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Inverse scattering at fixed energy for massive charged Dirac fields

in de Sitter-Reissner-Nordström black holes

Damien Gobin∗

December 1, 2014

Abstract

In this paper, we consider massive charged Dirac fields propagating in the exterior region of de
Sitter-Reissner-Nordström black holes. We show that the parameters of such black holes are uniquely
determined by the partial knowledge of the corresponding scattering operator S(λ) at a fixed energy
λ. More precisely, we consider the partial wave scattering operators S(λ, n) (here λ ∈ R is the
energy and n ∈ N

⋆ denotes the angular momentum) defined as the restrictions of the full scattering
operator on a well chosen basis of spin-weighted spherical harmonics. We prove that the knowledge
of the scattering operators S(λ, n), for all n ∈ L, where L is a subset of N⋆ that satisfies the Müntz
condition

∑
n∈L

1

n
= +∞, allows to recover the mass, the charge and the cosmological constant of a

dS-RN black hole. The main tool consists in the complexification of the angular momentum n and in
studying the analytic properties of the “unphysical” corresponding data in the complex variable z.

Keywords. Inverse Scattering, Black Holes, Dirac Equation.
2010 Mathematics Subject Classification. Primaries 81U40, 35P25; Secondary 58J50.

1 Introduction and statement of the main result

General Relativity was introduced by Einstein in 1915 and is one of the most important and beautiful
theory of the twentieth century. This theory predicts the existence of black holes which are the objects of
main interest of this paper. Although they are complicated objects to study from an astrophysical point
of view, they are in fact quite simple to describe in theory. Indeed they only depend on a few physical
parameters (see for instance [26] and [33] for spherically symmetric black holes and [46] for rotating
black holes): their mass, their electric charge, their angular momentum and possibly the cosmological
constant of the universe. Inverse and direct scattering theory in black hole spacetimes are subjects
of great interest. Direct scattering for Schwarzschild (static, uncharged and spherically symmetric),
(de Sitter)-Reissner-Nordström (static, charged and spherically symmetric) and Kerr (uncharged and
rotating) black holes was studied for instance by Bachelot, Dimock, Kay, Nicolas, Jin, Melnik and Häfner
in [2, 3, 18, 19, 40, 30, 35, 36, 22, 24]. Among other reasons, these studies were motivated by the
discovery unexpected phenomena such as the Hawking effect and the superradiance phenomenon. We
refer for instance to Bachelot [4, 5], Häfner [23] and Melnyk [37] for an application of scattering results in
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terms of the Hawking effect. Concerning the inverse scattering in (de Sitter)-Reissner-Nordström black
holes, this problem has been adressed in the serie of papers by Daudé and Nicoleau [13, 14, 15].

This work is a continuation of the papers [13, 14, 15] and deals with de Sitter-Reissner-Nordström
black holes. These are spherically symmetric and charged solutions of the Einstein-Maxwell equations
that are completely characterized by three parameters: the mass M > 0 and the electric charge Q ∈ R of
the black hole and the cosmological constant Λ > 0 of the universe. The object of this paper is to study
an inverse scattering problem in a dS-RN black hole whose unknowns are its parameters. In fact, we
shall see in the course of the proof that we are able to recover more than a few parameters (see below).

A peculiarity of scattering theory in black hole spacetimes is the fact that we have to deal with two
asymptotic regions. Indeed, we adopt the point of view of an observer located far away from the event and
cosmological horizons and static with respect to them. It is well known that such an observer perceives
both horizons as asymptotic regions. Hence we shall understand in the following de Sitter-Reissner-
Nordström black holes as spherically symmetric spacetimes with two asymptotic ends (the cosmological
and the event horizons). It is worth mentioning that the geometry at both horizons is of asymptotically
hyperbolic type. The question we adress is the following: is there any way to characterize uniquely
the parameters of the black hole by an inverse scattering experiment from the point of view of a static
observer?

To reformulate our main problem we have to introduce the wave operators associated to massive
charged Dirac fields evolving in the exterior region of the black hole. We denote by W±

(−∞) the wave

operators corresponding to the part of the massive and charged Dirac fields which scatters toward the
event horizon and by W±

(+∞) the wave operators corresponding the part of Dirac fields which scatters

toward the cosmological horizon. Thanks to [9, 37] we know that the global wave operators defined by

W± =W±
(−∞) ⊕W±

(+∞), (1.1)

exist and are asymptotically complete on the Hilbert space of scattering data. This allows to define a
global scattering operator S by the usual formula

S = (W+)⋆W−.

The scattering operator is the main object of study of this paper. It contains all the scattering
information as viewed by observers living far from the horizons of a dS-RN black hole. Thanks to
this definition, we can reformulate our main question: is the knowledge of S a sufficient information to
uniquely characterize the parameters of a dS-RN black hole ?

The aim of this paper is to show that the parameters M , Q and Λ are uniquely characterized from
the knowledge of the scattering operator at a fixed energy and more precisely, from the knowledge of the
reflection operators at a fixed energy (see below). In fact, we mention that we are able to recover more
than only the parameters of the black hole since we show the uniqueness (up to a certain diffeomorphism)
of some scalar functions appearing in the Dirac equation. Note at last that, contrary to [14], we don’t
need the knowledge of the scattering operator on an interval of energy but only at a fixed energy to recover
the metric of the black hole. Our result is an adaptation to the case of massive and charged Dirac fields
of a similar result given in [13] for massless and uncharged Dirac fields. In particular, the (physically
relevant) addition of a mass term makes more complicated both the definition of the scattering matrix
and the technical details of the proof of our main Theorem.
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1.1 de Sitter-Reissner-Nordström black holes

In Schwarzschild coordinates, the exterior region of a dS-RN black hole is described by the four-dimensional
manifold

M = Rt×]r−, r+[r×S
2
ω,

equipped with the Lorentzian metric

g = gµνdx
µdxν = F (r)dt2 − F (r)−1dr2 − r2dω2, (1.2)

where

F (r) = 1− 2M

r
+
Q2

r2
− Λr2

3
, (1.3)

and dω2 = dθ2 + sin(θ)2dϕ2 is the euclidean metric on the sphere S2. De Sitter-Reissner-Nordström
(dS-RN) black holes are spherically symmetric electrically charged solutions of the Einstein equations

Gµν = 8πTµν ,

where Gµν is the Einstein tensor, Tµν is the energy momentum tensor,

Tµν =
1

4π
(FµρF

ρ
ν − 1

4
gµνFρσF

ρσ),

where Fµν is the electromagnetic 2-form, solution of Maxwell’s equations ∇µFνρ = 0, ∇[µFνρ] = 0 and

given here in terms of a global electromagnetic vector potential Fµν = ∇[µAν], Aνdx
ν = −Q

r dt. The
quantitiesM and Q are interpreted as the mass and the charge of the Reissner-Nordström black hole and
Λ > 0 is the cosmological constant of the universe.

Let us look at the singularities of the metric g. Firstly, F is singular at the point {r = 0}. This
is a curvature singularity meaning that some contraction of the Riemann tensor explodes when r → 0.
Secondly, the spheres whose radii are the roots of F are also singularities for the metric g (the coefficient
of the metric g involving F−1 blows up in this case). We assume here that the function F (r) has three
simple positive roots 0 < rc < r− < r+ and a negative one rn < 0. This is always achieved if we suppose,
for instance, that Q2 < 9

8M
2 and that ΛM2 be small enough (see [31]). The hypersurface {r = rc} is

called the Cauchy horizon whereas the hypersurfaces {r = r−} and {r = r+} are, respectively, the event
and cosmological horizons. We shall only consider the exterior region of the black hole, i.e. the region
{r− < r < r+} lying between the event and cosmological horizons (remark that the function F is positive
here). Actually, the event and cosmological horizons which appear as singularities of the metric (1.2)
are coordinates singularities and are due to our bad choice of coordinates system. Using appropriate
coordinates, these horizons can be understood as regular null hypersurfaces that can be crossed one way
but would require speeds greater than that of light to be crossed the other way.

As mentionned previously, the point of view implicitely adopted throughout this work is that of static
observers located far from the event and cosmological horizons of the black hole. We think typically of a
telescope on earth aiming at the black hole or at the cosmological horizon. We understand these observers
as living on world lines {r = r0} with r− ≪ r0 ≪ r+. The variable t of the Schwarzschild coordinates
corresponds to their proper time. From the point of view of our observers, it is important to understand
that the event and cosmological horizons are the natural boundaries of the observable world. This can
be more easily understood if we notice that the horizons are in fact never reached in a finite time t by
incoming and outgoing radial null geodesics, the trajectories followed by classical light-rays radially at
the black hole and either at the cosmological horizon. Both horizons are thus perceived as asymptotic
regions by our static observers.
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Instead of working with the radial variable r, we describe the exterior region of the black hole by
using the Regge-Wheeler (RW) radial variable. The RW variable x is defined implicitely by

dx

dr
= F−1(r),

or explicitely by

x =
1

2κn
ln(r − rn) +

1

2κc
ln(r − rc) +

1

2κ−
ln(r − r−) +

1

2κ+
ln(r − r+) + C, (1.4)

where C is any constant of integration and the quantities κj , j = n, c,−,+ are defined by

κn =
1

2
F ′(rn), κc =

1

2
F ′(rc), κ− =

1

2
F ′(r−), κ+ =

1

2
F ′(r+). (1.5)

The constants κ− > 0 and κ+ < 0 are called the surface gravities of the event and cosmological horizons,
respectively. Note from (1.4) that the event and cosmological horizons {r = r±} are pushed away to
the infinities {x = ±∞} using the RW variable x. Moreover, it can be shown easily that, in this new
coordinates system, the incoming and outgoing null radial geodesics become the straight lines {x = ±t}
in the t − x plane. Hence, working with the RW radial variable achieves in practice the fact that the
event and cosmological horizons are asymptotic regions for our observers.

Finally, we note the presence of a constant of integration C in the definition of x. The importance of
such a constant is explained in Section 4.1.5, Proposition 4.12 of [12]. In this Proposition, it is shown that
there is a dependence of the scattering matrix under the choice of the constant of integration C. Since
the exterior region of a dS-RN black hole can be described uniquely by any choice of the Regge-Wheeler
variable x, we could identify all the possible forms of the reduced scattering matrices in the statement of
our main result. However, for the sake of simplicity, we take C = 0 in our study (the case of C 6= 0 could
be treated in the same way using the explicit dependence on C given in [12] for the scattering matrix).

1.2 The scattering matrix and statement of the result

As in [14], we consider massive charged Dirac fields propagating in the exterior region of a dS-RN black
hole. Scattering theory for these Dirac fields has been the object of the papers [9, 37]. We shall use the
form of the Dirac equation obtained therein as the starting point of our study. We refer to Section 2 for
the details.

The considered massive charged Dirac fields are represented by 4-components spinors ψ belonging to
the Hilbert space

L2(R× S
2;C4),

which satisfy the evolution equation

i∂tψ = (Γ1Dx + a(x)DS2 + b(x)Γ0 + c(x))ψ. (1.6)

The symbols Dx stands for −i∂x whereas DS2 denotes the Dirac operator on S2 which in spherical
coordinates, takes the form,

DS2 = −iΓ2

(

∂θ +
cot(θ)

2

)

− i

sin(θ)
Γ3∂ϕ. (1.7)

The potentials a, b and c are scalar smooth functions given in terms of the metric (1.2) by

a(x) =

√

F (r)

r
, b(x) = m

√

F (r), c(x) =
qQ

r
, (1.8)
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where m and q respectively denotes the mass and the electric charge of the Dirac fields. Finally, the
matrices Γ1, Γ2, Γ3 and Γ0 appearing in (1.6) and (1.7) are usual 4 × 4 Dirac matrices that satisfy
anticommutation relations (see (2.24)). The equation (1.6) is spherically symmetric and in consequence
can be separated into ODEs. The stationary scattering will be shown to be governed by a countable
family of one-dimensional stationary Dirac equations that take the following form:

(

Γ1Dx −
(

l+
1

2

)

a(x)Γ2 + b(x)Γ0 + c(x)

)

ψ(x, λ, l) = λψ(x, λ, l), (1.9)

and which are restrictions of the full stationary equation to a well chosen basis of spin-weighted spherical
harmonics (indexed here by l = 1

2 ,
3
2 , ...) invariant for the full equation. Here λ is the energy of the

considered waves and n := l + 1
2 ∈ N

⋆ is called the angular momentum.

