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Abstract. We study two randomness measures for the celebrated Kro-
necker sequence S(a) formed by the fractional parts of the multiples of
a real a. The first measure is the well-known discrepancy, whereas the
other one, the Arnold measure, is less popular. Both describe the be-
haviour of the truncated sequence St(«) formed with the first T terms,
for T — co. We perform a probabilistic study of the pseudorandomness
of the sequence S(a) (discrepancy and Arnold measure), and we give
estimates of their mean values in two probabilistic settings : the input «
may be either a random real or a random rational. The results exhibit
strong similarities between the real and rational cases; they also show
the influence of the number T of truncated terms, via its relation to the
continued fraction expansion of a.

1 Introduction

Measures of Randomness. A measure of randomness on the unit interval
7 :=[0,1] tests how a sequence X C Z differs from a “truly random” sequence
(see books [11] and [14] for a general discussion on the subject). Such a measure
describes the difference between the behaviour of the truncated sequence X
formed with the first T' terms of the sequence and a “truly random” sequence
formed with T elements of Z, and explains what happens for T' — oco. Here, we
consider the statistical pseudorandomness which is stronger than computational
pseudorandomness, widely used in cryptography. Here, we study two measures
of statistical pseudorandomness —the discrepancy and the Arnold measure— and
we wish to compare them in the particular case of a Kronecker sequence S(a),
formed of fractional parts of the multiples of a real a. Such a sequence can
be precisely studied since its two measures of randomness are expressed as a
function of the continued fraction expansion of the real a.

For a rational of the form o = u/v, the sequence S(«) gives rise to an arith-
metic progression k — ku (mod v). This is a particular case of the general linear
congruential generator (LCG) xg+1 = axg +u (mod v), obtained here for a = 1.



Even if this particular LCG does not belong to the “best” class described by
Knuth in [15], it is interesting to study its statistical randomness. The LCG’s
are widely used for statistical purposes because they are easily implemented and
fast (see [15] for a general study). However, they are not adapted to a crypto-
graphic use.

The study of the Arnold measure is just now beginning, with the proposal of
Arnold himself in Problem 2003-2 of [1],[2], and the work of Cesaratto, Plagne
and Vallée in [7] in the particular case of the Kronecker sequence.

The notion of discrepancy is much more popular, and the case of Kronecker
sequences S(«) is very well studied, with works of Weyl, Hardy, Behnke, Schmidt
and Schoissengeier. A summary of the main results can be found in the book [4].
Weyl and Hardy proved that (1/T)Ar(a) tends to zero and asked the question
of the speed of convergence to 0. Behnke [5] first observed that the discrepancy
Ap(a) is of order O(logT) if and only if the sequence of quotients which ap-
pear in the continued fraction expansion of the real o admits bounded averages.
Another class of results shows the influence of the “type” of integer T' on the
truncated sequence Sy(a). This is due to the three distance theorem, conjec-
tured by Steinhaus and proved by Surdnyi [20], Sés [19] and Swierczkowski [21]
which states that there are at most three possible distinct distances between
geometric consecutive points in the truncated sequence Sy (). The length and
the number of these distinct distances depend on the relation between the trun-
cation integer 7" and the continued fraction expansion of the real . On the one
hand, the discrepancy may be small: when the truncation integer T is a continu-
ant of the continued fraction expansion of an irrational «, then the discrepancy
satisfies Ar(a) < 3 ([4], Ch. 5, Sect. 2); moreover, Schoissengeier [23] proved
the equality: lim inf7_, o, Ar(a) = 1. On the other hand, there are integers T for
which the discrepancy is large: Schmidt [22] proved the existence of an absolute
constant C' = (66 log4)~! for which, for each irrational «, there exists an infinity
of integers T so that Ar(a) > ClogT.

Thus, all the existing works which deal with the discrepancy adopt an “indi-
vidual” point of view: for which reals «, and for which integers T', the discrepancy
of the sequence S(«) is minimal, maximal?

