
HAL Id: hal-01084971
https://hal.science/hal-01084971v1

Submitted on 20 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Functions Weakly Computable by Petri Nets and
Vector Addition Systems
Jérôme Leroux, Ph Schnoebelen

To cite this version:
Jérôme Leroux, Ph Schnoebelen. On Functions Weakly Computable by Petri Nets and Vector Addition
Systems. Reachability Problems - 8th International Workshop, RP 2014, Sep 2014, Oxford, United
Kingdom. pp.190 - 202, �10.1007/978-3-319-11439-2_15�. �hal-01084971�

https://hal.science/hal-01084971v1
https://hal.archives-ouvertes.fr


On Functions Weakly Computable by Petri Nets and
Vector Addition Systems?

J. Leroux1 and Ph. Schnoebelen2

1 LaBRI, Univ. Bordeaux & CNRS, France
2 LSV, ENS Cachan & CNRS, France

Abstract. We show that any unbounded function weakly computable by a Petri
net or a VASS cannot be sublinear. This answers a long-standing folklore conjec-
ture about weakly computing the inverses of some fast-growing functions. The
proof relies on a pumping lemma for sets of runs in Petri nets or VASSes.

1 Introduction

Petri nets (PN), Vector Addition Systems (VAS) and Vector Addition Systems with
States (VASS) are essentially equivalent computational models based on simple oper-
ations on positive integer counters: decrements and increments. Such systems can be
used to compute number-theoretical functions, exactly like with Minsky machines or
Turing machines. However, they cannot compute all recursive functions since they are
less expressive than Minsky machines. In particular they lack zero-tests, or, more pre-
cisely, they cannot initiate a given action on the condition that a counter’s value is zero,
only on the condition that it is not zero.

The standard definition for a function computed by a Petri net or a VASS is due
to Rabin and is called “functions weakly computable by a Petri net”, or just “WCPN
functions” (all definitions will be found in the following sections). This notion has been
used since the early days of Petri nets and has proved very useful in hardness or impos-
sibility proofs: The undecidability of equivalence problems for nets and VASSes, and
the Ackermann-hardness of the same problems for bounded systems, have been proved
using the fact that multivariate polynomials with positive integer coefficients —aka pos-
itive Diophantine polynomials— and, respectively, the fast-growing functions (Fi)i∈N
in the Grzegorczyk hierarchy, are all WCPN [14,25,18].

The above results rely on showing how some useful functions are WCPN. But not
much is known about exactly which functions are WCPN or not. It is known that all
WCPN functions are monotonic. They are all primitive-recursive. The class of WCPN
functions is closed under composition. A folklore conjecture states that the inverses
of the fast-growing functions are not WCPN. It is stated as fact in [30, p.252] but no
reference is given. In this paper, we settle the issue by proving that if f : N → N is
WCPN and unbounded then it is in Ω(x), i.e., f(x) eventually dominates c ·x for some
constant c > 0. Thus any function that is sublinear, like x 7→ b

√
xc, or x 7→ blog xc, are

not WCPN. In particular, this applies to the inverse F−1i of any fast-growing function
with i ≥ 2. The proof technique is interesting in its own right: it relies on a pumping
lemma on sets of runs in VASSes or Petri nets.
? Work supported by the ReacHard project, ANR grant 11-BS02-001-01.



2 J. Leroux and Ph. Schnoebelen

Beyond Petri nets and VASSes. Petri nets and VASSes are a classic example of well-
structured systems [1,11]. In recent years, weakly computing numerical functions has
proved to be a fundamental tool for understanding the expressive power and the com-
plexity of some families of well-structured systems that are more powerful than Petri
nets and VASSes [31,15,12]. For such systems, the hardness proofs rely on weakly com-
puting fast-growing functions (Fα)α∈Ord that extend Grzegorczyk’s hierarchy. These
hardness proofs also crucially rely on weakly computing the inverses of the Fα’s.

There are several extensions of Petri nets for which reachability (or coverabil-
ity or termination) remains decidable: pushdown VASSes [23], nets with nested zero-
tests [27], recursive VASSes [4] and Branching VASSes [7], VASSes with pointers to
counters [6], etc. In many cases, it is not known how these extensions compare in ex-
pressive power and in complexity. We believe that weakly computable functions can be
a useful tool when addressing theses questions.

Outline of the paper. Section 2 recalls the standard definitions for VASSes and fixes
some notations. Section 3 recalls the definitions for WCPN functions and the classic
results about them. Our main result is proved in Section 4.

2 Vector Addition Systems with States

Following Hopcroft and Pansiot [16], we adopt Vector Addition Systems with States
(VASS) as our mathematical setting (rather than Petri nets or plain VASes) because they
offers a good compromise between ease of description for specific systems, and conve-
nient mathematical notation for reasoning about them. Nevertheless, all these models
are essentially equivalent for our purposes.