Concerning the potentials, we know from [14] that a(x), b(x), a′(x), b′(x) = O(eκ±x), c(x) = O(1) and
c′(x) = O(e2κ±x) as x → ±∞ (see Lemma 2.1 for precise asymptotics). We make some remarks about
these asymptotics. On one hand, although the Dirac fields are massive, they propagate asymptotically as
in the massless case since b(x) → 0 as x→ ±∞. This is due to the effects of the intense gravitation near
the event and cosmological horizons of the black hole. On the other hand, it remains in the asymptotics
an influence of the interaction between the electric charges q and Q since the potential c(x) satisfies
c(x) → c± when x→ ±∞. Actually we shall see later that we can come down to the usual case of a one
dimensional Dirac equation with a L1 potential using a unitary transformation.

As we have already said in the introduction, the existence and the asymptotic completeness of the
global wave operators associated to (1.9) defined for all angular momentum n ∈ N∗ by

W±
n =W±

n,(−∞) ⊕W±
n,(+∞),

proved in [9, 37] allows to define a scattering operator S(n) on each spin-weighted spherical harmonics
by the usual formula

S(n) = (W+
n )⋆W−

n .

We refer to Section 2 for the details of the definition and construction of these operators. Moreover this
operator can be decomposed as

S(n) =

(
TL(n) R(n)
L(n) TR(n)

)

,

where the first two terms TR(n) and TL(n) are understood as transmission operators whereas the last
two terms L(n) and R(n) are understood as reflection operators (see Section 2 for more details).

In Section 3.1, using a conjugation by a unitary Fourier transform, we obtain a stationary representa-
tion of the scattering operator S(n) as a direct integral of scattering matrices S(λ, n). Since we separated
the full Dirac equation into a countable family of one-dimensional stationary Dirac equations which are
the restrictions of the full stationary equation to a well chosen basis of spin-weighted spherical harmonics,
we can define the global scattering matrix by S(λ) = ⊕n∈N⋆S(λ, n), where

S(λ, n) =

(
TL(λ, n) R(λ, n)
L(λ, n) TR(λ, n)

)

.

Once again, we refer to Section 2 for the details of this decomposition. The matrices S(λ, n) are called
the partial scattering matrices. What is important to keep in mind is that the knowledge of the scattering
matrix S(λ) is equivalent to the knowledge of the partial scattering matrices S(λ, n) for all n ∈ N⋆.
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Roughly speaking the main result of this paper states that the partial knowledge of the scattering
operator S(λ) at a fixed energy λ ∈ R uniquely determines the mass M and the charge Q of the black
hole as well as the cosmological constant Λ of the universe. More precisely, it suffices to know one
of the reflection operators of the partial scattering operators L(λ, n), R(λ, n) at a fixed energy λ on a
subset L ⊂ N

⋆ that satisfies the Müntz condition
∑

n∈L
1
n = ∞ in order to prove the uniqueness of the

parameters M , Q and Λ.
Precisely, the main result of this paper is the following:

Theorem 1.1. Let (M,Q,Λ) and (M̃, Q̃, Λ̃) be the parameters of two dS-RN black holes. We denote by
S(λ, n) and S̃(λ, n) the corresponding partial wave scattering operators at a fixed energy λ ∈ R. Consider
a subset L of N⋆ that satisfies the Müntz condition

∑

n∈L
1
n = ∞ and assume that at a fixed energy λ ∈ R

one of the following assertions holds,

(i) L(λ, n) = L̃(λ, n), ∀n ∈ L,
(ii) R(λ, n) = R̃(λ, n), ∀n ∈ L.

Then, there exists a diffeomorphism ψ : R → R such that

c(ψ(x)) − λ

a(ψ(x))
=
c̃(x) − λ

ã(x)

b(ψ(x))

a(ψ(x))
=
b̃(x)

ã(x)
.

As a consequence we get
M = M̃, Q = Q̃, Λ = Λ̃.

Remark 1.2. 1. The question of determining the parameters M , Q and Λ from the transmission
coefficient at a fixed energy is still an open problem.

2. Actually, it is enough to prove our uniqueness result to assume that the reflection coefficients are
known up to an error O(e−2nB) for some B ∈]0,min(A, Ã)[. Indeed, we can use the idea of [10]
which proves a local inverse scattering result at a fixed energy in spherically symmetric asymptoti-
cally hyperbolic manifolds.

3. Moreover, it is also sufficient in order to prove our uniqueness result to assume that the reflection
coefficients are known up to a constant unitary matrix. Indeed in the proof of the uniqueness result
under the knowledge of the reflection coefficient R (see Section 6.3), we come down to this case and
we conclude under a little technical modification.

4. We emphasize that in the proof of this Theorem, we first obtain, without using the explicit form of
the potentials, the equalities

c− λ

a
(h(X)) =

c̃− λ

ã
(h̃(X)),

b

a
(h(X)) =

b̃

ã
(h̃(X))

(see the following Section for the definitions of the Liouville variable X and of the diffeomorphisms
h and h̃). Then, thanks to the explicit definition of the potentials, we obtain the equality of the
parameters. We also observe that, if we suppose the equality of the partial scattering matrices
at two fixed energies (possibly for different Müntz sets), we can conclude to the equality of each
potentials a, b, c separatly up to a certain diffeomorphism.

5. Contrary to [13], the case of a zero energy is not an obstruction for our inverse problem if we
suppose that the electric charge q of the Dirac fields is non vanishing.

6. Contrary to the massless and uncharged case, we determine exactly the charge and not the square
of the charge. This is due to the presence of the potential of electric type c.
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1.3 Overview of the proof

There are three steps which constitute the proof of Theorem 1.1. The aim of this Subsection is to describe
them.

The first step of the proof consists in getting rid of the long-range potential c in the expression of the
one-dimensional stationary Dirac operators (1.7) in order to obtain a new Dirac operator with short-range
potential. This new operator satisfies the usual framework of inverse scattering theory for one dimensional
Dirac operators studied in [1]. To do this we conjugate the one-dimensional selfadjoint operator

H = Γ1Dx − na(x)Γ2 + b(x)Γ0 + c(x),

by a well chosen unitary operator U defined by

U = e−iΓ1C−(x), C−(x) =

∫ x

−∞

(c(s)− c−) ds+ c−x,

so that,
A = U⋆HU,

can then be written as,
A = Γ1Dx +W (x),

where
W (x) = eiΓ

1C−(x)(n a(x)Γ2 + b(x)Γ0)e−iΓ1C−(x).

Thanks to the asymptotics of the potentials, we see that W is exponentially decreasing near the horizons
and thus belong to L1(R). Thus, this new operator A lies into the framework of the paper [1] and we can
define in a straightforward way the scattering data. Following [1], the scattering matrix Ŝ(λ, n) is defined
in terms of stationary solutions with prescribed asymptotics at infinity, called Jost functions. These are
4× 4 matrix-valued functions F̂L and F̂R solutions of

Aψ(x, λ, n) = λψ(x, λ, n), (1.10)

having the asymptotics

F̂L(x, λ, n) = eiΓ
1λx(I4 + o(1)), x→ +∞, (1.11)

F̂R(x, λ, n) = eiΓ
1λx(I4 + o(1)), x→ −∞, (1.12)

where I4 is the identity matrix. Both Jost solutions form fundamental matrices of (1.10). In consequence,
there exists a 4 × 4 matrix ÂL(λ, n) depending only on the energy and the angular momentum n such
that the Jost functions are connected by

F̂L(x, λ, n) = F̂R(x, λ, n)ÂL(λ, n). (1.13)

Similarly, we define the 4× 4 matrix ÂR(λ, n) by

F̂L(x, λ, n)ÂR(λ, n) = F̂R(x, λ, n). (1.14)

The coefficients of the matrices ÂL and ÂR contain all the scattering information of the equation (1.10).
In particular, using the notations

ÂL(λ, n) =

(
ÂL1(λ, n) ÂL2(λ, n)

ÂL3(λ, n) ÂL4(λ, n)

)

, ÂR(λ, n) =

(
ÂR1(λ, n) ÂR2(λ, n)

ÂR3(λ, n) ÂR4(λ, n)

)

, (1.15)
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where ÂLj and ÂRj are 2× 2 matrices, the partial wave scattering matrix Ŝ(λ, n) is then defined by

Ŝ(λ, n) =

(
T̂L(λ, n) R̂(λ, n)

L̂(λ, n) T̂R(λ, n)

)

, (1.16)

where (see [1], eqs. (3.6)-(3.7))

T̂L(λ, n) = ÂL1(λ, n)
−1, T̂R(λ, n) = ÂR4(λ, n)

−1, (1.17)

L̂(λ, n) = ÂL3(λ, n)ÂL1(λ, n)
−1 = −ÂR4(λ, n)

−1ÂR3(λ, n) (1.18)

and
R̂(λ, n) = −ÂL1(λ, n)

−1ÂL2(λ, n) = ÂR2(λ, n)ÂR4(λ, n)
−1. (1.19)

Remark 1.3. We emphasize that the Dirac fields studied in this paper are massive and electrically
charged. This entails several technical complications with respect to the case of massless Dirac fields
studied in [13]. First, the scattering data ALj(λ, n) in the massless and uncharged case turn out to be
complex numbers and not 2× 2 matrices. Similarly, the Jost functions are 2× 2 matrix-valued functions
and not 4× 4 matrix-valued functions. This is due to the fact that the additional mass term prevents us
from using 2-components spinors in the description of the Dirac fields. However, if we take m = q = 0 in
our study, we can decouple the 4 components of our Dirac spinors into two 2-components Dirac spinors
that satisfy exactly the massless Dirac Equation (1.7) of [13]. Hence we shall recover the results of [13]
as a particular case of our result.

At the end of Section 3, we obtain systems of second order differential equations (in the variable x) satisfied
by the components of the Jost matrices related to the unconjugate operator H . These systems of ODEs
will be important in the next analysis in order to obtain some refined estimates on the components of the
Jost functions. To obtain these systems of ODEs, we use the equations satisfied by the components of
the Jost matrices for the conjugate operator and the link between these components and the components
of the Jost matrices for the operator H .

The second step of the proof is the most important one. Following [13], the main idea of this paper
is to complexify the angular momentum n = l+ 1

2 and study the analytic properties of the “unphysical”
corresponding scattering data with respect to the variable z = n ∈ C. The general idea to consider
complex angular momentum originates in a paper by Regge [44] as a tool in the analysis of the scattering
matrix of Schrödinger operators in R3 with spherically symmetric potentials (see also [39, 7] for a detailed
account of this approach). To understand the analytic properties in the complex plane of the scattering
data, we need good asymptotics of the Jost functions when the complex angular momentum z becomes
large.

Remark 1.4. Actually we don’t need the asymptotics for all large z in the complex plane. Indeed it is
sufficient in the proof of Theorem 1.1 (see Section 6) to have good asymptotics only on the real axis.
Precisely, we need to know that the components of the Jost functions are bounded on iR and to show that
these components are of exponential type. However it’s not so much harder to obtain the asymptotics on
C. We hope these asymptotics could be useful in a future work.

Remark 1.5. The presence of the mass term has a fondamental consequence in the research of the
asymptotics of the components of the Jost matrices. Precisely, it is shown in the massless case (see
[13]) that the components of the Jost matrices have power series expansions in the variable z and satisfy
uncoupled ODEs. From these ODEs, it is straightforward to see that the components of the Jost matrices
are perturbations of the modified Bessel functions from which we can deduce their asymptotics easily. In
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the massive charged case, the components of the Jost matrices satisfy systems of ODEs that makes the
analysis of [13] much more involved. Nevertheless, using a perturbative argument and good estimates on
the Green kernels, we are able to show that they are still perturbations of modified Bessel functions from
which we can obtain their asymptotics.
The presence of the mass has also consequences on the symmetries of the scattering data. Indeed, as it
is shown in [13] (see Lemmas 3.1 and 3.3), the components of the Faddeev matrices (see Section 3 for
the definition) are odd or even in z and there is a relation of conjugation between their first and fourth
components, and their second and third components. The same properties are also true for the coefficients
of the matrix of scattering data. These symmetries are no longer true in the case of massive Dirac fields.
As a consequence, we shall often have to use different strategies to prove the corresponding results of [13].
However, since for large z, the most important term of the potential is za(x), the mass should have no
influence in the regime z large. We expect then to find the symmetries given in [13] in the asymptotics
of the scattering data as |z| → ∞.