Our Points of View. We adopt different points of view, which appear to be new:

(a) We compare these two randomness measures (discrepancy and Arnold
measure).

(b) We adopt a probabilistic point of view: we choose the “input” « at random,
and we wish to study the randomness of a random sequence S(«). We estimate
in particular the mean values of the discrepancy and the Arnold measure, when
the number T of terms tends to co.

We consider two distinct probabilistic settings: we study the usual case when
« is a random real number, but we also focus on the particular rational case,
where « is a random rational of the unit interval. This case is never studied in
the literature, except in the paper [7]. Even if the behaviour of the sequence
Sr(u/v) is only interesting if T < v, we may relate 7" and v so that they tend
both to co.



(¢) We focus on the special case when the pair (T, «) gives rise to the two distance
phenomenon: the computations are easier, but already show very interesting
phenomena. We consider two types of integers T": the case of “continuant” type
and the case of a general integer which gives rise to a two—distance phenomenon.

Main Results. Our results exhibit three phenomena:

(a) First, the strong parallelism between the behaviour of the two randomness
measures (discrepancy and Arnold measures)

(b) Second, the strong similarity between the two probabilistic settings (real and
rational cases).

(¢) Third, the strong influence of arithmetic properties of the number T of terms,
as a function of the continued fraction expansion of the input «. The two distinct
types of integers T' —the “continuant” type and the general two—distance integer—
give rise to distinct phenomena for pseudorandomness of a Kronecker sequence.

We then obtain eight results (8 = 23). Theorem 1 describes the case when T is
an integer of “continuant” type. In this case, the four mean values — discrepancy
and Arnold measure, in the real and the rational case— tend to finite limits close
to 1. Moreover, for each randomness measure (discrepancy or Arnold measure),
the limits in the real case and in the rational case coincide.

Theorem 2 deals with the case when T is a general integer which gives rise to
a two—distance phenomenon. For this type of integer 7', the mean value of each
measure is infinite in the real case. On rationals with a denominator at most NV,
the mean values are both of order log NV, with “similar” constants.

Finally, Theorem 3 studies the case of a general variable which involves the
main parameters which appear in the continued fraction expansion. This result
may be of independent interest, and also exhibits a strong similarity between
the two probabilistic settings (real and rational cases).

This work strongly uses the dynamical analysis methodology, developed by
Vallée [3],[25], which combines tools imported from dynamics, such as transfer
operators, with various tools of analytic combinatorics: generating functions,
Dirichlet series, Perron’s formula.

Plan of the Paper. We first introduce the two randomness measures (Section
2). In Section 3, we describe our main results and interpret them in terms of
pseudorandomness. Finally, Section 4 provides expressions of these randomness
measures as a function of the main parameters which appear in the continued
fraction expansion and explains the main steps of the proofs of our results.

2 Notions of Pseudo-randomness

This section describes the two measures of randomness which will be studied,
first in the case of a general sequence. Then, it focuses to the particular case of
the Kronecker sequences.



2.1 Case of a General Sequence

One considers a sequence X' of the unit interval Z := [0, 1], and, for an integer
T, the truncated sequence X formed by the first T elements of the sequence
X. After re-ordering the sequence X7, one obtains an increasing sequence Yr :=
{y; : i € [1.T]}, and the distance y;+1 — y; between consecutive elements is
denoted by §;, whereas the last distance dp is defined as 67 :=1+y1 — yr.

The main question is: How closely does the truncated sequence X7 approxi-
mate a “truly random” sequence on Z7? We consider here two main measures.The
discrepancy compares the sequence YVr to the fixed regular sequence (j/T),
whereas the Arnold constant deals with the distances ;.

Discrepancy. For a general study of discrepancy, see the two books [14] and
[11]. The discrepancy is a measure of how closely the truncated sequence Xr
approximates the uniform distribution on Z. We denote by || the cardinality
of a finite set ), and by A(J) the length of the interval J C Z.

