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Abstract

We consider the logarithmic Korteweg–de Vries (log–KdV) equation, which models soli-
tary waves in anharmonic chains with Hertzian interaction forces. By using an approximating
sequence of global solutions of the regularized generalized KdV equation in H1(R) with con-
served L2 norm and energy, we construct a weak global solution of the log–KdV equation
in a subset of H1(R). This construction yields conditional orbital stability of Gaussian soli-
tary waves of the log–KdV equation, provided uniqueness and continuous dependence of the
constructed solution holds.

Furthermore, we study the linearized log–KdV equation at the Gaussian solitary wave
and prove that the associated linearized operator has a purely discrete spectrum consisting
of simple purely imaginary eigenvalues in addition to the double zero eigenvalue. The eigen-
functions, however, do not decay like Gaussian functions but have algebraic decay. Using
numerical approximations, we show that the Gaussian initial data do not spread out but pro-
duce visible radiation at the left slope of the Gaussian-like pulse in the time evolution of the
linearized log–KdV equation.

1 Introduction

Solitary waves in anharmonic chains with Hertzian interaction forces are modelled by the Fermi–
Pasta–Ulam (FPU) lattices with non-smooth nonlinear potentials [15]. Recently, the FPU lattice
equations in the limit of small anharmonicity of the Hertzian interaction forces were reduced to
the following logarithmic Korteweg–de Vries (log-KdV) equation [7, 10]:

vt + vxxx + (v log |v|)x = 0, (x, t) ∈ R× R. (1.1)

Here and in what follows, the subscripts denote the partial derivatives.
The log–KdV equation (1.1) has a two-parameter family of Gaussian solitary waves

v(x, t) = ecvG(x− ct− a), a, c ∈ R, (1.2)

where vG is a symmetric standing wave given by

vG(x) := e
1
2
−x2

4 , x ∈ R. (1.3)
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The ultimate goal of this work is to prove the nonlinear orbital stability of Gaussian soli-
tary waves (1.2) in the log–KdV equation (1.1). The main problem is, of course, the limited
smoothness of the log–KdV equation, where the nonlinearity f(v) = v log |v| is continuous but
not differentiable at v = 0, whereas the energy

E(v) =
1

2

∫

R

[

(vx)
2 − v2 log |v|

]

dx+
1

4

∫

R

v2dx (1.4)

is not a C2 functional at v = 0.
Although E(v) is not C2 at v = 0, the second variation of E(v) at vG is well determined by

the Schrödinger operator with a harmonic potential

L := −∂2x +
1

4
(x2 − 6). (1.5)

Note that the spectrum of L in L2(R) consists of equally spaced simple eigenvalues

σ(L) = {−1, 0, 1, 2, . . .},

which include exactly one negative eigenvalue with the eigenvector vG (defined without normal-
ization). Therefore, E(v) is not convex at vG in a subspace of H1(R). Nevertheless, the second
variation of E(v) at vG given by Ec(u) =

1

2
〈Lu, u〉L2 is positive in the constrained space

Xc :=
{

u ∈ H1(R) ∩ L2
1(R) : 〈vG, u〉L2 = 0

}

, (1.6)

where L2
1(R) := {u ∈ L2(R) : xu ∈ L2(R)}. At the linearized approximation, this constraint

fixes ‖v‖2L2 at ‖vG‖2L2 . Based on these facts, the linear orbital stability of the Gaussian solitary
wave vG can be deduced in the following sense.

Consider the time evolution of the linearized log-KdV equation at the Gaussian wave vG,

{

ut = ∂xLu, t > 0,
u|t=0 = u0.

(1.7)

Note that the quadratic energy function Ec(u) is constant in time for smooth solutions of the
linearized log–KdV equation (1.7). We say that the Gaussian solitary wave vG is linearly orbitally
stable in H1(R), if for every u0 ∈ Xc, there exists a unique global solution u of the linearized
log–KdV equation (1.7) in a subspace of L∞(R, H1(R)) which satisfies the following bound

‖u(·, t)‖H1 6 C(‖u0‖H1 , ‖u0‖L2
1
), t ∈ R, (1.8)

for some t-independent positive constant C that depends on the initial norms ‖u0‖H1 and ‖u0‖L2
1
.

The following theorem is based on the fact that the conserved quantity Ec(u) is positive if
u ∈ Xc and controls the squared H1 norm of the solution u in time t. Although this theorem
was not formulated in [10], it can be deduced from the arguments developed in this work, which
rely on symplectic projections and the energy method. Due to the scaling invariance (1.2), the
same stability result holds for all values of parameter a and c.

Theorem 1.1. [10] Gaussian solitary wave vG of the log–KdV equation (1.1) is linearly orbitally
stable in H1(R).
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To extend this result to the proof of nonlinear orbital stability of Gaussian solitary waves,
we need local and global well-posedness of the log–KdV equation (1.1). In a similar context of
the log–NLS equation, global well-posedness and orbital stability of the Gaussian solitary waves
were proved by Cazenave and Haraux [6] and Cazenave [4] (these results were later summarized
in the monograph [5, Section 9.3]).

The idea from [6, 4] is to approximate the logarithmic nonlinearity by a smooth nonlinearity,
to construct a sequence of global bounded solutions of the regularized system in C(R, H1(R)),
and then to prove convergence of a subsequence to the limit, which solves the original log–NLS
equation in a weak sense. Uniqueness of the weak solution does not come in this formalism for
free, but it can be proved with an additional trick involving log-nonlinearity [5, Lemma 9.3.5],
which is based on the bound (2.23) below. Similar ideas were recently used by Carles and Gallo
[2] for analysis of the NLS equation with power-like nonlinearity and a sublinear damping term
(see also [3] for various extensions).

While trying to adopt the programme above to the log–KdV equation (1.1), we come to two
main difficulties. The first one is that local solutions of the generalized KdV equation with smooth
nonlinearities exist in the space C([−t0, t0], Hs(R)) for s > 3

2
(see [12, 18] for two independent

proofs of these results). Therefore, to push s to lower values, in particular, to s = 1, we need
to adopt the formalism of Kenig, Ponce, and Vega [13], which was originally developed to the
KdV equation with integer powers. The second difficulty is that the proof of uniqueness requires
us to consider more restrictive solutions of the log–KdV equation than the ones constructed in
the proof of existence. As a result, the solutions we establish in a subspace of H1(R) have non-
decreasing L2 norm and energy. Unlike the case of weak solutions of the NLS equation (e.g.,
treated in [9]), we cannot establish even the L2 conservation in the log–KdV equation (1.1). See
Remark 2.4 below for further details.