As mentionned in the previous remark, the first step to obtain the asymptotics consists in showing that
the components of the Jost functions are perturbations of modified Bessel functions. To do this, it is
convenient to introduce a new radial variable X by the Liouville transformation

X = g(x) =

∫ x

−∞

a(s) ds. (1.20)

Note that g is a diffeomorphism from R to ]0, A[ where A =
∫

R
a(s) ds. Let us denote by h(X) the

inverse transformation. The reason why we introduce such a variable lies in the observation that, thanks
to the coupled differential equations obtained in Section 3 for the Jost functions, we can show that the
components FLi,j(h(X), λ, z) and FRi,j(h(X), λ, z) of the Jost matrices satisfy then systems of second
order differential equations of the form

f ′′(X) + q(X)f(X) = z2f(X) + r(X), X ∈]0, A[. (1.21)

Here, the potential q(X) have quadratic singularities at the boundaries 0 and A and the term r(X) is
the coupling term between the components of the Jost functions and can be shown to be bounded at
the boundaries. We note that the angular momentum (or coupling constant) z = l + 1

2 has now become
the spectral parameter of the uncoupled part of this new equation. We remark that this equation is
an approximation of a modified Bessel equation. Using perturbation theory, we can then prove that the
components of the Jost functions are perturbations of well chosen modified Bessel functions. Finally, using
the well known (see [32]) asymptotics of the modified Bessel functions, we are able to prove estimates on
the components of Jost functions of the type |FL/R(X,λ, z)| ≤ Ce|Re(z)|X .

Remark 1.6. This last step is a consequence of a fundamental difference with the massless case. Indeed,
thanks to the symmetries, it is not so hard in [13] to prove that the components of Jost functions are less
than e|Re(z)|X (see Lemma 3.4). However, in our study there is no symmetry (due to the mass term) and
it is harder to obtain these estimates. To prove them, we use the Phragmén-Lindelöf ’s Theorem. Indeed,
it is quite easy (see Section 3) to prove that the components of Jost functions are less than e|z|X and we
can prove, using a generalized Duhamel’s formula and precise estimates of modified Bessel functions (see
Section 4.4) that the components of the Jost functions are bounded on iR.

As a consequence of the asymptotics, we show that these coefficients are in the class of analytic functions
called Nevanlinna’s class. Let us define the Nevanlinna class N(Π+) as the set of all analytic functions
f(z) on the right half plane Π+ = {z ∈ C : Re(z) > 0} that satisfy

sup
0<r<1

∫ π

−π

ln+
∣
∣
∣
∣
f

(
1− reiϕ

1 + reiϕ

)∣
∣
∣
∣
dϕ <∞,
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where ln+(x) = ln(x) if ln(x) ≥ 0 and ln+(x) = 0 if ln(x) < 0. The reason why we use this kind of
functions is that functions in this class are uniquely determined by their values on any subset L ⊂ N⋆

that satisfies the Müntz condition
∑

n∈L
1
n = ∞ (see for instance [41] and [45]). Thus, with a little more

work, we are able to conclude from this that the equality between the reflection coefficients not only
holds for the integers n ∈ N

∗, but for almost all z in the complex plane (except the poles of the reflection
coefficients). We enlarge in this way considerably the information at our disposal to determine the metric
of the black hole.

The last step to conclude the proof of the main Theorem 1.1 is an idea borrowed from [20]. Consider
two black holes with parameters M , Q, Λ and M̃ , Q̃, Λ̃, respectively. We add a “∼” to all quantities
corresponding to the black hole with parameters M̃ , Q̃ and Λ̃. Using the asymptotics of the components
of the matrix ÂL(λ, z), we first prove that

A =

∫

R

a(s) ds =

∫

R

ã(s) ds = Ã.

We thus define a matrix-valued function P (X,λ, z) which makes the link between the Jost function for
the first black hole and the Jost function for the second one:

P (X,λ, z)F̃R(h̃(X), λ, z) = FR(h(X), λ, z).

Using the previously obtained asymptotics and the equality between the reflection coefficients on C, we
show that this matrix is (up to a sign) the identity matrix.

Remark 1.7. In this step appears a last consequence of the presence of the mass term in our problem.
In the massless case, we can perform explicit calculations for the scattering data in the case z = 0 because
the one-dimensional Dirac operator is simply Γ1Dx. These explicit expressions for the scattering data
were used to prove that P is (up to a sign) the identity once we have shown that P is constant with respect
to the z variable. Because of the mass term, we cannot do explicit calculations in the massive charged
case and we shall thus need a different strategy to obtain it.

The Jost functions of the two black holes being so tightly linked, we conclude easily from this that

∀X ∈]0, A[, c− λ

a
(h(X)) =

c̃− λ

ã
(h̃(X)),

b

a
(h(X)) =

b̃

ã
(h̃(X)).

Finally, thanks to these equalities and the precise form of the potentials a, b and c, we conclude

M = M̃, Q = Q̃, Λ = Λ̃.

This paper is organized as follows. In Section 2 we recall the direct scattering results of [9, 37] useful
for the later analysis. In Section 3 we first show how our model can be transformed in order to fit the
framework of [1] and we find systems of second order diffential equations satisfied by the components of
the Jost functions in the variable x. In Section 4 we introduce the Liouville variableX to obtain perturbed
modified Bessel equations in this variable and we use estimates of the Green kernel of modified Bessel
functions and some estimates of the components of the Jost functions to calculate precise asymptotics of
the components of the Jost functions and of the matrix ÂL for large z in the complex plane. In Section 5
we use the analytic properties of the Jost functions and of the matrix of scattering data and a uniqueness
result for functions in the Nevanlinna class to extend the range of validity of our hypothesis to almost
the whole complex plane. Finally, in Section 6, we prove our main Theorem 1.1.
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2 Direct scattering problem

In this Section, we first recall the expression of the Dirac equation in dS-RN black holes as well as the
direct scattering theory obtained in [9, 37].

As explained in Section 1.1, we describe the exterior region of a dS-RN black hole using the Regge-
Wheeler variable x defined by (1.4). We thus work on the manifold B = Rt × Σ with Σ = Rx × S2

θ,ϕ,
equipped with the metric

g = F (r)(dt2 − dx2)− r2dω2,

where F is given by (1.3) and dω2 = dθ2 + sin2(θ)dϕ2 the Euclidean metric on S2.

2.1 Dirac equation and direct scattering results

Scattering theory for massive charged Dirac fields on the spacetime B has been the object of the papers
[9, 37]. We briefly recall here the main results of these papers. In particular, we use the form of the Dirac
equation obtained therein.

We first write the evolution equation satisfied by massive charged Dirac fields in B under the Hamil-
tonian form

i∂tψ = Hψ, (2.22)

where ψ is a 4-components spinor belonging to the Hilbert space

H = L2(R× S
2;C4),

and the Hamiltonian H is given by

H = Γ1Dx + a(x)DS2 + b(x)Γ0 + c(x). (2.23)

The symbols Dx stands for −i∂x whereas DS2 denotes the Dirac operators on S2 which, in spherical
coordinates, takes the form given in (1.7). The potentials a, b and c are scalar smooth functions given in
terms of the metric (1.2) by (1.8). Finally, the matrices Γ1, Γ2, Γ3 and Γ0 appearing in (2.23) and (1.7)
are usual 4× 4 Dirac matrices that satisfy the anticommutation relations

ΓiΓj + ΓjΓi = 2δijId, ∀i, j = 0, 1, 2, 3. (2.24)

We now use the spherical symmetry of the equation to simplify the expression of the Hamiltonian
H . We can diagonalize the Dirac operator on S2 into an infinite sum of matrix-valued multiplication
operators by decomposing it onto a basis of spin-weighted spherical harmonics (see [21]). Precisely there
is a family of spinors F l

k with the indices (l, k) running in the set I = {(l, k), l − 1
2 ∈ N, l − |k| ∈ N}

which forms a Hilbert basis of L2(S2;C4) with the following property. The Hilbert space H can then be
decomposed into the infinite direct sum

H = ⊕
(l,k)∈I

(L2(Rx;C
4)⊗ F l

k) = ⊕
(l,k)∈I

Hlk,

where Hlk = L2(Rx;C
4)⊗F l

k is identified with L2(R;C4) and more important, we obtain the orthogonal
decomposition for the Hamiltonian H

H = ⊕
(l,k)∈I

H lk,

with
H lk := H|Hlk

= Γ1Dx + al(x)Γ
2 + b(x)Γ0 + c(x), (2.25)
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and al(x) = −
(
l + 1

2

)
a(x). Note that the Dirac operator DS2 has been replaced in the expression of H lk

by −
(
l + 1

2

)
Γ2 thanks to the good properties of the spin-weighted spherical harmonics F l

k. The operator
H lk is a selfadjoint operator on Hlk with domain D(H lk) = H1(R;C4). Finally we use the following
representation for the Dirac matrices Γ1, Γ2 and Γ0 appearing in (2.25)

Γ1 =







1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1






, Γ2 =







0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0






, Γ0 =







0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0






. (2.26)

In what follows, for all n ∈ N∗, we shall write Hn instead of H lk, where n = l + 1
2 .

We now recall the direct scattering results obtained in [9, 37] for the Dirac Hamiltonians Hn, restric-
tions of H on each spin weighted spherical harmonics. Using essentially a Mourre theory (see [38]), it
was shown in [9, 37] that

σpp(Hn) = ∅, σsing(Hn) = ∅.
In other words, the spectrum ofHn is purely absolutely continuous. Thus, on each spin weighted spherical
harmonics, massive charged Dirac fields scatter toward the two asymptotic regions at late times and they
are expected to obey simpler equations there. This is one of the main information encoded in the notion
of wave operators that we introduce now.

First, we need to calculate the asymptotics of the potentials. According to (1.3) and (1.4), the
potentials a, b and c have the following asymptotics (see [12] equations (3.17) and (3.18)), as x→ ±∞.

Lemma 2.1. There exists constants a±, b±, c± and c′± such that as x→ ±∞,

a(x) = a±e
κ±x +O(e3κ±x), a′(x) = a±κ±e

κ±x +O(e3κ±x),

b(x) = b±e
κ±x +O(e3κ±x), b′(x) = b±κ±e

κ±x +O(e3κ±x),

c(x) = c± + c′±e
2κ±x +O(e4κ±x), c′(x) = 2c′±κ±e

2κ±x +O(e4κ±x),

where

c− =
qQ

r−
and c+ =

qQ

r+
.

Proof. For instance, we can give the proof for the potential a. We first give asymptotics for the RW
variable x when r → r±. From (1.4) we have,

x =
1

2κ±
ln(|r − r±|) + C± +O(|r − r±|), r → r±,

where
C± = ln

(

(r± − rn)
1

2κn (r± − rc)
1

2κc (r+ − r−)
1

2κ∓

)

.

Thus,

eκ±(x−C±) =
√
r − r±(1 +O(|r − r±|)), r → r±.

Finally,

a(x) =

√

F (r)

r
=

√∓2κ±
r±

√

|r − r±|+O(|r − r±|
3
2 ), r → r±.
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Hence the potentials a and b are short-range when x → ±∞ and c − c− and c − c+ are short-range
when x→ −∞ and x→ +∞, respectively. Thus, the comparison dynamic we choose at the event horizon
is the one generated by the Hamiltonian H− = Γ1Dx + c− while, at the cosmological horizon, we choose
the asymptotic dynamic generated by the Hamiltonian H+ = Γ1Dx+ c+. The Hamiltonians H− and H+

are selfadjoint operators on H and their spectra are exactly the real line, i.e σ(H−) = σ(H+) = R. The
asymptotic velocity operator associated to the asymptotic Hamiltonians H± is simply Γ1. Let us denote
the projections onto the positive and negative spectrum of the asymptotic velocity operator Γ1 by

P± = 1R±(Γ1).

As shown in [9], we can use these projections to separate the part of the Dirac fields that scatter toward
the event and cosmological horizons.

We are now in position to introduce the wave operators. At the event horizon, we define

W±
n,(−∞) = s− lim

t→±∞
eitHne−itH−P∓ (2.27)

and at the cosmological horizon, we define

W±
n,(+∞) = s− lim

t→±∞
eitHne−itH+P±. (2.28)

Finally, the global wave operators are given by

W±
n =W±

n,(−∞) +W±
n,(+∞). (2.29)

The main result of [9, 37] is

Theorem 2.2. The wave operators W±
n,(−∞), W

±
n,(+∞) and W

±
n exist on Hlk. Moreover, the global wave

operators W±
n are isometries on Hlk. In particular, W±

n are asymptotically complete, i.e. RanW±
n = Hlk.

Thanks to Theorem 2.2, we can define the scattering operator by

S(n) = (W+
n )⋆W−

n

which is a unitary operator on Hlk. As mentionned in Section 1.2, this operator can be decomposed as

S(n) =

(
TL(n) R(n)
L(n) TR(n)

)

.

where,
TL(n) = (W+

n,+∞)⋆W−
n,−∞, TR(n) = (W+

n,−∞)⋆W−
n,+∞

and
R(n) = (W+

n,+∞)⋆W−
n,+∞ and L(n) = (W+

n,−∞)⋆W−
n,−∞.