Vectors of integers. Z and N denote the sets of integers and, resp., non-negative integers.
For d ∈ N, a d-dimensional vector is a tuple a = 〈a1, . . . , ad〉 in Zd. We use 0 to denote
〈0, . . . , 0〉 when the dimension is understood. Vectors can be concatenated: for a ∈ Zd
and b ∈ Zd′ we may write 〈a, b〉 for the vector 〈a1, . . . , ad, b1, . . . , bd′〉 ∈ Nd+d′ .

Vectors in Zd are ordered with a = 〈a1, . . . , ad〉 v b = 〈b1, . . . , bd〉
def⇔ a1 ≤

b1 ∧ · · · ∧ ad ≤ bd, and can be added with (a+ b)
def
= 〈a1 + b1, . . . , ad + bd〉. Note that

(Zd,+,0) is a commutative monoid, having (Nd,+,0) as submonoid. Clearly, a ∈ Nd
iff 0 v a. By Dickson’s Lemma, (Nd,v) is a well-ordering (more details in Section 4).
In the following, we reserve x,y, . . . for vectors in Nd and write ‖x‖, ‖y‖, . . . , for their
norms, defined by ‖〈x1, . . . , xd〉‖

def
= x1 + · · ·+ xd.

VASSes and their operational semantics. A VASS is a triple A = 〈d,Q, T 〉 where
d ∈ N is a dimension (i.e., a number of counters),Q is a non-empty finite set of (control)
locations, and T ⊆ Q × Zd × Q is a finite set of (transition) rules. We usually write
q, q′, . . . for locations, and t, u, . . . for rules.

Fix some VASSA = 〈d,Q, T 〉. The operational semantics ofA is given in the form
of a transition system (Conf ,−→). Formally, Conf def

= Q × Nd is the set of configura-
tions, with typical elements c, c′, . . . The labeled transition relation−→⊆ Conf ×Zd×
Conf is a set of triples (c,a, c′) called steps. As is standard, we write c a−→ c′ rather than



On Functions Weakly Computable by Petri Nets and Vector Addition Systems 3

(c,a, c′) ∈−→. Steps are defined by (q,x)
a−→ (q′,y)

def⇔ (q,a, q′) ∈ T ∧ y = x + a.
The a vector in a rule (q,a, q′) is called a translation.

Graphical description. It is convenient to present VASSes in graphic form. See an
example in Fig. 1. Here the locations and rules are depicted as a directed graph, as is
standard with such automata-theoretical notions. Indeed, we see a d-dim VASS as being
an automaton acting on d registers, or counters, capable of storing a natural number.
These counters are named in our graphical depictions (see x and z in Fig. 1) so that
we may use programming languages notations for the translation a in a rule (q,a, q′).
For example, in Fig. 1, the loop labeled with “x--;x--;z++” is a rule (q2,a, q2) with
a = 〈−2, 1〉, the other rule being (q1,0, q2).

q1 q2

x--;x--;z++

0z

4x

Fig. 1. A VASS depicted as an automaton acting on counters.

Runs and reachability. For k ∈ N, a length-k run from c to c′ is a sequence ρ of the
form c0 a1 c1 · · ·ak ck that alternates between configurations and vectors and such that
c0 = c, ck = c′, and ci−1

ai−→ ci for all i = 1, . . . , k. For a run ρ as above, we let src(ρ)
and tgt(ρ) denote c0 and, respectively, ck. We write c ∗−→ c′ when there is a run ρ from
c to c′, in which case we say that c′ is reachable from c.

Continuing our previous example, the reachability relation for the VASS from Fig. 1
can be captured3 with the following:

(qi, x, z)
∗−→ (qj , x

′, z′) iff

{
0 ≤ x− x′ = 2(z′ − z) if j = 2, or
x = x′ ∧ z = z′ if i = j = 1.

(1)

Lifting steps and runs. It is well known and easy to see that steps can be lifted up by
vectors z ∈ Nd. For a configuration c = (q,x), we write c + z for the configuration
(q,x+ z).

Fact 2.1 (Lifting steps and runs) For all c, c′ ∈ Conf , a ∈ Zd, and z ∈ Nd:

c
a−→ c′ implies c+ z

a−→ c′ + z , (2)

c
∗−→ c′ implies c+ z

∗−→ c′ + z . (3)

3 The “⇒” direction is proved by induction on the length of the run, where every additional step
respects the invariant stated by Eq. 1. The “⇐” direction is obvious when j = 1, and proved
by concatenating steps of the form (q2, x, z) −→ (q2, x− 2, z + 1) when j = 2.



4 J. Leroux and Ph. Schnoebelen

3 Weakly Computable Functions

In this section we recall the classic notion of weak PN computers and weakly com-
putable functions. We recall the main known results, most of them from the 70’s or early
80’s, when the applications were limited to a few hardness or impossibility proofs. This
material is classic but has been partly forgotten.

As we argued in the introduction, the notion of weakly computable functions has
recently gained new relevance with the development of well-structured systems that go
beyond Petri nets and VASSes in expressive power, while sharing some of their charac-
teristics. In particular, we expect that it will help understanding the expressive power of
extensions like VASSes with nested zero-tests [27] or with a pushdown stack [23].