To make sense of the energy (1.4) of the log–KdV equation (1.1), we shall work with functions
in the class

X :=
{

v ∈ H1(R) : v2 log |v| ∈ L1(R)
}

. (1.9)

The following theorem gives the main result on the existence of weak solutions of the log–KdV
equation (1.1) in the energy space X.

Theorem 1.2. For any v0 ∈ X, there exists a global solution v ∈ L∞(R, X) of the log–KdV
equation (1.1) such that

‖v(t)‖L2 6 ‖v0‖L2 , E(v(t)) 6 E(v0), for all t ∈ R. (1.10)

Moreover, if ∂x log |v| ∈ L∞((−t0, t0)×R), then the solution v exists in C((−t0, t0), X), is unique
for every t ∈ (−t0, t0), depends continuously on the initial data v0 ∈ X, and satisfies conservation
of ‖v(t)‖L2 and E(v(t)) for all t ∈ (−t0, t0).

Unfortunately, ∂x log |v| is unbounded as |x| → ∞ for the Gaussian solitary wave vG. There-
fore, it is unclear from Theorem 1.2 if uniqueness and continuous dependence hold for such
Gaussian solutions. Convexity of the energy functional E(v) at vG and global well-posedness of
the Cauchy problem for the log–KdV equation (1.1) in X are the two main ingredients of the
nonlinear orbital stability of the Gaussian solitary wave vG in H1(R). Because of limitations in
Theorem 1.2, we can only obtain the conditional nonlinear orbital stability, where the condition
is that the global solution v ∈ L∞(R, X) of the log–KdV equation (1.1) constructed in Theorem
1.2 is unique and depends continuously on the initial data v0 ∈ X.
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To define the nonlinear orbital stability, we use the standard theory (see [1] for review of this
theory). We say that the Gaussian solitary wave vG is orbitally stable in H1(R) if for any ε > 0
there exists δ > 0 such that for any v0 ∈ X ⊂ H1(R) satisfying

‖v0 − vG‖H1 6 δ, (1.11)

there exists a unique solution v ∈ C(R, X) of the log–KdV equation (1.1) satisfying

inf
a∈R

‖v(·, t)− vG(·+ a)‖H1 6 ε, (1.12)

for all t ∈ R. The following conditional orbital stability result follows from Theorems 1.1 and 1.2
with the standard arguments [1].

Corollary 1.3. Gaussian solitary wave vG of the log–KdV equation (1.1) is orbitally stable in
H1(R) under condition that the solution v ∈ L∞(R, X) in Theorem 1.2 is unique and depends
continuously on the initial data v0 ∈ X.

Since Corollary 1.3 does not give a proper nonlinear orbital stability result, we shall also look
at the orbital stability problem from a different point of view. We first inspect properties of the
linearized operator ∂xL in the linearized log–KdV equation (1.7). The following theorem gives
the spectral stability of the Gaussian solitary wave vG with precise characterization of eigenvalues
and eigenvectors of the linear operator ∂xL in L2(R).

Theorem 1.4. The spectrum of ∂xL in L2(R) is purely discrete and consists of a double zero
eigenvalue and a symmetric sequence of simple purely imaginary eigenvalues {±iωn}n∈N such
that 0 < ω1 < ω2 < ... and ωn → ∞ as n → ∞. The double zero eigenvalue corresponds to the
Jordan block

∂xL∂xvG = 0, ∂xLvG = −∂xvG, (1.13)

whereas the purely imaginary eigenvalues λ = ±iωn correspond to the eigenfunctions u = u±n(x),
which are smooth in x but decay algebraically as |x| → ∞.

Remark 1.5. Because the spectrum of ∂xL is purely discrete by Theorem 1.4, we have no chance
to assume dispersive decay estimates near the Gaussian solitary wave vG. This indicates that no
asymptotic stability result can hold for solitary waves in the log–KdV equation (1.1).

Remark 1.6. Remark 1.5 agrees with the result of [4, Proposition 4.3] stating that the Lp norms
at the solution v for any p > 2 including p = ∞ may not vanish as t → ∞ (or in a finite time),
hence the solution does not scatter to zero. Although this statement was proved for the log–NLS
equation, it is based on the consideration of the same energy functional E(v) as in the log–KdV
equation (1.1). This non-scattering result is related to the fact that the Lp norm at the family
(1.2) can be scaled to be arbitrarily small by using the scaling parameter c ∈ R.

Theorem 1.4 can be used to provide an alternative proof of Theorem 1.1. On the other
hand, because of the algebraic decay of the eigenfunctions in Theorem 1.4, any function of x
that decays like the Gaussian function as |x| → ∞ cannot be simply represented as series of
eigenfunctions of the linearized operator ∂xL. To explain the importance of such representations,
we set v(x, t) := vG(x) + w(x, t) and obtain the equivalent log–KdV equation

wt = ∂xLw − ∂xN(w), (1.14)
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where the nonlinear term N(w) is given by

N(w) := w log

(

1 +
w

vG

)

+ vG

[

log

(

1 +
w

vG

)

− w

vG

]

.

It is clear that the nonlinear term N(w) does not behave uniformly in x unless w decays at least
as fast as vG in (1.3). On the other hand, if w(x, t) = vG(x)h(x, t), where h is a bounded function
in its variables, then N(w) = vGn(h), where n(h) := h log(1 + h) + log(1 + h) − h is analytic
in h for any h ∈ (−1, 1). This observation on the nonlinear term N(w) inspires us to consider
solutions of the linearized log–KdV equation (1.7) starting with the initial data u0 ∈ Xc such
that u0 = vGh0 for h0 ∈ L∞(R) ∩ L2(R).

We have undertaken numerical simulations of this linear Cauchy problem to illustrate that
solutions u(x, t) of the linearized log–KdV equation (1.7) with Gaussian initial data do not spread
out as the time variable evolves. Nevertheless, they produce visible radiation at the left slope of
the Gaussian solutions. Further studies are needed to figure out if the nonlinear orbital stability
of the Gaussian solitary wave vG can be proved in the framework of the nonlinear evolution
problem (1.14) with initial data w0 = vGh0 for small h0 ∈ L∞(R) ∩ L2(R).

The rest of the paper consists of the following. Theorem 1.2 is proved in Section 2. Theo-
rem 1.4 is proved in Section 3. Section 4 contains the proof of Theorem 1.1 (which is alternative
to the one given in [10]) and the numerical simulations of the time evolution of the linearized
log–KdV equation (1.7) starting with Gaussian initial data.