It follows from our definition of the wave operators (2.27) and (2.28) that the previous quantities can
be interpreted in terms of transmission and reflection operators between the event horizon of the black
hole {x = −∞} and the cosmological horizon {x = +∞}. For instance, TR(n) corresponds to the part
of a signal transmitted from {x = +∞} to {x = −∞} in a scattering process whereas the term TL(n)
corresponds to the part of a signal transmitted from {x = −∞} to {x = +∞}. Hence TR(n) stands for
“transmitted from the right” and TL(n) for “transmitted from the left”. Conversely, L(n) corresponds
to the part of a signal reflected from {x = −∞} to {x = −∞} in a scattering process whereas the term
R(n) corresponds to the part of a signal reflected from {x = +∞} to {x = +∞}.
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3 Simplification of the framework and differential equations for

the Jost functions

In this Section we first follow the idea of [14]. By a series of simplifications of our model, which finally
reduces to the framework studied in [1], we recall and explain the stationary representation of the scatter-
ing operator S(n) expressed in terms of the usual transmission and reflection coefficients (here matrices).
In a second time, using [1], we obtain second order differential equations satisfied by the Jost functions
of our original model.

3.1 First simplifications

In this Section we follow the work of [14] Section 4.2. We recall that the scattering operator S(n) is
defined by

S(n) = (W+
n )⋆W−

n ,

where the global wave operator W±
n are given by (2.27)-(2.29). We introduce the unitary transform U

on Hlk

U = e−iΓ1C−(x), C−(x) =

∫ x

−∞

(c(s)− c−) ds+ c−x,

and the selfadjoint operators on Hlk

A0 = Γ1Dx and An = U⋆HU = Γ1Dx +W (x, n). (3.30)

Let us denote by Ŝ(An, A0) the scattering operator associated to the operators An and A0, i.e.

Ŝ(An, A0) = (W+(An, A0))
⋆W−(An, A0),

where the wave operators are defined, as in [9, 17, 37], by

W±(An, A0) = s− lim
t→±∞

eitAne−itA0 .

The couple of operators (An, A0) acting on Hlk turns out to fit the framework studied in [1]. They

are given by A0 = Γ1Dx and An = A0 +W (x, n) where the potential W (x, n) = eiΓ
1C−(x)(na(x)Γ2 +

b(x)Γ0)e−iΓ1C−(x) is the 4× 4 matrix valued function

W (x, n) =

(
0 k(x, n)

k(x, n)⋆ 0

)

, k(x, n) = e2iC
−(x)

(
−ib(x) na(x)
−na(x) ib(x)

)

,

where n = l + 1
2 . Here k(x, n)⋆ denotes the transpose conjugate of the matrix valued function k(x, n).

Moreover the entries of W (., n) are in L1(R) as in [1] (note that our potential W is better since it is
exponentially decreasing at both ends x→ ±∞). Thus, we can use the following stationary representation
of Ŝ(An, A0). Let us introduce the unitary transform F on Hlk defined by

Fψ(λ) = 1√
2π

∫

R

e−iΓ1xλψ(x) dx, (3.31)

then we have (see [1] p. 143)
Ŝ(An, A0) = F⋆Ŝ0(λ, n)F ,
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where the scattering matrix Ŝ0(λ, n) takes the form

(
T̂L(λ, n) R̂(λ, n)

L̂(λ, n) T̂R(λ, n)

)

.

Here T̂L(λ, n) and T̂R(λ, n) are 2× 2 matrix valued functions which correspond to the usual transmission
coefficients of Ŝ whereas L̂(λ, n) and R̂(λ, n) are 2 × 2 matrix valued functions which correspond to the
usual reflection coefficients of Ŝ.

The definition of Ŝ0(λ, n) obtained so far comes from a time dependent approach to the scattering
theory for (An, A0). As mentionned in Section 1.3 there is an alternative but equivalent definition of
Ŝ0(λ, n) that will be easier to manipulate and is provided by the stationary approach to the scattering
theory for (An, A0). We thus recall that the reflection and transmission coefficients can be expressed in
terms of Jost functions which are solutions of Equation (1.10) with specific asymptotics at infinity given
by (1.11) and (1.12). In the following we need some relations between the different quantities of the
stationary approach that we summarize here. On the Jost functions, the following relation can be proved
(see [1] eq. (2.5))

F̂R(x, λ, n)
⋆Γ1F̂R(x, λ, n) = Γ1. (3.32)

Using the notations introduced in (1.15) we also have some useful relations obtained in [1] on the matrix
AL and AR defined by (1.13) and (1.14). Indeed, for λ ∈ R and for all n ∈ N∗,

F̂R(x, λ, n)
⋆Γ1F̂L(x, λ, n) = ÂR(λ, n)

⋆Γ1 = Γ1ÂL(λ, n)
⋆, (3.33)

ÂR2(λ, n) = ÂL3(λ, n)
⋆, ÂR3(λ, n) = −ÂL2(λ, n)

⋆, (3.34)

ÂL1(λ, n) = ÂR1(λ, n)
⋆, ÂR4(λ, n) = ÂL4(λ, n)

⋆, (3.35)

ÂL1(λ, n)
⋆ÂL1(λ, n) = I2 + ÂL3(λ, n)

⋆ÂL3(λ, n), (3.36)

ÂL1(λ, n)ÂR1(λ, n) + ÂL2(λ, n)ÂR3(λ, n) = I2 = ÂR1(λ, n)ÂL1(λ, n) + ÂR2(λ, n)ÂL3(λ, n). (3.37)

Finally, we make the link between the stationary representation S(λ, n) of the scattering operator S
and the scattering matrix Ŝ0(λ, n). Let us define two unitary transforms F± on H by

F+ψ(λ) = F
(
eic+x 0
0 e−ic−x

)

ψ(λ) =
1√
2π

∫

R

(
e−ixλ+ic+x 0

0 eixλ−ic−x

)

ψ(x) dx, (3.38)

and

F−ψ(λ) = F
(
eic−x 0
0 e−ic+x

)

ψ(λ) =
1√
2π

∫

R

(
e−ixλ+ic−x 0

0 eixλ−ic+x

)

ψ(x) dx, (3.39)

and recall the following Proposition given in [14].

Proposition 3.1. The scattering operator S(n) has the following stationary representation. If F± are
the unitary transforms defined in (3.38) and (3.39), then

S(n) = F ⋆
+S(λ, n)F−,
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where the 4× 4 scattering matrix S(λ, n) is given by

S(λ, n) =

(
e−iβ T̂L(λ, n) e−2iβR̂(λ, n)

L̂(λ, n) e−iβT̂R(λ, n)

)

,

where

β =

∫ 0

−∞

(c(s)− c−) ds+

∫ +∞

0

(c(s)− c+) ds (3.40)

and the quantities T̂L, T̂R, L̂ and R̂ are the 2×2 matrices corresponding to the transmission and reflection
matrices of the pair (An, A0).

In the next Subsection we use some integral representations of the blocks of the Faddeev matrix from
the right defined by

M̂R(x, λ, n) = F̂R(x, λ, n)e
−iΓ1λx.

It is easy to show from (1.10) that M̂R(x, λ, n) satisfies the integral equation

M̂R(x, λ, n) = I4 + iΓ1

∫ +∞

x

e−iΓ1λ(y−x)W (y, n)M̂R(y, λ, n)e
iΓ1λ(y−x) dy, (3.41)

Actually, using once again 2× 2 block matrix notation

M̂R(x, λ, n) =

(
M̂R1(x, λ, n) M̂R2(x, λ, n)

M̂R3(x, λ, n) M̂R4(x, λ, n)

)

,

and iterating (3.41) once, we get the uncoupled system of integral equations for the blocks M̂Ri(x, λ, n),
i ∈ {1, 2, 3, 4}. For instance,

M̂R1(x, λ, n) = I2 +

∫ x

−∞

(∫ y

−∞

e2iλ(t−y)k(y, n)k(t, n)⋆M̂R1(t, λ, n) dt

)

dy (3.42)

and

M̂R2(x, λ, n) = i

∫ x

−∞

e2iλ(x−y)k(y, n) dy +

∫ x

−∞

(∫ y

−∞

e2iλ(x−y)k(y, n)k(t, n)⋆M̂R2(t, λ, n) dt

)

dy.

(3.43)
Similar results hold for the Faddeev matrix from the left M̂L which is defined by

M̂L(x, λ, n) = F̂L(x, λ, n)e
−iΓ1λx.

The equation (3.42) is an integral equation of Volterra type that can be solved by iteration. Moreover
we can deduce from this method some important estimates.

Lemma 3.2. For all x0 ∈ R, there exists a constant C ∈ R such that for all x ∈ R, for all n ∈ N, we
have

‖M̂Ri(x, λ, n)‖ ≤ C exp

(

n

∫ x

−∞

a(s) ds

)

, ∀i ∈ {1, 2, 3, 4},

and

‖M̂Li(x, λ, n)‖ ≤ C exp

(

n

∫ +∞

x

a(s) ds

)

, ∀i ∈ {1, 2, 3, 4}.
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Proof. We can for instance prove Lemma 3.2 for M̂R1(x, λ, n) since the proof for the other blocks is
similar. To obtain the estimate of Lemma 3.2 we use an iterative method. We use the integral equation
(3.42) and we define M̂0

R1(x, λ, n) = I2 and

M̂k+1
R1 (x, λ, n) =

∫ x

−∞

(∫ y

−∞

e2iλ(t−y)k(y, n)k(t, n)⋆M̂k
R1(t, λ, n) dt

)

dy, ∀k ∈ N.

We can prove by induction the estimate

‖M̂k
R1(x, λ, n)‖ ≤ 1

(2k)!

(∫ x

−∞

‖k(s, n)‖ ds
)2k

, ∀k ∈ N.

Thus, we can write

M̂R1(x, λ, n) =

+∞∑

k=0

M̂k
R1(x, λ, n) (3.44)

and we obtain

‖M̂R1(x, λ, n)‖ ≤ exp

(∫ x

−∞

‖k(s, n)‖ ds
)

.

We recall that

k(x, n) = e2iC
−(x)

(
−ib(x) na(x)
−na(x) ib(x)

)

.

Therefore ‖k(x, n)‖ = na(x) + b(x) (we choose ‖.‖ = ‖.‖1) and

‖M̂R1(x, λ, n)‖ ≤ exp

(∫ +∞

−∞

b(s) ds

)

exp

(

n

∫ x

−∞

a(s) ds

)

.

3.2 Second order differential equations for the Jost functions

The aim of this Subsection is to find second order differential equations satisfied by the components of
Jost functions. To do this, we first give differential equations satisfied by the blocks of the Faddeev matrix
using the integral equations (2.13)− (2.16) and (2.18) − (2.21) of [1]. Next, using the link between the
Faddeev matrices of the reduced operator A and the Jost functions of the Hamiltonian H , we obtain
second order differential equations for the Jost functions.

We first prove easily the following Proposition:

Proposition 3.3. The blocks of the Faddeev matrices satifsfy the following differential equations in the
variable x.

1. The blocks M̂L1(., λ, n) and M̂R1(., λ, n) satisfy the differential equation

A′′(x, λ, n) + (2iλI2 − k′(x, n)k(x, n)−1)A′(x, λ, n) − k(x, n)k(x, n)⋆A(x, λ, n) = 0. (3.45)

2. The blocks M̂L2(., λ, n) and M̂R2(., λ, n) satisfy

A′′(x, λ, n) − (2iλI2 + k′(x, n)k(x, n)−1)A′(x, λ, n)

+ (2iλk′(x, n)k(x, n)−1 − k(x, n)k(x, n)⋆)A(x, λ, n) = 0.
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3. The blocks M̂L3(., λ, n) and M̂R3(., λ, n) satisfy

A′′(x, λ, n) + (2iλI2 − k′(x, n)⋆(k(x, n)⋆)−1)A′(x, λ, n)

− (2iλk′(x, n)⋆(k(x, n)⋆)−1 + k(x, n)⋆k(x, n))A(x, λ, n) = 0.

4. The blocks M̂L4(., λ, n) and M̂R4(., λ, n) satisfy

A′′(x, λ, n)− (2iλI2 + k′(x, n)⋆(k(x, n)⋆)−1)A′(x, λ, n)− k(x, n)⋆k(x, n)A(x, λ, n) = 0.

Remark 3.4. 1. The analysis is the same for the Jost function from the left and the Jost function
from the right. We choose to work with the Jost function from the right.

2. There is an analogy between the differential equations for the blocks M̂R1 and M̂R4. Indeed, the
corresponding integral equations of [1] are the same changing λ in −λ and k in k⋆. Thus in the
following, we just give results for the block M̂R1. The same analogy is true for the blocks M̂R2 and
M̂R3 and we just give results for the block M̂R2 in the following.