3.1 Weak PN Computers and Weakly Computable Functions

The expected way for a finite-state register machineA to compute a numerical function
f : N → N is to start in some initial location with some input value n stored in a des-
ignated input counter and from that configuration eventually reach a final or accepting
location with f(n) in a designated output counter. In order forA to be correct, it should
be impossible that it reaches its accepting location with a value differing from f(n)
in the output counter. In that case, we say that A strongly computes f . This notion of
correctness is fine with Minsky machines but it is too strong for VASSes and does not
lead to an interesting family of computable functions. In fact, Petri nets and VASSes are
essentially nondeterministic devices, and the above notion of strongly computing some
function does not accommodate nondeterminism nicely.

With this in mind, Rabin defined a notion of “weakly computing f” that combines
the following two principles:

Completeness: For any n ∈ N, there is a computation with input n and output f(n);
Safety: Any computation from input n to some output r satisfies r ≤ f(n).

This leads to our first definition:

Definition 3.1 (Weak PN computers). Let f : Nn → Nm be a total function. A weak
PN computer for f is a d-dimensional VASS A, with d ≥ n +m and two designated
locations qinit and qfinal, that satisfies the following two properties. Here we write ` for
d− n−m, and we decompose vectors w ∈ Nd as concatenations w = x,y, z where
x ∈ Nn, y ∈ N` and z ∈ Nm.

∀x : ∃x′,y′ : (qinit,x,0,0)
∗−→ (qfinal,x

′,y′, f(x)) , (CO)

∀x,x′,y′, z′ : (qinit,x,0,0)
∗−→ (qfinal,x

′,y′, z′) implies z′ v f(x) . (SA)

We say that f is weakly computable, or WCPN for short, if there is a weak PN computer
for it.

For convenience, Definition 3.1 assumes that the (n-dimensional) input is given in the
first n counters of A, and that the m-dimensional result is found in its last m counters.
Note that A may use its ` extra counters for auxiliary calculations.



On Functions Weakly Computable by Petri Nets and Vector Addition Systems 5

Example 3.2 (A weak computer for halving). The VASS from Fig. 1 is a weak computer
for f : x 7→ bx2 c. We just have to designate q1 and q2 as the required qinit and, resp.,
qfinal. To show that (CO) and (SA) hold, one sets z = 0 in Eq. (1). This gives

(q1, x, 0)
∗−→ (q2, x

′, z′) iff z′ =
x− x′

2
,

entailing both (CO) —pick x′ = (x mod 2)— and (SA) —since z′, x′ ∈ N— in one
go. ut

Only monotonic functions can be weakly computed in the above sense. This is an
immediate consequence of the monotonicity of steps in VASSes (see Fact 2.1).

Proposition 3.3 (Monotonicity of WCPN functions). If f : Nn → Nm is WCPN then
x v x′ implies f(x) v f(x′).

Proof. Assume that x v x′ and pick any weak PN computer for f . By (CO), there is a
run (qinit,x,0,0)

∗−→ (qfinal,v,y, f(x)). By Eq. (3), there is also a run (qinit,x
′,0,0)

∗−→
(qfinal,v + x′ − x,y, f(x)). Thus f(x) v f(x′) by (SA). ut

3.2 More weakly computable functions

Example 3.4 (A weak computer for multiplication, from [26]). Fig. 2 describes A×, a
weak computer for f : x1, x2 7→ x1 × x2. To show that (SA) holds, we associate with

qinit q1

q2

qfinal

x2--

y--;x1++;z++

x1--;y++

0 z4x1

3x2 0 y

Fig. 2. A×, a VASS weakly computing x1, x2 7→ x1 × x2.

any configuration c of A× a value M(c) ∈ N given by

M(q, x1, x2, y, z)
def
=

{
z + (x1 + y) · x2 + y if q = q2,
z + (x1 + y) · x2 otherwise.

(4)

By considering all rules of A× in turn, one checks that c −→ c′ implies M(c) ≥M(c′).
Thus given an arbitrary run from c0 = (qinit, x1, x2, 0, 0) to ck = (qfinal, x

′
1, x
′
2, y
′, z′) it

holds thatM(c0) ≥M(ck), i.e., x1 ·x2 ≥ z′+x′1 ·x′2+y′ ·x′2. This entails z′ ≤ x1 ·x2
as required by (SA).

We let the reader check that (CO) holds. [Hint: steps c −→ c′ that only use the rule
from q1 to q2 when x1 = 0, and from q2 to q1 when y = 0, satisfy M(c) =M(c′).] ut



6 J. Leroux and Ph. Schnoebelen

Weakly computing functions has mainly been used in hardness or impossibility
proofs. For example, weakly computing multiplication can be used to show that reach-
ability sets are not always semilinear: it is easy to adapt the construction underly-
ing A× and design a VASS that, starting from a fixed c0, generates the set of triples
{〈y1, y2, y〉 ∈ N3 | 0 ≤ y ≤ y1 · y2} in some designated counters. The reachability set
of this VASS cannot be semilinear.