2 Global solutions of the log–KdV equation

To prove Theorem 1.2, we follow the algorithm developed in [6, 4] for the log–NLS equation (see
also [5, Section 9.3]), which shares common features with the approach of Ginibre and Velo [9].
We slightly simplify the functional framework from [6, 4], by using Strichartz estimates instead
of arguments coming from convex analysis. In the context of KdV equations, these tools were
developed by Kenig, Ponce, and Vega [13].

The strategy of the proof is the following. We first regularize the logarithmic nonlinearity
near the origin and construct a sequence of approximating solutions via a contraction principle
as in [13]. Then, we derive uniform estimates on the H1(R) norm of the approximating solutions.
This allows us to pass to the limit and obtain a global solution v in the energy space X with non-
increasing ‖v‖L2 and energy E(v). In the last subsection, we establish uniqueness of the global
solutions v of the log–KdV equation (1.1) with bounded ∂x log |v| by using special properties of
the logarithmic nonlinearity.

2.1 Approximating solutions

We shall regularize the behavior of the logarithmic nonlinearity f(v) = v log |v| near v = 0.
Compared to the approximation considered in [6, 4], we will work with a different (much simpler)
approximation of the logarithmic nonlinearity.

For any fixed ε > 0, let us define the family of regularized nonlinearities in the form

fε(v) =

{

f(v), |v| > ε,
pε(v), |v| 6 ε,

(2.1)
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where pε is an odd polynomial of degree 2m + 1 such that ∂kvpε(ε) = ∂kv f(ε) for all 0 6 k 6 m.
In this way, we construct fε ∈ Cm(R) for any m ∈ N. For instance, for m = 1, we can compute

pε(v) =

(

log(ε)− 1

2

)

v +
1

2ε2
v3, (2.2)

which yields fε(v) ∈ C1(R). For m = 2, we compute

pε(v) =

(

log(ε)− 3

4

)

v +
1

ε2
v3 − 1

4ε4
v5, (2.3)

which yields fε(v) ∈ C2(R). As pointed out in Remark 2.3 below, for the proof of Theorem 1.2,
it is actually sufficient to consider the approximation fε(v) with m = 2.

Global behavior of the function fε(v) is still determined by the logarithmic nonlinearity f(v).
If m > 1, the function fε(v) is globally Lipschitz and for any fixed ε > 0 there exists a positive
constant Cε such that

|fε(v)− fε(u)| 6 Cε(|v|+ |u|)|v − u|, for every v, u ∈ R. (2.4)

If m > 2, we also have

|f ′ε(v)vx − f ′ε(u)ux| 6 Cε ((|v|+ |u|)|vx − ux|+ (|vx|+ |ux|)|v − u|) , (2.5)

for every v, u, vx, ux ∈ R, where Cε is another constant, which may change from one line to
another line. Of course, we realize from examples (2.2) and (2.3) that Cε → ∞ as ε→ 0.

For a given initial data v0, we shall now consider a sequence of the approximating Cauchy
problems associated with the generalized KdV equations

{

vεt + vεxxx + f ′ε(v
ε)vεx = 0, t > 0,

vε|t=0 = v0,
(2.6)

Using the linear estimates and the contraction principle from the work of Kenig, Ponce and Vega
[13], we have the following local well-posedness result.

Theorem 2.1. Fix s > 3

4
and assume that fε ∈ C2(R) satisfy the global Lipschitz estimates (2.4)

and (2.5). For any v0 ∈ Hs(R), there exists a time T (‖v0‖Hs) > 0 and a unique solution of the
generalized KdV equation (2.6) satisfying

(1) vε ∈ C([−T, T ], Hs(R)),

(2) vεx ∈ L4([−T, T ], L∞(R)),

(3) ‖Ds
xv

ε
x‖L∞

x L2
T
<∞,

(4) ‖vε‖L2
xL

∞

T
<∞,

where

‖f‖Lp
xL

q

T
:=

(

∫

R

(
∫ T

−T
|f(t, x)|qdt

)p/q

dx

)1/p

.

Moreover, the solution vε depends continuously on the initial data v0 in Hs(R) and

‖v(t)‖L2 = ‖v0‖L2 , for every t ∈ [−T, T ]. (2.7)
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If in addition m > 2 and s > 1, then the energy is conserved:

Eε(v
ε(t)) = Eε(v0), for every t ∈ [−T, T ], (2.8)

where

Eε(v) :=
1

2

∫

R

(vx)
2dx−

∫

R

Wε(v)dx, Wε(v) :=

∫ v

0

fε(v)dv. (2.9)

Remark 2.2. Although Theorem 2.1 was proved for the KdV equation with f(v) = v2 in [13],
Duhamel’s principle was used to write the Cauchy problem (2.6) in the integral form

vε(0) = S(t)v0 −
∫ t

0

S(t− t′)
(

f ′ε(v
ε(t′))vεx(t

′)
)

dt′, (2.10)

where S(t) is the solution operator associated with the group e−t∂3
x . Contraction principle is now

applied in the same spirit as in [13] provided the regularized nonlinearity fε satisfies the global
Lipschitz estimates (2.4) and (2.5).

Remark 2.3. The solution is extended globally for any integer s ∈ N thanks to the a priori energy
estimates provided that the nonlinearity fε is sufficiently smooth. We only use this construction
for s = 1, when fε ∈ C2(R) is sufficient. In this context, the approximation (2.1) with (2.3) can
be used for the rest of this work.

2.2 Uniform energy estimates

We work with local solutions of Theorem 2.1 for s = 1. Besides conservation of the L2 norm
in (2.7), the generalized KdV equation (2.6) admits conservation of the energy in (2.8), as it is
stated in Theorem 2.1.

For the purpose of construction of global solutions in H1(R), we need to bound Eε(v) from
below by the squared H1(R) norm. To do so, we only need to bound positive values of Wε(v)
from above.

Since f ′(v) = log |v| + 1 → −∞ as v → 0, we realize that f ′ε(v) = p′ε(v) ≪ −1 for |v| 6 ε if
ε > 0 is sufficiently small. Indeed, it follows from the explicit example (2.3) that

f ′ε(v) = p′ε(v) = log(ε) +O(1) for all |v| 6 ε as ε→ 0.