Using Proposition 3.3, we easily obtain second order differential equations for the coefficients of the
Faddeev matrices. After that we use the explicit link between the Faddeev matrices and the Jost fonctions
corresponding to the Hamiltonian H . The Jost functions of the Hamiltonian A are given by

F̂R(x, λ, n) = M̂R(x, λ, n)e
iλΓ1x.

We recall that
H = e−iΓ1C−(x)AeiΓ

1C−(x).

Hence, the Jost function from the right of the Hamiltonian H is defined by

FR(x, λ, n) = e−iΓ1C−(x)M̂R(x, λ, n)e
iλΓ1x (3.46)

and similarly the Jost function from the left of the Hamiltonian H is defined by

FL(x, λ, n) = e−iΓ1C−(x)M̂L(x, λ, n)e
iλΓ1x. (3.47)

We use the following notation

FR(x, λ, n) =

(
FR1(x, λ, n) FR2(x, λ, n)
FR3(x, λ, n) FR4(x, λ, n)

)

where FRi(x, λ, n) =

(
FRi,1(x, λ, n) FRi,2(x, λ, n)
FRi,3(x, λ, n) FRi,4(x, λ, n)

)

and the corresponding notations for the Jost function from the left. Using the previous equalities and
Proposition 3.3 we prove the following Proposition.

Proposition 3.5. The coefficients of the Faddeev matrices satisfy the following coupled equations in the
variable x.

1. For i ∈ {1, 2} and (j, k) ∈ {(1, 3), (3, 1), (2, 4), (4, 2)} there exists a function fi,j,k(x, λ, n) such that
the component FRi,j of the Jost function from the right and the component FLi,j of the Jost function
from the left satisfy the coupled differential equation

u′′(x, λ, n) − a′(x)

a(x)
u′(x, λ, n)

+

(

ic′(x) + (c(x) − λ)2 − i(c(x)− λ)
a′(x)

a(x)
− (n2a(x)2 + b(x)2)

)

u(x, λ, n) = fi,j,k(x, λ, n),

18



where,

fi,j,k = c1,i,jF
′
Ri,j(x, λ, n) + c2,i,kF

′
Ri,k(x, λ, n) + c3,i,jFRi,j(x, λ, n) + c4,i,kFRi,k(x, λ, n),

with,

cr,i,t(x, λ, n) = O

(
1

n

)

, n→ ∞, ∀r ∈ {1, 2, 3, 4} and t ∈ {j, k}.

2. For i ∈ {3, 4} and (j, k) ∈ {(1, 3), (3, 1), (2, 4), (4, 2)} there exists a function fi,j,k(x, λ, n) such that
the component FRi,j of the Jost function from the right and the component FLi,j of the Jost function
from the left satisfy the coupled differential equation

u′′(x, λ, n)− a′(x)

a(x)
u′(x, λ, n)

+

(

−ic′(x) + (c(x) − λ)2 + i(c(x) − λ)
a′(x)

a(x)
− (n2a(x)2 + b(x)2)

)

u(x, λ, n) = fi,j,k(x, λ, n),

where,

fi,j,k = c1,i,jF
′
Ri,j(x, λ, n) + c2,i,kF

′
Ri,k(x, λ, n) + c3,i,jFRi,j(x, λ, n) + c4,i,kFRi,k(x, λ, n),

with,

cr,i,t(x, λ, n) = O

(
1

n

)

, n→ ∞, ∀r ∈ {1, 2, 3, 4} and t ∈ {j, k}.

Proof. To prove it, for instance for the coefficient FR1,1, we use the equality

M̂R1(x, λ, n) = ei(C
−(x)−λx)FR1(x, λ, n).

and the differential equation obtained for the first block of the Faddeev matrix in Proposition 3.3. We
easily obtain

F ′′
R1,1(x, λ, n)−

a′(x)

a(x)
F ′
R1,1(x, λ, n)

+

(

ic′(x) + (c(x)− λ)2 − i(c(x)− λ)
a′(x)

a(x)
− (n2a(x)2 + b(x)2)

)

FR1,1(x, λ, n) = f1,1,3(x, λ, n)

where

f1,1,3(x, λ, n) = c1(x, λ, n)F
′
R1,1(x, λ, n) + c2(x, λ, n)F

′
R1,3(x, λ, n) (3.48)

+c3(x, λ, n)FR1,1(x, λ, n) + c4(x, λ, n)FR1,3(x, λ, n) (3.49)

and

c1(x, λ, n) =
a(x)2b(x)b′(x) − a′(x)a(x)b(x)2

(n2a(x)2 + b(x)2)a(x)2
(3.50)

c2(x, λ, n) = − in(−a(x)b
′(x) + a′(x)b(x))

n2a(x)2 + b(x)2
(3.51)

c3(x, λ, n) = i(c(x)− λ)

(
a(x)2b(x)b′(x) − a′(x)a(x)b(x)2

(n2a(x)2 + b(x)2)a(x)2

)

(3.52)

c4(x, λ, n) = (c(x)− λ)

(
n(−a(x)b′(x) + a′(x)b(x))

n2a(x)2 + b(x)2

)

. (3.53)
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We prove the statement for the other components of the Jost functions similarly. For instance, we note
that

f1,3,1(x, λ, n) = c1(x, λ, n)F
′
R1,3(x, λ, n) + c2(x, λ, n)F

′
R1,1(x, λ, n)

+c3(x, λ, n)FR1,3(x, λ, n) + c4(x, λ, n)FR1,1(x, λ, n).

Remark 3.6. 1. If b = c = 0 we obtain that FRi,j and FLi,j, where i ∈ {1, 2} and j ∈ {1, 2, 3, 4},
satisfy the uncoupled differential equation

u′′(x, λ, n) − a′(x)

a(x)
u′(x, λ, n) +

(

λ2 + iλ
a′(x)

a(x)
− n2a(x)2

)

u(x, λ, n) = 0,

whereas FRi,j and FLi,j, where i ∈ {3, 4} and j ∈ {1, 2, 3, 4}, satisfy the differential equation

u′′(x, λ, n) − a′(x)

a(x)
u′(x, λ, n) +

(

λ2 − iλ
a′(x)

a(x)
− n2a(x)2

)

u(x, λ, n) = 0.

These are the equations (3.21) and (3.22) obtained in the massless and uncharged case studied in
[13].

2. It is important to note that in the massive case the components of Jost functions satisfy differential
equations coupled two by two whereas in the massless case these components satisfy independant
ordinary differential equations. This structure of the differential equations will be fundamental in
Section 4.4.

4 Complexification of the angular momentum and asymptotics

for large angular momentum

In this Section, we allow the angular momentum to be complex. As in Section 4 of [13], we shall obtain the
asymptotics of the Jost functions and of the matrix ÂL(λ, z) when |z| → ∞, z ∈ C. Here we shall crucially
use the exponential decay of the potentials a(x) and b(x) at both horizons and thus the asymptotically
hyperbolic nature of the geometry. The main tools to obtain these asymptotics are a simple change of
variable X = g(x), called the Liouville transformation and a perturbative argument.

4.1 The Liouville variable and the Bessel equations

We follow the strategy of [7, 8, 13]. Considering the differential equations given in Proposition 3.5, we
use a Liouville transformation, i.e. a change of variable X = g(x), that transforms these equations
into singular Sturm-Liouville equations in which the complex angular momentum z becomes the spectral
parameter.

Let us define precisely this Liouville transformation. We denote

X = g(x) =

∫ x

−∞

a(t) dt.

Clearly, g = R →]0, A[ is a C1-diffeomorphism where

A =

∫

R

a(t) dt.
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For the sake of simplicity, we denote h = g−1 the inverse diffeomorphism of g and we use the notations
f ′(X) = ∂f

∂X (X), FL(X,λ, z) = FL(h(X), λ, z) and FR(X,λ, z) = FR(h(X), λ, z).
We begin with an elementary Lemma which states that, in the variable X , the Jost functions satisfy
Sturm-Liouville equations with potentials having quadratic singularities at the boundaries.

Lemma 4.1. For i ∈ {1, 2} and (j, k) ∈ {(1, 3), (3, 1), (2, 4), (4, 2)} the component FRi,j of the Jost
function from the right and the component FLi,j of the Jost function from the left satisfy the coupled
differential equation

u′′(X,λ, z) + q(X,λ)u(X,λ, z) = z2u(X,λ, z) +
fi,j,k(X,λ, z)

a(X)2
,

whereas for i ∈ {3, 4} and (j, k) ∈ {(1, 3), (3, 1), (2, 4), (4, 2)} the component FRi,j of the Jost function
from the right and the component FLi,j of the Jost function from the left satisfy the coupled differential
equation

u′′(X,λ, z) + q(X,λ)u(X,λ, z) = z2u(X,λ, z) +
fi,j,k(X,λ, z)

a(X)2
,

where

q(X,λ) = i
c′(X)

a(X)2
+

(c(X)− λ)2

a(X)2
− i(c(X)− λ)

a′(X)

a(X)3
− b(X)2

a(X)2
.

Here the functions fi,j,k are the functions appearing in Proposition 3.5. Moreover

q(X,λ) =
ω−

X2
+ q−(X,λ), with ω− =

(c− − λ)2

κ2−
− i

(c− − λ)

κ−
and q−(X,λ) = O(1), X → 0,

(4.54)
and

q(X,λ) =
ω+

(A−X)2
+q+(X,λ), with ω+ =

(c+ − λ)2

κ2+
−i (c+ − λ)

κ+
and q+(X,λ) = O(1), X → A.

(4.55)

Remark 4.2. In the case b = c = 0 we obtain that FRi,j(X,λ, z) and FLi,j(X,λ, z), where i ∈ {1, 2} and
j ∈ {1, 2, 3, 4}, satisfy the uncoupled Sturm-Liouville equation

u′′(X,λ, z) +

(
λ2

a(X)2
+ iλ

a′(X)

a(X)3

)

u(X,λ, z) = z2u(X,λ, z)

whereas FRi,j(X,λ, z) and FLi,j(X,λ, z), where i ∈ {3, 4} and j ∈ {1, 2, 3, 4}, satisfy the Sturm-Liouville
equation

u′′(X,λ, z) +

(
λ2

a(X)2
− iλ

a′(X)

a(X)3

)

u(X,λ, z) = z2u(X,λ, z).

These are the equations (4.5) and (4.6) obtained in Lemma 4.1 of [13]. Moreover, we obtain that

ω− =
λ

κ2−
+ i

λ

κ−

and

ω+ =
λ

κ2+
+ i

λ

κ+

which are the equations (4.7) and (4.8) of Lemma 4.1 of [13].
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Proof. Since the proofs are the same for the other components, we just prove Proposition 4.1 for FR1,1.
Using the Liouville transformation and the notations a(X) = a(h(X)), b(X) = b(h(X)) and c(X) =
c(h(X)), we obtain that FR1,1 satisfies the Sturm-Liouville equation:

u′′(X,λ, z) + q(X,λ)u(X,λ, z) = z2u(X,λ, z) +
f1,1,3(X,λ, z)

a(X)2

where

q(X,λ) = i
c′(X)

a(X)2
+

(c(X)− λ)2

a(X)2
− i(c(X)− λ)

a′(X)

a(X)3
− b(X)2

a(X)2

and

f1,1,3(X,λ, z) =

(
a(X)2b(X)b′(X)− a′(X)a(X)b(X)2

(z2a(X)2 + b(X)2)a(X)

)

F ′
R1,1(X,λ, z)

+i(c(X)− λ)

(
a(X)2b(X)b′(X)− a′(X)a(X)b(X)2

(z2a(X)2 + b(X)2)a(X)2

)

FR1,1(X,λ, z)

− iz(−a(X)b′(X) + a′(X)b(X))a(X)

z2a(X)2 + b(X)2
F ′
R1,3(X,λ, z)

+
z(−a(X)b′(X) + a′(X)b(X))

z2a(X)2 + b(X)2
(c(X)− λ)FR1,3(X,λ, z).

To show that the potential q has quadratic singularities given by (4.54) we use the following Lemma:

Lemma 4.3. When X → 0, the potentials satisfy:

a(X) = κ−X +O(X3), a′(X) = κ2−X +O(X3),

b(X) =
b−κ−
a−

X +O(X3), b′(X) =
b−κ

2
−

a−
X +O(X3),

c(X) = c− +
c′−κ−

a−
X2 +O(X4), c′(X) =

c′−κ
2
−

a−
X2 +O(X4).

Proof. We know that

X =

∫ x

−∞

a(t) dt =
a−
κ−

eκ−x +O(e3κ−x).

Thus, eκ−x = O(X) and according to Lemma 2.1

a(X) = κ−X +O(X3).

Similarly, we obtain
a′(X) = κ2−X +O(X3).

