,

κ[ρ∨ad] =



dimk(g0) · ǫ
0 +

∑

α∈R′

1

ǫ−α



 · e0 +
∑

α∈±R′

2

ǫ−αe−f(α)

=


dimk(g0) · ǫ

0 +
∑

α∈R′

1

ǫα


 · e0 +

∑

α∈±R′

2

ǫαe−f(−α).

Since [ρad] = [ρ∨ad] in K0(G) by Lemma 53, f(−α) = −f(α) for every α ∈ R.

3.10.13. We have already defined the dual ρn of ρn = Coker((ρ◦adj)
⊗n+1 → ρ◦adj)

in section 3.7.5. These representations act compatibly (as n varies), functoriality
(as ρ varies) and G-equivariantly on any representation ρ ∈ Rep(G)(S) by

ρn ⊗ ρ
Id⊗cρ

// ρn ⊗ ρ⊗ ρadj
Id⊗proj

// // ρn ⊗ ρ⊗ ρ◦adj
Id⊗proj

// // ρn ⊗ ρ⊗ ρn
evaln // // ρ

For n = 1, we retrieve the usual adjoint G-equivariant action

ad(ρ) : ρad ⊗ ρ→ ρ

of g on V (ρ), which for ρ = ρad is nothing but the usual Lie bracket

[−,−] : ρad ⊗ ρad → ρad.

We also denote by [−,−] : ρn ⊗ ρad → ρad the above actions on ρad. Thus

∀γ ∈ Γ, ∀α, β ∈M : [Fγ
α(ρn), gβ ] ⊂ F

γ+f(β)
α+β (ρad).

In particular, [Fγ
α(ρn), gβ] 6= 0 implies α+ β, β ∈ R ∪ {0} and

f(α+ β) ≥ γ + f(β).

3.10.14. Suppose that α, β and α+β all belong to R, with ℓ(α) ≤ ℓ(β) where ℓ is
the length. Let q and p be the positive integers (with 2 ≤ p+ q ≤ 4) such that

{β + nα ∈ R : n ∈ Z} = {β − (p− 1)α, · · · , β, β + α, · · · , β + qα}

see [12, XXI 2.3.5 and 1]. By Chevalley’s rule [12, XXIII 6.5],

[gα, gβ] = pgα+β and [g−α, g−β ] = pg−α−β .

Thus if p 6= 0 in k, [gα, gβ ] 6= 0 and [g−α, g−β] 6= 0, therefore

f(α+ β) ≥ f(α) + f(β)
f(−α− β) ≥ f(−α) + f(−β)

}
(1)
=⇒ f(α+ β) = f(α) + f(β).

If q = 1, Chevalley’s rule gives [gα, g−α−β] 6= 0 and [g−α, gα+β] 6= 0, thus again
f(α+ β) = f(α) + f(β). This leaves a single case: p = q = 2 = char(k), where the
same method already gives f(β) = f(β − α) + f(α). We will see below that also

[F
2f(α)
2α (ρ2), gβ−α] = gα+β and [F

−2f(α)
−2α (ρ2), gα+β ] = gβ−α.

Therefore f(α+ β) = 2f(α) + f(β − α), thus also f(α+ β) = f(α) + f(β).
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3.10.15. The pure short exact sequences of finite locally free sheaves on S

0 → Sym2
OS

(
I(G)
I(G)2

)
→ I(G)

I(G)3 → I(G)
I(G)2 → 0

0 → ker →
(

I(G)
I(G)2

)⊗2

→ Sym2
OS

(
I(G)
I(G)2

)
→ 0

give rise to pure short exact sequences in Rep◦(G)(S) which dualize to

0 → ρad → ρ2 → Γ2(ρad) → 0
0 → Γ2(ρad) → ρ⊗2

ad → Λ2(ρad) → 0

where Γ2(ρ) = Sym2(ρ∨)∨ = ker
(
ρ2 → Λ2(ρ)

)
. Therefore

[ρ2] = [ρad] + [ρad]
2 − [Λ2(ρad)] in K0(G).

Since g2α = 0 = Λ2(g)2α, the coefficients of ǫ2α in κ[ρ2] and κ[ρ⊗2
ad ] = κ[ρad]

2 are

both equal to e2f(α). Thus if d = ⊕dm is the weight decomposition of d = ω◦
k(ρ2),

then d2α is 1-dimensional and contained in Fγ(ρ2) if and only if γ ≤ 2f(α). In

particular, F
2f(α)
2α (ρ2) = d2α, and similarly for −α. We thus want:

[d2α, gβ−α] = gβ+α and [d−2α, gβ+α] = gβ−α.

3.10.16. This now only involves the split group Gk and its épinglage, all of which
descends to Spec(Z) by [12, XXIII 5.1 and XXV 1.2]. We may thus assume that G
and E = (H,M,R, · · · ) are defined over S = Spec(Z). The épinglage comes along
with simple roots ∆ ⊂ R and, for each α ∈ R, a basis Xα of gα, which extends to
a Chevalley system {Xα : α ∈ R} by [12, XXIII 6.2], giving rise to isomorphisms
uα(t) = exp(tXα) from Ga to the subgroup Uα determined by α ∈ R. As a linear
form on I(G)/I(G)2, Xα corresponds to the composition of u♮

α : I(G) → I(Ga)
with the linear form on I(Ga) = tZ[t] defined by the coefficient of t. If instead we
take the coefficient of t2, we obtain a linear form on I(G)/I(G)3 which is a basis
X2α of d2α. The action of Xα on the regular representation is given by

A(G)→ A(G ×Ga) = A(G)[t] → A(G)

where the first map takes f in A(G) to the function (g, t) 7→ f
(
uα(t)gu

−1
α (t)

)
, and

the second takes the coefficient of t (or evaluates d
dt at t = 0). The action of X2α

is obtained by replacing the second map with the coefficient of t2, thus 2X2α = X2
α

on ρreg, therefore 2X2α = X2
α on all ρ’s. Let us now return to our chain of roots

{β − α, β, β + α, β + 2α} ⊂ R.

By Chevalley’s rule [12, XXIII 6.5]

[Xα, Xβ−α] = ±Xβ and [Xα, Xβ ] = ±2Xβ+α.

Therefore [X2α, Xβ−α] = ±Xβ+α since (we are now over Z!)

2[X2α, Xβ−α] = [2X2α, Xβ−α] = [Xα, [Xα, Xβ−α]] = ±2Xβ+α.

Similarly, [X−2α, Xβ+α] = ±Xβ−α, and this completes our proof.

3.11. Consequences. Let G be a reductive group over S.
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3.11.1. Proof of Theorem 31. The assertions concerning automorphisms and Γ-
graduations follow from Theorem 38 and Propositions 39, 40 and 43. If G is an
isotrivial reductive group over a quasi-compact S, we have monomorphisms

FΓ(V ◦) � w
Prop. 45

**UU
UUU

UUU
UUU

FΓ(G)
� � Cor. 49 // FΓ(V )

'
�

Prop. 40 44iiiiiiiiiii
� w

3.5.3 **UU
UUU

UUU
UUU

FΓ(ω◦)

FΓ(ω)
'
�

Prop. 39

44iiiiiiiiiii

and we have just seen that GΓ(G)→ FΓ(G)→ FΓ(ω◦) is an epimorphism, therefore

FΓ(G) = FΓ(V ) = FΓ(V ◦) = FΓ(ω) = FΓ(ω◦)

in this case, from which easily follows that also

FΓ(G) = FΓ(V ) = FΓ(V ◦)

for any reductive group over any S – and this is contained in FΓ(ω) by 3.5.3.

3.11.2. Since the S-scheme GΓ(G) and FΓ(G) of section 2 represent the functors
indicated in theorem 31, there is a universal Γ-graduation Guniv on VGΓ(G) (inducing
universal Γ-graduations on V ◦

GΓ(G), ωGΓ(G) and ω◦
GΓ(G)) and a universal Γ-filtration

Funiv on VFΓ(G) (inducing universal Γ-filtrations on V ◦
FΓ(G), ωFΓ(G) and ω◦

FΓ(G)) from

which all other Γ-graduations or Γ-filtrations over some base T can be retrieved by
pull-back through unique morphisms T → GΓ(G) or T → FΓ(G) – for the ω◦

variants, we have to assume that G is isotrivial and S quasi-compact, or that the
Γ-graduations or Γ-filtrations (over T ) extend to ω or V ◦. The S-scheme CΓ(G)
is a coarse moduli scheme for either Γ-graduations or Γ-filtrations (on the various
fiber functors): two such objects (over T ) are fpqc locally (on T ) isomorphic if and
only if the induced morphisms T → CΓ(G) are equal.

3.11.3. From this perspective, we may either deduce non-trivial properties of the
S-schemes constructed in section 2 from obvious properties of Γ-graduations and Γ-
filtrations, or non-trivial properties of the latter from already established properties
of the former. We propose the following samples:

Corollary 57. The sequence GΓ(G)
Fil
−→ FΓ(G)

F
−→ CΓ(G) is functorial on the

fibered category of reductive groups over schemes.

Proof. We have to show that for any morphism ϕ : G1 → f∗G2 over f : T1 → T2

in the latter category, there is a canonical commutative diagram of schemes

GΓ(G1)
Fil //

ϕ

��

FΓ(G1)
F //

ϕ

��

CΓ(G1)
struct //

ϕ

��

T1

f

��
GΓ(G2)

Fil // FΓ(G2)
F // CΓ(G2)

struct // T2

In the Tannakian point of view, the first two vertical morphisms are induced by
precomposition with the restriction functor Rep(f∗G2) → Rep(G1) which maps τ
to τ ◦ ϕ. For the third one: if T is a T1-scheme and x is a T -valued point of
CΓ(G1), it lifts to a Γ-filtration over an fpqc covering {Ti → T } of T , and two
such lifts become isomorphic over a common refinement of the corresponding fpqc
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coverings. The image of these lifts in FΓ(G2) thus yield a well-defined morphism
ϕ(x) : T → CΓ(G2), and this defines the morphism ϕ : CΓ(G1)→ CΓ(G2). �

Corollary 58. Suppose that S is affine. Then every Γ-filtration F on VS , V ◦
S or

ωS splits over S, and so do the Γ-filtrations on ω◦
S if G is isotrivial.

Proof. Given Theorem 31, this is just Corollary 18. �

3.12. Appendix: pure subsheaves.

Lemma 59. For A → B → C in QCoh(X), consider the following conditions:

(1) For every quasi-coherent sheaf F on X,

0→ A⊗F → B ⊗F → C ⊗ F → 0 is exact in QCoh(X).

(2) For every morphism f : Y → X,

0→ f∗A → f∗B → f∗C → 0 is exact in QCoh(Y )

(3) For every morphism f : Y → X and quasi-coherent sheaf F on Y ,

0→ f∗A⊗F → f∗B ⊗ F → f∗C ⊗ F → 0 is exact in QCoh(Y )

Then (1)⇐ (2)⇔ (3) and (1)⇔ (2)⇔ (3) if X is quasi-separated.

Proof. Obviously (3) ⇒ (1) and (2). Suppose (2) holds. Let f : Y → X be a
morphism, F a quasi-coherent sheaf on Y , g : Z → Y the structural morphism of
Z = Spec(OY [F ]) where OY [F ] = OY ⊕F is the quasi-coherentOY -algebra defined
by F · F = 0. By assumption, 0→ h∗A → h∗B → h∗C → 0 is an exact sequence of
quasi-coherent sheaves on Z, where h = f ◦ g. Since g is affine,

0→ g∗h
∗A → g∗h

∗B → g∗h
∗C → 0

is an exact sequence of quasi-coherent sheaves on Y . But

g∗h
∗X = g∗g

∗f∗X = f∗X ⊕ f∗X ⊗ F

for any X in QCoh(X), therefore

0→ f∗A⊗F → f∗B ⊗ F → f∗C ⊗ F → 0

is exact and (2)⇒ (3). Suppose now that X is quasi-separated and (1) holds. Let
f : Y → X be any morphism. Let {Xi} and {Yi,j} be open coverings of X and Y
by affine schemes such that f(Yi,j) ⊂ Xi and let fi,j : Yi,j → Xi be the induced
morphism. Since (f∗X )|Yi,j

= f∗
i,j(X|Xi

) for every X ∈ QCoh(X), we have to show

that 0 → f∗
i,j(Ai) → f∗

i,j(Bi) → f∗
i,j(Ci) → 0 is exact on Yi,j for every i, j, with

Xi = X|Xi
. Since Yi,j and Xi are affine, this amounts to showing that

0→ Ai ⊗Oi,j → Bi ⊗Oi,j → Ci ⊗Oi,j → 0

is exact on Xi for every i, j, for the quasi-coherent sheaf Oi,j = (fi,j)∗OYi,j
on

Xi. Since X is quasi-separated, the immersion ιi : Xi →֒ X is quasi-compact and
quasi-separated by [16, 1.2.2.i & 1.2.7.b], thus Fi,j = (ιi)∗Oi,j is a quasi-coherent
sheaf on X by [16, 1.7.4] and 0→ A⊗Fi,j → B ⊗Fi,j → C ⊗Fi,j → 0 is an exact
sequence on X by assumption. Pulling back through the exact restriction functor
ι∗i : QCoh(X)→ QCoh(Xi) yields the desired result. �

Definition 60. We say that the sequence 0 → A
ι
→ B → C → 0 is pure exact, or

that ι is a pure monomorphism, or that ι(A) is a pure (quasi-coherent) subsheaf of
B if the above condition (2) holds.
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Lemma 61. Let B be a quasi-coherent sheaf on X. Then

P : (Sch/X)◦ → Set T 7→ {pure quasi-coherent subsheaves A of BT }

is an fpqc sheaf on Sch/X.

Proof. It’s a functor: if A ∈ P(T ) and α : T ′ → T is an X-morphism, the
monomorphism α∗(A →֒ BT ) identifies α∗(A) with a quasi-coherent subsheaf of
α∗(BT ) = BT ′ , which is pure since for any morphism f ′ : Y → T ′, if f = α ◦ f ′,
then f ′∗ ◦ α∗(A →֒ BT ) = f∗(A →֒ BT ) is a monomorphism of quasi-coherent
sheaves on Y since A is pure in BT . It’s an fpqc sheaf: if {Ti → T } is an fpqc cover
and Ai ∈ P(Ti) have the same image Ai,j ∈ P(Ti ×T Tj), then the quasi-coherent
subsheaves Ai of BTi

glue to a quasi-coherent subsheaf A of BT which is pure since
for any f : Y → T , f∗(A →֒ BT ) is a monomorphism of quasi-coherent sheaves on
Y as it becomes so in the fpqc cover {Y ×T Ti → Y } of Y . �

Lemma 62. Let A be a quasi-coherent subsheaf of B.

(1) Suppose that locally on X for the fpqc topology, A is a direct factor of B.
Then A is a pure subsheaf of B.

(2) Suppose that A is a pure subsheaf of B and C = B/A is finitely presented.
Then locally on X for the Zariski topology, A is a direct factor of B.

Proof. (1) A direct factor being obviously pure, this follows from the previous
lemma. As for (2): the assumptions are local in the Zariski topology by the previous
lemma, we may thus assume that X = Spec(R) for some ring R. Then A = Γ(X,A)
is a pure R-submodule of B = Γ(X,B) in the sense of [22, Appendix to §7] by
(2)⇒ (1) of lemma 59, and C = B/A is a finitely presented R-module. Therefore
A is a direct factor of B by [22, Theorem 7.14], i.e. A is a direct factor of B. �

4. The buildings

4.1. The Tits vectorial building F
Γ(G).

4.1.1. We say that a morphism of posets f : (X,≤)→ (Y,≤) is nice if

∀x, y ∈ X×Y with f(x) ≤ y, there is a unique x′ ∈ f−1(y) with x ≤ x′.

We say that it is very nice if also

∀x, y ∈ X×Y with f(x) ≥ y, there is an x′ ∈ f−1(y) with x ≥ x′.

4.1.2. Let O be a local ring, G a reductive group over Spec(O). We shall here
define an Aut(G)-equivariant sequence of nice surjective morphisms of posets

SBP(G)
a // // SP(G)

b // // OPP(G)
p1

// // P(G)
t // // O(G)

The group G = G(O) acts on it through Int : G→ Aut(G), and we will see that

G\SBP(G) = G\SP(G) = G\OPP(G) = G\P(G) = O(G).
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4.1.3. We first define our posets. We will use the following notations:

S(G) = {S : maximal split torus of G}

B(G) = {B : minimal parabolic subgroup of G}

P(G) = {P : parabolic subgroup of G}

SP(G) = {(S, P ) : ZG(S) ⊂ P}

SBP(G) = {(S,B, P ) : ZG(S) ⊂ B ⊂ P}

OPP(G) = {(P, P ′) : opposed parabolic subgroups of G}

Thus P(G) = P(G)(O) and OPP(G) = OPP(G)(O). In addition, we set

O(G) = image of t : P(G)(O)→ O(G)(O).