Therefore, if ε > 0 is sufficiently small, we have

Wε(v) =
1

2
[log(ε) +O(1)] v2 6 0, |v| 6 ε. (2.11)

Let us define

W (v) :=
1

2
v2 log |v| − 1

4
v2, (2.12)

and denote the positive part of W by [W ]+. Note that W (v) > 0 for |v| >
√
e. Because

fε(v) = f(v) for |v| > ε, there exists a positive constant Cm, which only depends on m such that

Wε(v) =W (v) + Cmε
2, |v| > ε. (2.13)
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For instance, integration of the explicit example (2.3) yields C2 = 1

12
. It follows from (2.11),

(2.12), and (2.13) that there exists a positive ε-independent constant C such that

[Wε(v)]+ 6 [W (v)]+ + Cmv
2 6 C|v|3, for every v ∈ R. (2.14)

By Sobolev’s embedding of H1(R) into L∞(R), we obtain from (2.9) and (2.14)

Eε(v) >
1

2
‖vx‖2L2 − C‖v‖L∞‖v‖2L2

>
1

2
‖vx‖2L2 − C‖v‖H1P (v),

where P (v) := 1

2
‖v‖2L2 . Because Eε(v

ε) and P (vǫ) are constants of motion for the solution vǫ

of the generalized KdV equation (2.6) in Theorem 2.1 with s = 1, we obtain the time-uniform
bound on the H1 norm of vε:

‖vε(t)‖H1 6 CP (v0) +
√

2Eε(v0) + 2P (v0) + C2P 2(v0) <∞, t ∈ [−T, T ]. (2.15)

By using bound (2.15), we use a standard continuation argument for solutions of the inte-
gral equation (2.10) obtained via a contraction principle and continue the local solution vε ∈
C([−T, T ], H1(R)) to a global solution vε ∈ C(R, H1(R)). The global solution satisfies the time-
uniform bound (2.15) extended for every t ∈ R.

Additionally, because of (2.14), there exists an ε-independent constant C such that

‖[Wε(v
ε(t))]+‖L1 6 C‖vε(t)‖L∞‖vε(t)‖2L2

6 CP (v0)
[

CP (v0) +
√

2Eε(v0) + 2P (v0) + C2P 2(v0)
]

. (2.16)

For the negative part of Wε, we obtain

‖[Wε(v
ε(t))]−‖L1 = ‖[Wε(v

ε(t))]+‖L1 −
∫

R

Wε(v
ε(t))dx

= ‖[Wε(v
ε(t))]+‖L1 + Eε(v

ε(t))− 1

2
‖vεx‖2L2

6 CP (v0)
[

CP (v0) +
√

2Eε(v0) + 2P (v0) + C2P 2(v0)
]

+ Eε(v0).(2.17)

Bounds (2.16) and (2.17) allow us to control ‖Wε(v
ε(t))‖L1 for every t ∈ R.

2.3 Passage to the limit

We shall now consider the limit ε → 0 for the sequence of global approximating solutions vε ∈
C(R, H1(R)) satisfying the generalized KdV equations (2.6). We recall definition (1.9) of the
energy space X for the log–KdV equation (1.1). Assume that v0 ∈ X so that E(v0) < ∞.
Clearly Eε(v0) <∞ for any v0 ∈ H1(R).

Since fε(0) = f(0) = 0, we have the pointwise limit fε(v) → f(v) as ε → 0 for every v ∈ R

for the sequence of regularized nonlinearities in (2.1). Consequently, we have the pointwise limit
of Wε(v) to the potential W (v) given by (2.12):

Wε(v) →W (v) as ε→ 0 for every v ∈ R.
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In view of (2.3), there exists a positive ε-independent constant C such that

∣

∣

∣

∣

Wε(v)−
1

2
(log ε)v2

∣

∣

∣

∣

6 Cv2, |v| 6 ε.

We infer from the explicit expression of W given by (2.12) that

|Wε(v)| 6 |W (v)|+ Cv2, |v| 6 ε.

On the other hand, a similar estimate holds in the region |v| > ε, thanks to the relation (2.13),
so there exists a positive ε-independent constant C such that

|Wε(v)| 6 |W (v)|+ Cv2, for every v ∈ R.

By Lebesgue’s dominated convergence theorem, we have
∫

R

Wε(v)dx→
∫

R

W (v)dx as ε→ 0, for every v ∈ X.

Therefore, Eε(v0) → E(v0) as ε→ 0.
By using the above estimates and the bounds (2.15), (2.16), and (2.17), we obtain the following

ε- and t-uniform bound for the sequence of approximating solutions vε ∈ C(R, H1(R)) starting
with the initial data v0 ∈ X:

‖vε(t)‖H1 + ‖Wε(v
ε(t))‖L1 6 C(P (v0), E(v0)) <∞, ∀t ∈ R, ∀ε ∈ (0, 1], (2.18)

where the positive constant C depends on the initial values P (v0) and E(v0) only. Therefore, the
sequence of approximating solutions vε is bounded in space L∞(R, X). It also follows from the
generalized KdV equation (2.6) that the sequence vεt is bounded in space L∞(R, H−2(R)). From
Arzela–Ascoli Theorem, there exist v ∈ L∞(R, H1(R)) and a subsequence of vε ∈ L∞(R, H1(R)),
still denoted by vε, such that

vε → v strongly in L∞
loc(R, H

s
loc(R)) as ε→ 0, for all s < 1. (2.19)

Because the limit (2.19) includes the range
(

1

2
, 1
)

for s, up to subtracting another subsequence,
we may assume that

vε(x, t) → v(x, t) as ε→ 0, for almost every x ∈ R and for every t ∈ R. (2.20)

In addition, because the upper bound (2.18) also controls ‖Wε(v
ε(t))‖L1 , Fatou’s lemma shows

that the limiting function v belongs to L∞(R, X).
To show that P (v(t)) 6 P (v0) and E(v(t)) 6 E(v0) for every t ∈ R, we use the weak lower

semicontinuity of the H1 norm and Fatou’s lemma for the potential term [Wε]− to obtain

‖v(t)‖2H1 6 lim
ε→0

‖vε(t)‖2H1 , ‖[Wε(v(t))]−‖L1 6 lim
ε→0

‖[Wε(v
ε(t))]−‖L1 , for every t ∈ R.