Proposition 3.5. The class of WCPN functions is closed by composition.

Proof (Idea). The obvious way of gluing a weak PN computer for g after a weak PN
computer for f produces a weak PN computer for g ◦ f . To prove that the resulting
VASS satisfies (SA), one observes that any run can be reordered by firing all rules in
the f part before the rules in the g part. ut

Since the class of WCPN functions contains addition, multiplication, projections,
and tuplings, one deduces that all positive Diophantine polynomials (multivariate poly-
nomials with coefficients in N) are weakly computable. This was used by Rabin in his
reduction of Hilbert’s 10th Problem to the inclusion problem for VASS reachability
sets [3,14]. Hack strengthened this reduction to show that already the equality problem
was undecidable [14]. (Later, Jančar showed that all behavioural equivalences are un-
decidable for VASSes —already for dimension d = 5—, using a simpler reduction with
some notion of weak computer that is not numerical [19].)

3.3 Iterable weak PN computers

There are other easy and useful examples of WCPN functions that are not positive
Diophantine polynomials, like min and max, or even half seen previously. In order
to show the weak computability of more functions, in particular functions that are not
polynomially or exponentially bounded, Mayr [24] introduced the following notion:

Definition 3.6 (Iterable Weak PN Computers). Let f : N → N be a weakly com-
putable unary function. A weak PN computer A for f is iterable if it satisfies

∀w,w′ :(qinit,w)
∗−→ (qfinal,w

′) implies ‖w′‖ ≤ f(‖w‖) . (IT)

A unary function is iterably weakly computable, or IWCPN, if there exists an iterable
weak PN computer for it.

In Definition 3.6, ‖w‖ counts all the tokens (using Petri net terminology) in the starting
configuration. The property stated by Eq. (IT) is useful in constructions that include
A and where one cannot guarantee that all computations by A will start from clean
configurations with zeroes in y and z.

Example 3.7 (Halving). The weak PN computer for halving (Fig. 1) is not iterable
since, by Eq. (1), it has runs like (qinit, 0, 1)

∗−→ (qfinal, 0, 1) and (qinit, 1, 0)
∗−→ (qfinal, 1, 0)

that have ‖w‖ = ‖w′‖ = 1, hence ‖w′‖ 6≤ f(‖w‖) = b 12c = 0.

In fact, it is impossible to design an iterable weak PN computer for halving, as a conse-
quence of the following proposition.



On Functions Weakly Computable by Petri Nets and Vector Addition Systems 7

Proposition 3.8 (Strict Monotonicity of IWCPN functions). If f : N→ N is IWCPN
then f(x) < f(x+ 1) for all x ∈ N.

Proof. Assume a given iterable weak PN computer for f and let x ∈ N. From (CO),
we derive (qinit, x,0, 0)

∗−→ (qfinal, x
′,y′, f(x)). By lifting, we get (qinit, x + 1,0, 0)

∗−→
(qfinal, x

′+1,y′, f(x)). Now (IT) gives x′+1+‖y′‖+f(x) ≤ f(x+1), which entails
f(x) < f(x+ 1). ut

Example 3.9 (Doubling is IWCPN). One may design an iterable weak computer for

qinit qfinal

x--;z++;z++

0z

4x

Fig. 3. Adbl , a VASS weakly computing x 7→ 2 · x.

x 7→ 2 · x (doubling) by a slight modification of Fig. 1. The resulting VASS, called
Adbl , is depicted in Fig. 3. It satisfies

(qinit, x, z)
∗−→ (qfinal, x

′, z′) iff 0 ≤ 2(x− x′) = z′ − z .

These runs have thus ‖w′‖ = x′ + z′ = 2x − x′ + z. On the other hand f(‖w‖) =
f(x+ z) = 2x+ 2z. Hence ‖w′‖ ≤ f(‖w′‖) as required by (IT). ut

As expected, the functions weakly computed by iterable weak PN computers are
iterable. Given a unary f and some n ∈ N, we write fn(x) for the n-fold application
f(f(f(· · · (x) · · · ))) of f . In particular f0(x) = x. One can then show the following:

Proposition 3.10 ([24,26]). If f is IWCPN, then iter(f) : x, y 7→ fx(y) is IWCPN.

Indeed, the whole point of (IT) is to entail the correctness of the obvious construction
for iterating a weak PN computer.

With Proposition 3.10, and since doubling is IWCPN, we deduce that iter(dbl) :

x, y 7→ dblx(y) = 2xy is IWCPN. From that we deduce that tower : x 7→ 22
···2
}
x times

is IWCPN. Continuing, all the fast-growing functions (Fi)i∈N in the Grzegorczyk hi-
erarchy are IWCPN. This was used by Mayr to show that the inclusion problem for
finite reachability sets is not primitive recursive [24,25]. The problem is in fact Fω-
complete in the recent classification of Schmitz [28]. Using the same IWCPN functions,
Jančar showed that all behavioural equivalences are Ackermann-hard between bounded
VASSes [18].