A sequence X of the unit interval Z is called uniformly distributed if,

1
for any interval J C Z, lim —|XrNJ|=AJ).
T—oo T
The discrepancies Dp(X), Ap(X), given by
1
Dp(X) = sup | = [XrNT|=ANT)|,  Ar(X):=TDr(X), (1)
gcz | T

(where the supremum is taken over all the intervals J C T), estimate the speed of
convergence towards the uniform distribution. As explained in [18], the discrep-
ancy is expressed with two other sequences, defined by the “signed” distances
between the ordered sequence Yr and the reference sequence (j/7'), namely

. o1

_ _ . J _
Dp(X) = sup 4f, Dp(X) = sup 47 with = Z—y;, 75 1= y—

jelT) jel,T) T

so that the relation Dp(X) = D7 (X) + D7 (X) holds. In conclusion, the notion
of discrepancy is mainly based on the comparison between the ordered sequence
Yr with the reference sequence (j/T).

Arnold Measure. There exists another measure of randomness, recently intro-
duced by Arnold in [1], [2] and much less studied. Arnold proposed as a measure
of randomness of the sequence X7 the normalized mean-value of the square of

the distances d;’s LT 5N T
2
) =13 (%) =0

i=1 \T i=1
There are three particular values of this constant. When the sequence gives rise
to a regular polygon with T" vertices, the Arnold constant equals 1 and attains
its minimum possible value. More generally, the value of A is close to 1 when the
geometric distances d; between consecutive elements are close to each other. The
maximum value of Ap is obtained in the degenerate case when the sequence X1
assumes only one value; in this case, one has Ap = T'-1 = T. More generally, the



value of Ar is close to T when all the geometric distances between consecutive
elements are small except one which is then close to T'.

On the other hand, a random choice of T independent uniformly distributed
points on the unit torus leads to what Arnold calls the “freedom-liking” value,

=2T/(T+1), Ay — 2 for T — oc.

From these observations, it can be inferred that, the value of Ap(X) measures
some kind of degree of randomness for the sequence X: if Ap is “much smaller”
than A%, this means “mutual repulsion” of points, while if A7 is “much larger”
than A%, this means “mutual attraction”. On the opposite side, from these
two extremal types of non-randomness, the fact that A is “close” to A* can be
considered as a sign of randomness.

2.2 The Particular Case of the Kronecker Sequence

The Kronecker sequence S(«) associates to a € Z the fractional parts of the
multiples of «,
S(a) := {{na};n € N}.

Here, {t} denotes the fractional part of ¢, namely {¢t} = ¢ — [t]|, where |¢] de-
notes the integer part. This sequence satisfies a crucial property which explains
its interest: the three distance phenomenon. For any pair (T, «), the truncated
sequence St () possesses only two or three distinct distances. Both the charac-
terisation of pairs (T, ) for which there exist only two distances, and the values
of the distances themselves depend on three main parameters which intervene
in the continued fraction expansion of the real o, namely

(a) the quotients my,

(b) the denominators g of the k-th approximant px/gx of @ named continuants,

(¢) the distances ng := |a — (px/qr)| between « and its k-th approximant, or
more precisely the differences 0y := qx—17k-1 = |qr—10¢ — Pr—1]-

The behaviour of the randomness measures D, Ar depends on the “type” of the

integer T'. We focus on two types of integers T which give rise to the two-distance

phenomenon.

() the first type when T is of continuant type, i.e T belongs to
Q) = | Qkle) with  Qx(a) := {agr, a + ax—1},
(ii) the case when T i]sczao general two—distance integer, i.e., T belongs to
D(a) = U Di(a) with Di(a):={T=m-q+qr—1; L <m <mpy1} .
k>0
The equality qx1+1 = mgt1qx + gx—1 entails the inclusion Qky1(a) C Di(a).

In the case where the pair (T, «) gives rise to the two distance phenomenon,
the expressions for the Arnold measure and discrepancy (provided later in (3,4))
are written as a sum of monomials of the form Ry :=m§_,qf_,q050% . Since
the random variables my, g;, 0, are correlated, it is not easy a priori to study the
expectation of such a monomial.