On the other hand, using the relation (2.13), the limit (2.20), and the fact that W (v) > 0 for
|v| > √

e, we obtain

‖[W (v(t))]+‖L1 = lim
ε→0

‖[Wε(v
ε(t))]+‖L1 , for every t ∈ R.
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Then, it follows from the conservation

P (vε(t)) = P (v0) and Eε(v
ε(t)) = Eε(v0) for every t ∈ R

and the convergence Eε(v0) → E(v0) as ε→ 0 that

P (v(t)) 6 P (v0) and E(v(t)) 6 E(v0)

It remains to show that the limiting function v ∈ L∞(R, X) is a weak solution of the log–
KdV equation (1.1). To do so, we first write a weak formulation of the generalized KdV equation
(2.6). If vε ∈ C(R, H1(R)) is a solution in Theorem 2.1 for T = ∞, then for any test functions
ψ ∈ C∞

0 (Rx) and ϕ ∈ C∞
0 (Rt), we have

∫

R

[

〈vε, ψ〉L2ϕ′(t) + 〈vε, ψ′′′〉L2ϕ(t)
]

dt+

∫

R

∫

R

fε(v
ε)ψ′(x)ϕ(t)dxdt = 0. (2.21)

Since fε(v) → f(v) pointwise in v as ε→ 0, we apply the limit (2.19) to the integral formulation
(2.21) and obtain the following integral equation for the limiting function v,

∫

R

[

〈v, ψ〉L2ϕ′(t) + 〈v, ψ′′′〉L2ϕ(t)
]

dt+

∫

R

∫

R

f(v)ψ′(x)ϕ(t)dxdt = 0, (2.22)

where ψ and ϕ are any test functions. Therefore, v ∈ L∞(R, X) is a weak solution of the log–KdV
equation (1.1), in particular, vt ∈ L∞(R, H−2(R)). The existence part of Theorem 1.2 is now
proven.

Remark 2.4. Since vt is in H
−2(R) (as opposed to the NLS case, where it is defined in H−1(R),

see [6, 9]), we are not able to establish even conservation of the L2 norm for the weak solutions
of the log–KdV equation (1.1), since we cannot prove rigorously that

d

dt
‖v(t)‖2L2 = 2〈vt, v〉L2 = 0.

Nevertheless, we have proved that ‖v(t)‖2L2 is a non-increasing function of time t.

2.4 Uniqueness of solutions

We will show uniqueness of the solution v ∈ L∞(R, X) under the additional condition

(log |v|)x ∈ L∞((−t0, t0)× R).

Provided that uniqueness is proven, continuous dependence on the initial data v0 ∈ X, the L2

norm and energy conservation, and continuity of the solution v ∈ C((−t0, t0), X) in time t follow
from the arguments identical to the case of the log–NLS equation [5, Section 9.3].

Assume existence of two local solutions v and u of the log–KdV equation (1.1) starting with
the same initial data v0. Set w := v−u such that w|t=0 = 0. Then w satisfies a weak formulation
similar to the integral equation (2.22) for the partial differential equation

wt + wxxx + (v log |v| − u log |u|)x = 0.

10



Multiplying this equation by w, integrating over x, and formally neglecting the values of w and
its derivatives as |x| → ∞, we obtain

d

dt
P (w) = −

∫

R

(vx log |v| − ux log |u|)wdx,

where P (w) = 1

2
‖w‖2L2 . We use the following bound for the log-nonlinearity [5]:

| log |v| − log |u|| 6 |v − u|
min(|v|, |u|) . (2.23)

We then write

d

dt
P (w) = −

∫

|v|<|u|
(vx log |v| − ux log |u|)wdx−

∫

|v|>|u|
(vx log |v| − ux log |u|)wdx

= −
∫

|v|<|u|
vx(log |v| − log |u|)wdx−

∫

|v|<|u|
log |u|wwxdx

−
∫

|v|>|u|
ux(log |v| − log |u|)wdx−

∫

|v|>|u|
log |v|wwxdx.

Applying (2.23), we obtain

∣

∣

∣

∣

∣

∫

|v|<|u|
vx(log |v| − log |u|)wdx+

∫

|v|>|u|
ux(log |v| − log |u|)wdx

∣

∣

∣

∣

∣

6
(
∥

∥

∥

vx
v

∥

∥

∥

L∞

+
∥

∥

∥

ux
u

∥

∥

∥

L∞

)

2P (w).

Integrating by parts, we also have

−
∫

|v|<|u|
log |u|wwxdx−

∫

|v|>|u|
log |v|wwxdx =

1

2

∫

|v|<|u|
(log |u|)xw2dx+

1

2

∫

|v|>|u|
(log |v|)xw2dx,

hence
∣

∣

∣

∣

d

dt
P (w)

∣

∣

∣

∣

6 3
(
∥

∥

∥

vx
v

∥

∥

∥

L∞

+
∥

∥

∥

ux
u

∥

∥

∥

L∞

)

P (w).

Gronwall’s inequality implies that if w|t=0 = 0, then P (w) = 0 for all t ∈ (−t0, t0), for which the
solutions v, u of the log–KdV equation (1.1) satisfy (log |v|)x, (log |u|)x ∈ L∞((−t0, t0)×R). The
uniqueness part of Theorem 1.2 is now proven.

3 Spectral stability of Gaussian solitary waves

To prove Theorem 1.4, we study the spectrum of the linearized operator A := ∂xL given by

A = −∂3x +
1

4
(x2 − 6)∂x +

1

2
x. (3.1)

The domain of this operator with a range in L2(R) is given by

D(A) =
{

u ∈ H3(R) : x2∂xu ∈ L2(R), xu ∈ L2(R)
}

. (3.2)
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We note that the eigenfunctions of the linearized operator ∂xL associated with the KdV-type
spectral problem Af = λf is defined in the function space XA := D(A) ∩ Ḣ−1(R), hence the
anti-derivative of the eigenfunction f is required to be squared integrable [11, 16].

We shall employ the Fourier transform F : L2(R) → L2(R) defined by

û(k) := F(u)(k) =
1√
2π

∫

R

u(x)e−ikxdx, k ∈ R. (3.3)

The Fourier transform F is helpful in the study of the spectrum of A because of dualism between
derivatives and multiplications. After an application of the Fourier transform F , the third-order
differential operator A in x-space is mapped to the second-order differential operator Â in k-space,
where

Â =
i

4
k
(

−∂2k + 4k2 − 6
)

. (3.4)

The function space XA = D(A) ∩ Ḣ−1(R) is now mapped to the function space X̂A given by

X̂A =
{

û ∈ H1(R) : k∂2kû ∈ L2(R), k3û ∈ L2(R), k−1û ∈ L2(R)
}

. (3.5)

Denoting B̂ := k(−∂2k + 4k2 − 6), we have σ(Â) = i
4
σ(B̂).

3.1 Double zero eigenvalue of Â

Let v̂G(k) := e−k2 be the Fourier transform of the Gaussian solitary wave vG (up to the constant
multiplicative factor). We check by direct computation that

B̂∂kv̂G = 0 and B̂v̂G = −4kv̂G = 2∂kv̂G. (3.6)

Since B̂ = 4kL̂, where L̂ is the Fourier image of the Schrödinger operator L with a harmonic
potential (1.5), we conclude that null(B̂) = span{∂kv̂G}, whereas the generalized null space of B̂
includes the two-dimensional subspace X̂0 = span{∂kv̂G, v̂G}.