We endow P(G) and O(G) with their natural partial orders and the remaining
three sets SBP(G), SP(G) and OPP(G) with the following ones:

(S1, B1, P1) ≤ (S2, B2, P2) ⇐⇒ S1 = S2, B1 = B2 and P1 ⊂ P2

(S1, P1) ≤ (S2, P2) ⇐⇒ S1 = S2 and P1 ⊂ P2

(P1, P
′
1) ≤ (P2, P

′
2) ⇐⇒ P1 ⊂ P2 and P ′

1 ⊂ P ′
2

4.1.4. The morphism t : P(G) → O(G) maps P to its type t(P ). It is plainly a
morphism of posets. It is surjective by definition of O(G), nice by [12, XXVI 3.8]
and even very nice by [12, XXVI 5.5]. The group G acts trivially on O(G), and
G · P = t−1t(P ) by [12, XXVI 5.2], thus G\P(G) = O(G).

4.1.5. The morphism p1 : OPP(G) → P(G) maps (P, P ′) to P . It is plainly
a morphism of posets, and surjective by [12, XXVI 2.3 & 4.3.2]. Let (P, P ′) ∈
OPP(G), Q ∈ P(G) and suppose first that P ⊂ Q. Since t is nice, there is a
unique Q′ ∈ P(G) with P ′ ⊂ Q′ and t(Q′) = ιt(Q), where ι is the opposition
involution of O(G). We have (Q,Q′) ∈ OPP(G) by [12, XXVI 4.3.2 & 4.2.1], thus
p1 is nice. If Q ⊂ P , then QL = Q ∩ L is a parabolic subgroup of L = P ∩ P ′

and its Levi subgroups are the Levi subgroups of Q contained in L by [12, XXVI
1.20]. Since p1 : OPP(L) → P(L) is surjective, there is a parabolic subgroup Q′

L

of L opposed to QL. Then Q′
L = Q′ ∩ L for a unique parabolic subgroup Q′ of

G contained in P ′, and (Q,Q′) ∈ OPP(G) since Q ∩ Q′ = QL ∩ Q′
L is a Levi

subgroup of QL and Q′
L, thus also of Q and Q′. Therefore p1 is very nice. Finally,

the stabilizer of P in G is P = P (O) by [12, XXVI 1.2], and P · (P, P ′) = p−1
1 (P )

by [12, XXVI 1.8 & 4.3.2], thus G\OPP(G) = G\P(G).

4.1.6. The morphism b : SP(G)→ OPP(G) maps (S, P ) to (P, ιSP ), where ιSP
is defined in the following lemma, which also says that b is a morphism of posets.

Lemma 63. For S ∈ S(G) and P ∈ P(G) with ZG(S) ⊂ P , there exists a unique
Levi subgroup L of P and a unique parabolic subgroup ιSP of G opposed to P with
ZG(S) ⊂ L, ιSP . Moreover L = P ∩ ιSP and P 7→ ιSP preserves inclusions.

Proof. By [1, XIV 3.20], there is a maximal torus T in ZG(S). It is also maximal in
G and P . By [12, XXVI 1.6], there is a unique Levi subgroup L of P with T ⊂ L. We
have to show that ZG(S) ⊂ L. By [12, XXVI 6.11], this is equivalent to Rsp(L) ⊂ S,
where Rsp(L) is the split radical of L, i.e. the maximal split subtorus R(L)sp of
the radical R(L) of L. Since T is a maximal torus in L, R(L) is contained in T ,
thus Rsp(L) is contained in the maximal split subtorus Tsp of T , which obviously
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contains S and in fact equals S by maximality of S. This proves the existence and
uniqueness of L. That of ιSP follows from [12, XXVI 4.3.2] which also shows that
L = P ∩ ιSP . If P ⊂ Q, there is a unique (Q,Q′) ∈ OPP(G) with ιSP ⊂ Q′

because p1 is nice, and obviously ιSQ = Q′, thus ιSP ⊂ ιSQ. �

Starting with (P, P ′) ∈ OPP(G) put L = P ∩ P ′ and let S be a maximal split
torus in G containing the split radical Rsp(L) of L. Then ZG(S) ⊂ ZG(Rsp(L))
which equals L by [12, XXVI 6.11], thus (S, P ) ∈ SP(G) and b(S, P ) = (P, P ′),
i.e. b is surjective. It is obviously nice, although not very nice. The stabilizer of
b(S, P ) in G is L = L(O) where L = P ∩ ιSP , and L · (S, P ) = b−1b(S, P ) by [12,
XXVI 6.16], thus G\SP(G) = G\OPP(G).

4.1.7. The morphism a : SBP(G)→ SP(G) maps (S,B, P ) to (S, P ). It is plainly
a nice morphism of poset, although not very nice. Starting with (S, P ) ∈ SP(G), let
L = P ∩ ιSP . Then [12, XXVI 1.20] sets up a bijection between: the set of minimal
parabolic subgroup B of G with ZG(S) ⊂ B ⊂ P (the fiber a−1(S, P )) and the set
of minimal parabolic subgroups BL = B ∩ L of L with ZG(S) ⊂ BL. The latter
set is not empty by [12, XXVI 6.16], thus a is surjective. The stabilizer of (S, P ) in
G equals NL(S) = NL(S)(O) and NL(S) · (S,B, P ) = a−1(S, P ) by [12, XXVI 7.2]
applied to ZG(S) ⊂ L, thus G\SBP(G) = G\SP(G). The stabilizer of (S,B, P ) in
G is the stabilizer of (S,B), namely ZG(S) = ZG(S)(O) since ZG(S) = B ∩ ιSB.

4.1.8. By [12, XXVI 5.7], there is a smallest element ◦ in O(G). For

X in {SBP(G),SP(G),OPP(G),P(G)},

the morphism f : X→ O(G) is very nice. We’ve proved it already in the last two
cases. Since f is nice, our assertion is equivalent to: Xmin = f−1(◦) where Xmin is
the set of minimal elements in X. This is obvious for SBP(G), and also for SP(G)
since a is surjective. For any x ∈ Xmin = f−1(◦), there is then a unique section

(X,≤)
f
// // (O(G),≤)

sx
rr

with sx(◦) = x, and these sections cover X.

4.1.9. Let now Γ = (Γ,+,≤) be a non-trivial totally ordered commutative group
and form the Aut(G)-equivariant cartesian diagram of sets:

ACF
Γ(G)

a // //

F

��

AF
Γ(G)

b // //

F

��

G
Γ(G)

Fil // //

F

��

F
Γ(G)

t // //

F

��

C
Γ(G)

F

��

SBP(G)
a // // SP(G)

b // // OPP(G)
p1 // // P(G)

t // // O(G)

where C
Γ(G) is the inverse image of O(G) under F : CΓ(G)(O) → O(G)(O). By

Propositions 25 and 20, we may (and do!) identify F
Γ(G) with FΓ(G)(O) and
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G
Γ(G) with GΓ(G)(O). With these identifications, we find:

AF
Γ(G) =

{
(S,F) ∈ S(G) × F

Γ(G) with ZG(S) ⊂ PF

}

=
{
(S,G) ∈ S(G)×G

Γ(G) with ZG(S) ⊂ LG

}

=
{
(S,G) : S ∈ S(G), G ∈ G

Γ(S)
}

ACF
Γ(G) =

{
(S,B,F) : S(G) ×B(G)× F

Γ(G) with ZG(S) ⊂ B ⊂ PF

}
{
(S,B,G) : S ∈ S(G), G ∈ G

Γ(S) with ZG(S) ⊂ B ⊂ PG

}
.

4.1.10. Fix S ∈ S(G). Let M be its group of characters, R ⊂M the roots of S in
g = Lie(G) and g = g0 ⊕⊕α∈Rgα the corresponding decomposition of g. Put

W = (NG(S)/ZG(S))(O) = NG(S)(O)/ZG(S)(O).

By [12, XXVI 7.4], there exists a unique root datum R = (M,R,M∗, R∗) with Weyl
group W and a W -equivariant bijection B ↔ R+ between the set of all B ∈ B(G)
with ZG(S) ⊂ B and the set of all systems of positive roots R+ ⊂ R, given by

Lie(B) = g0 ⊕⊕α∈R+gα.

Fix one such B and let ∆ ⊂ R+ be the corresponding set of simple roots. By [12,
XXVI 7.7], there is an inclusion preserving bijection P ↔ A between the set of all
P ∈ P(G) with B ⊂ P and the set of all subsets A of ∆, given by

Lie(P ) = g0 ⊕⊕α∈RA
gα

where RA = R+

∐
(ZA ∩R−) is the set of roots in R = R+

∐
R− which are either

positive or in the group spanned by A. We write PA for the parabolic associated
to A. Since f : SBP(G)→ O(G) is (very) nice, we obtain a poset bijection

fS,B : ({A ⊂ ∆},⊂)→ (O(G),≤), A 7→ t(PA).

Fix one such P = PA. Then the fiber of F : ACF
Γ(G) → SBP(G) above

(S,B, P ) is the set of all (S,B,G) with G ∈ G
Γ(S) = Hom(M,Γ) such that

∀α ∈ ∆ :

{
G(α) = 0 if α ∈ A,

G(α) > 0 if α /∈ A.

Since the elements of ∆ are linearly independent and Γ is non-trivial, this fiber is
not empty and F : ACF

Γ(G)→ SBP(G) is surjective.

4.1.11. It follows that the five F ’s in our diagram are surjective. Their fibers are
called facets, the type of a facet is its image in O(G), and all facets of the same
type are canonically isomorphic. The facets of type ◦ are called chambers. For any
f ′ : X′ → C

Γ(G) over f : X → O(G) in our diagram, the closed facet of x ∈ X

is F−1(x) ⊂ X
′ where x = {y ≥ x}. It is a disjoint union of finitely many facets.

Since x = minFF−1(x), closed facets have a well-defined type and those of the
same type are canonically isomorphic. We equip the set of closed facets with the
partial order given by inclusion, which is opposite to the partial order on X. A
closed chamber is a maximal closed facet, and the set of all closed chambers equals
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Xmin = f−1(◦). Since f is nice, every x ∈ Xmin defines compatible sections

X
′

f ′

// //

F

��

C
Γ(G)

sx
tt

F

��

X
f
// // O(G)

sx
tt

and the closed chamber F−1(x) is the image of sx : CΓ(G) → X
′. Since f is very

nice, any x′ ∈ X
′ belongs to some closed chamber. Since G\X′ = C

Γ(G), any
closed chamber is a fundamental domain for the action of G on X

′.

4.1.12. The facets which are minimal among the set of non-minimal facets are
called panels. A panel F−1(x) bounds a chamber F−1(y) if F−1(x) ⊂ F−1(y),
i.e. y ≤ x. Any panel bounds at least 3 chambers. Indeed, this means that
a non-minimal parabolic subgroup P of G contains at least 3 minimal parabolic
subgroups. To establish this, fix a Levi subgroup L of P – which exists by [12,
XXVI 2.3] or the surjectivity of p1. Then Q 7→ L∩Q yields a bijection between the
parabolic subgroups Q of G contained in P and the parabolic subgroups of L, by
[12, XXVI 1.20]. Since P is non-minimal, L is not a minimal parabolic subgroup
of itself. By [12, XXVI 5.11], it contains at least 3 such subgroups, and so does P .

4.1.13. The apartment attached to S ∈ S(G) is the subset F
Γ(S) of all F ’s in

F
Γ(G) such that ZG(S) ⊂ PF . It is canonically isomorphic to G

Γ(S) by the map
which sends G : DO(Γ)→ S to Fil(G). Our notations are thus consistent since

F
Γ(S) = G

Γ(S) = GΓ(S)(O) = FΓ(S)(O).

Since F : AF
Γ(G) → SP is surjective, FΓ(S) is the disjoint union of the facets

F−1(P ) with ZG(S) ⊂ P . Since ZG(S) = B ∩B′ for some pair of opposed minimal
parabolic subgroups of G, FΓ(S) determines ZG(S) = ∩F−1(P )⊂FΓ(S)P and its split

radical S. Thus S 7→ F
Γ(S) is an Aut(G)-equivariant bijection from S(G) onto the

set A(G) of apartments in F
Γ(G). In particular,

AF
Γ(G) = {(A,F) : A ∈ A(G),F ∈ A}

ACF
Γ(G) = {(A,C,F) : F ∈ C = closed chamber of A ∈ A(G)} .

Since AF
Γ(G)→ F

Γ(G) is surjective, every F ∈ F
Γ(G) belongs to some A ∈ A(G).

The stabilizer of FΓ(S) in G = G(O) equals NG(S) = NG(S)(O) and its pointwise
stabilizer equals ZG(S) = ZG(S)(O). Thus WG(S) = NG(S)/ZG(S) acts on F

Γ(S),
and this gives the usual action of WG(S) on F

Γ(S) = G
Γ(S) = Hom(DO(Γ), S).

4.1.14. A panel bounds exactly two chambers in any apartment which contains it.
Indeed, let F−1(Q) be a panel in F

Γ(S). Given [12, XXVI 1.20], we have to show
that there are exactly two minimal parabolic subgroups of L = Q∩ ιSQ containing
ZG(S). By assumption, O(L) = {◦, t(L)}. Our claim then follows from 4.1.10.

4.1.15. Suppose now that O is a Henselian local ring with residue field k.

Proposition 64. The specialization from O to k induces a map from the diagram
of section 4.1.9 for G to the similar diagram for Gk. In the resulting commutative
diagram, all the specialization maps X(G)→ X(Gk) are surjective, all the squares
involving two F ’s are cartesian, and O(G) ≃ O(Gk), C

Γ(G) ≃ C
Γ(Gk).
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Proof. Since GΓ, FΓ, CΓ, OPP, P and O are smooth over Spec(O), the specialization
from O to k induces a map from the last two squares of our diagram for G to the
last two squares of the analogous diagram for Gk, in which all specialization maps
X(G)→ X(Gk) are surjective by [19, 18.5.17]. Since O is finite étale over Spec(O),
O(G) → O(Gk) is also injective by [19, 18.5.4-5], i.e. O(G) = O(Gk). It follows
that P(G) ։ P(Gk) induces B(G) ։ B(Gk). If S is a maximal split torus in G,
then ZG(S) is a Levi subgroup of a minimal parabolic subgroup B of G, S is the
maximal split subtorus of the radical R of ZG(S), thus R/S is an anisotropic torus,
i.e. Hom(Gm,O, R/S) = 0. Then by Proposition 3, Lemma 4 and [19, 18.5.4-5], also
Hom(Gm,k, Rk/Sk) = 0, thus Sk is the maximal split subtorus of the radical Rk

of the Levi subgroup ZG(S)k = ZGk
(Sk) of the minimal parabolic subgroup Bk of

Gk, in particular Sk is a maximal split subtorus of Gk and the specialization map
S(G) → S(Gk) is well-defined. It is surjective: starting with S in S(Gk), choose
B ∈ B(Gk) containing ZGk

(S), lift B to some B ∈ B(G), choose S′ ∈ S(G) with

ZG(S
′) ⊂ B, write S = Int(b)(S′

k) for some b ∈ B(k), lift b to some b ∈ B(O)
using [19, 18.5.17] and set S = Int(b)(S′). Then S ∈ S(G) and Sk = S. The
same argument shows that SBP(G)→ SBP(Gk) and SP(G)→ SP(Gk) are well-

defined and surjective, from which follows that also ACF
Γ(G) → ACF

Γ(Gk) and

AF
Γ(G) → AF

Γ(Gk) are well-defined. To establish all of the remaining claims, it
is sufficient to show that C

Γ(G) ։ C
Γ(Gk) is also injective. Fix (S,B) as above

and let s : CΓ(G) →֒ F
Γ(G) and sk : CΓ(Gk) →֒ F

Γ(Gk) be the corresponding
sections. They are compatible with the specialization maps and there images are
respectively contained in the apartments F

Γ(S) of FΓ(G) and F
Γ(Sk) of FΓ(Gk).