3 Main Results

In this section, we first introduce the two probabilistic models, for the real case
and the rational case. Then, we state our main results. Theorems 1 and 2 deal
with the discrepancy and the Arnold measure, and Theorem 3 deals with general
random variables of the form ¢ 65.

3.1 Probabilistic Models

There are two different probabilistic models.

Real model. The real « is uniformly chosen in the unit interval Z, and the index
k tends to co. We are interested in the mean values E[Dr], E[Ar] for T € Qy(«)
or T € Dy(w), with k — co.

Rational model. Here, we consider the set
2 ={(u,v) e N%; 1<u<w, ged(u,v) =1},

and, for a pair (u,v) € £2, the depth P(u,v) denotes the number of steps of the
Euclid algorithm on the pair (u,v). We choose here the index k as a function of
the depth, and we deal with two main cases: the case where k is a fixed fraction
of the depth P of the pair (u,v), namely k = |§P], for some § €]0, 1] fixed, or
the more general case when k is a random variable on {2 which is an admissible
function of the depth, according to the following definition, already used in [7].

Definition. A function F' : N — N is said to be admissible if there exist two real
numbers a > 0 and b < 1 such that for any integer x, one has ax < F(x) < buw.

A function K : 2 — N is an admissible function of the depth if there exists
an admissible function F': N — N for which K = F o P where P : {2 — N is the
depth function.

For any integer N > 0, the subset 2y of 2 formed of pairs (u,v) whose de-
nominator v is at most N, is equipped with the uniform probability. We wish
to study the asymptotic behaviour of the mean values Ex[Ar], Ex[Dr] when «
is a random rational of 2y, when T belongs to Qx(a) or Di(a), and k is an
admissible function of the depth P(«a), and when N tends to co.

In Sections 3.2 and 3.3, we show that the two randomness measures share
the same behaviour in the real case and in the rational case, for any type of
truncation integer 7.

3.2 Discrepancy and Arnold Measure for the Continuant Type

Theorem 1 deals with the case when the truncation integer T is of continuant
type, i.e. T = qr or T' = qx + qr—1, and proves that the mean values tend to
finite values. We then exhibit four constants of interest, and one of them has
been already obtained in [7].

Theorem 1. [Discrepancy and Arnold measure for truncation integers of con-
tinuant type.] There are two main cases:



[Real case.] When « is a random real of T and T € QO (), the mean values of
Ar(a) and Ar(a) are finite, and tend to finite values for k — oco:

1 2 1

T = E[Ar] ~ 14— ~1.360, E[Ag] ~ 2 + —— ~ 1.027

Jor T = a, [A7] * Tlog2  EfAr] 51 Tlog2 ’
2 1

for T = qu +qu_1, E[Ar] ~1+ ~1.721, E[Ag] ~ = + ——— ~ 1.147,

2log?2 3 3log2

with error terms of order O(p*), with p < 1.

[Rational Case] When « is a random rational of 2n and T € Qy(a), where the
index k is an admissible function of the depth P(«), the mean values of Ar(a)
and Ar(«), are finite and satisfy, for N — oo:

1 2 1
T = Ex[Ar] ~1 4+ —— Ex[A7] ~ = + ——
for qk N[AT] +410g2’ N[AT] 3+410g2’
forT = q, + E [A ] 1+ L E [A ] 2+ L
or 1 =gk + qk—-1, N|AT 210g2’ N AT 3 3log 2 )

with error terms of order O(N~7), with v > 0.

We recall the already known results:
liminfp_ o Ar(a) =1, Ap(a) <3 for T = gx(a).

The present results show that the asymptotic mean values for the discrepancy,
obtained when T is of continuant type, are close to the theoretical infimum. In
this case, the Arnold constant is close to 1; following Arnold’s interpretation,
this is a sign of mutual repulsion of points of the sequence. We conclude from
these two facts that a random sequence Sy(«) is “close” to the sequence (j/T)
for T of continuant type.