Moreover, since B̂∗v̂G = 0 and ‖v̂G‖L2 6= 0, no solution û ∈ X̂A of the inhomogeneous equation
B̂û = v̂G exists. Therefore, the Jordan chain for the zero eigenvalue of B̂ is two-dimensional and
the generalized null space of B̂ is exactly X̂0. With the inverse Fourier transform, these arguments
conclude consideration of the zero eigenvalue in Theorem 1.4.

3.2 Nonzero eigenvalues of Â

Let us now consider nonzero values for the spectral parameter λ in the spectral problem Âf̂ = λf̂ .
Recall that σ(Â) = i

4
σ(B̂). Therefore, let λ = i

4
E and consider the spectral problem B̂û = Eû

rewritten as the following differential equation

d2û

dk2
+

(

E

k
+ 6− 4k2

)

û(k) = 0, k ∈ R. (3.7)

We employ the theory of differential equations to study solutions of the spectral problem (3.7).
If E 6= 0, the point k = 0 is a regular singular point of the differential equation (3.7) with

indices 0 and 1. By Frobenius’ method [17, Chapter 4], there exist two linearly independent
solutions of this differential equation. The first solution is given by the power series expansion

û1(k) = k − 1

2
Ek2 +

(

1

12
E2 − 1

)

k3 +O(k4) as k → 0 (3.8)
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and the other solution is given by the logarithm-modified power series expansion

û2(k) = 1− 3

(

1 +
1

4
E2

)

k2 +O(k3)− Ek log(k)

(

1− 1

2
Ek +O(k2)

)

as k → 0. (3.9)

Because the other singular point of the differential equation (3.7) is infinity, the expansions (3.8)
and (3.9) converge for every k ∈ R.

Recall again the function space X̂A defined by (3.5). Because k−1û ∈ L2(R) is required in
X̂k, we have û ∈ X̂A if and only if û is constant proportional to the solution û1. Hence, both for
k > 0 and k < 0, the solution of the differential equation (3.7) is uniquely defined by the solution
û1 (up to the constant multiplicative factor) for every E ∈ C\{0}. The admissible values of E
are determined from the behavior of the solution û(k) as |k| → ∞.

By the WKB method without turning points [14, Chapter 7.2], there exist two linearly in-
dependent solutions of the differential equation (3.7): one solution diverges and the other one
decays to zero as |k| → ∞. The decaying solution is defined by the asymptotic behavior

û(k) ∼ ke−k2
(

1− E

4k
+O

(

1

k2

))

as |k| → ∞. (3.10)

It becomes now clear that two decay conditions at k → +∞ and k → −∞ over-determine
the spectral problem (3.7) because the behavior of û both for k > 0 and k < 0 is uniquely
determined by only one spectral parameter E (up to the constant multiplicative factors) and no
parity symmetry exists for k > 0 and k < 0.

The way around this obstacle is to consider a weak formulation for the solutions of the
differential equation (3.7) in the function space X̂A. Since the differential equation with E 6= 0
has singularities at {−∞, 0,∞}, we split R into two sets I− := (−∞, 0) and I+ := (0,∞) and
look for piecewisely defined eigenfunctions û± supported on I± only.

Let B̂± denote the operator B̂ restricted on I± subject to the Dirichlet boundary condition at
k = 0. By Theorem 4 in [8, p.1438], the continuous spectrum of B is the union of the continuous
spectra of operators B+ and B−.

We shall first characterize the spectrum of the operator B̂+ on I+ and prove that this spectrum
is purely discrete. By using a substitution û+(k) = k1/2v̂+(k) for k > 0, we reduce the spectral
problem B̂+û+ = Eû+ to the symmetric form

k1/2
(

− d2

dk2
+ 4k2 − 6

)

k1/2v̂+(k) = Ev̂+(k), k ∈ I+. (3.11)

Since k = 0 is singular, we require |v̂+(0)| < ∞, although the solution û1 in (3.8) implies more
precisely that v̂+(k) = O(k1/2) as k → 0. The spectral problem (3.11) in the function space with
|v̂+(0)| <∞ is self-adjoint, hence the admissible values of E are real.

We shall now claim that σ(B̂+) = {En}n∈N+ , where 0 = E0 < E1 < E2 < ... and En → +∞
as n → ∞. First, because the potential 4k2 − 6 is confining, the resolvent operator is compact,
and the spectrum of B̂+ is purely discrete. Next, v̂+ = k1/2e−k2 is the exact solution of the
spectral problem (3.11) for E = 0 and this eigenfunction is strictly positive for all k ∈ I+. By
Sturm’s Theorem, E0 = 0 is at the bottom of the spectrum of B̂+, which is bounded from below,
and hence En > 0 for every n ∈ N. Finally, the eigenfunctions are uniquely determined by the
expansion (3.8) as k → 0, hence each eigenvalue is simple.
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As a consequence of the reduction to the self-adjoint problem (3.11), we have orthogonality
and normalization of the real-valued eigenfunctions û+n(k) = k1/2v̂+n(k) corresponding to the
real eigenvalues En for all n ∈ N+:

δn,m =

∫ ∞

0

v̂+n(k)v̂+m(k)dk =

∫ ∞

0

û+n(k)û+m(k)

k
dk, (3.12)

where δn,m is the Kronecker’s symbol.
The same analysis applies to the spectrum of the operator B̂− on I− with the only difference

that the substitution û−(k) = (−k)1/2v̂−(k) for k < 0 reduces the spectral problem B̂−û− = Eû−
to the symmetric form

(−k)1/2
(

− d2

dk2
+ 4k2 − 6

)

(−k)1/2v̂−(k) = −Ev̂−(k), k ∈ I−, (3.13)

subject to the boundary behavior |v̂−(0)| < ∞. Therefore, σ(B̂−) = {−En}n∈N+ , where En are
the same eigenvalues as in the spectral problem (3.11). Similarly to (3.12), it follows from the self-
adjoint problem (3.13) that the real-valued eigenfunctions û−n(k) = (−k)1/2v̂−n(k) corresponding
to the real eigenvalues −En for all n ∈ N+ are orthogonal and can be normalized by

δn,m =

∫

0

−∞
v̂−n(k)v̂−m(k)dk = −

∫

0

−∞

û−n(k)û−m(k)

k
dk. (3.14)

The statement about nonzero eigenvalues of the operator A in Theorem 1.4 is now proven
with the correspondence ωn = 1

4
En for all n ∈ N.

Remark 3.1. The double zero eigenvalue associated with the two-dimensional subspace X̂0 =
span{∂kv̂G, v̂G} for the operator Â is mapped into a semi-simple zero eigenvalue associated with
the simple zero eigenvalues of the operators B̂+ and B̂−. There is no ambiguity here because if
E = 0, then k = 0 is an ordinary point of the differential equation (3.7) and the splitting of R
into I− and I+ does not make sense.