Using these asymptotics and Lemma 2.1, we obtain similarly the results for the potentials b and c.

Finally, using Lemma 4.3, we easily obtain

q(X,λ) = i
c′(X)

a(X)2
+

(c(X)− λ)2

a(X)2
− i(c(X)− λ)

a′(X)

a(X)3
− b(X)2

a(X)2

=
(c− − λ)2 − i(c− − λ) +O(X2)

(κ−X +O(X2))2

=
ω−

X2
+ q−(X,λ).
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The proof is the same when X → A.

In the next Subsections, we shall solve the equations given in Lemma 4.1 by a perturbative argument.
We need the following Lemma to give a sense of the perturbative terms and to compute the asymptotics
of the Jost functions from the right (respectively the left) at X → 0 (respectively X → A).

Lemma 4.4. For each fixed z ∈ C, for i ∈ {1, 2} and for (j, k) ∈ {(1, 3), (2, 4), (3, 1), (4, 2)},

hi,j,k(X,λ, z) =
fi,j,k(X,λ, z)

a(X)2
= O(1) when X → 0 and X → A.

Proof. This is an easy consequence of Lemma 4.3 and the fact that the components of the Jost functions
are bounded when X → 0 and X → A.

The homogeneous parts of the differential equations given in Lemma 4.1 are simple modified Bessel
equations (see 5.4.11 in [32])

u′′ +
1− 2α

X
u′ +

(

(βγXγ−1)2 +
α2 − ν2γ2

X2

)

u = 0.

In our case the homogeneous equations are

u′′ +
ω−

X2
u = z2u

and

u′′ +
ω−

X2
u = z2u,

where

ω− =
(c− − λ)2

κ2−
− i

(c− − λ)

κ−
.

Thus, we choose α = 1
2 , γ = 1, β = iz and

ν− =
1

2
− i

(λ− c−)

κ−
, (ν− /∈ Z),

for the first equation and

µ− = ν− =
1

2
+ i

(λ− c−)

κ−
,

for the second one.

Remark 4.5. If b = c = 0 we obtain

ν− =
1

2
− i

λ

κ−

and

µ− =
1

2
+ i

λ

κ−

which are the choices of [13].
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4.2 Estimates on the Green kernels and on the Jost functions

Singular Sturm-Liouville equations such as in Proposition 4.1 have been studied in [20] by Freiling and
Yurko. We follow the spirit of [13] but, because of the fact that we have no series expansion for our
Jost functions, our proof is a little bit different. We use the fact that modified Bessel functions form a
fundamental system of solutions of the equation

u′′ +
ω

X2
u = z2u,

as well as the known asymptotics of these modified Bessel functions given in [32] and good estimates of
the Green kernel to obtain the asymptotics of the Jost functions as |z| → ∞. We recall the definition of
the modified Bessel functions given in [32]:

Iν(z) =
∞∑

k=0

(
z
2

)ν+2k

Γ(k + ν + 1)k!
, |z| <∞, | arg(z)| < π, ν ∈ C, (4.56)

Kν(z) =
π

2

I−ν(z)− Iν(z)

sin νπ
, | arg(z)| < π, ν /∈ Z. (4.57)

The aim of this Section is to prove the following Theorem.

Theorem 4.6. We set

αR(z) =
(z

2

)ν−
(
κ−
a−

)i
(

λ−c−
κ−

)

Γ(1− ν−)

and

βR(z) =
(z

2

)µ−
(
κ−
a−

)−i
(

λ−c−
κ−

)

Γ(1− µ−).

For large z in the complex plane (see the following remark), the Jost functions from the right satisfy the
following asymptotics, uniformly on each compact subset of ]0, A[,

∣
∣
∣
∣

∣
∣
∣
∣
FR1(X,λ, z)− αR(z)

√
XI−ν−(zX)

(
1 0
0 1

)∣
∣
∣
∣

∣
∣
∣
∣
= O

(
e|Re(z)|X

|z|

)

,

∣
∣
∣
∣

∣
∣
∣
∣
FR2(X,λ, z)− iβR(z)

√
XIν−(zX)

(
0 1
−1 0

)∣
∣
∣
∣

∣
∣
∣
∣
= O

(
e|Re(z)|X

|z|

)

,

∣
∣
∣
∣

∣
∣
∣
∣
FR3(X,λ, z)− iβR(z̄)

√
XIµ−(zX)

(
0 1
−1 0

)∣
∣
∣
∣

∣
∣
∣
∣
= O

(
e|Re(z)|X

|z|

)

,

∣
∣
∣
∣

∣
∣
∣
∣
FR4(X,λ, z)− αR(z̄)

√
XI−µ−(zX)

(
1 0
0 1

)∣
∣
∣
∣

∣
∣
∣
∣
= O

(
e|Re(z)|X

|z|

)

.

Remark 4.7. We have to be carefull in the definition of the asymptotics in the whole complex plane.
We recall the asymptotic given in [32]: for large z such that |arg(z)| ≤ π − δ, δ > 0,

Iν−(z) =
ez

(2πz)
1
2

(

1 +O

(
1

z

))

+
e−z+sg(Im(z))iπ(ν−+ 1

2 )

(2πz)
1
2

(

1 +O

(
1

z

))

. (4.58)
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where sg is the sign function defined by sg(x) = 1 if x > 0, 0 if x = 0 and −1 if x < 0. Thus,
this estimate is true in the complex plane except near the axis R−. However, since the application
z 7→ αR(z)

√
XI−ν−(zX) is entire and even (see (4.56)) we can extend the asymptotics on the whole

complex plane. This is also true for FR2, FR3 and FR4.
We also observe that, in the asymptotics for large z in the complex plane, we have

FR1(X,λ, z) ∼ FR4(X,λ, z)
⋆

and
FR2(X,λ, z) ∼ FR3(X,λ, z)

⋆.

These are the symmetries given in [13] and which are not true in general here due to the mass m of
the Dirac fields. We expected to find these symmetries in the asymptotics for large z because the most
important term in the potential for such z is za(x), thus the mass term b has no influence as |z| becomes
large.

Using the asymptotic (4.58), we can prove the following Theorem concerning the asymptotics of the Jost
functions for z → +∞, z real.

Theorem 4.8. The Jost functions from the right satisfy the following asymptotics for z → +∞, z real,
uniformly on each compact subset of ]0, A[,

FR1(X,λ, z) =
2−ν−

√
2π

(
κ−
a−

)i
(λ−c−)

κ−

Γ(1− ν−)z
−i

(λ−c−)

κ− ezX
(

1 O
(
1
z

)

O
(
1
z

)
1

)(

1 +O

(
1

z

))

,

FR2(X,λ, z) = i
2−µ−

√
2π

(
κ−
a−

)−i
(λ−c−)

κ−

Γ(1− µ−)z
i
(λ−c−)

κ− ezX
(
O
(
1
z

)
1

−1 O
(
1
z

)

)(

1 +O

(
1

z

))

,

FR3(X,λ, z) = i
2−ν−

√
2π

(
κ−
a−

)i
(λ−c−)

κ−

Γ(1− ν−)z
−i

(λ−c−)

κ− ezX
(
O
(
1
z

)
1

−1 O
(
1
z

)

)(

1 +O

(
1

z

))

,

FR4(X,λ, z) =
2−µ−

√
2π

(
κ−
a−

)−i
(λ−c−)

κ−

Γ(1− µ−)z
i
(λ−c−)

κ− ezX
(

1 O
(
1
z

)

O
(
1
z

)
1

)(

1 +O

(
1

z

))

.

Remark 4.9. Corresponding asymptotics are also true for z → −∞ by parity/imparity.

We start proving Theorem 4.6 by an estimate on the Green kernels of the corresponding inhomogenous
equations. This is done using good estimates of the modified Bessel functions given in [32]. We know,
thanks to Proposition 4.1, that the components of Jost functions FRi,j satisfy the coupled differential
equations

u′′(X,λ, z) + q(X,λ)u(X,λ, z) = z2u(X,λ, z) + hi,j,k(X,λ, z), (4.59)

where

q(X,λ) =
ω−

X2
+ q−(X,λ), with ω− =

(c− − λ)2

κ2−
− i

(c− − λ)

κ−
and q−(X,λ) = O(1), X → 0,

and

hi,j,k(X,λ, z) =
fi,j,k(X,λ, z)

a(X)2
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satisfies
hi,j,k(X,λ, z) = O(1), when X → 0.

We begin by studying the homogeneous equation

u′′ +
ω−

X2
u = z2u (4.60)

which is a Bessel equation. We choose a different fondamental system of solutions of (4.60) according
to the block we study. For the block FR1 we choose (I−ν− ,K−ν−) whereas for the block FR2 we choose
(Iν− ,Kν−). Concerning FR1,j , j ∈ {1, 2}, we set

u0,1j(X) = α1j

√
XI−ν−(zX) + β1j

√
XK−ν−(zX), (4.61)

whereas for FR2,j , j ∈ {1, 2}, we set

u0,2j(X) = α2j

√
XIν−(zX) + β2j

√
XKν−(zX). (4.62)

Now, we solve the equation (4.59) by perturbation. We rewrite (4.59) as

u′′ +
ω−

X2
u− z2u = −q−(X,λ)u + hi,j,k(X,λ, z).

The Green kernel for the block FR1 is defined by

G1(t,X, z) =
√
tX(I−ν−(zt)K−ν−(zX)− I−ν−(zX)K−ν−(zt)),

whereas the Green kernel for the block FR2 is defined by

G2(t,X, z) =
√
tX(Iν−(zt)Kν−(zX)− Iν− (zX)Kν−(zt)).

The general solution of (4.59) is then

u(X,λ, z) = u0,ij(X,λ, z) +

∫ X

0

Gi(t,X, z)(q−(t, λ)u(t, λ, z) + hi,j,k(t, λ, z)) dt, (4.63)

where the integral term makes sense thanks to Lemma 4.4. To prove Theorem 4.6 we need the following
estimates on the Green kernels G1 and G2. The proof of this Proposition is based on good estimates on
the modified Bessel functions (see (4.58)) and its derivatives (see [29] eq. (2.17) or [11] Proposition 3.1
for a similar proof).

Proposition 4.10. If |z| ≥ 1, for i ∈ {1, 2}, for all X ∈]0, A[ and for all t ∈]0, X [,

|Gi(t,X, z)| ≤
Ce|Re(z)|(X−t)

(1 + |zX | 12 )(1 + |zt| 12 )
.

Remark 4.11. It suffices to prove Proposition 4.10 for z such that Re(z) ≥ 0. Indeed, using the definition
of the modified Bessel functions (4.56) and (4.57) we know that

G2(t,X, z) =
π
√
tX

2 sin(ν−π)
(Iν−(zt)(I−ν−(zX)− Iν−(zX))− Iν−(zX)(I−ν−(zt)− Iν−(zt)))

=
π
√
tX

2 sin(ν−π)
(Iν−(zt)I−ν−(zX)− Iν−(zX)I−ν−(zt)).

Finally, using the definition of Iν given previously in (4.56), we obtain that the application z 7→ G2(t,X, z)
is even in the variable z ∈ C. Similarly, the application z 7→ G1(t,X, z) is even in z ∈ C.
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4.3 Asymptotics of the Jost functions from the right when X tends to 0

To prove Theorem 4.6 we need the asymptotics of the Jost functions from the right when the Liouville
variable X tends to 0. These asymptotics allow us in a second time to find explicitely the principal term
of the components of Jost functions in terms of modified Bessel functions. To obtain these asymptotics
we use the fact that we can write the Faddeev blocks as series and the link between Faddeev matrices
and the Jost functions. First, we do the analysis for the block FR1.

Lemma 4.12. When X → 0, for any fixed z ∈ C,

FR1(X,λ, z) =





(
κ−
a−

)i
(

λ−c−
κ−

)

X
i
(

λ−c−
κ−

)

+O(X2)





(
1 O(X2)

O(X2) 1

)

.

Proof. Thanks to (3.44) we know that

‖M̂R1(x, λ, z)− M̂0
R1(x, λ, z)‖ = O

((∫ x

−∞

‖k(s, z)‖ ds
)2
)

.

We recall that

k(x, z) = e2iC
−(x)

(
−ib(x) za(x)
−za(x) ib(x)

)

.

Moreover, according to the asymptotics, given in Lemma 2.1, we have b(x) = O(a(x)) when x → −∞.
Then ‖k(s)‖ ≤ Ca(x) for x→ −∞. Thus, since M̂0

R1(x, λ, z) = I2,

‖M̂R1(x, λ, z)− I2‖ = O(X2), X → 0.

Concerning FR1, we know that

FR1(x, λ, z) = ei(λx−C−(x))M̂R1(x, λ, z),

then
‖FR1(x, λ, z)− F 0

R1(x, λ, z)‖ = O(X2), X → 0,

where
F 0
R1(x, λ, z) = ei(λx−C−(x))I2.