3.3 Discrepancy and Arnold Measure for a General Two—Distance
Integer T

When T is a general two-distance integer, we are interested by the “interpolation
curve” which describes the “average” behaviour of the Arnold measure and the
discrepancy when the truncation integer 7' is of the form
T =m-qr+ qe—1 with m = pmy4+1 and p €0, 1] fixed.

In this case, the integer T does not belong to Qj (), which corresponds to the
case m =1 (u =0) or m = my41 (u = 1). Theorem 2 shows that the mean value
is infinite in the real case. On rationals whose denominators are at most N, the
mean value is of order @ (log N), and the constant in the dominant term explains
the dependence with respect to p.

Theorem 2. [Discrepancy and Arnold measure for a general two—distance in-
teger| There are two main cases:



[Real case.] When « is a random real of Z, when T of the form T = m-q; + qx—1
with m = pmpyi1, p €)0,1 fized, the mean values of Ar(a) and Ar(a) are
infinite.

[Rational Case] When « is a random rational of Q2x, when T is of the form
T =m-qr+ qr—1 withm = pmy41, p €0, 1] fized, and k an admissible function
of depth P, the mean values of Ar(«a) and Ar(«) satisfy, for N — oo,

1-— 1— )2
Enlar) ~ B Biogy,  Expir) ~ X g

with error terms of order O (1/log N).

Our result proves that a truncated Kronecker sequence Sp(«) does not pos-
sess good randomness properties, when its truncation integer is a general two-
distance integer. Moreover, in the rational case, our result is more precise, and
shows that the mean value of the discrepancy is maximal for a truncation inte-
ger T relative to a quotient m close to (1/2)my4+1 whereas the mean value of
the Arnold constant is maximal for a truncation integer T relative to a quotient
m close to (1/3) my41. Both asymptotic values are of order ©(log N). And, for
most of the admissible truncation integers T', one has logT = ©(log N). In view
of the results of Schmidt and Behnke, and in the case of a general two—distance
integer, it would be interesting to determine if the mean values of Ar and Ap
are of order O(logT).

3.4 General Study of Random Variables q,’; oy,

It may be of general interest to perform a probabilistic study of the main vari-
ables ¢ and 6y, first in a separate way, as it is already done in [16] and [26]. Here,
we are interested in a product of the form ¢?@§ which involves both variables,
which are not independent. Its asymptotic mean values, both in the real and
rational case, involves the dominant eigenvalue of the transfer operator Hy (s a
complex parameter) associated to the Euclid dynamical system, defined in (5),
when it acts on the space of C! functions. This dominant eigenvalue \(s) plays
an important role in the following result, which exhibits a strong parallelism
between the real and rational cases.

Theorem 3. [Parameters ¢’ 05| Denote by A\(s) the dominant eigenvalue of the
transfer operator Hy defined in (5). There are two main cases:
[Real case] (i) For any pair (b,c) with ¢ > b— 1, the mean value of the product
qb0¢ is finite, and satisfies

E[g205] = A(b,) \* (1+ (c— B)/2) [1+ 0 (p(b,c)F)] [k oc] .
for some positive constants A(b,c), and p(b,c) < 1. Then, for ¢ > b, the mean
value tends to 0o, and, for b—1 < c < b, the mean value tends to co.

(ii) In the particular case c = b, the mean value of the product q205 tends to a
constant A(b,b) for k — oo



(iii) If ¢ < b— 1, the mean value E[qb0¢] is infinite for any integer k.
[Rational case.] For any ¢ €]0,1[, and any real a, denote by o(a,d) the unique
real o solution of the equation

M=a) N (0 +a/2) =1, with  ¢(0,0) = 1.

(i) For any triple (8,b,c), the mean value of the product ¢205 on Qy, when
k = |0P] is a fraction of the depth P, satisfies

En[gh0] ~ A(5,b,¢) N27(=b0)=2 [1 4 O(N—700)) [N = o0,

for some positive constants A(d,b, c),v(4,b,c).