3.3 Eigenfunctions of the spectral problem

We now confirm that the eigenfunction û defined piecewise as

either û(k) =

{

û+(k), k > 0,
0, k < 0,

or û(k) =

{

0, k > 0,
û−(k), k < 0,

belongs to the space X̂A. We note that û is continuous on R and piecewise C1 with the jump
discontinuity of the first derivative at k = 0. Moreover, û(k) = O(k) as k → 0. Therefore,
û ∈ H1(R) and k−1û ∈ L2(R). Furthermore, û(k) decays to zero as |k| → ∞ according to the
asymptotic behavior (3.10). Therefore, k3û ∈ L2(R). Finally, ∂2kû is proportional to the Dirac
delta distribution δ at k = 0 and is smooth for k 6= 0, hence ∂2kû /∈ L2(R) but k∂2kû ∈ L2(R).

Thus, û ∈ X̂A.
The Fourier transform F is dual between the smoothness and decay of the eigenfunctions.

Since the eigenfunctions û(k) decays fast as |k| → ∞, according to the Gaussian decay (3.10),
their inverse Fourier transform u(x) is smooth in x. Moreover, u± defined by

u+(x) =
1√
2π

∫ ∞

0

û+(k)e
ikxdk, u−(x) =

1√
2π

∫

0

−∞
û−(k)e

ikxdk (3.15)
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are analytically extended for Im(x) ≷ 0 respectively. On the other hand, û(k) have jump disconti-
nuity in the first derivative across k = 0, therefore, u(x) decay only algebraically as |x| → ∞. The
only exception is the double zero eigenvalue, since one can glue û+(k) and û−(k) for the eigen-
value E0 = 0 to a smooth eigenfunction û(k) = ke−k2 , which corresponds to the eigenfunction
u(x) = xe−x2/4 with the fast decay as |x| → ∞.

The statement about eigenfunctions of the operator A in Theorem 1.4 is now proven.

3.4 Numerical illustrations

Figure 1 shows the first three eigenfunctions û+(k) = k1/2v̂+(k) of the spectral problem (3.11)
for the first three eigenvalues E0 = 0, E1 ≈ 5.4109, and E2 ≈ 12.3080. These eigenfunctions and
eigenvalues were computed numerically by means of the central difference approximation of the
derivatives in the spectral problem (3.11) and the MATLAB eigenvalue solver. The fast decay of
the eigenfunctions û+(k) as k → ∞ and the Sturm’s nodal properties of the eigenfunctions for
k > 0 are obvious from the figure.

0 1 2 3 4
−1

−0.5

0

0.5

1

k

Figure 1: Eigenfunctions û of the spectral problem (3.7) versus k for the first three eigenvalues
0 = E0 < E1 < E2. Eigenfunctions for E1 and E2 have one and two zeros for k > 0, respectively.

Figure 2 shows the real (left) and imaginary (right) parts of the eigenfunctions u+ versus x
after the inverse Fourier transform (3.15). The imaginary part of the first eigenfunction decays
fast as |x| → ∞, according to the exact eigenfunction v′G(x) ∼ xe−x2/4, which is also shown by a
dotted line (invisible from the numerical dots).

To inspect the slow (algebraic) decay of the eigenfunctions, we multiply the eigenfunctions
by the factor (1 + x2)p/2 with p = 2 and p = 3. It follows from the numerical data that the
real parts of the eigenfunctions decay like O(|x|−2) as |x| → ∞, whereas the imaginary parts
of the eigenfunctions (except for the first eigenfunction) decay like O(|x|−3) as |x| → ∞. This
corresponds to the finite jump discontinuity of the first derivative of û(k) at k = 0.
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Figure 2: Real (left) and imaginary (right) parts of the three eigenfunctions u versus x for the
first three eigenvalues E.

4 Cauchy problem for the linearized log–KdV equation

We consider the Cauchy problem for the linearized log-KdV equation (1.7) at the Gaussian
solitary wave vG. For convenience, we rewrite the Cauchy problem again:

{

ut = ∂xLu, t > 0,
u|t=0 = u0,

(4.1)

We shall first make use of Theorem 1.4 to give a quick proof of Theorem 1.1. This proof is
alternative to the arguments given in [10], which rely on the symplectic projections and the
energy method. Next, we shall approximate the Cauchy problem numerically, starting with the
Gaussian initial data. We conclude the paper with a short discussion.

4.1 Proof of Theorem 1.1

Let {u±n(x)}n∈N be a sequence of eigenfunctions of ∂xL for the sequence of nonzero imaginary
eigenvalues {±iωn}n∈N constructed in Theorem 1.4. It follows from the orthogonality and nor-
malization conditions (3.12) and (3.14) that the eigenfunctions are orthogonal to each other and
normalized with respect to the symplectic inner product:

〈∂−1
x u±n, u±m〉L2 :=

∫ ∞

−∞

ˆ̄u±n(k)û±m(k)

ik
dk = ∓iδn,m, (4.2)

where ∂−1
x u(x) :=

∫ x
−∞ u(x′)dx′ and the Fourier transform (3.3) is used. Note that u±n ∈ L1(R)

if u±n ∈ L2
1(R) ⊂ D(A). Also note that û±n(0) = 0 if u±n ∈ Ḣ−1(R) ⊂ XA.

Let us consider the decomposition of the solution u of the linearized log–KdV equation (4.1)
as the series of eigenfunctions of the operator A:

u(x, t) = b
[

vG(x)− tv′G(x)
]

+ a0v
′
G(x) +

∑

n∈N

a+nu+n(x)e
iωnt +

∑

n∈N

a−nu−n(x)e
−iωnt, (4.3)

where the coefficients b and {an}n∈Z are found uniquely from the conditions of symplectic or-
thogonality and normalization (4.2) applied to the initial data u|t=0 = u0:

b =
〈vG, u0〉L2

〈vG, vG〉L2

, a0 =
1

〈vG, vG〉L2

[

b

2

(
∫ ∞

−∞
vG(x)dx

)2

− 〈∂−1
x vG, u0〉L2

)

, (4.4)
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and
a±n = ±i〈∂−1

x u±n, u0〉L2 , n ∈ N. (4.5)

If u0 ∈ Xc defined in (1.6), then b = 0. The coefficients {an}n∈Z are well defined for u0 ∈ Xc.
Moreover, by the spectral theorem and the reduction of the non-self-adjoint operator A to the
two self-adjoint operators in Section 3.2, the series (4.3) converges in the L2 sense for every t ∈ R.