Moreover,

eiλh(X) =

(
κ−
a−

) iλ

κ−

X
iλ

κ− +O(X2), X → 0. (4.64)

Indeed, thanks to the asymptotic of the potential a, given in Lemma 2.1,

X = g(x) =

∫ x

−∞

a(t) dt =
a−
κ−

eκ−x +O(e3κ−x), x→ −∞,

then,

eiλh(X) = e
iλ

(

1
κ−

ln
(

κ−
a−

X
)

+O(X2)
)

=

(
κ−
a−

) iλ

κ−

X
iλ

κ− (1 +O(X2)) =

(
κ−
a−

) iλ

κ−

X
iλ

κ− +O(X2), X → 0.
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Furthermore,

C−(x) =

∫ x

−∞

(c(s)− c−) ds+ c−x

=

∫ x

−∞

(c−e
2κ−s +O(e4κ−s)) ds+ c−x

= c−x+O(X2), X → 0.

Thus,

ei(λh(X)−C−(h(X))) = eih(X)(λ−c−) +O(X2)

=

(
κ−
a−

)i
(

λ−c−
κ−

)

X
i
(

λ−c−
κ−

)

+O(X2), X → 0.

Thanks to these estimates we can find the principal term of the Jost function in terms of modified
Bessel functions. Concerning the coefficient FR1,1, we first have to find α11 and β11 defined in (4.61) to
obtain that the solution u11 of the equation (4.63)

u11(X,λ, z) = u0,11(X,λ, z) +

∫ X

0

G1(t,X, z)(q−(t, λ)u11(t, λ, z) + h1,1,3(t, λ, z)) dt

is FR1,1. Concerning FR1,2 we have to find α12 and β12 to obtain that the solution u12 of (4.63)

u12(X,λ, z) = u0,12(X,λ, z) +

∫ X

0

G1(t,X, z)(q−(t, λ)u12(t, λ, z) + h1,2,4(t, λ, z)) dt

is FR1,2. Using the asymptotics of FR1,1(X,λ, z) and FR1,2(X,λ, z) when X → 0 we prove the following
Proposition.

Proposition 4.13. For any fixed z, for any X ∈]0, A[,

FR1,1(X,λ, z) = F−
R1,1(X,λ, z) +

∫ X

0

G1(t,X, z)(q−(t, λ)FR1,1(t, λ, z) + h1,1,3(t, λ, z)) dt,

where,

F−
R1,1(X,λ, z) =

zν−

2ν−

(
κ−
a−

)i
(

λ−c−
κ−

)

Γ(1− ν−)
√
XI−ν−(zX).

Similarly,

FR1,2(X,λ, z) =

∫ X

0

G1(t,X, z)(q−(t, λ)FR1,2(t, λ, z) + h1,2,4(t, λ, z)) dt.

Proof. We search α11 and β11 such that

FR1,1(X,λ, z) = F−
R1,1(X,λ, z) +

∫ X

0

G1(t,X, z)(q−(t, λ)FR1,1(t, λ, z) + h1,1,3(t, λ, z)) dt,
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where
F−
R1,1(X,λ, z) = α11

√
XI−ν−(zX) + β11

√
XK−ν−(zX).

We recall (see [32] eqs (5.7.1) and (5.7.2)) that,

α
√
XI−ν−(zX) ∼ αz−ν−

Γ(1− ν−)2−ν−
X

i
(

λ−c−
κ−

)

, X → 0 (4.65)

and

β
√
XK−ν−(zX) ∼ −βπ

2 sin(ν−π)

zν−

Γ(1 + ν−)2ν−
X

1−i
(

λ−c−
κ−

)

, X → 0. (4.66)

Thus, for any fixed z ∈ C, when X → 0,

G1(t,X, z) =
√
tX(I−ν− (zt)K−ν−(zX)− I−ν−(zX)K−ν−(zt))

=
√
tI−ν−(zt)

√
XK−ν−(zX)−

√
XI−ν−(zX)

√
tK−ν−(zt)

∼ −π
sin(ν−π)Γ(1 − ν−)Γ(1 + ν−)

(

t
i
(

λ−c−
κ−

)

X
1−i

(

λ−c−
κ−

)

−X
i
(

λ−c−
κ−

)

t
1−i

(

λ−c−
κ−

)
)

.

Finally, thanks to Lemma 4.4,

∫ X

0

G1(t,X, z) (q−(t)FR1,1(t, λ, z) + h1,1,3(t, λ, z))
︸ ︷︷ ︸

=O(1)

dt = O(X2), X → 0.

Moreover, thanks to Lemma 4.12,

FR1,1(X,λ, z) =

(
κ−
a−

)i
(

λ−c−
κ−

)

X
i
(

λ−c−
κ−

)

+O(X2), X → 0.

This permits to conclude, using again (4.65) and (4.66), that

α11 =
zν−

2ν−

(
κ−
a−

)i
(

λ−c−
κ−

)

Γ(1− ν−) and β11 = 0.

The same argument allows us to prove that

α12 = 0 and β12 = 0.

We do the same analysis for the block FR2. Since the study is similar we just give the corresponding
results without proofs.

Lemma 4.14. When X → 0,

FR2,1(X,λ, z) =
b−

2a−ν−

(
κ−
a−

)−i
(

λ−c−
κ−

)

X
1−i

(

λ−c−
κ−

)

+O(X3)

and

FR2,2(X,λ, z) = iz
1

2ν−

(
κ−
a−

)−i
(

λ−c−
κ−

)

X
1−i

(

λ−c−
κ−

)

+O(X3).
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The analogous of Proposition 4.13 for the second block is the following.

Proposition 4.15. For any fixed z and for any X ∈]0, A[,

FR2,1(X,λ, z) = F−
R2,1(X,λ, z) +

∫ X

0

G2(t,X, z)(q−(t, λ)FR2,1(t, λ, z) + h2,1,3(t, λ, z)) dt,

where

F−
R2,1(X,λ, z) =

b−
2a−

(z

2

)−ν−
(
κ−
a−

)−i
(

λ−c−
κ−

)

Γ(1− µ−)
√
XIν−(zX).

Similarly,

FR2,2(X,λ, z) = F−
R2,2(X,λ, z) +

∫ X

0

G2(t,X, z)(q−(t, λ)FR2,2(t, λ, z) + h2,2,4(t, λ, z)) dt,

where

F−
R2,2(X,λ, z) = i

(z

2

)µ−
(
κ−
a−

)−i
(

λ−c−
κ−

)

Γ(1− µ−)
√
XIν−(zX).

4.4 Improvement of the first estimates on Jost functions

In our computation of the asymptotics of the coefficients of Jost functions from the right (respectively
from the left) for large z in the complex plane (see next Section) we need estimates on these functions of
the form

|FRi,j(X,λ, z)| ≤ Ce|Re(z)|X , |FLi,j(X,λ, z)| ≤ Ce|Re(z)|(A−X), ∀(i, j) ∈ {1, 2, 3, 4}2,

for all z ∈ C uniformly for X ∈]0, X1[ (respectively X ∈]X1, A[), X1 ∈]0, A[ fixed. At this time, thanks to
Lemma 3.2 and the link between the Faddeev matrices and the Jost functions given by (3.46), we know
that,

|FRi,j(X,λ, z)| ≤ Ce|z|X , |FLi,j(X,λ, z)| ≤ Ce|z|X , ∀(i, j) ∈ {1, 2, 3, 4}2,
for all z ∈ C uniformly forX ∈]0, X1[ (respectively X ∈]X1, A[), X1 ∈]0, A[ fixed. These estimates are not
enough for our purpose. Using the Phragmén-Lindelöf’s Theorem, we observe that it would be sufficient
to prove that the components of the Jost functions are bounded on iR. We shall now prove this claim.
We first note that the scalar equations obtained on the components of Jost functions in the variable X
in Lemma 4.1 are coupled, due to the form of the rest hi,j,k. We thus transform each of these coupled
scalar equations in one vectorial equation and study them by perturbation using an iterative method.

Lemma 4.16. For all (i, j) ∈ {1, 2, 3, 4}2 and for all X1 ∈]0, A[ the function z 7→ FRi,j(X,λ, z) is bounded
on iR uniformly in X ∈]0, X1[ and z 7→ FLi,j(X,λ, z) is bounded on iR uniformly in X ∈]X1, A[.

Proof. Since the proofs are similar in the other cases, we just do the proof for the couple (FR1,1, FR1,3).
We start with the second order scalar equations given in Lemma 4.1:

F ′′
R1,1(X,λ, z) + q(X,λ)FR1,1(x, λ, z) = z2FR1,1(X,λ, z) + h1,1,3(X,λ, z),

F ′′
R1,3(X,λ, z) + q(X,λ)FR1,3(x, λ, z) = z2FR1,3(X,λ, z) + h1,3,1(X,λ, z),
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where (see Lemmas 3.5 and 4.1, Equation (3.48) and Lemma 4.4)

h1,1,3(X,λ, z) = c1(X,λ, z)F
′
R1,1(X,λ, z) + c2(X,λ, z)F

′
R1,3(X,λ, z)

+c3(X,λ, z)FR1,1(X,λ, z) + c4(X,λ, z)FR1,3(X,λ, z),

h1,3,1(X,λ, z) = c1(X,λ, z)F
′
R1,3(X,λ, z) + c2(X,λ, z)F

′
R1,1(X,λ, z)

+c3(X,λ, z)FR1,3(X,λ, z) + c4(X,λ, z)FR1,1(X,λ, z),

and the functions ci are given in the proof of Lemma 3.5 (see (3.50)). We know that when X → 0

ci(X,λ, z) = O(X), ∀i ∈ {1, 2}, ci(X,λ, z) = O(1), ∀i ∈ {3, 4}, (4.67)

and when z → ∞ in the complex plane

ci(X,λ, z) = O

(
1

z

)

∀i ∈ {1, 2, 3, 4}. (4.68)

We now transform this pair of scalar equations of second order in a single vectorial equation of first order.
We set,

U(X,λ, z) =







FR1,1(X,λ, z)
FR1,3(X,λ, z)
F ′
R1,1(X,λ, z)

F ′
R1,3(X,λ, z)






,

and we obtain
U ′(X,λ, z) = A(X,λ, z)U(X,λ, z) +B(X,λ, z)U(X,λ, z),

where

A(X,λ, z) =







0 0 1 0
0 0 0 1

z2 − ω−

X2 0 0 0
0 z2 − ω−

X2 0 0






, B(X,λ, z) =







0 0 0 0
0 0 0 0

c3 − q− c4 c1 c2
c4 c3 − q− c2 c1






.

We use the notation

U(X,λ, z) =







U1(X,λ, z)
U2(X,λ, z)
U3(X,λ, z)
U4(X,λ, z)






,

and we begin by studying the homogeneous equation

U ′(X,λ, z) = A(X,λ, z)U(X,λ, z).

We note that this equation is equivalent to the pair of modified Bessel equations

U ′′
1 (X,λ, z) +

ω−

X2
U1(X,λ, z) = z2U1(X,λ, z),

U ′′
3 (X,λ, z) +

ω−

X2
U3(X,λ, z) = z2U3(X,λ, z).
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For the basis of the space of solutions of these scalar equations we choose (
√
XIν−(zX),

√
XI−ν−(zX))

(ν− /∈ Z). In the following of the proof we set fν =
√
XIν−(zX) and gν =

√
XI−ν−(zX). Thus, we can

choose the basis formed by the four vectors

V1 =







fν
0
f ′
ν

0






, V2 =







0
fν
0
f ′
ν






, V3 =







gν
0
g′ν
0






, V2 =







0
gν
0
g′ν







and we set C(X,λ, z) the matrix in which the ith column is Vi. Using the properties on the Wronskian
of two modified Bessel functions (see [32]), we can prove the following Lemma.

Lemma 4.17.

det(C(X,λ, z)) =W (fν , gν)
2 =

4 sin(νπ)2

π2
=: ∆.