Since G
Γ(S) ≃ G

Γ(Sk), the specialization map F
Γ(G) → F

Γ(Gk) restricts to a
bijection F

Γ(S) ≃ F
Γ(Sk), therefore C

Γ(G) ։ C
Γ(Gk) is also injective. �

4.1.16. Suppose now that O is a valuation ring with fraction field K.

Proposition 65. The generization from O to K induces a map from the diagram
of section 4.1.9 for G to the similar diagram for GK . In the resulting commutative
diagram, all the generization maps X(G)→ X(Gk) are injective, they are bijective
for X ∈ {FΓ,CΓ,P,O} and all the squares involving two F ’s are cartesian.

Proof. Since GΓ, FΓ, CΓ, OPP, P and O are separated over Spec(O), the gener-
ization from O to K induces a map from the last two squares of our diagram for
G to the last two squares of the analogous diagram for GK , in which all generiza-
tion maps X(G) → X(GK) are injective. Since O and P are proper over Spec(O),
the maps P(G) → P(GK) and O(G) → O(GK) are in fact bijective. It follows
that P(G) ≃ P(GK) induces B(G) ≃ B(GK). If S is a maximal split torus in
G, then ZG(S) is a Levi subgroup of a minimal parabolic subgroup B of G, S is
the maximal split subtorus of the radical R of ZG(S), thus R/S is an anisotropic
torus, i.e. Hom(Gm,O, R/S) = 0. Then by Proposition 3 and Lemma 4, also
Hom(Gm,K , RK/SK) = 0, thus SK is the maximal split subtorus of the radical
RK of the Levi subgroup ZG(S)K = ZGK

(SK) of the minimal parabolic subgroup
BK of GK , in particular SK is a maximal split subtorus of GK and the specializa-
tion map S(G) → S(GK) is well-defined. It is injective by [12, XXII 5.8.3], so are

SBP(G) → SBP(GK) and SP(G) → SP(GK), while ACF
Γ(G) → ACF

Γ(GK)

and AF
Γ(G) → AF

Γ(GK) are well-defined. To establish the remaining claims, it
is sufficient to show that C

Γ(G) →֒ C
Γ(GK) is also surjective. Fix (S,B) as above

and let s : CΓ(G) →֒ F
Γ(G) and sK : CΓ(Gk) →֒ F

Γ(Gk) be the corresponding
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sections. They are compatible with the generization maps and there images are
respectively contained in the apartments FΓ(S) of FΓ(G) and F

Γ(SK) of FΓ(GK).
Since G

Γ(S) ≃ G
Γ(SK), the generization map F

Γ(G) → F
Γ(GK) restricts to a

bijection F
Γ(S) ≃ F

Γ(SK), therefore C
Γ(G) →֒ C

Γ(GK) is also surjective. �

Remark 66. Under the identifications of Theorem 31 (note that G is isotrivial over
the valuation ring O by Proposition 42), the inverse of the map F(G) → F(GK)
maps a Γ-filtration FK on ω◦

K to the Γ-filtration F on ω◦ defined by

∀τ ∈ Rep◦(G)(O), γ ∈ Γ : Fγ(τ) = Fγ
K(τ) ∩ V (τ) in VK(τ).

It is not at all obvious that this formula indeed defines a right exact functor!

4.2. Distances and angles. Suppose for this section that Γ is a subring of R with
the induced total order on the underlying commutative group.

4.2.1. For any F1,F2 ∈ F
Γ(G), there is an apartment A ∈ A(G) containing F1

and F2 if and only if PF1 and PF2 are in standard position [12, XXVI 4.5]. Indeed
if F1,F2 ∈ F

Γ(S) for some S ∈ A(G), then ZG(S) contains a maximal torus T
by [1, XIV 3.20], thus T ⊂ ZG(S) ⊂ PF1 ∩ PF2 . If conversely T ⊂ PF1 ∩ PF2 for
some maximal torus T of G, then F1,F2 ∈ F

Γ(S) for any S ∈ S(G) containing the

maximal split torus Tsp of T . We denote by Std(G) and Std
Γ(G) = F−1(Std(G))

the corresponding sets in P(G)2 and F
Γ(G)2.

4.2.2. Recall from Theorem 31 that for τ ∈ Rep
◦(G)(O), any F ∈ F

Γ(G) defines

a Γ-filtration F(τ) on the (free) O-module V (τ). For any (F1,F2) ∈ Std
Γ(G) and

γ1, γ2 ∈ Γ, the O-module

Grγ1,γ2

F1,F2
(τ) =

F1(τ)
γ1 ∩ F2(τ)

γ2

F1(τ)
γ1

+ ∩ F2(τ)γ2 + F1(τ)γ1 ∩ F2(τ)
γ2

+

is free of finite rank: if Fi = Fil(Gi) with Gi ∈ G
Γ(S) = Hom(M,Γ) for some S in

S(G) with M = Hom(S,Gm,O), then Fi(τ)
γ = ⊕Gi(m)≥γV (τ)m for any i ∈ {1, 2}

and γ ∈ Γ where V (τ) = ⊕m∈MV (τ)m is the eigenspace decomposition of τ |S , thus

Grγ1,γ2

F1,F2
(τ) = ⊕m:Gi(m)=γi

V (τ)m.

4.2.3. Since Γ is a subring of R:
• Any apartment is endowed with a canonical structure of free Γ-module, and

these structures are preserved by the action of Aut(G) on F
Γ(G). Indeed,

F
Γ(S) = G

Γ(S) = Hom(M(S),Γ) with M(S) = Hom(S,Gm,O).

• Any τ ∈ Rep◦(G)(O) defines a G-invariant function

〈−,−〉τ : StdΓ(G)→ Γ 〈F1,F2〉τ =
∑

γ1,γ2
rankO(Grγ1,γ2

F1,F2
(τ)) · γ1γ2

whose restriction to F
Γ(S) is bilinear, symmetric and non-negative, given by

〈F1,F2〉τ =
∑

m∈M(S)rankO(V (τ)m) · G1(m)G2(m)

if Fi ∈ F
Γ(S) corresponds to Gi ∈ Hom(M(S),Γ). Its kernel equals G

Γ(ker(τ |S)),
thus 〈−,−〉τ is positive definite when τ is a faithful representation of G.

• Write ‖F‖τ = 〈F ,F〉1/2τ . Thus ‖−‖τ : FΓ(G)→ Γ1/2 is a G-invariant function

and it descends to a G-invariant function ℓτ : CΓ(G)→ Γ1/2 with ‖F‖τ = ℓτ (t(F)).
We have the Cauchy-Schwartz inequality

∀(F1,F2) ∈ Std
Γ(G) : |〈F1,F2〉τ | ≤ ‖F1‖τ ‖F2‖τ .
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• We may thus also define a G-invariant angle

∡τ (−,−) : Std
Γ(G)→ [0, π] 〈F1,F2〉τ = cos (∡τ (F1,F2)) · ‖F1‖τ ‖F2‖τ

and a G-invariant function

dτ (−,−) : Std
Γ(G)→ R+ dτ (F1,F2) =

√
‖F1‖

2
τ + ‖F2‖

2
τ − 2 〈F1,F2〉τ

inducing the distance dτ (F1,F2) = ‖F2 −F1‖τ on any apartment.
• If τ is faithful, then dτ (F1,F2) = 0 if and only if F1 = F2 and the map

G 7→ (Fil(G),Fil(ιG)) induces a G-equivariant bijection

G
Γ(G) ≃

{
(F1,F2) ∈ Std

Γ(G) : ‖F1‖ = ‖F2‖ and ∡τ (F1,F2) = π
}
.

From now on, we fix one such faithful τ .

4.2.4. For x, y ∈ O(G), there is a single G-orbit of (P,Q)’s in t−1(x)× t−1(y) with
the property that P ∩ Q is a parabolic subgroup of G [12, XXVI 5.4-5], and this
orbit is contained in Std(G). Thus for any x, y ∈ C

Γ(G), there is a single G-orbit
of (F1,F2)’s in t−1(x) × t−1(y) with the property that PF1 ∩ PF2 is a parabolic

subgroup of G, and it is contained in Std
Γ(G). We set ∡τ (x, y) = ∡τ (F1,F2) and

〈x, y〉τ = 〈F1,F2〉τ , thus obtaining another pair of symmetric functions

∡τ (−,−) : C
Γ(G)×C

Γ(G)→ [0, π] and 〈−,−〉τ : CΓ(G)×C
Γ(G)→ R.

Fix (S,B) ∈ S(G)×B(G) with ZG(S) ⊂ B and let s : CΓ(G) →֒ ACF
Γ(G) be the

corresponding section of ACF
Γ(G) ։ C

Γ(G). Since Ps(x) ∩ Ps(y) contains B, it is

a parabolic subgroup of G. Thus for every x, y ∈ C
Γ(G),

∡τ (x, y) = ∡τ (s(x), s(y)) and 〈x, y〉τ = 〈s(x), s(y)〉τ .

In particular, the “scalar product” is compatible with the monoid structure:

〈x1 + x2, y〉τ = 〈x1, y〉τ + 〈x2, y〉τ and 〈x, y1 + y2〉τ = 〈x, y1〉τ + 〈x, y2〉τ .

The following lemma is related to the angle rigidity axiom of [20, 4.1.2].

Lemma 67. For any x, y ∈ C
Γ(G), the set

Dτ (x, y) =
{
∡τ (F1,F2) : (F1,F2) ∈ Std

Γ(G) ∩ t−1(x) × t−1(y)
}

is finite and ∡τ (x, y) = minDτ (x, y).

Proof. Fix (S,B) and s : CΓ(G) →֒ ACF
Γ(G) as above. Then any pair

(F1,F2) ∈ Std
Γ(G) ∩ t−1(x)× t−1(y)

is G-conjugated to some pair in WG(S) · s(x)×WG(S) · s(y) ⊂ F
Γ(S)2, thus

Dτ (x, y) =
{
∡τ (w1 · s(x), w2 · s(y)) : (w1, w2) ∈ WG(S)

2
}

= {∡τ (s(x), w · s(y)) : w ∈WG(S)}

is finite. To establish our final claim, we have to show that

〈s(x), s(y)〉τ ≥ 〈s(x), w · s(y)〉τ

for every w ∈WG(S), which follows from [6, Proposition 18]. �
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4.2.5. Let us use the above notions to show that

Proposition 68. For a facet F , a chamber C and apartments A1, A2 in F
Γ(G)

with F ∪ C ⊂ A1 ∩ A2, there exists g ∈ G with gA1 = A2 and g ≡ 1 on F ∪ C.

Proof. In group theoretical terms, this means that for P ∈ P(G), B ∈ B(G) and
S1, S2 ∈ S(G) with ZG(Si) ⊂ B ∩ P , there is a g ∈ G such that Int(g)(S1) = S2

and g ∈ B ∩ P with B = B(O), P = P (O). This does not depend upon Γ, and
we may thus assume that Γ = R. Since (S1, B) and (S2, B) ∈ SP(G) have the
same image in O(G), there exists an element g ∈ G with g(S1, B) = (S2, B), i.e.
Int(g)(S1) = S2 and g ∈ B. We will show that also g ∈ P, i.e. gF = F for any
F ∈ F−1(P ) ⊂ F

R(G). Note that F , gF and the chamber C = F−1(B) are all
contained in the apartment F

R(S2). Fix a faithful τ ∈ Rep◦(G)(O). Then

〈F ,F ′〉τ = 〈gF , gF ′〉τ = 〈gF ,F ′〉τ

for all F ′ ∈ F−1(B), thus F = gF because F−1(B) is a non-empty open subset of
the Euclidean space

(
F

R(S2), 〈−,−〉τ
)
. �

4.2.6. Suppose for this and the next section that our local ring O = k is a field.

Theorem 69. [12, XXVI 4.1.1] Std(G) = P(G)2 and thus also Std
Γ(G) =

F
Γ(G)2.

Corollary 70. For any apartments A1, A2 in F
Γ(G) and facets F1, F2 in A1 ∩A2,

there exists g ∈ G mapping A1 to A2 with g ≡ 1 on F 1 ∪ F 2.

Proof. Fix closed chambers F1 ⊂ C1 ⊂ A1 and F2 ⊂ C2 ⊂ A2 and choose an
apartment A3 containing C1 and C2. The previous proposition shows that there
exists elements g1, g2 ∈ G such that g1A1 = A3 = g2A2, g1 ≡ 1 on C1 ∪ F 2 and
g2 ≡ 1 on C2 ∪ F 1. Then g = g−1

2 g1 maps A1 to A2 and g ≡ 1 on F 1 ∪ F 2. �

Corollary 71. For a monomorphism f : G1 → G2 of reductive group over k, the
induced map f : FΓ(G1)→ F

Γ(G2) is injective.

Proof. Fix a faithful τ ∈ Rep◦(G2)(k). Then τ ◦ f ∈ Rep◦(G1)(k) if faithful and

∀F ,F ′ ∈ F
Γ(G1) : 〈f(F), f(F ′)〉τ = 〈F ,F ′〉f(τ) .

Thus also dτ (f(F), f(F ′)) = df(τ)(F ,F
′) and f(F) = f(F ′) implies F = F ′. �

Corollary 72. Let P be a parabolic subgroup of G with unipotent radical U and
Levi subgroup L. Then F

Γ(L) is a fundamental domain for the action of U(k) on
F

Γ(G). Let r = rP,L : FΓ(G) ։ F
Γ(L) be the corresponding retraction. Then

∀x, y ∈ F
Γ(G) : dτ (rx, ry) ≤ dτ (x, y).

Corollary 73. The function dτ : FΓ(G)× F
Γ(G)→ R+ is a distance:

∀x, y, z ∈ F
Γ(G) : dτ (x, y) ≤ dτ (x, z) + dτ (z, y).

Proof. Fix S0 ∈ S(L). The P = P (k) and L = L(k) orbits of S0 in S(G) are
respectively equal to S(G,P ) = {S ∈ S(G) : ZG(S) ⊂ P} and S(L). Since any
F ∈ F

Γ(G) belongs to F
Γ(S) for some S ∈ S(G,P ), we find that with U = U(k),

F
Γ(G) = ∪S∈S(G,P )F

Γ(S) = P · FΓ(S0) = U · ∪S∈S(L)F
Γ(S) = U ·FΓ(L).

Suppose that F , uF ∈ F
Γ(L) for some u ∈ U, and choose an S ∈ S(L) with

F , uF ∈ F
Γ(S). Since ZG(S) ⊂ L ⊂ P , there is a B ∈ B(G) with ZG(S) ⊂ B ⊂ P .
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Let C = F−1(B) be the corresponding (G-)chamber in A = F
Γ(S). Since U ⊂ B,

uC = C and F , C ∈ A ∩ u−1A. Choose g ∈ G with gu−1A = A, gF = F and
gC = C. Then g belongs to B = B(k), thus gu−1 belongs to B ∩ NG(S) = ZG(S)
which acts trivially on A. Therefore uF = gu−1uF = gF = F and F

Γ(L) is a
fundamental domain for the action of U on F

Γ(G).
For A ∈ A(G) containing F−1(P ), there is a unique AL ∈ A(L) ∩ U · {A} such

that r(x) = ux for any x ∈ A and u ∈ U such that uA = AL. Indeed, there is a
p = lu in P = LU such that pA is an apartment of FΓ(L), then uA = l−1pA ⊂ F

Γ(L)
and r(x) = ux for every x ∈ A. Thus for x, y ∈ A, dτ (rx, ry) = dτ (x, y).

For the remaining claims, we may assume that Γ = R and use induction on the
semi-simple rank s of G. If s = 0 everything is obvious. If s > 0 but G = L, then r is
the identity thus dτ (rx, ry) = dτ (x, y) for every x, y ∈ F

R(G). If G 6= L, choose an
apartment A in F

R(G) containing x and y, let [x, y] be the corresponding segment of
A, and write [x, y] = ∪n−1

i=0 [xi, xi+1] for consecutive points xi ∈ [x, y] with x0 = x,
xn = y and ]xi, xi+1[ contained in a facet Fi ⊂ A. Then there is an apartment
containing F−1(P ) and {xi, xi+1} ⊂ F i, thus dτ (rxi, rxi+1) = dτ (xi, xi+1) for every
i ∈ {0, · · · , n− 1}. Since dτ is a distance on F

R(L) by our induction hypothesis,

dτ (rx, ry) ≤
∑n−1

i=0 dτ (rxi, rxi+1) =
∑n−1

i=0 dτ (xi, xi+1) = dτ (x, y).