While the fast-growing hierarchy extends beyond the (Fi)i∈N, the functions at the
higher levels —starting withFω which is one possible form for Ackermann’s function—
are not WCPN. The following Proposition is folklore, but we could not find it explicitly
stated in the literature:

Proposition 3.11. Any weakly computable function f is primitive recursive.



8 J. Leroux and Ph. Schnoebelen

Proof. For a VASS A and a starting configuration c0 ∈ Conf , let SA(c0) ∈ N be the
maximum norm of a configuration occurring in the Karp-Miller tree TKM(c0) rooted
in c0. (We assume familiarity with Karp-Miller trees, otherwise see []. Note that they
really contain “extended configurations” in Q× (N∪{ω})d but one only uses the finite
values for their norm, as in, e.g., ‖(q, 7, ω, 2)‖ = 7 + 2 = 9.)

For k ∈ N, let now SA(n)
def
= max {SA(c) | ‖c‖ ≤ k}. It is shown in [10, Section 7C]

that SA : N → N is primitive recursive (using a different norm for vectors, but this is
of no consequence here). If now A is a weak PN computer for some f : Nn → Nm,
then by (CO) and for any x ∈ Nn, the tree TKM((qinit,x,0,0)) contains an extended
configuration cx = (qfinal,x

′,y′, z′) that covers (qfinal,0,0, f(x)) since every reach-
able configuration is covered in TKM. Furthermore, by (SA), no configuration reachable
in qfinal can have values above f(x) in the last m counters. Hence the z′ part of cx has
no ω’s and z′ = f(x). Finally, one can compute f(x) by building a Karp-Miller tree
of size that is primitive recursive in ‖x‖ and by reading f(x) on one of its leaves. ut

3.4 Alternative Definitions

The literature contains other proposals for a notion of weakly computable functions,
all of them based on Rabin’s seminal idea. For example, it is possible —as in [14]— to
define the function weakly computed byA as the maximum number of times a transition
(or all transitions, as in [13]) can be fired between (qinit,x,0) and qfinal. This does not
give a larger class of weakly computable functions.

In the rest of this section, we discuss alternative notions that lead to larger families
of functions.

Weakly Computing Eagerly. An interesting notion is that of “eagerly” weakly com-
putable functions. For this, we modify the Correctness and Safety requirement in Defi-
nition 3.1, replacing them with

∀x : (qinit,x,0,0)
∗−→ (qfinal,0,0, f(x)) , (CO’)

∀x, z′ : (qinit,x,0,0)
∗−→ (qfinal,0,0, z

′) implies z′ v f(x) , (SA’)

and we say that f is EWCPN.
The idea here is that A must consume inputs and auxiliary counters at the end of

the computation. This is meaningful in some reductions —e.g., reducing reachability in
VASSes to some problem on some weakly computable function—. To the best of our
knowledge, it has never been considered in the literature on VASSes and Petri nets. The
fact is that it does not behave as nicely as the classical definition (see below). However,
it is a natural option with some extensions like VASSes extended with resets as in [2,9],
or with nested zero-tests as in [27].

Fact 3.12 The class of EWCPN functions strictly extends the WCPN functions.

Proof. Obviously, any WCPN function can be computed eagerly: a weak PN computer
for f is made eager by adding decrementing rules that can empty the input and auxiliary
counters. To see that the extension is strict, note that EWCPN functions are not always
monotonic. For example, parity : x 7→ x mod 2 is easily seen to be EWCPN. ut



On Functions Weakly Computable by Petri Nets and Vector Addition Systems 9

Because EWCPN functions are not necessarily monotonic, it is not clear whether the
composition of two EWCPN functions is EWCPN itself. In the next section we prove
our main result even for the larger class of EWCPN functions.

Families of Weak PN Computers. Very often reductions showing hardness do not
need a fixed weak PN computer for some f . They can accommodate a family (Ai)i∈N
such that each Ai weakly computes f(i), or f(x) for all x = 0, . . . , i. The family
needs to be simple in computational terms —typically “polynomial-time uniform”— so
that it can be used in reductions. Since the Ai’s that weakly compute the fast-growing
Fi’s are uniformly generated, they provide a family weakly computing the function Fω
(equivalently, Ackermann’s function) defined by Fω(x) = Fx(x).

For slow-growing functions, one often needs a family that is polynomial-time uni-
form in the size of f(x). A recent example is Lazić’s polynomial-time uniform family
of pushdown VASSes (VASSes extended with a stack) that weakly computes the inverse
of tower : x 7→ 22

···2
}
x times [21].

4 Well-Quasi-Ordering Runs in VASSes

Recall that a quasi-order (qo) on a set S is a binary relation� on S that is reflexive and
transitive. A partial order is an antisymmetric quasi-order. A well-quasi-order (wqo)
on S is a quasi-order � such that every infinite sequence s0, s1, s2, . . . in S contains an
increasing pair si � sj for some i < j. See [20] or [29] for more on wqos.