Define now the conserved energy of the linearized log–KdV equation,

Ec(u) :=
1

2
〈Lu, u〉L2 = const, t ∈ R. (4.6)

Recall that Ec(u0) > 0 if u0 ∈ Xc. It follows from (4.3) and (4.6) that if u0 ∈ Xc, then u(·, t) ∈ Xc

and Ec(u(·, t)) > 0 for every t ∈ R. Let y(x, t) := u(x, t) − a0v
′
G(x) and recall that b = 0 for

u0 ∈ Xc. Under these conditions, we have

Ec(y(·, t)) = Ec(u(·, t)) = Ec(u0), t ∈ R

and

Ec(y(·, t)) =
1

2

∑

n∈N

ωn

(

|a+,n|2 + |a−n|2
)

,

where the orthogonality and normalization conditions (4.2) have been used.
Because y belongs to a subspace of Xc spanned by {u±n}n∈N associated with the nonzero

eigenvalues {±iωn}n∈N, where each ωn > 0, the energy functional Ec(y) is equivalent to the
squared H1(R) ∩ L2

1(R) norm. Therefore, there is a t-independent positive constant C such that

‖y(·, t)‖2H1 + ‖y(·, t)‖2L2
1
6 CEc(y(·, t)) = CEc(u0) 6 C

(

1

2
‖u0‖2H1 +

1

8
‖u0‖2L2

1

)

. (4.7)

By the decomposition (4.3), the bound (4.7) and the triangle inequality, we obtain the bound
(1.8) for every t ∈ R. Theorem 1.1 is now proven.

4.2 Numerical illustrations

We truncate the spatial domain on [−L,L] for sufficiently large L (L = 40 was used in our
numerical results) and discretize u(x, t) at equally spaced grid points {xk}N+1

k=0
subject to the

periodic boundary conditions u(x0, t) = u(xN+1, t). Using the central difference approximation
and the Heun’s method, we rewrite the linearized log–KdV equation (1.7) in the iterative form

(

I − ∆t

2
DLD

)

um+1 =

(

I +
∆t

2
DLD

)

um (4.8)

where ∆t is the time step, um is the vector of discretized solution at the time tm, I is an identity
matrix, D is the matrix for the first derivative, and LD is the matrix for the second-order
differential operator L.

For a positive parameter α, we consider the odd initial data

u0(x) = x

(

x2 − 5 + 6α

(1 + α)(1 + 2α)

)

e−
(1+2α)x2

4 , (4.9)
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which satisfies the symplectic orthogonality conditions 〈vG, u0〉L2 = 〈∂−1
x vG, u0〉L2 = 0. These

constraints ensure that b = 0 and a0 = 0 in the decomposition (4.3) and the solution u of the
linearized log–KdV equation (4.1) is spanned by eigenfunctions of the linearized operator A = ∂xL
for nonzero eigenvalues.

Figure 3 reports numerical computations of the iterative scheme (4.8) for the Gaussian initial
data (4.9) with α = 0.1. Besides the profiles of the solution shown on the spatial interval [−15, 15]
(bottom panel), we also show the center of mass (top left panel)

x̄(t) =

∫

R
xu2(x, t)dx

∫

R
u2(x, t)dx

,

and the standard deviation (top right panel)

σ(t) =

(

∫

R
(x− x̄(t))2u2(x, t)dx
∫

R
u2(x, t)dx

)1/2

.

We can see from the top right panel of Figure 3 that the standard deviation σ(t) oscillates period-
ically with a large amplitude, which is still much smaller than the half-size of the computational
domain L = 40. Therefore, the odd Gaussian data (4.9) evolves into a solution, which does not
spread out in the time evolution of the linearized log–KdV equation (1.7). Nevertheless, a visible
radiation appears on the left slope of the Gaussian pulse.
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Figure 3: Numerical solution of the linearized log–KdV equation (1.7) with an odd initial data
(4.9): center of mass x̄ (top left) and standard deviation σ (top right) versus time; the profile
u(x, t) versus x (bottom) for t = 0 (blue dashed), t = 2.5 (green dotted), and t = 5 (red solid).
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Figure 4 reports numerical computations for the even initial data

u0(x) =

(

x4 − 3(3 + 4α)

(1 + α)(1 + 2α)
x2 +

6

(1 + α)(1 + 2α)

)

e−
(1+2α)x2

4 , (4.10)

with α = 0.25. The even function (4.10) also satisfies the symplectic orthogonality conditions
〈vG, u0〉L2 = 〈∂−1

x vG, u0〉L2 = 0 for any α > 0. The results are qualitatively similar to the case of
odd initial data. The preserved localization of the solution coexists with the radiation at the left
slope of the Gaussian pulse.
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Figure 4: Numerical solution of the linearized log–KdV equation (1.7) with the even initial data
(4.10): center of mass x̄ (top left) and standard deviation σ (top right) versus time; the profile
u(x, t) versus x (bottom) for t = 0 (blue dashed), t = 2.5 (green dotted), and t = 5 (red solid).

4.3 Discussion

The numerical results of Section 4.2 support the conjecture that if the initial data u0 ∈ Xc of the
linearized log–KdV equation (1.7) satisfies the constraint

u0(x) = vG(x)h0(x) with h0 ∈ L∞(R) ∩ L2(R),

then there exists a unique solution of the linearized log–KdV equation (1.7) in the form

u(x, t) = vG(x)h(x, t),

where h(·, t) ∈ L∞(R) ∩ L2(R) for every t ∈ R and h(·, 0) = h0.
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If this result can be established rigorously, then one can analyze the linearized log–KdV
equation with a source term to complete analysis of the equivalent log–KdV equation (1.14) with
the initial data w0 = vGh0, where h0 ∈ L∞(R)∩L2(R) and ‖h0‖L∞∩L2 is sufficiently small. This
route may lead to the proof of orbital stability of the Gaussian solitary wave vG for the log–KdV
equation (1.1) in the class of functions with initial data v0 = (1+h0)vG, where h0 ∈ L∞(R)∩L2(R)
and ‖h0‖L∞∩L2 is sufficiently small. However, this work is still to be done, hence the problem of
nonlinear orbital stability of the Gaussian solitary wave vG remains opened for further studies.
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