Finally for x, y, z ∈ F
R(G), choose an apartment F

R(S) containing x, y and a
chamber F−1(B), let r = rB,ZG(S) be the corresponding retraction. Then

dτ (x, y) = dτ (rx, ry) ≤ dτ (rx, rz) + dτ (rz, ry) ≤ dτ (x, z) + dτ (z, y).

This finishes the proof of corollaries 72 and 73. �

Remark 74. We could pursue here with many further corollaries, but our knowl-
edgeable readers will recognize that already with corollary 70, we have established
that F

R(G), together with its collections of apartments and facets (and the func-
tion dτ for some choice of a faithful τ), is a (discrete) Euclidean building in the
sense of [28, 6.1]. It is the vectorial (Tits) building defined in [28, 10.6]. But the
construction given there singles out a pair ZG(S) ⊂ B and uses more of the finest
results from [5]: F

R(G) is the building associated to the saturated Tits system
(G,B,N) = (G,B,NG(S))(k). By contrast, we may retrieve some of the results of
[5] using the strongly transitive and strongly type-preserving action of G on our
globally constructed building F

R(G), for instance the fact that (G,B,N) is indeed
a saturated Tits system [28, 8.6]. Among the many nice properties of buildings,
let us mention that the distance dτ turns F

R(G) into a CAT(0)-space, there is a
well-defined notion of convexity, bounded subsets have a unique circumcenter etc. . .

4.2.7. If τ ′ is another faithful representation of G, the distances dτ ′ and dτ are
equivalent. One checks it first on a fixed apartment A, thus obtaining constants
c, C > 0 such that cdτ (x, y) ≤ dτ ′(x, y) ≤ Cdτ (x, y) for x, y ∈ A. Then this holds
true for every x, y ∈ F

Γ(G), since any such pair is G-conjugated to one in A. We
thus obtain a canonical metrizable G-invariant topology on F

Γ(G). The G-invariant
functions of section 4.2.3 are continuous with respect to the canonical topology.

The apartments and the “closed facets” of section 4.1.11 are topologically closed.
Indeed if x belongs to some apartment A, there is a small radius ǫ > 0 such that
every “closed facet” of A which intersects the open ball Bτ (x, ǫ) = {y : dτ (x, y) < ǫ}
contains x. If F is any “closed facet” of FΓ(G) with F ∩ Bτ (x, ǫ) 6= ∅, choose an
apartment A′ containing x and F , and choose a g ∈ G mapping A′ to A and fixing
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x. Then g(F ∩ Bτ (x, ǫ)) = gF ∩ Bτ (x, ǫ) 6= ∅, thus x belongs to gF and g−1x = x
belongs to F . Therefore: if x is in F

Γ(G) \ F , also Bτ (x, ǫ) ⊂ F
Γ(G) \ F .

The canonical topology on C
Γ(G) is the quotient topology of the canonical topol-

ogy on G
Γ(G). Since G\GΓ(G) = C

Γ(G), the sections defined by the “closed cham-
bers” are homeomorphisms. In particular, the canonical topology on C

Γ(G) is also
metrizable, it is compatible with the monoid structure of CΓ(G) and the functions
defined in section 4.2.4 are continuous.

4.2.8. Suppose now that our local ring O is an integral domain with fraction field
K and residue field k, giving rise to morphisms of cartesian squares

F
Γ(GK)

t
'' ''PP

PP
PP

F

����

F
Γ(G)

t
&& &&N

NN
NN

F

//oo F
Γ(Gk)

t
'' ''O

OO
OO

O

F

C
Γ(GK)

F

����

����

C
Γ(G)

F

����

//oo

����

C
Γ(Gk)

F

����

P(GK)
t
(( ((PP

PP
PP
oo P(G)

t
'' ''N

NN
NN

N
// P(Gk)

t
'' ''PP

PP
PP

O(GK) O(G) //oo O(Gk)

Proposition 75. For any faithful τ ∈ Rep◦(G)(O) and x, y ∈ F
Γ(G),

〈xk, yk〉τk ≥ 〈xK , yK〉τK
∡τk (xk, yk) ≤ ∡τK (xK , yK)

dτk (xk, yk) ≤ dτK (xK , yK)

‖xk‖τk = ‖xK‖τK

Proof. We may assume that Γ = R. For (x, y) ∈ Std
R(G), one checks easily that

all of the above inequalities are in fact equalities – in particular ‖xk‖τk = ‖xK‖τK
for all x ∈ F

Γ(G). For an arbitrary pair (x, y) in F
R(G), the facet decomposition

of FR(G) induces a decomposition of the segment [x, y] = ∪n−1
i=0 [xi, xi+1] as in the

proof of corollary 72, with (xi, xi+1) ∈ Std
R(G) for every i. Thus

dτK (xK , yK) =
∑n−1

i=0 dτK (xi,K , xi+1,K) =
∑n−1

i=0 dτk(xi,k, xi+1,k) ≥ dτk(xk, yk)

and the other two inequalities easily follow. �

4.3. Affine F(G)-buildings. Let G be a reductive group over a field K. From
now on, we take Γ = R and drop it from our notations. We also fix a faithful finite
dimensional representation τ of G and drop it from the notations of section 4.2.3.
We denote by X the K-valued points of a K-scheme X . For S ∈ S(G), we denote
by Φ(S,G) the set of roots of S in g = Lie(G). For a ∈ Φ(S,G), we denote by
Ua ⊂ G the corresponding root subgroup, which is the unipotent radical of the par-
abolic subgroup of ZG(Sa) containing ZG(S) with Lie algebra g0⊕⊕b∈Na∩Φ(S,G)gb,
where g = g ⊕ ⊕b∈Φ(S,G)gb is the weight decomposition of g and Sa is the neutral
component of ker(a : S → Gm,K). Thus if 2a ∈ Φ(S,G), then U2a ⊂ Ua.

4.3.1. We define a partial order on C(G) (the dominance order) as follows:

x ≤ y ⇐⇒ ∀z ∈ C(G) : 〈x, z〉 ≤ 〈y, z〉 .

If we choose a minimal pair (S,B) ∈ SP(G) and let s : C(G) →֒ AF(G) be
the corresponding section, then x ≤ y if and only if s(y) − s(x) belongs to the
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dual cone C∗ of C = s(C(G)), defined by C∗ = {t ∈ G(S) : ∀c ∈ C(G), 〈t, c〉 ≥ 0}.
We also have the following characterization [4, 12.14]: x ≤ y if and only if s(x)
belongs to the convex hull of the Weyl orbit WG(S) · s(y) in the real vector space
F(S) = G(S). In particular, this partial order does not depend upon the chosen
scalar product (= chosen τ). It is compatible with the monoid structure on C(G)
and it is related to the decomposition C(G) = C

r(G)×G(Z) of section 2.6 (where
C

r(G) = C(G)r(K) and G(Z) = C(G)c(K)) as follows: for x = (xr , xc) and
y = (yr, yc) in C

r(G)×G(Z), x ≤ y if and only if xr ≤ yr and xc = yc. The poset
(C(G),≤) is a lattice and G(Z) ⊂ C(G) is its subset of minimal elements.

4.3.2. An affine F(G)-space is a triple X(G) = (X(G),X(−),+) where X(G) is a
set with an action of G while X(−) and + are G-equivariant maps

X(−) : S(G)→ P(X(G)) and + : X(G) × F(G)→ X(G)

such that for every S ∈ S(G), the +-map turns X(S) into an affine G(S)-space and
X(G) = ∪SX(S). We refer to X(S) as the apartment of S in X(G).

4.3.3. The group NG(S) thus acts on X(S) by affine morphisms, the vectorial
part of this action equals νvS : NG(S) ։ WG(S) ⊂ Aut(G(S)) and the kernel
ZG(S) of νvS acts on X(S) by translations, through a WG(S)-equivariant morphism
νX,S : ZG(S)→ G(S). For any other S′ ∈ S(G), there is commutative diagram

ZG(S)
νX,S

//

≃

��

G(S)

≃

��

ZG(S
′)

ν
X,S′

// G(S′)

where the vertical maps are induced by Int(g) for any g ∈ G with Int(g)(S) = S′.
The type of X(G) is the WG = lim←−WG(S)-equivariant morphism

νX = lim←−νX,S : lim←−ZG(S)→ lim←−G(S)

which is obtained from these diagrams by taking the limits over all S ∈ S(G).

4.3.4. An affine F(G)-building is an affine F(G)-space X(G) such that:

A1 For x, y ∈ X(G), there is an S ∈ S(G) with x, y ∈ X(S).
A2 For (x,F) ∈ X(G)× F(G), there is an S ∈ S(G) with (x,F) ∈ X(S)× F(S).
A3 For S, S′ ∈ S(G) and x, y ∈ X(S) ∩X(S′), there is a g ∈ G with

Int(g)(S′) = S, gx = x and gy = y.

These axioms already imply that there is a unique G-equivariant map

d : X(G) ×X(G)→ C(G)

such that d(x, s+F) = t(F) for every x ∈ X(G) and F ∈ F(G). We also require:

A4 The d-map is continuous: for sequences (xn), (yn) and points x, y in X(G),

lim
n→∞

d(xn, x) = 0 = lim
n→∞

d(yn, y) =⇒ lim
n→∞

d(xn, yn) = d(x, y).

A5 The addition map is non-expanding: for x, y ∈ X(G) and F ∈ F(G),

d(x+ F , y + F) ≤ d(x, y) in C(G).
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A6 For x ∈ X(G), F ∈ F(G) and u ∈ UF ,

lim
t→∞

d (x+ tF , ux+ tF) = 0 in C(G).

Proposition 76. Let X(G) be an affine F(G)-building. Then:

(1) The function d satisfies the triangle inequality: for every x, y, z ∈ X(G),

d(x, z) ≤ d(x, y) + d(y, z) in C(G).

(2) For P ∈ P(G) with Levi decomposition P = U⋊L, X(L) = ∪S∈S(L)X(S) is
a fundamental domain for the action of U = U(K) on X(G) and the induced
retraction rP,L : X(G)→ X(L) is non-expanding: for every x, y ∈ X(G),

d(rP,L(x), rP,L(y)) ≤ d(x, y) in C(G).

Proof. One checks easily that the triangle inequality holds whenever x, y, z belong
to X(S) for some S ∈ S(G), using [6, VI §1 Proposition 18]. For a general triple
x, y, z ∈ X(G), choose S ∈ S(G) with x, z ∈ X(S) (using A1) and pick a minimal
parabolic subgroup B with Levi subgroup L = ZG(S). Then, assuming (2) for the
pair (B,L), we obtain the triangle inequality of (1) as follows with r = rB,L:

d(x, z) = d(r(x), r(z)) ≤ d(r(x), r(y)) + d(r(y), r(z)) ≤ d(x, y) + d(y, z).

For the proof of (2), first note that X(G) = U ·X(L) by A2. Fix G ∈ G(G) with
(PG , LG) = (P,L), set F = Fil(G), F ′ = Fil(ιG) and rt(x) = (x + tF) + tF ′ for
t ≥ 0 and x ∈ X(G). Thus rt is non-expanding by A5, rt(x) = x for all x ∈ X(L),
and limt→∞ d(rt(x), rt(ux)) = 0 for all x ∈ X(G), u ∈ U by A5 and A6. It
follows that X(L) is indeed a fundamental domain for the action of U on X(G).
Let r = rP,L be the corresponding retraction. Then limt→∞ d(rt(x), r(x)) = 0 for
all x ∈ X(G), since r(x) = ux = rt(ux) for some u ∈ U with ux ∈ X(L). Thus
limt→∞ d(rt(x), rt(y)) = d(r(x), r(y)) by A4 and d(r(x), r(y)) ≤ d(x, y) for all
x, y ∈ X(G), which finishes the proof of (2). �

4.3.5. For an affine F(G)-building X(G), we denote by

d
r : X(G) ×X(G)→ C

r(G) and d
c : X(G) ×X(G)→ G(Z)

the components of d. These are G-invariant functions. For x, y, z ∈ X(G),

d
r(x, z) ≤ d

r(x, y) + d
r(y, z) and d

c(x, z) = d
c(x, y) + d

c(y, z).

The function g 7→ d
c(x, gx) thus does not depend upon x and defines a morphism

νc
X
: G→ G(Z).

4.3.6. Composing d with the length function ℓ : C(G) → R+ attached to our
chosen τ , we obtain a G-invariant distance d : X(G) ×X(G)→ R+, and the maps
x 7→ x + F are non-expanding by A5. By 4.2.7, another choice of τ yields an
equivalent distance, and the resulting topology on X(G) does not depend upon any
choice. We call it the canonical topology of X(G). The +-map and the function
d are continuous with respect to the canonical topologies. Being complete for the
induced metric, the apartments of X(G) are closed subset of X(G).

4.3.7. A morphism of affine F(G)-spaces f : X(G) → Y(G) is a G-equivariant
map between the underlying sets such that f(X(S)) ⊂ Y(S) for every S ∈ S(G)
and f(x+ F) = f(x) + F for every x ∈ X(G) and F ∈ F(G).



FILTRATIONS AND BUILDINGS 59

4.3.8. Any morphism of affine F(G)-buildings is an isomorphism: it is bijective
on any apartment, thus globally bijective by A1. An automorphism θ of an affine
F(G)-building X(G) acts on the apartment X(S) by an NG(S)-equivariant trans-
lation, thus given by a vector θS in G(Z) = G(S)WG(S). The G-equivariance of θ
implies that S 7→ θS is also G-equivariant, therefore constant. It follows that

Aut(X(G)) = G(Z).

4.3.9. For an affine F(G)-building X(G), we define

X
r(G) = X(G)/G(Z) and X

e(G) = X
r(G)×G(Z).

The group G acts: on the quotient Xr(G) of X(G), on G(Z) by translations through
the morphism νc

X
: G→ G(Z), and on X

e(G) diagonally. Then, the formulas

X
r(S) = X(S)/G(Z) and X

e(S) = X
r(S)×G(Z)

yield G-equivariant maps Xr : S(G)→ P(Xr(G)) and X
e : S(G)→ P(Xe(G)), the

+-map on X(G) descends to a G-equivariant map + : Xr(S) × F
r(S) → X

r(S),
which together with the addition map on G(Z) yields a G-equivariant map

+ : Xe(G)× F(G)→ X
e(G) ([x], θ) + F = ([x] + Fr, θ + Fc).

The resulting triple X
e(G) is yet another affine F(G)-building, with νXe = νX. In

fact, any point x0 ∈ X(G) defines an isomorphism of affine F(G)-buildings

X(G) ≃ X
e(G) x 7→ ([x],dc(x0, x)).

Thus X
e(G) appears as a rigidified version of X(G): there are no non-trivial auto-

morphisms of Xe(G) preserving the subspace X
r(G) ≃ X

r(G)× {0} of Xe(G).

4.3.10. We shall also consider the following strengthenings of A2, A3 and A6:

A2! For x ∈ X(G) and F ,G ∈ F(G), there is an S ∈ S(G) and some ǫ > 0 with

F ∈ F(S) and x+ ηG ∈ X(S) for all η ∈ [0, ǫ].

A3! For S, S′ ∈ X(G), there is a g ∈ G with

Int(g)(S′) = S and g ≡ Id on X(S) ∩X(S′).

A6! For x ∈ X(G), F ∈ F(G) and u ∈ UF ,

u(x+ tF) = x+ tF for all t≫ 0.

Lemma 77. The axioms A1, A2!, A3 and A6 together imply A4 and A5.