Example 4.1. It is well-known that (N,≤) is a wqo, while (Z,≤) or (Q≥0,≤) are not.
As another example, the pigeonhole principle shows that the partial order (S,=) is a
wqo if, and only if, S is finite.

In practice, many wqos are defined by applying well-known constructions on stan-
dard, already known, wqos.

Definition 4.2 (Products of wqos and Dickson’s Lemma). Let (S1,�1), . . . , (Sn,�n)
be qos. Their product is the qo (S×,�×) with S×

def
= S1 × · · · × Sn and �× given by

(s1, . . . , sn) �× (s′1, . . . , s
′
n)

def⇔ s1 �1 s
′
1 ∧ . . . ∧ sn �n s′n .

It is well-known that (S×,�×) is a wqo if all (Si,�i) are.

This last result is standardly called Dickson’s Lemma, after Dickson’s proof of his
“Lemma A” in [8], showing in essence that any subset of Nd has finitely many minimal
elements. For our purpose, Dickson’s Lemma shows that (Nd,v) is a wqo.

Definition 4.3 (Sequence extensions of wqos and Higman’s Lemma). The sequence
extension (S∗,�∗) of a qo (S,�) has for its support the set S∗ of all finite sequences
s1 · · · sk over S, and these sequences are ordered by

s1 · · · sk �∗ s′1 · · · s′`
def⇔
{

there are indexes 1 ≤ n1 < · · · < nk ≤ `
such that s1 � s′n1

∧ · · · ∧ sk � s′nk
.

It is well-known that (S∗,�∗) is a wqo if (S,�) is.



10 J. Leroux and Ph. Schnoebelen

(q1, 3, 3) (q1, 2, 1) (q2, 3, 2) (q3, 2, 0) (q2, 2, 2) (q3, 0, 2)

(q1, 1, 0) (q2, 2, 1) (q3, 0, 1)

ρ′:

ρ:

ρ0 ρ1 ρ2

a1 a2

b a1 b′ b′′ a2

w v w v v�

Fig. 4. Example for Def. 4.4: A factorization of ρ′ = ρ0a1ρ1a2ρ2 witnessing ρ� ρ′.

This last result is called Higman’s Lemma.

In the rest of this section, we assume a fixed VASS A = (d,Q, T ). We now define
three orderings, respectively between the configurations of A, between its steps, and
between its runs, in the following way:

(q1,x1) v (q2,x2)
def⇔ q1 = q2 ∧ x1 v x2 , (5)

(c1
a1−→ c′1) 4 (c2

a2−→ c′2)
def⇔ c1 v c2 ∧ a1 = a2 ∧ c′1 v c′2 . (6)

Since Q and T are finite, (Q,=) and (T,=) are wqos, hence (Conf ,v) and (Conf ×
T × Conf ,4) are wqos by Dickson’s Lemma.

Definition 4.4 (Ordering runs, see Fig. 4). For two runs ρ, ρ′ of A, we write ρ� ρ′ if
ρ = c0a1c1 . . .akck and ρ′ can be factored as some ρ′ = ρ0a1ρ1 . . .akρk where, for
all j = 0, . . . , k, the ρj factor is a run such that cj v src(ρj) and cj v tgt(ρj).

Lemma 4.5. The relation � is a wqo over the runs of A.

Proof. This is essentially [22, Lemma 4.1] or [17, Theorem 6.5]. A more direct proof
is by observing that

ρ� ρ′ iff

{
src(ρ) v src(ρ′) ∧ tgt(ρ) v tgt(ρ′) ∧

(c0
a1−→ c1)(c1

a2−→ c2) · · · (ck−1
ak−→ ck) 4∗ (c′0

a′1−→ c′1) · · · (c′`−1
a′`−→ c′`) ,

where 4∗ is the sequence extension of the ordering of steps defined with Eq. (6). Since
4 (over steps) andv (over configurations) are wqos, � is a wqo over the runs ofA. ut

The ordering on runs comes with the following Pumping Lemma 4.7:

Lemma 4.6. Let c ∈ Conf and u,v ∈ Nd. Then

c+ u
∗−→ c+ v implies ∀x ∈ N : c+ x · u ∗−→ c+ x · v . (7)

Proof. From c+u
∗−→ c+v and with Eq. (3) one obtains c+u+iu+jv

∗−→ c+iu+v+jv
for any i, j ∈ N. Chaining such runs yields

c+ xu
∗−→ c+ (x− 1)u+ v

∗−→ c+ (x− 2)u+ 2v
∗−→ · · · ∗−→ c+ xv .

ut



On Functions Weakly Computable by Petri Nets and Vector Addition Systems 11

Lemma 4.7 (Pumping Lemma). Let ρ � ρ′ and let u,v ∈ Nd such that src(ρ′) =
src(ρ) + u and tgt(ρ′) = tgt(ρ) + v. Then

∀x ∈ N :
(
src(ρ) + x · u

) ∗−→
(
tgt(ρ) + x · v

)
.