(it) In the particular case ¢ = b, the constant A(, b,b) satisfies A(0,b,b) = A(b,b)
for any & €]0,1[. The mean value of q20% when k is any admissible function of
the depth P tends to A(b,b) for N — oo, the same constant as in the real case.

3.5 Interesting Particular Cases for Random Variables qZO,‘;

There are three particular cases of interest. The cases (¢ = 1,b = 0) or (¢ =
1,b = —1) study the mean value of the k-th approximation of a number a.
In the real case, the mean values are of exponential type, with a ratio which
involves two possible values of the dominant eigenvalue of the transfer operator
A(3/2) or A(2) ~ 0.1994. This last value! \(2) (discovered in 1994...) plays a
central role in the analysis of the Gauss Algorithm [10], and its occurrence in
this approximation context was remarked for the first time in [13]. Theorem 3
can also be used as a main step to prove that the random variables log gy or
log ), asymptotically follow a gaussian law, both in the real and rational case. (
See [16] and [25]).

4 Main Steps for the Proofs

First, with the three distance theorem, we exhibit expressions for the randomness
measures in terms of the main parameters my, g, 0x of the continued fraction
expansion. Then, we describe how to apply the dynamical analysis methodology
—a mixing between analysis of algorithms and dynamical systems theory—.

4.1 Euclid Dynamical System and Continued Fractions

The Euclid dynamical system is defined by pair (Z,V) where V is the Gauss
map

1

V.To1, V(x)zi—EJz{;} forz£0, V(0)=0,

and |-] denotes the integer part, and {-} denotes the fractional part.

! Flajolet called it the Vallée constant...



The restriction of V' to the interval Z,,, := [1/(m + 1),1/m] is the mapping
Vim] : Zm — I defined by V},,)(z) = (1/x) — m whose inverse mapping Ay, :
T — Iy, is defined by hp,j(x) = 1/(m 4+ ). Denote by H the set of all inverse
mappings.

The trajectory of the real x is the sequence (z,V (z), V2(z),...,V¥(z),...).
It reaches 0 if and only if z is rational. For a rational = u/v, the first index k
for which V*(z) = 0 is called the depth of z. This is the number of iterations of
the Euclid Algorithm on the pair (u,v), denoted previously by P(u,v). It will
be also denoted by P(u/v). The sequence of the digits is defined as

(mq(x),ma(z),...,mg(x),...) where m(x):= {iJ . mpyr (z) = m(VF(2)),

and z admits a continued fraction expansion (CFE) of the form

T ) = (o1, mas. g ]

my 4+ —

In any case, a truncation of the continued fraction expansion at depth k& < P(x)

produces two continued fraction expansions: the beginning part [mq, ma, ..., my]
and the ending part [mg41, Mit+2,. -« s Mgtt, - - -]
The beginning part defines the linear fractional transformation,
. Dk—1Y + Dk
=h oh o...o0h with =
Gk = Ny © By (] 9r(y) Gy T O
together with the k—th approximant of z, namely the rational px /qx = g (0). The
ending part defines the real xy, := V¥(x) = [mgi1, mir2,...] via the equality
Op+1(z .
x = gr(xk), or T = 4 with  Ok(z) := |qr—12 — Pr—1] -
Ok ()

Both the continuant ¢ and the distance 0y are expressed with the derivative gy,

a; % = lgi (0)], 0k = lgi(an)] - (2)
In the rational case, for * = w/v, with coprime integers (u,v), the equality
0r(u/v) = v /v holds, and involves the sequence v, of remainders defined by the
execution of the Euclid algorithm on the pair (u,v).

4.2 Expressions of Randomness Measures for the Kronecker
Sequence

The three distances theorem was conjectured by Steinhaus proved by Surdnyi
[20], S6s [19] and Swierczkowski [21]. Its precise statement is as follows:



Theorem A. [Three distances theorem| Let o be a real of the unit interval.