Proof. Since X(G) satisfies A1− 3, the map d is well-defined. We will use several
time the following consequence of our assumptions:

For x, y ∈ X(G) and F ∈ F(G), choose S ∈ S(G) with x, y ∈ X(S)
using A1, write y = x+ G with G ∈ G(S) and set xt = x + tG for
t ∈ R. By A2!, there exist ǫt > 0 and S±

t ∈ S(G) such that for all
±η ∈ [0, ǫt], F ∈ F(S±

t ) and xt±η ∈ X(S±
t ). It follows that there

is a sequence 0 = t0 < t1 < · · · < tn+1 = 1 and tori Si ∈ S(G) such
that for all ti ≤ t ≤ ti+1, xt ∈ X(Si) and F ∈ F(Si).
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As a first application, we obtain our axiom A5 as follows, with xi = xti :

d(x, y) =
∑n

i=0d(xi, xi+1) =
∑n

i=0d(xi + F , xi+1 + F) ≥ d(x+ F , y + F)

provided we know that the triangle inequality holds for d. To establish the latter, it
is again sufficient to prove that the retraction rB,L : X(G) → X(S) corresponding
to a minimal parabolic subgroup B = U ⋊ L with Levi L = ZG(S) (exists and) is
non-expanding. For its existence, note first that X(G) = U ·X(S) by A2. If x and
ux belong to X(S) for some u ∈ U, then d(x, ux) = d(x+G, ux+G) for all G ∈ F(S),
thus taking G = tF with F ∈ F−1(B) and t≫ 0, we find that d(x, ux) = 0 by A6,
i.e. x = ux and our retraction r : X(G) → X(S) is well-defined. For x, y ∈ X(G),
let us apply the above observation to some F ∈ F−1(B), thus obtaining Si’s with
F−1(B) ⊂ F(Si). Then, there is a ui ∈ U with Int(ui)(Si) = S, in which case
r(z) = uiz for all z ∈ X(Si). We obtain the desired inequality as follows:

d(x, y) =
∑n

i=0d(xi, xi+1) =
∑n

i=0d(r(xi), r(xi+1)) ≥ d(r(x), r(y))

because the triangle inequality holds on X(S). In particular, we now know that d

is a distance, from which A4 immediately follows. �

4.3.11. Let X(G) be an affine F(G)-space.
For S ∈ S(G), a ∈ Φ(S,G) and u ∈ Ua \ {1}, there exists a unique triple

(u1, u2,m(u)) with u1uu2 = m(u), u1, u2 ∈ U−a and m(u) ∈ NG(S); moreover
νvS(m(u)) is the symmetry sa ∈ WG(S) attached to a. This follows from [5, §5] by
[7, 6.1.2.2 & 6.1.3.c]. In particular, there is a unique affine hyperplane X(S, u) in
X(S) which is preserved by m(u), the underlying vector space is the fixed point set
G(ker(a)) of sa in G(S), and m(u) acts on X(S, u) as x 7→ x + νX(S, u) for some
vX(S, u) ∈ G(ker(a)). Of course m(u) fixes X(S, u) if and only if νX(S, u) = 0, and
this happens whenever m(u) already has finite order in NG(S), which holds true
for any u ∈ Ua \{1} if 2a /∈ Φ(S,G). Indeed, set Φ′ = {b ∈ Φ(S,G) : 2b /∈ Φ(S,G)}.

This is again a root system and Ub ≃ G
n(b)
a,K for some n(b) ≥ 1 for all b ∈ Φ′(S,G).

Choose a set of simple roots ∆′ of Φ′ containing a and choose for each b ∈ ∆′ a
1-dimensional K-subspace U′

b in Ub ≃ Kn(b), with u ∈ U′
a. Then by [5, 7.2], there

is a unique split reductive subgroup G′ of G containing S with Φ(S,G′) = Φ′(S,G)
such that the root subgroup U ′

b of b ∈ ∆′ in G′ is the subgroup of Ub determined
by U′

b, i.e. U′
b = U ′

b(K). Let now Sa be the neutral component of ker(a). Then
(ZG′(Sa), S, a) is an elementary system in the sense of [12, XX 1.3] by [12, XIX
3.9]. Let f : SL → ZG′(Sa) be the corresponding morphism constructed in [12, XX
5.8] and let X 6= 0 be the unique element of L = Lie(U ′

a) with exp(X) = u. Since
(

1 0
−X−1 1

)(
1 X
0 1

)(
1 0

−X−1 1

)
=

(
0 X

−X−1 0

)

in SL(K), we find that

m(u) = f

(
0 X

−X−1 0

)
, m(u)2 = f

(
−1 0
0 −1

)
and m(u)4 = 1.

On the other hand if 2a ∈ Φ(G,S), then [33, 1.15] provides examples where m(u)
has infinite order. Note also that m(u) fixes H(S, u) when there is a z ∈ ZG(S)
such that zuz−1 = u−1: since m(u−1) = m(u)−1 and m(zuz−1) = zm(u)z−1,

X(S, u−1) = X(S, u)
νX(S, u−1) = −νX(S, u)

and
X(S, zuz−1) = X(S, u) + νX,S(z)
νX(S, zuz−1) = νX(S, u)
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therefore zuz−1 = u−1 implies νX(S, u) = 0. Note also that since

uu2m(u)−1u1m(u) = m(u) and m(u)u2m(u)−1u1u = m(u)

we find that m(u1) = m(u2) = m(u), therefore

X(S, u1) = X(S, u2) = X(S, u) and νX(S, u1) = νX(S, u2) = νX(S, u).

We define

X
+(S, u) = X(S, u) + {F ∈ F(S) : a(F) ≥ 0} .

4.3.12. The following axiom is related to alcove-based retractions, see [24, 1.4].

A7 For S1, S2, S3 ∈ S(G), if X(Si) ∩X(Sj) contains an half-subspace of X(Si)
for every (i, j) ∈ {1, 2, 3}2, then X(S1) ∩X(S2) ∩X(S3) 6= ∅.

Lemma 78. Suppose that the affine F(G)-space X(G) satisfies A6! and A7. Then
for every S ∈ S(G), a ∈ Φ(S,G) and u ∈ Ua \ {1},

{x ∈ X(S) : ux ∈ X(S)} = {x ∈ X(S) : ux = x} = X
+(S, u).

Moreover X(S, u) = {x ∈ X(S) : m(u)(x) = x}, i.e. νX(S, u) = 0.

Proof. The first equality already follows from A6!: if x and ux both belong to
X(S), pick F ∈ F(S) with u ∈ UF , then x+ tF = u(x+ tF) = ux+ tF for t≫ 0,
thus x = ux since X(S) is an affine F(S)-space. For t ∈ R, put

X(S, u, t) = X(S, u) + {F ∈ F(S) : a(F) = t}

X
+(S, u, t) = X(S, u, t) + {F ∈ F(S) : a(F) ≥ 0}

X
−(S, u, t) = X(S, u, t) + {F ∈ F(S) : a(F) ≤ 0}

If u fixes some x ∈ X(S, u, t), then also u ≡ Id on X
+(S, u, t) since

∀F ∈ F(S) : a(F) ≥ 0 ⇐⇒ Ua ⊂ PF .

By A6!, u fixes some point in X(S), therefore u ≡ Id on X
+(S, u, t) for t ≫ 0.

Similarly, u1 and u2 fix X
−(S, u, t) for t ≪ 0. Choose T > 0 such that u ≡ Id

on X
+(S, u, T ) and u1 ≡ u2 ≡ Id on X

−(S, u,−T ). Then: X(S) and uX(S)
share the half-subspace X

+(S, u, T ), X(S) and u−1
1 X(S) share the half-subspace

X
−(S, u,−T ), while uX(S) and u−1

1 X(S) share the half-subspace

uX−(S, u,−T ) = uu2X
−(S, u,−T ) = u−1

1 m(u)X−(S, u,−T ) = u−1
1 X

+(S, u, T ).

Thus by A7, there is a point x ∈ X(S) ∩ uX(S) ∩ u−1
1 X(S). Any such point is

fixed by u−1 and u1, thus also by m(u)u−1
2 . In particular u−1

2 (x) = m(u)−1(x)
also belongs to X(S), so that again x is fixed by u2, as well as m(u). It follows
that u, u1, u2 and m(u) act trivially on X(S, u). If u fixes y ∈ X(S, u, t) for some
t < 0, then y would also belong to X(S)∩uX(S)∩u−1

1 X(S), which equals X(S, u), a
contradiction. Thus X+(S, u) = {x ∈ X(S) : ux = x}, which proves our claims. �

4.3.13. For a subset Ω 6= ∅ of X(S), we denote by GΩ the pointwise stabilizer of
Ω in G and by GS,Ω the subgroup of G spanned by NG(S)Ω = GΩ ∩ NG(S) and

{
u ∈ Ua \ {1} : a ∈ Φ(G,S), Ω ⊂ X

+(S, u)
}
.

When Ω = {x}, we simply write Gx = G{x} and GS,x = GS,{x}. The previous
lemma implies that under A6! and A7, for every S ∈ X(G) and Ω ⊂ X(S), we
have GS,Ω ⊂ GΩ. This justifies the following sharp strengthening of A6!:

A8 For some (or every) S ∈ S(G), GS,x = Gx for all x ∈ X(S).
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A tight F(G)-building is an affine F(G)-building X(G) which satisfies A8. It then
also satisfies A6! and the conclusion of lemma 78, and it is determined by its type:

Lemma 79. Suppose that X(G) is a tight F(G)-building and Y(G) is an affine
F(G)-building which satisfies the conclusion of lemma 78. Then

νX = νY ⇐⇒ X(G) ≃ Y(G).

Proof. We have to show that νX = νY implies X
e(G) ≃ Y

e(G). For S ∈ S(G), let
θS : Xe(S)→ Y

e(S) be the unique NG(S)-equivariant isomorphism of affine F(S)-
spaces mapping X

r(S) to Y
r(S) – its existence follows from the proof of [27, 2.1.9],

showing that NG(S) is an inessential extension of WG(S). If Int(g)(S) = S′, then
g◦θS = θS′◦g. For x ∈ X

e(S)∩Xe(S′), there is such a g in Gx by A3 for X(G). Thus
g belongs to GS,x by A8, which equals GS,θS(x) by definition. Then g ∈ GθS(x) by
assumption on Y(G), thus θS′(x) = θS′(gx) = gθS(x) = θS(x). Our isomorphisms
θS thus glue to θ : Xe(G)→ Y

e(G), which is the desired isomorphism. �

Remark 80. A tight F(G)-building X(G) (or more generally an affine F(G)-space
which satisfies A3 and A8) can be retrieved from any apartment X(S) with its
NG(S)-action: it is the quotient of G ×X(S) for the equivalence relation induced
by (g, x) 7→ gx, which indeed only depends upon the apartment: (g, x) ∼ (g′, x′) if
and only if g′ = gkn and x′ = n−1x for some k ∈ GS,x and n ∈ NG(S).

4.3.14. We denote by RX(G) the set of all functions f : R+ → X(G) of the
form f(t) = x+ tF for some (x,F) ∈ X(G)× F(G). The tangent space TX(G) of
X(G) is the quotient of RX(G) by the equivalence relation defined by f1 ∼ f2 if
and only if there is an ǫ > 0 such that f1(t) = f2(t) for all t ∈ [0, ǫ]. The group G

acts on RX(G) and TX(G) and the obvious maps RX(G) ։ TX(G) ։ X(G) are
G-equivariant. We denote by TxX(G) the fiber of TX(G) ։ X(G) over x ∈ X(G),
and by locx : F(G) ։ TxX(G) the Gx-equivariant map which sends F to the germ
of x + tF . If x belongs to X(S), then the restriction of locx to F(S) is injective.
We denote by TxX(S) the corresponding apartment in TxX(G). If the axiom A2!
holds for X(G), then so does the axiom A1 for TxX(G): any two elements of
TxX(G) belong to TxX(S) for some S ∈ S(G) with x ∈ X(S).

4.3.15. We have RX(G) = X(G) × F(G) for any affine F(G)-space X(G) which
satisfies A2, A3! and the following weakening of A8:

A8
♭ If g fixes x+ tF for all t≫ 0, then g fixes F .

Indeed, if f(t) = x1 + tF1 = x2 + tF2 for all t, then x1 = x2 = x = f(0). Now
choose Si ∈ S(G) with x ∈ X(Si) and Fi ∈ F(Si), using A2. Then by A3!, there
is a g ∈ G fixing f with Int(g)(S2) = S1. Since g fixes x + tF2 for all t, it fixes x

and F2 by A8
♭. Thus g(x+ tF2) = gx+ tgF2 = x+ tF2 = x+ tF1 with x ∈ X(S),

F1 and F2 in F(S), therefore F1 = F2 since X(S) is an affine F(S)-space.
Under the above identification, the + map just becomes f 7→ f(1).

4.4. Example: F(G) is a tight affine F(G)-building. The apartment map is
given by S 7→ F(S). The +-map is most easily defined using the identification
F(G) = F(ω◦

K) of theorem 31: for F1,F2 ∈ F(G), τ ∈ Rep
◦(G)(K) and γ ∈ R,

(F1 + F2)
γ(τ) =

∑

γ1+γ2=γ

Fγ1

1 (τ) ∩ Fγ2

2 (τ).
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This is the pull-back of F1(τ)⊗F2(τ) under the diagonal map V (τ) →֒ V (τ)⊗V (τ).
The formula indeed defines an R-filtration on ω◦

K : choose F(S) containing F1 and
F2, let G1 and G2 be the corresponding splittings in G(S), put M = Hom(S,Gm,K)
and let G∗i : M → R be the group homomorphism corresponding to Gi, so that

Fγ
i (τ) = ⊕γ′≥γGi,γ(τ) = ⊕m:G∗

i (m)≥γV (τ)m

where V (τ)m is the m-th eigenspace of τ |S. Then

Fγ1

1 (τ) ∩ Fγ2

2 (τ) = ⊕m:G∗

1 (m)≥γ1 and G∗

2 (m)≥γ2
V (τ)m

and (F1 + F2)
γ(τ) = ⊕m:(G∗

1+G∗

2 )(m)≥γV (τ)m

thus F1+F2 is split by G1 +G2. It follows that our addition is indeed well-defined.
It is plainly G-equivariant and commutative (but not associative).

The above computation already shows that F(G) = (F(G),F(−),+) is an affine
F(G)-space. It satisfies the axioms A1 = A2 by Theorem 69 and A3 by Corol-
lary 70. Actually for F ,G ∈ F(G), choosing S ∈ S(G) with F ,G ∈ F(S), we find
that F + ηG belongs to a fixed closed alcove of F(S) for all sufficiently small η ≥ 0,
from which the stronger axiom A2! easily follows. For S ∈ S(G) and F ∈ F(S),
GS,F is the group spanned by NG(S)∩PF and the Ua’s for a ∈ Φ(G,S), a(F) ≥ 0;
the group NG(S)∩PF = NL(S) and the Ua’s with a(F) = 0 together span L = L(K)
where L is the Levi subgroup of PF which contains ZG(S) – this is the Bruhat de-
composition of L, see [5, 5.15]; the remaining Ua’s span the unipotent radical UF of
PF , therefore GS,F = PF and F(G) satisfies A8, thus also A6!, as well as A4 and
A5 by lemma 77. It satisfies A7 by Corollary 72 (or proposition 76) and [24, 1.4].

The trivial point 0 ∈ F(G) is fixed by G, and it follows from lemma 79 that F(G)
is the unique affine F(G)-building with a fixed point: any such building trivially
satisfies the conclusion of lemma 78 and has trivial type.

4.5. Example: a symmetric space. Let K = R and G = GL(V ), where V is an
R-vector space of dimension n ∈ N. The action of G on the set P1(V ) of R-lines in
V identifies S(G) with S(V ) = {S ⊂ P1(V ) : V = ⊕L∈SL}. The action of G on V
identifies F(G) with the set F(V ) of all R-filtrations on V . We denote by F(S) the
apartment of F(V ) corresponding to S ∈ S(V ), thus F ∈ F(S) if and only if

∀γ ∈ R : Fγ = ⊕γ(L)≥γL where γ(L) = sup{λ : L ⊂ Fλ}.

We also identify C(G) with Rn
≤ = {γ1 ≤ · · · ≤ γn : γi ∈ R} by the map which sends

t(F) to t(F) = (ti(F))ni=1, with ♯{i : ti(F) = γ} = dimR GrγF(V ) for γ ∈ R. The
dominance order on C(G) defined in section 4.3.1 corresponds to

(γi)
n
i=1 ≤ (γ′

i)
n
i=1 ⇐⇒

{∑n
j=1 γj =

∑n
j=1 γ

′
j and∑n

j=i γj ≤
∑n

j=i γ
′
j for 2 ≤ i ≤ n.

The exponential map exp : R→ R× defines an R-valued section exp of D(R), whose
evaluation at the character γ ∈ R of D(R) is given by γ(exp) = exp(γ) ∈ R×.

4.5.1. Let B(V ) be the space of Euclidean norms α : V → R+, i.e. α2 is a positive
definite quadratic form on V . The group G acts on B(V ) by (g · α)(v) = α(g−1v).
For S ∈ S(V ), we denote by B(S) the set of all α’s in B(V ) for which V = ⊕L∈SL is
an orthogonal decomposition. For α ∈ B(V ) and F ∈ F(V ), we denote by Gα(F)γ
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the α-orthogonal complement of Fγ
+ in Fγ . Thus Gα(F) is a splitting of F which

is orthogonal for α. We define α+ F ∈ B(V ) by the following formula:

(α+ F)(v) = α
(∑

γe
−γvγ

)
: v =

∑
γvγ , vγ ∈ Gα(F)γ .