Proof. In [17, Lemma 6.7], it is proved that if ρ � ρ′ � ρr for some run ρx, then there
exists a run ρx+1 such that ρx � ρx+1, src(ρx+1) = src(ρx) + u, and tgt(ρx+1) =
tgt(ρx) + v. An immediate induction over x ∈ N, starting with ρ0 = ρ and ρ1 = ρ′

provides a run ρx witnessing src(ρ) + x · u ∗−→ tgt(ρ) + x · v.

We provide a direct proof of Lemma 4.7 as follows. Assume that ρ�ρ′ is witnessed
by factoring ρ′ of the form ρ0a1ρ1 . . .akρk. For j = 0, . . . , k, write uj and vj for the
vectors in Nd such that src(ρj) = cj + uj and tgt(ρj) = cj + vj . Since there is a run
ρj of the form cj +uj

∗−→ cj +vj , by Lemma 4.6 there is also cj +x ·uj
∗−→ cj +x ·vj

for all x ∈ N.
For j = 1, . . . , k, uj = vj−1 + aj , since there are steps cj−1

aj−→ cj and cj−1 +
vj−1 = tgt(ρj−1)

aj−→ src(ρj) = cj + uj , we conclude that uj = vj−1. Hence
cj−1

aj−→ cj can be lifted to cj−1 + x · vj−1
aj−→ cj + x · uj . Chaining these runs give

c0 + x · u ∗−→ ck + x · v as required. ut

Theorem 4.8. Let f : N → N be an unbounded unary EWCPN function. Then there
exist r, s ∈ N with s > 0 and such that f(r + s · x) is in Ω(x).

Proof. Fix an eager weak PN computer A for f . For every r ∈ N, A has a run ρr
of the form (qinit, r,0, 0)

∗−→ (qfinal, 0,0, f(r)). Since f is unbounded, there exists an
infinite subset R ⊆ N such that (f(r))r∈R is strictly increasing. Since the runs are
well-ordered by � (Lemma 4.5) there exists two indexes r < r′ inR such that ρr�ρr′ .
By introducing s = r′ − r, Lemma 4.7 shows that for every x ∈ N, we have(

qinit, r + s · x,0, 0
) ∗−→ (

qfinal, 0,0, f(r) + x ·
[
f(r′)− f(r)

])
.

With (SA’), we deduce that f(r + s · x) ≥ f(r) + x · [f(r′) − f(r)] for every x ∈ N.
The lemma follows from f(r′)− f(r) > 0. ut

Corollary 4.9. Let f : N → N be an unbounded unary WCPN function. Then f(x) is
in Ω(x).

Proof. Direct from Theorem 4.8 since, by Proposition 3.3, f is non-decreasing. ut

Thus any sublinear function like x 7→ d
√
xe or x 7→ dlog xe is not weakly com-

putable even in the eager sense. (We note that any monotonic bounded function is
WCPN, e.g., as a max of finitely many threshold functions of the form “x 7→ if u v
x then vhi else vlo” with vlo v vhi.)

Corollary 4.9 can be extended beyond unary functions as follows. A function f :
Nn → N is said to be unbounded on a component i, with 1 ≤ i ≤ n, if, for some natural
numbers r1, . . . , ri−1, ri+1, . . . , rn ∈ N, the following unary function is unbounded:

x 7→ f(r1, . . . , ri−1, x, ri+1, . . . , rn).



12 J. Leroux and Ph. Schnoebelen

For example, (x1, x2) 7→ x1 is a WCPN function that is unbounded on the first com-
ponent. From Corollary 4.9, and the monotonicity property given by Proposition 3.3, it
follows that every WCPN function f : Nn → N has f(x1, . . . , xn) in Ω(max i∈I xi),
where I is the set of unbounded components for f .

5 Concluding Remarks

We proved that Petri nets and VASSes cannot weakly compute numerical functions that
are sublinear. This was a folklore conjecture that, to the best of our knowledge, had not
yet been settled.

Traditionally, weakly computable functions have been used to prove hardness re-
sults. Recent hardness proofs for well-structured systems crucially rely on the ability
to weakly compute both fast-growing and slow-growing functions. For Petri nets and
VASSes, our negative result is consistent with the current situation where, for the reach-
ability problem, no lower bounds above EXPSPACE are known. This lack of expressive
power is also consistent with the fact that all WCPN functions can already be weakly
computed by the Lossy VASSes of [5].

Our negative result raises the question of whether more functions can be weakly
computed in extensions of VASSes like the pushdown VASSes of [23] or the nets with
nested zero-tests of [27].

References

1. P. A. Abdulla, K. Čerāns, B. Jonsson, and Yih-Kuen Tsay. Algorithmic analysis of programs
with well quasi-ordered domains. Information & Computation, 160(1–2):109–127, 2000.

2. T. Araki and T. Kasami. Some decision problems related to the reachability problem for Petri
nets. Theoretical Computer Science, 3(1):85–104, 1976.

3. H. G. Baker Jr. Rabin’s proof of the undecidability of the reachability set inclusion problem
of vector addition systems. Memo 79, Computation Structures Group, Project MAC, M.I.T.,
July 1973.