Consider an integer T < v if « is a rational of the form u/v relative to a pair
(u,v) of coprime integers. Then, the truncated Kronecker sequence St(a) :=
{{ka}; ke€]0..T — 1]} has the three distance property: there are at most three
possible values for the distance between geometrically consecutive points.

(1) Consider the two sequences (qx) and (0y) associated to the real o together with
the sequence (my,) of the quotients, and write the integer T > 0 under the form
T=m- q+qx—1+7r with 1 <m < mgy1 and 0 < r < g.

The three possible distances are Oy1, O —mbgr1 or O — (m—1)0k+1. Moreover,
there are T — qx such distances equal to Ox41, r distances equal to 0y — mBx41

and gy, — r distances equal to O — (m — 1)011.
(it) There are only two distances if and only if the integer T is associated to a
“remainder” r = 0. They are Ox+1 and O — (m — 1)0k41.

Then, the truncated Kronecker sequence Sy («) is a special sequence, where the
main “distances” [@,ﬁ-t] can be computed in an explicit way as a function of
the three main parameters my, qx, 0. This is clear for the distances §; which
intervene in the Arnold measure (the precise expression can be found in [7]), but
this is also true for the distances v, and V;T which intervene in the discrepancy
at least when the pair (T, «) leads to the two distance situation (the precise
expression is in [18]). This is why we focus here in the two distances situation.

Theorem B. Let « be a real of the interval . Consider an integer T < v if
a is a rational of the form u/v with coprime u,v. Consider the two sequences
(qr) and (6k) associated to the real o together with the sequence (my) of the
quotients, and a two distance integer T € D(«) of the form T = m - qi + qx—1
with 1 <m < mygy1. The Arnold measure Ap(a) of the sequence S(a) equals

Ar(a) = (mge+qe—1) [((m — Dar + qe—1)0r41 + @ (O — (m — 1)0k41)?] . (3)
The discrepancies Ap(a), Dr(a) of the sequence S(a) satisfy

AT(Oz) =T- DT(Oz) =1+ (mqk + Q-1 — 1)(9k — m9k+1),

Ap(a) ~ 1+ (mgk + qr—1)(0x — mBg11) . (4)

4.3 Various Types of Monomials

The expressions (3,4) of the discrepancy and Arnold measure are written as a
sum of monomials of the form

Ri :=m§  qi_1qh050%, with a, b, ¢, d and e € [0..3].
We are interested in two particular cases:

(i) For Theorem 3, one has e = a = d = 0. The cost is said of type (T3).
(i) For Theorems 1 and 2, the costs are homogeneous, and the equalities hold
a+b=c+d=1 [Discrepancy], a+b=c+d=2 [Arnold measure] .

We then let f := a +b = ¢+ d, and the new parameters are a,d,e, f. The
monomial is said of type (T1/2).



4.4 Various Strategies for the Analyses

Our general strategy depends on the probabilistic setting.
Real case. We study directly the mean value of the cost Ry, equal to the integral

]E[Rk] = /IRk(x)dx .

Rational case. When the index k depends on the depth P(u,v) via an admissible
function F', this random variable only depends on u/v, and we denote it by
R p~ or simply by R. We here perform an indirect study, typical in Analytic
Combinatorics, and we introduce the Dirichlet series

Sr(s) := Z R(U;Sv)zz%, with a, = Z R(u,n).

v
(u,v)eN n>1 (u,n)eN

Then, the expectation Ex[R<ps] involves partial sums of coefficients a,,

&(N)

En[R<ps] = Wy

with ®(N):= > an,,  $o(N) = [2y].
n<N
We then transfer analytic properties of the Dirichlet series into asymptotic prop-

erties of the coefficients.

4.5 Generating Operators

We obtain alternative expressions of the integral E[Rj] or the Dirichlet series
Skr(s) as a function of convenient transfer operators, first introduced by Ruelle
[17]. The (plain) transfer operator H of the Euclidean dynamical system involves
the set H of the inverse mappings of the mapping V', under the form

7)) = 0 W@ fohte) = 3 ot -f( ! ) )

2s
m-+x
heH m>1 + ) m+z

Due to the expressions given in (2), it can be used to generate continuants gy, v,
distances 6y, or digits my41. However, for generating products which involve all
these variables together, as it is the case in the monomials Ry, it is necessary to
deal with the following three extensions described in Figure 1.