Thus α + F = gα(F) · α with gα(F) = Gα(F)(exp) in G = G(R). For S ∈ S(V ),
α ∈ B(S) and F ∈ F(S), we find that

(α+ F)2(v) =
∑

L∈S(α + F)2(vL) =
∑

L∈S(e
−γ(L)α)2(vL)

where v =
∑

L∈S vL with vL ∈ L, thus also α+ F ∈ B(S).

4.5.2. The above formulas already show that B(V ) = (B(V ),B(−),+) is an affine
F(V )-space. It is well-known that it satisfies A1, and A2 follows from the existence
of the α-orthogonal splittings. For A3, recall that the Fischer-Courant theory tells
us that the G-orbits in B(V )×B(V ) are classified by a G-equivariant map

d : B(V )×B(V )→ Rn
≤

whose i-th component di : B(V )×B(V )→ R is given by

di(α, β) = − log

(
sup

{
inf

{
β(x)

α(x)
: x ∈ W \ {0}

}
: W ⊂ V, dimR W = i

})
.

Suppose that α, β ∈ B(S) ∩B(S ′) and choose R-basis e = (ei)
n
i=1 and e′ = (e′i)

n
i=1

of V such that S = {Rei : i = 1, · · · , n}, S ′ = {Re′i : i = 1, · · · , n}, e and e′ are
orthonormal for α, and β(e1) ≥ · · · ≥ β(en), β(e

′
1) ≥ · · · ≥ β(e′n). Then necessarily

∀i ∈ {1, . . . , n} : β(ei) = exp (−di(α, β)) = β(e′i)

The element g ∈ G mapping e to e′ satisfies gS = S ′, gα = α and gβ = β, which
proves A3. The resulting map d equals d under the identification C(G) ≃ Rn

≤:

d(α, α+ F) = t(F).

4.5.3. Define d
i(α, β) =

∑i−1
j=0 dn−j(α, β), thus

d
i(α, β) = sup

{
d
i(α|W,β|W ) : W ⊂ V, dimR W = i

}

= log sup

{
Λi(α)(v)

Λi(β)(v)
: v ∈ Λi(V ) \ {0}

}

where Λi(α) is the Euclidean norm on Λi(V ) induced by α. We have

d
n(α, β) = log

(´
β(v)≤1

dv
´

α(v)≤1
dv

)

for any Borel measure dv on V , thus

d
n(α, γ) = d

n(α, β) + d
n(β, γ),

d
n(α, gα) = log |det(g)| ,

d
n(α, α + F) =

∑
γγ dimR GrγF .

In particular, if di(α, γ) = d
i(α|W,γ|W ) for some W ⊂ V , dimR W = i, then

d
i(α, γ) = d

i(α|W,β|W ) + d
i(β|W,γ|W ) ≤ d

i(α, β) + d
i(β, γ)

i.e. d satisfies the triangle inequality, from which A4 easily follows.
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4.5.4. We next show that for any α, β ∈ B(V ) and F ,G ∈ F(V ), the function

R+ ∋ t 7→ d(α+ tF , β + tG) ∈ Rn
≤

is convex, i.e. if x(t) = α+ tF and y(t) = β + tF , then for 0 ≤ t0 ≤ t ≤ t1,

d (x(t), y(t)) ≤ t−t0
t1−t0

· d (x(t1), y(t1)) +
t1−t
t1−t0

· d (x(t0), y(t0)) in Rn
≤.

By a standard procedure, we may assume that (t0, t, t1) = (0, 1, 2). We want:

d (x(1), y(1)) ≤ 1
2 (d (x(0), y(0)) + d (x(2), y(2))) .

Choose S,S ′ ∈ S(V ) with β ∈ B(S), G ∈ F(S), α ∈ B(S ′) and γ = β+2G ∈ B(S′).
Write γ = α + 2H with H ∈ F(S ′) and set z(t) = α + tH, z′(t) = γ + tιS′H,
y′(t) = γ + tιSG, so that z(t) = z′(2− t) and y(t) = y′(2− t) for t ∈ [0, 2]. Suppose
that we have established our claim for (x, z) and (z′, y′). Then

d (x(1), y(1)) ≤ d (x(1), z(1)) + d (z′(1), y′(1))

≤ 1
2 (d (x(2), z(2)) + d (z′(2), y′(2)))

= 1
2 (d (x(2), y(2)) + d (x(0), y(0)))

which reduces us further to the case where α = x(0) = y(0) = β. We now want:

2 · d(α+ F , α+ G) ≤ d(α+ 2F , α+ 2G).

Put f = gα(F), g = gα(G). Then f2 = gα(2F), g2 = gα(2G) and we have to show

2 · d(fα, gα) ≤ d(f2α, g2α) i.e. 2 · d(g−1fα, α) ≤ d(g−2f2α, α).

For 1 ≤ i ≤ n, we have

exp
(
2di(g−1fα, α)

)
= sup

{〈
f−1gx, f−1gx

〉
α,i

〈x, x〉α,i
: x ∈ Λi(V )

}
,

= sup

{〈
gf−2gx, x

〉
α,i

〈x, x〉α,i
: x ∈ Λi(V )

}
.

where 〈−,−〉α,i is the symmetric bilinear form on Λi(V ) attached to the Euclidean

norm Λi(α), for which plainly f and g are indeed self-adjoint. Therefore

exp
(
2di(g−1fα, α)

)
= ri(gf−2g) = ri(f−2g2)

where ri(h) is the spectral radius of h ∈ G acting on Λi(V ), i.e. the largest absolute
value of the (real) eigenvalues of h. But then obviously

ri(f−2g2) ≤ exp
(
d
i(g−2f2α, α)

)

with equality for i = n, which finally proves our claim.

4.5.5. For α ∈ B(V ) and F ∈ F(V ), we denote by GrF(α) the Euclidean norm
on GrF(V ) induced by α through the isomorphism V ≃ GrF(V ) provided by the
α-orthogonal splitting Gα(F) of F . We claim that for every α, β ∈ B(V ),

lim
t→∞

d(α+ tF , β + tF) = d(GrF (α),GrF(β)) in Rn
≤.

Indeed, choosing an isomorphism (Gα(F)γ , α|Gα(F)γ) ≃ (Gβ(F)γ , β|Gβ(F)γ) for
every γ ∈ R, we obtain an element g ∈ G which fixes F and maps α to β. It then
also maps α+ tF = gα(tF) · α to β + tF = ggα(tF) · α, so that

d(α+ tF , β + tF) = d
(
α, g−1

α (tF)ggα(tF) · α
)
.
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Let Lα(F) be the centralizer of Gα(F), so that PF = UF ⋊ Lα(F). Write g = u · ℓ
with u ∈ UF and ℓ ∈ Lα(F), so that g−1

α (tF)ggα(tF) = g−1
α (tF)ugα(tF) · ℓ. Let

then uF = ⊕γ>0uγ be the weight decomposition of uF = Lie(UF )(R) induced by

ad ◦ Gα(F) : D(R)→ G→ GL(g)

where g = Lie(G)(R). Then gα(tF) acts on uγ by exp(tγ), from which easily follows
that g−1

α (tF)ugα(tF) converges to 1 in UF (for the real topology). It follows that

lim
t→∞

d(α+ tF , β + tF) = d (α, ℓα) = d (GrF (α),GrF (β)) .

Taking β = uα with u ∈ UF , we obtain A6. On the other hand for any β, since

R+ ∋ t 7→ d(α+ tF , β + tF) ∈ R+
≥

is convex and bounded, it is non-increasing, which proves A5.

4.5.6. We have thus established that (B(V ),B(−),+) is an affine F(V )-building.
If S ∈ S(G) corresponds to S ∈ S(V ), the type map νB,S : S→ G(S) maps s ∈ S to
the unique morphism DR(R)→ S whose composite with the character χL through
which S acts on L ∈ S is the character log |χL(s)| ∈ R of D(R).

4.6. Example: Bruhat-Tits buildings. Let K be a field with a non-trivial, non-
archimedean absolute value |−| : K → R+.

4.6.1. The Bruhat-Tits building of GL(V ). Let G = GL(V ), where V is a K-vector
space of dimension n ∈ N. There are again G-equivariant bijections

S(G) ≃ S(V ) = {S ⊂ P(V )(K) : V = ⊕L∈SL}
F(G) ≃ F(V ) = {R− filtrations on V }

A K-norm on V is a function α : V → R+ such that (1) α(v) = 0 ⇐⇒ v = 0, (2)
α(λv) = |λ|α(v) for every λ ∈ K and v ∈ V , and (3) α(u + v) ≤ max {α(u), α(v)}
for every u, v ∈ V . The K-norm α is split by S ∈ S(V ) if and only if

∀v ∈ V : α(v) = max {α(vL) : L ∈ S} where v =
∑

L∈SvL, vL ∈ L.

It is splittable if it is split by S for some S ∈ S(V ). If K is locally compact, every
K-norm on V is splittable [14, Proposition 1.1]. We denote by B(V ) the set of all
splittable norms, by B(S) the subset of all norms split by S. We let G act on B(V )
by (g · α)(v) = α(g−1v), and define + : B(V )× F(V )→ B(V ) by

(α + F)(v) = inf
{
max

{
e−γα(vγ) : γ ∈ R

}
: v =

∑
γ∈R

vγ , vγ ∈ F
γ
}

where the sums
∑

γ∈R
vγ have finite support. We have to verify that this operation

is well-defined. Note first that A2 follows from the second proof of [9, 1.5.ii]: for
α ∈ B(V ) and F ∈ F(V ), there is an S ∈ S(V ) with α ∈ B(S) and F ∈ F(S).
Let us identify F(S) with RS by F 7→ (γL(F))L∈S where Fγ = ⊕γL(F)≥γL for all
γ ∈ R. Then for v =

∑
L∈S vL in V = ⊕L∈SL, we find that

inf
{
max

{
e−γα(vγ) : γ ∈ R

} ∣∣∣ v=
∑

γ vγ

vγ∈Fγ

}
= max

{
e−γL(F)α(vL) : L ∈ S

}
.
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Indeed for v =
∑

γ vγ with vγ =
∑

L vγ,L, vγ,L ∈ L and vγ,L = 0 if γ > γL(F),

max
{
e−γα(vγ) : γ ∈ R

}
= max

{
e−γα(vγ,L) : γ ∈ R, L ∈ S

}

≥ max
{
e−γL(F)α(vγ,L) : γ ∈ R, L ∈ S

}

≥ max
{
e−γL(F)α(vL) : L ∈ S

}

since α ∈ B(S) (for the first equality) and vL =
∑

γ vγ,L (for the last inequality),
which provides the non-trivial required inequality in the displayed formula. Thus

(4.1) (α + F)(v) = max
{
e−γL(F)α(vL) : L ∈ S

}

from which follows that α + F is well-defined and again belongs to B(S). The
apartment and +-maps are plainly G-equivariant, and the above formula shows
that the latter turns B(S) into an affine F(S)-space. If S ↔ S, the type map

νB,S : S→ G(S)

maps s to the unique F ∈ F(S) with γL(F) = log |χL(s)| for all L ∈ S, where
χL : S → Gm,k is the character through which S acts on L.

In [24, §3], Parreau shows that a closely related set ∆ is an affine building in
the sense of [24, 1.1] (see also [9, 14]). The axioms A1, A3! and A7 for B(V )
respectively follow from the axioms A3, A2 and A5 for ∆ in [24]. The axiom A2! is
a consequence of Proposition 1.8 of [24], and then A4 and A5 follow from lemma 77
together with A6!: for α ∈ B(V ), F ∈ F(V ) and u ∈ UF , u(x + tF) = x + tF
for t ≫ 0, which is proved as follows. We may assume that α ∈ B(S), F ∈ F(S).
Write S = {Kv1, · · · ,Kvn} with i 7→ γi = γKvi(F) non-increasing, identify B(S)
with Rn via α 7→ (α1, · · · , αn) where αi = − log(α(vi)). Then tF acts on it by

(α1, · · · , αn) 7→ (α1 + tγ1, · · · , αn + tγn)

and the matrix (ui,j) of u ∈ UF in the basis (v1, · · · , vn) of V satisfies ui,i = 1 and
ui,j 6= 0 if and only if γi > γj for i 6= j. It fixes α if and only if αj−αi ≤ − log |ui,j|
for all 1 ≤ i, j ≤ n by [24, 3.5]. It thus fixes α+ tF for all t≫ 0.

Let G(Z) ≃ R be the isomorphism which maps G to the unique weight γ(G) of
the corresponding representation of DK(R) on V . The projection G(S) ։ G(Z)
maps F to the unique G with γ(G) = 1

n

∑
L∈S γL(F). It follows that the projection

d
c : B(V )×B(V )→ G(Z)

of the distance d : B(V )×B(V )→ C(G) maps (α, β) to the unique G with

γ(G) = 1
n

∑n
i=1 logα(vi)− log β(vi)

for any K-basis (v1, · · · , vn) of V such that α, β ∈ B(S) with S = {Kv1, · · · ,Kvn}.
From [24, 3.2], we deduce that the morphism

νcB : G→ G(ZG)

maps g to the unique G with γ(G) = 1
n log |det g|. In particular, |detGα| = 1 for

every α ∈ B(V ), and then [24, 3.5] implies A8: Gα = GS,α for all α ∈ B(S).
Therefore B(V ) is a tight F(V )-building. For a more general case, see [9].
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4.6.2. The Bruhat-Tits building of G. For a general reductive group G over K, we
have to make some assumption on the triple (G,K, |−|): the existence of a valuation
on the root datum (ZG(S), (Ua)a∈Φ(G,S)) of G = G(K), in the sense of [7, 6.2.1]. Let
then B

r(G) and B
e(G) = B

r(G)×G(Z) be respectively the reduced and extended
Bruhat-Tits buildings of G, as defined in [7, §7] and [8, 4.2.16 & 5.1.29].

These two sets have compatible actions of G, they are covered by apartments
B

r(S) and B
e(S) = B

r(S) × G(Z) which are G-equivariantly parametrized by
S(G), Be(S) is an affine F(S)-space on which NG(S) acts by affine transformations
with linear part νvS : NG(S) ։ WG(S) and the resulting action of ZG(S) is given by
a morphism νB,S : ZG(S)→ G(S) which is uniquely characterized by the following
property: for every morphism χ : ZG(S)→ Gm,K , the induced morphism

G(χ|S) ◦ νB,S : ZG(S) −→ G(Gm,K)

maps z in ZG(S) to log |χ(z)| in R = G(Gm,K). Similarly, the action of G on G(Z)
is given by a morphism νc

B
: G → G(Z) which is uniquely characterized by the

following property: for every morphism χ : G→ Gm,K , the induced morphism

G(χ|Z) ◦ νcB : G→ G(Gm,K)

maps g in G to log |χ(g)| in R = G(Gm,K). There is a G-equivariant distance

d : Be(G)×B
e(G)→ R+

inducing Euclidean distances on each apartment. Finally, Be(G) satisfies A1 by
[7, 7.4.18.i] as well as the following strong form of A8 and A3!:

For every subset Ω 6= ∅ of Be(S), the pointwise stabilizer GΩ ⊂ G

of Ω equals GS,Ω by [7, 7.4.4], and it acts transitively on the set of
apartments containing Ω by [7, 7.4.9].

We denote by +S : Be(S)×F(S)→ B
e(S) the given structure of affine F(S)-space

on B
e(S). These maps are already compatible in the following sense:

g · (x+S F) = (g · x+g·S g · F).

Let us first show that for S, S′ ∈ S(G), x ∈ B
e(S)∩Be(S′) and F ∈ F(S)∩F(S′),

x+S F = x+S′ F in B
e(G).

Since F ∈ F(S) ∩F(S′), there is a u ∈ UF with Int(u)(S) = S′. Then x and u−1x
both belong to B

e(S), therefore ux = x. Indeed, let ZG(S) ⊂ B ⊂ PF be a minimal
parabolic subgroup of G and choose y ∈ B

e(S) such that u belongs to GS,C = GC

with C = y +S F−1(B). Then d(x, z) = d(u−1x, u−1z) = d(u−1x, z) for all z in
the open subset C of the Euclidean space (Be(S), d), thus u−1x = x and ux = x.
Therefore u(x +S F) = x +S′ F , and it remains to establish that u fixes x +S F .
In fact, Gx ∩ UF fixes f(t) = x+S tF for all t ≥ 0, because

Gf(R+) = Gx ∩ ∪t>0Gf(t+R+) = Gx ∩ ∪t>0GS,f(t+R+) ⊃ Gx ∩ UF .