4. A. Bouajjani and M. Emmi. Analysis of recursively parallel programs. In POPL 2012, pages
203–214. ACM, 2012.

5. A. Bouajjani and R. Mayr. Model checking lossy vector addition systems. In STACS ’99,
volume 1563 of Lect. Notes Comp. Sci., pages 323–333. Springer, 1999.

6. S. Demri, D. Figueira, and M. Praveen. Reasoning about data repetitions with counter sys-
tems. In LICS 2013, pages 33–42. IEEE, 2013.

7. S. Demri, M. Jurdziński, O. Lachish, and R. Lazić. The covering and boundedness problems
for branching vector addition systems. Journal of Computer and System Sciences, 79(1):23–
38, 2013.

8. L. E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with n distinct
prime factors. Amer. Journal Math., 35:413–422, 1913.

9. C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset nets between decidability and undecid-
ability. In ICALP ’98, volume 1443 of Lect. Notes Comp. Sci., pages 103–115. Springer,
1998.

10. D. Figueira, S. Figueira, S. Schmitz, and Ph. Schnoebelen. Ackermannian and primitive-
recursive bounds with Dickson’s Lemma. In LICS 2011, pages 269–278. IEEE, 2011.



On Functions Weakly Computable by Petri Nets and Vector Addition Systems 13

11. A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! Theoretical
Computer Science, 256(1–2):63–92, 2001.

12. Ch. Haase, S. Schmitz, and Ph. Schnoebelen. The power of priority channel systems. In
CONCUR 2013, volume 8052 of Lect. Notes Comp. Sci., pages 319–333. Springer, 2013.
(Long version as CoRR Report 1301.5500 [cs.LO]).

13. M. Hack. Decidability Questions for Petri Nets. PhD thesis, Massachusetts Institute of
Technology, June 1976. Available as report MIT/LCS/TR-161.

14. M. Hack. The equality problem for vector addition systems is undecidable. Theoretical
Computer Science, 2(1):77–95, 1976.

15. S. Haddad, S. Schmitz, and Ph. Schnoebelen. The ordinal-recursive complexity of timed-arc
Petri nets, data nets, and other enriched nets. In LICS 2012, pages 355–364. IEEE, 2012.

16. J. Hopcroft and J.-J. Pansiot. On the reachability problem for 5-dimensional vector addition
systems. Theoretical Computer Science, 8(2):135–159, 1979.

17. P. Jančar. Decidability of a temporal logic problem for Petri nets. Theoretical Computer
Science, 74(1):71–93, 1990.

18. P. Jančar. Nonprimitive recursive complexity and undecidability for Petri net equivalences.
Theoretical Computer Science, 256(1–2):23–30, 2001.

19. P. Jančar. Undecidability of bisimilarity for Petri nets and some related problems. Theoretical
Computer Science, 148(2):281–301, 1995.

20. J. B. Kruskal. The theory of well-quasi-ordering: A frequently discovered concept. Journal
of Combinatorial Theory, Series A, 13(3):297–305, 1972.

21. R. Lazić. The reachability problem for vector addition systems with a stack is not elementary.
CoRR, abs/1310.1767, 2013.

22. J. Leroux. Vector addition systems reachability problem (a simpler solution). In The Alan
Turing Centenary Conference (Turing-100), volume 10 of EasyChair Proceedings in Com-
puting, pages 214–228. EasyChair, 2012.

23. J. Leroux, M. Praveen, and G. Sutre. Hyper-Ackermannian bounds for pushdown vector
addition systems. In CSL-LICS 2014. ACM, 2014.

24. E. W. Mayr. The complexity of the finite containment problem for Petri nets. Master’s thesis,
Massachusetts Institute of Technology, June 1977. Available as report MIT/LCS/TR-181.

25. E. W. Mayr and A. R. Meyer. The complexity of the finite containment problem for Petri
nets. Journal of the ACM, 28(3):561–576, 1981.

26. H. Müller. Weak Petri net computers for Ackermann functions. Elektronische Informa-
tionsverarbeitung und Kybernetik, 21(4–5):236–246, 1985.

27. K. Reinhardt. Reachability in Petri nets with inhibitor arcs. Electr. Notes Theor. Comput.
Sci., 223:239–264, 2008.

28. S. Schmitz. Complexity hierarchies beyond elementary. Research Report 1312.5686 [cs.CC],
Computing Research Repository, December 2013.

29. S. Schmitz and Ph. Schnoebelen. Algorithmic aspects of WQO theory. Lecture notes, 2012.
30. Ph. Schnoebelen. Verifying lossy channel systems has nonprimitive recursive complexity.

Information Processing Letters, 83(5):251–261, 2002.
31. Ph. Schnoebelen. Revisiting Ackermann-hardness for lossy counter machines and reset Petri

nets. In MFCS 2010, volume 6281 of Lect. Notes Comp. Sci., pages 616–628. Springer,
2010.


	On Functions Weakly Computable by Petri Nets and Vector Addition Systems