H ) [Fl(z,y) = Xpen B (@)° - F(h(2),y),
Heo [F](@,9) = Xeqy W @) W (0)] - F(h(2), y),
H o [Fl(@,y) = Xpep W @) IR ()] - F(h(2), h(y)) -

Fig. 1. The three extensions of the transfer operator



Then, using these various extensions, Figure 2 defines the transfer operator
R which is used in each theorem: Theorems 1 and 2 (T1/2), or Theorem 3
(T3).

(T3): Hl(cs+c/2,—b/2)

. a a—jyyk
(T1/2): H<s+<d—a>/2,~,—e/2>°<z<‘>(—1) ]H<s+<f—j>/2,—<f—j>/2>->

i=o \/

Fig. 2. Definition of the transfer operator RY used in the study of the monomial
Ry = m2+1q§§_1q2929§§+1. In the (T1/2) case, one lets: f = a+ b= c+d. In the (T3)
case, one has a =d=e = 0.

Finally, the following proposition holds:

Proposition 1. The study of the cost Ry := mi+1q,‘j_lq29,§9g+l involves the
transfer operator described in Figure 2, together with extensions of transfer op-
erators described in Figure 1.

In the real case E[Ry] = [; R [1)(u, 0)du

In the rational case Sg(s) = Z H?S_.l;(p)_l o RIF®I[1)(u,0) .
p>1

4.6 Main Principles for Dynamical Analysis

We then proceed according to the general dynamical analysis methodology, de-
scribed for instance in [27]. Our method depends on the probabilistic setting.

In the real case, spectral properties of the transfer operator (on the space C*(Z)
lead to asymptotic estimates for the mean value E[Rg] in terms of dominant
eigenvalues and eigenfunctions of transfer operator.

In the rational case, with the alternative forms of the Dirichlet series Sg(s)
given in Proposition 1, we study the precise behaviour of Sr(s), when s belongs
to a vertical strip near s = 1 (in terms of analyticity and polynomial growth
with respect to $s), in the same vein as in [12]. With the Perron formula of
order two [24] applied to series Sgr(s), on a vertical line Rs = D > 0 inside the
domain of convergence,

1 D+ico U25+1
v(U) = §]¢(p) = 5 /D_m SR(S)m ds,

we then obtain estimates on ¥(U) that we transfer into estimates on ®(p), as in
[3] and [6]. We then obtain the estimates of Theorems 1, 2, 3.



Conclusions and Open Problems. To the best of our knowledge, this is the
first study which adopts a probabilistic point of view on randomness measures for
the Kronecker sequence. This study may be extended in three main directions:

(a) The general case where there are three distances, at least in the case of the
Arnold sequence. The computations are heavier, but the study is of the same
vein as the present study.

(b) Theorem 2 proves that the randomness measures are not good for a general
two—distance integer, and the reason is quite simple: this is due to the fact
that the quotient my41 may be large, and it is well-known that the mean value
E[mg+1] is infinite in the real case and of logarithmic order in the rational case
(see [27] for the rational case). Then, it would be of great interest to restrict
this probabilistic study to “inputs” « for which the sequence of quotients my
which appear in the continued fraction expansion satisfies one of the following
properties :

(b1) it is bounded — (b2) it admits bounded averages.

Previous works of the authors deal with these “constrained” probabilistic models,
both in the real case and in the rational case (see [8],[9], and [26]), and use the
dynamical analysis methodology. It seems possible to extend these works in order
to obtain, in this “restricted” framework, an analog of Theorem 2 which would
exhibit finite mean values.

(¢) In view of the results of Schmidt and Behnke, and in the study of the real
case and a general two—distance integer, it would be interesting to determine if
the mean values of Ar and Ap are of order O(logT).
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