A sector in B
e(G) is a subset of the form C = x +S F−1(B) where S ∈ S(G),

x ∈ B
e(S) and B is a minimal parabolic subgroup of G with Levi ZG(S). If C

is also contained in B
e(S′), there is a g ∈ G fixing C with Int(g)(S) = S′, thus

also C = gC = x′ +S′ F−1(B′) with x′ = gx in B
e(S′) and B′ = Int(g)(B) with

Levi subgroup ZG(S
′). Of course x′ = gx, but also B′ = B since g belongs to

GC = GS,C ⊂ B. Thus C determines x and B, and for any S′ ∈ S(G), C ⊂ B
e(S′)

implies x ∈ B
e(S′), F−1(B) ⊂ F(S′). If C′ = x′+S′ F−1(B′) is a subsector of C in

B
e(G), there is an h ∈ G fixing C′ with Int(h)(S′) = S, thus also C′ = hC′ equals
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x′′ +S F−1(B′′) in B
e(S) with x′′ = hx′ and B′′ = Int(h)(B′). Of course B′′ = B

since C′ ⊂ C, but again x′′ = x′ and B′′ = B′, thus B′ = B: the subsectors of
C have the same “direction” B. Now by [7, 7.4.18.ii], for any y ∈ B

e(G), there
is an apartment B

e(S′) which contains y and a subsector C′ of C, in which case
also F−1(B) ⊂ F(S′). The axiom A2 easily follows: starting with y ∈ B

e(G) and
F ∈ F(G), choose S ⊂ B ⊂ PF and x ∈ B

e(S), set C = x +S F−1(B) to obtain
S′ ∈ S(G) with y ∈ B

e(S′) and F−1(B) ⊂ F(S′), thus also F ∈ F(S′).
We may at last define our + map: for x ∈ B

e(G) and F ∈ F(G), choose S ∈ S(G)
with x ∈ B

e(S) and F ∈ F(S) and set x+F = x+S F . It is plainly G-equivariant,
and induces the given structure of affine F(S)-space on B

e(S).
Now for x ∈ B

e(G) and F ,G ∈ F(G), choose S ∈ S(G) with x ∈ B
e(S),

F ∈ F(S), let F be the “facet” in B
e(S) denoted by γ(x,E) in [5, 7.2.4] with

E = {tF : t > 0}, let C be a “chamber” of Be(S) containing F in its closure. Using
[7, 7.4.18.ii] as above, we find that there is an apartment Be(S′) containing C with
G ∈ F(S′). It then also contains F by [7, 7.4.8], which means that for some ǫ > 0,
it contains x+ ηG for every η ∈ [0, ǫ]: this proves A2!.

We already haveA3!, A8 (thus A6!). Then A4 and A5 come along by lemma 77:
B

e(G) is a tight affine F(G)-building. Finally A7 also holds, by [24, 1.4] and [7,
7.4.19]. For G = GL(V ), Be(G) ≃ B(V ) by lemma 79 (see also [14, 9, 24]).

4.6.3. Suppose that the valuation ring O = {x ∈ K : |x| ≤ 1} is Henselian. Then
for every algebraic extension L of K, there is a unique extension of |−| : K → R+

to an absolute value |−| : L → R+ on L, and the corresponding valuation ring
OL = {x ∈ L : |x| ≤ 1} is the integral closure of O in L. We say that L/K has a
property P over O if the corresponding morphism Spec(OL)→ Spec(O) does.

Proposition 81. Let G be a reductive group over O.

(1) There is an extension L/K, finite étale and Galois over O, splitting G.
(2) The Bruhat-Tits building B

e(GK) exists and contains a canonical point

◦eG,K = ◦eG = (◦rG, 0) ∈ B
e(GK) = B

r(GK)×G(Z(GK))

with stabilizer G(O) in G(K). The projection ◦rG of ◦eG is the unique fixed
point of G(O) in B

r(GK) if the residue field of O is neither F2 nor F3.
(3) The apartments of Be(GK) containing ◦eG are the B

e(SK)’s for S ∈ S(G).

Proof. Let S be a maximal split torus of G and let T be a maximal torus of ZG(S)
[1, XIV 3.20]. Then G and T are isotrivial by Proposition 42, thus split by a finite
étale cover of Spec(O) which we may assume to be connected and Galois, thus of
the form Spec(OL)→ Spec(O) where OL is the normalization of O in a finite étale
Galois extension L/K over O by [19, 18.10.12]. Since O is Henselian, OL is also the
valuation ring of (L, |−|). Let (xα) be a Chevalley system for (GOL

, TOL
), as defined

in [12, XXIII 6.2], giving rise to a Chevalley valuation ϕL for GL, as explained in
[7, 6.2.3.b] and [8, 4.2.1], thus also to the reduced Bruhat-Tits building B

r(GL)
with its distinguished apartment B

r(TL) and the distinguished point ◦rG ≡ ϕL in

B
r(TL), as defined in [7, §7]. For f = 0, the group schemes G0

f ⊂ Gf ⊂ Ĝf ⊂ G
†
f

constructed in [8, 4.3-6] are all equal to GOL
[8, 4.6.22]. Thus by [8, 4.6.28], G(OL)

is the stabilizer of the distinguished point ◦eG = (◦rG, 0) of B
e(TL) ⊂ B

e(GL) in
G(L), and ◦rG is the unique fixed point of G(OL) in B

r(GL) by [8, 5.1.39] if the
residue field of OL is not equal to F2 or F3, which we can always assume.
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The pair (GK ,K) satisfies the conditions of the pair denoted by (H,K♮) in [8,
5.1.1]. The Galois group Σ = Gal(L/K) acts compatibly on G(L) and B

e(GL).
It therefore fixes ◦eG, which thus belongs to B

e(TL)
Σ = B

e(SK). Applying this to
ZG(S) instead of G, we see that (GK ,K) also satisfies the assumption (DE) of [8,
5.1.5]. Then by [8, 5.1.20], the valuation ϕL descends to a valuation ϕ for GK . The
corresponding building B

e(GK) is the fixed point set of Σ in B
e(GL) by [8, 5.1.25].

The stabilizer of ◦eG ∈ B
e(GK) in G(K) equals G(O) = G(K) ∩ G(OL) and again

by [8, 5.1.39], ◦rG is the unique fixed point of G(O) in B
r(GK) if the residue field

of O is not equal to F2 or F3. By construction, ◦eG belongs to B
e(SK). Therefore

[7, 7.4.9] proves our last claim, since G(O) also acts transitively on S(G). �

4.6.4. We denote by B
e(G,K, |−|) the pointed affine F(GK)-building

B
e(G,K, |−|) = (Be(GK), ◦eG)

attached to a reductive group G over O. It easily follows from [8, 5.1.41] that this
construction is functorial in the Henselian pair (K, |−|). More precisely, let HV be
the category whose objects are pairs (K, |−|) where K is a field and |−| : K → R+ is
a non-trivial, non-archimedean absolute value whose valuation ringOK is Henselian.
Then for every morphism f : (K, |−|)→ (L, |−|) in HV and every reductive group
G over OK , there is a canonical morphism f : Be(GK)→ B

e(GL) such that

f(◦eG) = ◦
e
G, f(gx) = f(g)f(x) and f(x+ F) = f(x) + f(F)

for every x ∈ B
e(GK), g ∈ G(K) and F ∈ F(GK). The first and last property

already determine f uniquely: by the axiom A1 for B
e(GK), any element x of

B
e(GK) equals ◦eG + F for some for F ∈ F(GK).

Remark 82. The above functoriality amounts to saying that the mapping

B
e(GK) ∋ ◦eG + F 7→ ◦eG + f(F) ∈ B

e(GL)

is well-defined and equivariant with respect to G(K)→ G(L). This indeed implies
the equivariance with respect to f : F(GK) → F(GL) as follows. For S ∈ S(G)
mapping into S′ ∈ S(GOL

), the above mapping restricts to a well-defined map
B

e(SK) → B
e(S′

L) which is equivariant with respect to f : F(SK) → F(S′
K); by

the axiom A2 for Be(GK) and Proposition 65, any pair (x,F) in B
e(GK)×F(GK)

is conjugated by some g ∈ G(K) to one in B
e(SK)× F(SK), thus

f (x+ F) = f(g−1)f (gx+ gF) = f(g−1) (f(gx) + f(gF)) = f(x) + f(F).

Theorem 83. The pointed affine F(G)-building B
e(G,K, |−|) is also functorial in

the reductive group G over OK : for every morphism f : G→ H of reductive groups
over OK , there is a unique morphism f : Be(GK)→ B

e(HK) such that

f(◦eG) = ◦
e
H , f(gx) = f(g)f(x) and f(x+ F) = f(x) + f(F)

for every x ∈ B
e(GK), g ∈ G(K) and F ∈ F(GK).

This essentially follows from Landvogt’s work in [21], which has no assumptions on
the reductive groups over K but requires (K, |−|) to be quasi-local, in particular
discrete. The main difficulty there is the construction of base points with good
properties, which is here trivialized by the given points ◦eG and ◦eH . Note that
again, the uniqueness of f : Be(GK) → B

e(HK) follows from the first and last
displayed requirements, and its existence amounts to showing that the mapping

B
e(GK) ∋ ◦eG + F 7→ ◦eH + f(F) ∈ B

e(HK)
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is well-defined and equivariant with respect to f : G(K) → H(K). Given the
identification B

e(GL(V )) ≃ B(V ), the above theorem is closely related to the
Tannakian theorem 86 below. We will prove the former as a corollary of the latter.

4.6.5. For every ν > 0, there is a G(K)-equivariant commutative diagram

B
e(G,K, |−|) × F(GK)

+
−→ B

e(G,K, |−|)
a ↓ b ↓ a ↓

B
e(G,K, |−|ν) × F(GK)

+
−→ B

e(G,K, |−|ν)

where a is a canonical G(K)-equivariant map and b(F) = νF .

4.7. A Tannakian formalism for Bruhat-Tits buildings.

4.7.1. Let again (K, |−|) be a field with a non-trivial, non-archimedean absolute
value |−| : K → R+, with valuation ring O = OK and residue field k. We denote
by Norm◦(K, |−|) the category whose objects are pairs (V, α) where V is a finite
dimensional K-vector space and α : V → R+ is a splittable K-norm on V . A
morphism f : (V, α) → (V ′, α′) is a K-linear morphism f : V → V ′ such that
α′(f(x)) ≤ α(x) for every x ∈ V . This is an O-linear rigid ⊗-category with neutral
object 1K = (K, |−|). The ⊗-products, inner homs and duals

(V1, α1)⊗ (V2, α2) = (V1 ⊗ V2, α1 ⊗ α2)

Hom ((V1, α1) , (V2, α2)) = (Hom (V1, V2) ,Hom(α1, α2))

(V, α)∗ = (V ∗, α∗)

are respectively defined by : α1⊗α2 = Hom(α∗
1, α2) under V1⊗V2 = Hom(V ∗

1 , V2),

Hom(α1, α2) (f) = sup

{
α2(f(x))

α1(x)
: x ∈ V1 \ {0}

}
,

α∗(f) = sup

{
|f(x)|

α(x)
: x ∈ V \ {0}

}
.

In addition, Norm◦(K, |−|) is an exact category in Quillen’s sense: a short sequence

(V1, α1)
f1
−→ (V2, α2)

f2
−→ (V3, α3)

is exact precisely when the underlying sequence of K-vector spaces is exact and

α1(x) = α2(f1(x)), α3(z) = inf
{
α2(y) : y ∈ f−1

2 (z)
}

for every x ∈ V1 and z ∈ V3. For γ ∈ R and (V, α) ∈ Norm◦(K, |−|), we set

B(α, γ) = {x ∈ V : α(x) < exp(−γ)}}

B(α, γ) = {x ∈ V : α(x) ≤ exp(−γ)}}

These are O-submodules of V and the functors (V, α) 7→ B(α, γ) are easily seen
to be exact. However, (V, α) 7→ B(α, γ) is also exact, because in fact every exact
sequence in Norm◦(K) is split by [9, 1.5.ii + Appendix]! If M is an O-lattice in V
(by which we mean a finitely generated, thus free, O-submodule spanning V ), we
denote by αM the splittable K-norm on V with B(αM , 0) = M defined by

αM (x) = inf {|λ| : λ ∈ K, x ∈ λM} .
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4.7.2. If (K, |−|)→ (L, |−|) is any morphism, there is an exact O-linear ⊗-functor

−⊗ L : Norm◦(K, |−|)→ Norm
◦(L, |−|)

defined by (V, α)⊗ L = (VL, αL) where VL = V ⊗ L and

αL(v) = inf {max{|xk|α(vk)} : v =
∑

vk ⊗ xk, vk ∈ V, xk ∈ L} .

For (V, α) ∈ Norm◦(K, |−|), γ ∈ R and x ∈ V ,

B(αL, γ) = B(α, γ)⊗OL, B(αL, γ) = B(α, γ)⊗OL and α = αL|V.

If M is an O-lattice in V , then αM,L = αM⊗OL
.

4.7.3. We shall also consider the category Norm′(K) whose objects are triples
(V, α,M) where (V, α) is an object of Norm◦(K) and M is an O-lattice in V , with
the obvious morphisms. It is again an O-linear ⊗-category. The formula

locγ(V, α,M) = image of B(α, γ) ∩M in Mk = M ⊗O k

defines an O-linear ⊗-functor with values in Fil(k) = FilRLF(k),

loc : Norm′(K)→ Fil(k).

Indeed by the axiom A1 for B(V ), we may find an O-basis (e1, · · · , en) of M which
is adapted to α, thus α(

∑
xiei) = max {|xi| e−γi} where γi = − logα(ei) and

locγ(V, α,M) = ⊕γi≥γkei

from which easily follows that loc is well-defined and compatible with ⊗-products.

4.7.4. For an extension (K, |−|)→ (L, |−|) and a reductive group G over OK , we
denote by B

′(ω◦
G, L, |−|) or simply B

′(ω◦
G, L) the set of all factorizations

Rep◦(G)(OK)
α
−→ Norm◦(L, |−|)

forg
−→ Vect(L)

of the fiber functor ω◦
G,L through an OK-linear ⊗-functor α. For τ ∈ Rep◦(G)(OK)

and α ∈ B
′(ω◦

G, L), we denote by α(τ) the corresponding L-norm on VL(τ).

4.7.5. For g ∈ G(L) and F ∈ F(GL), the following formulas

(g · α)(τ) = τL(g) · α(τ) and (α+ F)(τ) = α(τ) + F(τ)

respectively define an action of G(L) on B
′(ω◦

G, L) and a G(L)-equivariant map

+ : B′(ω◦
G, L)× F(GL)→ B

′(ω◦
G, L).

4.7.6. We define the canonical L-norm αG,L on ω◦
G,L by the formula

αG,L(τ) = αVOL
(τ) = αV (τ),L.

By Propositions 39 and 42, G(OL) is the stabilizer of αG,L in G(L). We set

B(ω◦
G, L)

def
= αG,L + F(GL).

This is a G(OL)-stable subset of B′(ω◦
G, L) equipped with a G(OL)-equivariant map

can : F(GL) ։ B(ω◦
G, L).
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4.7.7. Any L-norm α on ω◦
G,L induces an O-linear ⊗-functor

α′ : Rep◦(G)(O)→ Norm′(L)

by the formula α′(τ) = (VL(τ), α(τ), VOL
(τ)), thus also an O-linear ⊗-functor

loc(α) : Rep◦(G)(O)→ Fil(kL), loc(α) = loc ◦ α′

where kL is the residue field of OL. We may thus define

B
?(ω◦

G, L) = {α ∈ B
′(ω◦

G, L) : loc(α) is exact} .

This is a G(OL)-stable subset of B′(ω◦
G, L) equipped with a G(OL)-equivariant map

loc : B?(ω◦
G, L)→ F(GkL

).

4.7.8. All of the above constructions are functorial in G, (K, |−|) and (L, |−|),
using pre- or post-composition with the obvious exact ⊗-functors

Rep◦(G2)(OK) −→ Rep◦(G1)(OK)
Rep◦(G)(OK1) −→ Rep◦(G)(OK2)

Norm
◦(L1, |−|1) −→ Norm

◦(L2, |−|2)
for

G1 → G2

(K1, |−|1) → (K2, |−|2)
(L1, |−|1) → (L2, |−|2)

Lemma 84. For any reductive group G over OK , we have

B(ω◦
G, L) ⊂ B

?(ω◦
G, L) ⊂ B

′(ω◦
G, L)

and the composition loc ◦ can : F(GL)→ F(GkL
) is the reduction map

F(GL)
≃
←− F(GOL

)
red
−→ F(GkL

).

For any S ∈ S(GOL
), the functorial map B

′(ω◦
S , L)→ B

′(ω◦
G, L) is injective.

Proof. By proposition 65, any F ∈ F(GL) belongs to F(SL) for some S ∈ S(GOL
).

Pre-composing with Rep
◦(G)(OK )→ Rep

◦(S)(OL) yields a commutative diagram

F(SL)
can // //

_�

��

B(ω◦
S , L)

� � //

��

B
′(ω◦

S , L)

��

B
?(ω◦

S , L)
? _oo loc //

��

F(SkL
)

� _

��

F(GL)
can // // B(ω◦

G, L)
� � // B′(ω◦

G, L) B
?(ω◦

G, L)
? _oo loc // F(GkL

)

which reduces us to the case K = L, G = S treated below. �

Lemma 85. Suppose that G = S is a split torus. Then all maps in

F(SL)
can // // B(ω◦

S , L)
� � // B′(ω◦

S , L) B
?(ω◦

S , L)
? _oo loc // F(SkL

)

are isomorphisms of pointed affine G(S)-spaces. Moreover, S(L) acts on

B(ω◦
S , L) = B

?(ω◦
S , L) = B

′(ω◦
S , L)

by translations through the morphism

νB,S : S(L)→ G(S)

which maps s ∈ S(L) to the unique morphism νB,S(s) : DO(R)→ S whose compos-
ite with any character χ of S is the character log |χ(z)| ∈ R of DO(R).
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Proof. Put M = Hom(S,Gm,O) and let ρm be the representation of S on O = OK

given by the character m ∈ M . For τ ∈ Rep◦(S)(O), let τ = ⊕τm be the weight
decompositions of τ . Recall from section 3.10.6 that the formulas

Fγ(τ) = ⊕F♯(m)≥γV (τm), F ♯(m) = sup{γ : Fγ(ρm) 6= 0}

yield isomorphisms between F(S) = G(S) and Hom(M,R). Similarly, the formulas

α(τ)(x) = max
{
e−α♯(m)αVOL

(τm)(xm) : m ∈M
}
, α♯(m) = − logα(ρm)(1O)

where x =
∑

xm is the decomposition of x in VL(τ) = ⊕VL(τm) yield isomorphisms
between B

′(ω◦
S , L) and Hom(M,R). One then checks easily that

α♯
S,L = 0, (α+ F)♯ = α♯ + F ♯ and s · α = α+ νB,S(s)

as well as locγ(α)(τ) = ⊕α♯(m)≥λVkL
(τm), from which the lemma follows. �

4.7.9. For S ∈ S(GOL
), we identify B(ω◦

S , L) with its image in B(ω◦
G, L) and call

it the apartment attached to S. The +-map on B
′(ω◦

G, L) thus induces a structure
of affine F(SL)-space on B(ω◦

S , L), and the action of G(L) on B
′(ω◦

G, L) restricts to
an action of S(L) on B(ω◦

S , L), by translations through the above morphism νB,S .

4.7.10. We now restrict our attention to Henselian fields, so that B
e(G,L, |−|) is

also well-defined, functorial in (L, |−|), and equal to ◦eG+F(GL) by A1. Given the
functorial properties of B(ω◦

G, L), theorem 83 immediately follows from:

Theorem 86. The formula ◦eG + F 7→ αG,L + F defines a functorial bijection

α : Be(G,L, |−|)→ B(ω◦
G, L, |−|)

such that for every x ∈ B
e(GL), g ∈ G(L) and F ∈ F(GL),

α(◦eG) = αG, α(g · x) = g ·α(x) and α(x+ F) = α(x) + F .

Proof. Fix (L, |−|) → (L′, |−|) with valuation ring O′ such that G′ = GO′ splits
and consider the following diagram, where F ∈ F(GL) and F ′ ∈ F(GL′) = F(G′

L′):

◦eG + F

?

��

B
e(G,L)

α

��

β

&&

// Be(G′, L′)

α′

��

β′

ww

◦eG′ + F ′

?

��

αG,L + F B
′(ω◦

G, L)
−⊗L′

// B′(ω◦
G, L

′) B
′(ω◦

G′ , L′)
Resoo αG′,L′ + F ′

The bottom maps are respectively induced by post and pre-composition with

−⊗ L′ : Norm◦(L)→ Norm◦(L′) and −⊗O′ : Rep◦(G)(O)→ Rep◦(G′)(O′).

If α′ is well-defined and equivariant with respect to the operations of G(L′) and
F(GL′), so is β

′. Then β is well-defined and equivariant with respect to the oper-
ations of G(L) and F(GL). But B′(ω◦

G, L)→ B
′(ω◦

G, L
′) is injective, thus α is also

well-defined and equivariant with respect to the operations of G(L) and F(GL). Its
image equals B(ω◦

G, L) by definition, which thus is stable under the operations of
G(L) and F(GL) on B

′(ω◦
G, L). Since loc(αG,L + F) = FkL

for every F ∈ F(GL),
the restriction of α to any apartment B

e(SL) = ◦eG + F(SL) for S ∈ S(GOL
) is

injective. Since any pair of points in B
e(G,L) is G(L)-conjugated to one in such an

apartment by the axiom A1 for B
e(G,L), α : Be(G,L)→ B(ω◦

G, L) is a bijection.
This reduces us to the case where G is split over K = L.
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Suppose that ◦eG + F1 = ◦eG + F2 = x in B
e(GK) for some F1,F2 ∈ F(GK),

choose Si ∈ S(GK) such that Fi ∈ F(Si) and ◦eG ∈ B
e(Si) using A2 for B

e(GK),
and then choose g ∈ G(K) fixing ◦eG and x such that Int(g)(S1) = S2 using A3 for
B

e(GK). Then Si ∈ S(G) and g ∈ G(O) by Proposition 81, moreover gF1 = F2

since B
e(S2) is an affine F(S2)-space. Thus g(αG + F1) = αG + F2 in B

′(ω◦
G,K),

since G(O) fixes αG. But g fixes the point x = ◦eG + F1 of Be(S1), thus g fixes
αG +F1 in B

′(ω◦
G,K) by Proposition 87 below, therefore αG +F1 = αG +F2 and

our map α : Be(G,K)→ B
′(ω◦

G,K) is indeed well-defined.
It is plainly G(O)-equivariant. For any S ∈ S(G), the G(K)-equivariant map αS

of Proposition 87 below coincides with α on B
e(SK), thus α equals αS everywhere

since every point of Be(GK) is conjugated to one in B
e(SK) by some element in

G(O). Therefore α is G(K)-equivariant. Since every pair in B
e(GK) × F(GK)

is conjugated to one in B
e(SK) × F(SK) by some element in G(K), α is also

compatible with the operations of F(GK). �

Proposition 87. Suppose that G is split. Then for every S ∈ S(G), there exists a
unique map αS : Be(SL)→ B

′(ω◦
G, L) such that for all x ∈ B

e(SL) and F ∈ F(SL),

αS(◦
e
G) = αG,L and αS(x+ F) = αS(x) + F

It is NG(S)(L)-equivariant and extends uniquely to a G(L)-equivariant map

αS : Be(GL)→ B
′(ω◦

G, L).

Proof. The uniqueness of both maps is obvious, the existence and equivariance
under S(L) of the first one follows from lemma 85. Since G(OL) fixes ◦eG and αG,L,
αS : Be(SL) → B

′(ω◦
G, L) is also equivariant for NG(S)(L) = NG(S)(OL) · S(L).

In view of Remark 80, it remains to establish the following claim:

For any F ∈ F(SL), the stabilizer of x = ◦eG+F ∈ B
e(GL) in G(L)

is contained in the stabilizer of α = αG,L+F ∈ B
′(ω◦

G, L) in G(L).

This is true for F = 0, where both stabilizers equal G(OL). This is therefore also
true when F = νB,S(s) for some s ∈ S(L), since then x = s · ◦eG and α = s · αG,L.
To clarify the proof, note that the base change maps from K to L identify

F = F(SK) with F(SL) ⊂ F(GL)
A = B

e(SK) with B
e(SL) ⊂ B

e(GL)
B = B(ω◦

S ,K) with B(ω◦
S , L) ⊂ B

′(ω◦
G, L)

and the isomorphism of affine F -space αS : A→ B also does not depend upon L.
What does depend upon L is the subset Λ(L) = ◦eG+ νB,S(S(L)) of A on which we
already know the validity of our claim. So let us fix x and α as above, as well as
some g ∈ G(L) such that gx = x and choose an extension (L, |−|)→ (L′, |−|) in HV

such that |L′×| = R! Then Λ(L′) = A, thus gα = α in B
′(ω◦

G, L
′) since gx = x in

B
e(GL′). Since B

′(ω◦
G, L)→ B

′(ω◦
G, L

′) is injective, also gα = α in B
′(ω◦

G, L). �

4.7.11. The above theorem implies various properties of B(ω◦
G,K), for instance:

B(ω◦
G,K) is a tight affine F(GK)-building. For an extension (K, |−|) → (L, |−|),

the map B(ω◦
GOL

, L)→ B(ω◦
G, L) is an isomorphism of affine F(GL)-buildings. For

a closed immersion G1 →֒ G2, the map B(ω◦
G1

,K) → B(ω◦
G2

,K) is injective (this
follows from the axiom A1 on the source, and the obvious injectivity on appart-
ments). For a central isogeny G1 ։ G2, the map B(ω◦

G1
,K) → B(ω◦

G2
,K) is an

isomorphism. Thus B(ω◦
G,K) has decompositions analogous to those of section 2.6.
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4.7.12. Fix F1,F2 ∈ F(GK). Suppose that for some ǫ > 0, αG+tF1 = αG+tF2 for
all t ∈ [0, ǫ]. Then the reductions F1,k and F2,k are equal in F(Gk) by Lemma 84.
Suppose conversely that F1,k = F2,k, and choose an apartment B

e(S) in B
e(GK)

containing the germs of t 7→ ◦eG + tFi for i ∈ {1, 2} – in particular, S belongs to
S(G) since ◦eG belongs to B

e(S). Then there are unique F ′
i in F(S) such that,

for some ǫ > 0, ◦eG + tFi = ◦eG + tF ′
i in B

e(GK) for all t ∈ [0, ǫ]. But then
also αG + tFi = αG + tF ′

i in B(ω◦
G,K), thus Fi,k = F ′

i,k in F(Gk), therefore

F ′
1,k = F ′

2,k and F ′
1 = F ′

2 since the reduction map is injective on F(S), thus again

αG + tF1 = αG + tF2 for all t ∈ [0, ǫ]. This yields canonical identifications

F(GK)
loc◦e

G

vvvvnnn
nn
nn
nn
nn
n

locαG
����

red

&& &&N
NN

NN
NN

NN
NN

T◦e
G
B

e(GK) TαG
B(ω◦

G,K) F(Gk)

between the localization maps of 4.3.14 and the reduction map on F(GK).

4.7.13. For every ν > 0, there is a G(K)-equivariant commutative diagram

B(ω◦
G,K, |−|) × F(GK)

+
−→ B(ω◦

G,K, |−|)
a ↓ b ↓ a ↓

B(ω◦
G,K, |−|ν) × F(GK)

+
−→ B(ω◦

G,K, |−|ν)

where a(α) = αν and b(F) = νF . It is compatible with the analogous diagram of
section 4.6.5 via the relevant α-maps.

4.7.14. For x ∈ B
e(GK), the K-norm α(x) ∈ B(ω◦

G,K) is exact and extends to
a K-norm on B(ω′

G,K) as in 3.6.6. Thus by Proposition 43, it yields a K-norm
α(x)(ρ) on VK(ρ) for every representation ρ of G on a flat O-module V (ρ). We set

αad(x) = α(x)(ρad), αreg(x) = α(x)(ρreg) and αadj(x) = α(x)(ρadj).

Proposition 88. Suppose that (K, |−|) is discrete and write |K×| = qZ with q > 1.
Let (gx,r)r∈R be the Moy-Prasad filtration attached to x on gK = Lie(GK). Then

∀x ∈ R : gx,r =
{
v ∈ gK : αad(x)(v) ≤ q−r

}
.

Proof. Given the definition of gx,r (by étale descent from the quasi-split case) and
Proposition 81, we may assume that G splits over O. Changing |−| to |−|ν with
ν = 1

log q , we may also assume that q = e. Fix S ∈ S(G) with x in B
e(SK)

and write x = ◦eG + F for some F ∈ F(SK), so that also α(x) = αG + F . Let
g = g0 ⊕ ⊕β∈Φ(G,S)gβ be the weight decomposition of g and F ♯ : M → R the
morphism corresponding to F , where M = Hom(S,Gm,O). Then for every r ∈ R,

B (αad(x), r) = g0,r ⊕⊕β∈Φ(G,S)gβ,r

where gβ,r = B
(
αgβ

, r −F ♯(β)
)

for β ∈ Φ(G,S) ∪ {0}. For r = 0, this is the Lie
algebra gx of the group scheme Gx over O attached to x in [8]. Comparing now
this formula with the definition of gx,r in [3, 2.1.3] proves our claim. �

Let Gan
K be the analytic Berkovich space attached to GK . In [26, 2.2], the authors

construct a canonical map ϑ : Be(GK)→ Gan
K , thus attaching to every x ∈ B

e(GK)
a multiplicative K-semi-norm ϑ(x) on A(GK).
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Proposition 89. For every x ∈ B
e(GK), αadj(x) = ϑ(x). In particular, the

K-norm αadj(x) on A(GK) is multiplicative (and ϑ(x) is a norm).

Proof. If we equip Gan
K with the action of G(K) induced by ρadj, then x 7→ ϑ(x)

is G(K)-equivariant and compatible with extensions (K, |−|) → (L, |−|) in the
sense that ϑ(x) = ϑ(xL)|A(GK) for every x ∈ B

e(GK) [26, Proposition 2.8]. The
map x 7→ αadj(x) has the same properties. We may thus assume that G splits
over O, and again choosing L with log |L×| = R, we merely have to show that
ϑ(◦eG) = αadj(◦

e
G) = αA(G). By definition: {ϑ(x)} is the Shilov boundary of a

K-affinoid subgroup Gx of Gan
K . For x = ◦eG, Gx is the affinoid group Gan attached

to G, and its Shilov boundary is the gauge norm attached to A(G), i.e. αA(G). �

Since the multiplication onA(G) is a morphism ρreg⊗ρreg → ρreg in Rep′(G)(O), the
K-norm αreg(x) on A(GK) is sub-multiplicative. Since for every τ ∈ Rep◦(G)(O),
the co-module map V (τ)→ V (τ)⊗A(G) is a pure monomorphism τ →֒ τ0⊗ρreg in
Rep′(G)(O), α(x)(τ) is the restriction of αV (τ0) ⊗ αreg(x) to VK(τ), thus αreg(x)
determines α(x) and αreg is a G(K)-equivariant embedding of B

e(GK) into the
space of sub-multiplicative K-norms on A(G) (equipped with the regular action).

4.7.15. We expect that B(ω◦
G,K) = B

?(ω◦
G,K), or perhaps even that every norm

in B
′(ω◦

G,K) which is exact (they obviously form a G(K)-stable subset) is already
in B(ω◦

G,K). Also, for a parabolic subgroup P of G with Levi L, the retraction
rP,L of Proposition 76 should map a norm α on ω◦

G to the norm on ω◦
L which equips

VK(τ) with the norm induced by α(IndG
P (τ)) via the adjunction morphism.

4.7.16. Suppose that O is a valuation ring of height > 1, with fraction field K.
Then Γ = K×/O× is a totally ordered commutative group which can not be embed-
ded into R. Let G be a reductive group over O. Replacing R with Γ in the above
constructions, it should be possible to define a “Bruhat-Tits” building B(ω◦

G,K)
with compatible actions of G(K) and F

Γ(GK), made of factorizations of the fiber
functor ω◦

G,K : Rep◦(G)(O) → Vect(K) through a suitable category of norms. The

type maps should be the tautological morphisms ν : S(K) → G
Γ(S) mapping

s ∈ S(K) to the unique morphism ν(s) : DK(Γ) → S whose composite with a
character χ of S is the image of χ(s) in Γ = K×/O×.

4.7.17. There should be a similar Tannakian formalism for the symmetric spaces of
reductive groups over R, with factorizations of fiber functors through the category
of Euclidean spaces, using compact forms of the adjoint groups as base point.
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