We can now study the inhomogeneous equation. We write the solution of the homogeneous equation
under the form

U0(X,λ, z) =







α1fν + β1gν
α3fν + β3gν
α1f

′
ν + β1g

′
ν

α3f
′
ν + β3g

′
ν






,

where αi and βi, i ∈ {1, 3} are chosen so that the Jost functions satisfy the prescribed asymptotics at
X → 0. We can now write a generalized Duhamel’s formula

U(X,λ, z) = U0(X,λ, z) +

∫ X

0

R(X, t, λ, z)B(t, λ, z)U(t, λ, z) dt,

where R(X, t, λ, z) is the resolvent of the homogeneous problem for t ∈]0, X [. We can write R(X, t, λ, z) =
C(X,λ, z)C(t, λ, z)−1 and we obtain

U(X,λ, z) = U0(X,λ, z) + C(X,λ, z)

∫ X

0

C(t, λ, z)−1B(t, λ, z)U(t, λ, z) dt. (4.69)

The integral term makes sense thanks to the known asymptotics of the Jost function from the right and
their derivatives when X → 0, the good estimates on the functions ci given by (4.67) and the formula
(4.56). We will use an iterative method to solve this integral equation. We define

U0(X,λ, z) = U0(X,λ, z),

Uk+1(X,λ, z) = C(X,λ, z)

∫ X

0

C(t, λ, z)−1B(t, λ, z)Uk(t, λ, z) dt, ∀k ∈ N. (4.70)

Our aim is now to prove the following Lemma.

Lemma 4.18. For all X1 ∈]0, A[ there exists a constant C ∈ R such that for all X ∈]0, X1[ and for large
pure imaginary complex z we have

|Uk
i (X,λ, z)| ≤ αk

5kC3k+1

|∆|k X2k, i ∈ {1, 2},
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|Uk
i (X,λ, z)| ≤ αk

5kC3k+1|z|
|∆|k X2k−1, i ∈ {3, 4},

where

α0 = 1 and αk+1 =

(
1

2k + 1
+

1

2k + 2

)

αk, , ∀k ∈ N.

Proof. We begin the proof by the case k = 0. Thanks to the estimates (4.58) and the formula (4.56)
we know that for all X0 ∈]0, A[ there exists a constant C ∈ R such that for all X ∈]0, X1[ and for large
z = iy, y ∈ R:

|fν(X,λ, z)| ≤
CX

|z| 12
, |gν(X,λ, z)| ≤

C

|z| 12
, (4.71)

|f ′
ν(X,λ, z)| ≤ C|z| 12 , |g′ν(X,λ, z)| ≤

C|z| 12
X

. (4.72)

We recall that

U0(X,λ, z) =







α1fν + β1gν
α3fν + β3gν
α1f

′
ν + β1g

′
ν

α3f
′
ν + β3g

′
ν






.

We know that the constants αi and βi don’t depend on X but they depend on z. Indeed, thanks to
Lemma 4.13 we have

α1 = α3 = β3 = 0, β1 =
(z

2

)ν−
(
κ−
a−

)i
(

λ−c−
κ−

)

Γ(1− ν−).

Thus, using the estimates (4.71) and (4.72) we obtain the proof of Lemma 4.18 in the case k = 0. We
suppose that the result is true for an integer k and we prove the result of the Lemma for the first and
the third components, since the study is the same for the other components. Thanks to (4.70) we know
that (for a sake of simplicity we omit the parameters of the functions),

Uk+1
1 (X,λ, z)∆ = −fν

∫ X

0

gν((c3 − q−)U
k
1 + c4U

k
2 + c1U

k
3 + c2U

k
4 ) dt

+gν

∫ X

0

fν((c3 − q−)U
k
1 + c4U

k
2 + c1U

k
3 + c2U

k
4 ) dt

and

Uk+1
3 (X,λ, z)∆ = −f ′

ν

∫ X

0

gν((c3 − q−)U
k
1 + c4U

k
2 + c1U

k
3 + c2U

k
4 ) dt

+g′ν

∫ X

0

fν((c3 − q−)U
k
1 + c4U

k
2 + c1U

k
3 + c2U

k
4 ) dt.

Using the hypothesis we can estimate the integral terms. Indeed,
∣
∣
∣
∣
∣

∫ X

0

gν((c3 − q−)U
k
1 + c4U

k
2 + c1U

k
3 + c2U

k
4 ) dt

∣
∣
∣
∣
∣

≤ 5C2αk
5kC3k+1

|∆|k
X2k+1

2k + 1
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and
∣
∣
∣
∣
∣

∫ X

0

fν((c3 − q−)U
k
1 + c4U

k
2 + c1U

k
3 + c2U

k
4 ) dt

∣
∣
∣
∣
∣
≤ 5C2αk

5kC3k+1

|∆|k
X2k+2

2k + 2
.

Thus, using the estimates (4.71) and (4.72), we can prove the Lemma for Uk+1
1 and Uk+1

3 :

|∆|Uk+1
1 (X,λ, z) ≤ 5k+1C3(k+1)+1

|∆|k αk+1X
2(k+1)

and

|∆|Uk+1
3 (X,λ, z) ≤ 5k+1C3(k+1)+1|z|

|∆|k αk+1X
2(k+1)−1.

Thus, the Lemma is proved.

To use the iterative method we need a sommability result on the term

5kC3k+1

|∆|k αkX
2k,

which is given by the following Lemma.

Lemma 4.19.

αk ≤ 3k

(2k − 1)!!
,

where (2k − 1)!! denotes the product of all the odd number lower than 2k − 1.

Proof. It suffices to note that

αk =

k∏

j=1

4j − 1

2j(2j − 1)
≤

k∏

j=1

(
2

2j − 1
+

1

(2j − 1)2

)

≤
k∏

j=1

3

2j − 1
=

3k

(2k − 1)!!
.

Thanks to Lemmas 4.18 and 4.19 we obtain that for all X1 ∈]0, A[, there exists a constant C ∈ R

such that for all X ∈]0, X1[ and for large pure imaginary complex z we have for i ∈ {1, 2},
∣
∣
∣
∣
∣
∣

∑

k≥0

Uk
i (X,λ, z)

∣
∣
∣
∣
∣
∣

≤
∑

k≥0

αk
5kC3k+1

|∆|k X2k ≤
∑

k≥0

(
15
|∆|

)k

C3k+1X2k

(2k − 1)!!
< +∞

and for i ∈ {3, 4},
∣
∣
∣
∣
∣
∣

∑

k≥0

Uk
i (X,λ, z)

∣
∣
∣
∣
∣
∣

≤
∑

k≥0

(
15
|∆|

)k

C3k+1|z|X2k−1

(2k − 1)!!
< +∞.

We set
U(X,λ, z) =

∑

k≥0

Uk(X,λ, z),
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which is the solution of the integral equation. We recall that

U1(X,λ, z) = FR1,1(X,λ, z), U2(X,λ, z) = FR1,3(X,λ, z),

and we note that we have shown that for all X1 ∈]0, A[, the functions FR1,1 and FR1,3 are bounded for
large z ∈ iR uniformly in X ∈]0, X1[. Since the Jost functions are continuous in z, we conclude that
FR1,1 and FR1,3 are bounded on iR uniformly in X ∈]0, X1[.

Theorem 4.20. For all X1 ∈]0, A[, there is a constant C such that for all X ∈]0, X1[ and for all z in
the complex plane,

|FRi,j(X,λ, z)| ≤ Ce|Re(z)|X , |F ′
Ri,j(X,λ, z)| ≤

C|z|
X

e|Re(z)|X , ∀(i, j) ∈ {1, 2, 3, 4}2.

For all X1 ∈]0, A[, there is a constant C such that for all X ∈]X1, A[ and for all z in the complex plane,

|FLi,j(X,λ, z)| ≤ Ce|Re(z)|X , |F ′
Li,j(X,λ, z)| ≤

C|z|
X

e|Re(z)|X ∀(i, j) ∈ {1, 2, 3, 4}2.

Proof. Concerning the Jost functions from the right, thanks to Lemma 3.2 we know that

|FRi,j(X,λ, z)| ≤ Ce|z|X , ∀(i, j) ∈ {1, 2, 3, 4}2.

Moreover, thanks to Lemma 4.16 we know that

|FRi,j(X,λ, z)| ≤ C, ∀z ∈ iR, ∀(i, j) ∈ {1, 2, 3, 4}2.

Thus, since the Jost functions are entire (see Section 5), using the Phragmén-Lindelöf’s Theorem we
conclude that the first estimate of Theorem 4.20 is satisfied. The same proof is also true for the Jost
functions from the left.
To prove the estimate for the derivative of the Jost functions we just recall that these functions satisfy
the equation (3.32) and we conclude using the estimates on the Jost functions.

Corollary 4.21. For all X1 ∈]0, A[, there is a constant C such that for all X ∈]0, X1[ and for all z in
the complex plane,

|hi,j,k(X,λ, z)| ≤ Ce|Re(z)|X , ∀i,∈ {1, 2, 3, 4}, ∀(j, k) ∈ {(1, 3), (2, 4), (3, 1), (4, 2)}.

Proof. We only prove that h1,1,3(X,λ, z) satisfies this estimate since the other cases are similar. We recall
that

h1,1,3(X,λ, z) = c1(X,λ, z)F
′
R1,1(X,λ, z) + c2(X,λ, z)F

′
R1,3(X,λ, z)

+c3(X,λ, z)FR1,1(X,λ, z) + c4(X,λ, z)FR1,3(X,λ, z),

where the function ci satisfy (4.67) and (4.68). Therefore, thanks to Theorem 4.20, we obtain the good
estimate.
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4.5 Asymptotics of the Jost function from the right for large complex z

We begin by studying the first block. Since the other coefficients can be treated using exactly the same
argument, we just give the proof of Theorem 4.6 for the coefficients FR1,1 and FR1,2. We prove the
following Proposition:

Proposition 4.22. For all X1 ∈]0, A[ there exists a constant C such that for large z in the complex plane
and for all X ∈]0, X1[,

|FR1,1(X,λ, z)− α11

√
XI−ν−(zX)| ≤ C

e|Re(z)|X

|z|
and

FR1,2(X,λ, z) = O

(
e|Re(z)|X

|z|

)

.

Remark 4.23. Since

Iν(z) =
∞∑

k=0

(
z
2

)ν+2k

Γ(k + ν + 1)k!
, |z| <∞, | arg(z)| < π

and

α11 =
zν−

2ν−

(
κ−
a−

)i
(

λ−c−
κ−

)

Γ(1− ν−),

there is no problem to extend the function z 7→ α11

√
XI−ν−(zX) on R− by symmetry since this function

is even. We expected to have this symmetry for large z since in the massless case ([13]) the first Jost
function from the right is even.

Proof. Thanks to Proposition 4.13, we know that

FR1,1(X,λ, z) = α11

√
XI−ν−(zX) +

∫ X

0

G1(t,X, z)(q−(t, λ)FR1,1(X,λ, z) + h1,1,3(t, λ, z)) dt,

where

α11 =
zν−

2ν−

(
κ−
a−

)i
(

λ−c−
κ−

)

Γ(1− ν−) and ν− =
1

2
− i

(λ− c−)

κ−
.

Using Proposition 4.10 and Theorem 4.20 we obtain that for all X1 ∈]0, A[ there exists a constant C such
that for large z in the complex plane and for all X ∈]0, X1[,

∣
∣
∣
∣
∣

∫ X

0

G1(t,X, z)q−(t, λ)FR1,1(X,λ, z) dt

∣
∣
∣
∣
∣

≤ C
e|Re(z)|X

1 + |zX | 12

∫ X

0

1

1 + |zt| 12
dt

≤ C
e|Re(z)|X

|z| .

Thus, for all X1 ∈]0, A[ there exists a constant C such that for large z in the complex plane and for all
X ∈]0, X1[,

∣
∣
∣
∣
∣
FR1,1(X,λ, z)− α11

√
XI−ν−(zX) +

∫ X

0

G1(t,X, z)h1,1,3(t, λ, z) dt

∣
∣
∣
∣
∣
≤ C

e|Re(z)|X

|z| .
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Moreover, thanks to Proposition 4.10 and Corollary 4.21 we have, for large z in the complex plane

∣
∣
∣
∣
∣

∫ X

0

G1(t,X, z)h1,1,3(t, λ, z) dt

∣
∣
∣
∣
∣
≤ C

e|Re(z)|X

|z| , ∀X ∈]0, X1[.

We conclude that for all X1 ∈]0, A[ there exists a constant C such that for large z in the complex plane,

|FR1,1(X,λ, z)− α11

√
XI−ν−(zX)| ≤ C

e|Re(z)|X

|z| , ∀X ∈]0, X1[.

By the same argument we obtain that for all X1 ∈]0, A[ there exists a constant C such that for large z in
the complex plane,

|FR1,2(X,λ, z)| ≤ C
e|Re(z)|X

|z| , ∀X ∈]0, X1[.

Concerning the second block we obtain the following Proposition. Since the analysis is similar we
omit the proof.

Proposition 4.24. For all X1 ∈]0, A[ there exists a constant C such that for large z in the complex
plane,

|FR2,1(X,λ, z)| = C
e|Re(z)|X

|z| , ∀X ∈]0, X1[

and

|FR2,2(X,λ, z)− α22

√
XIν−(zX)| ≤ C

e|Re(z)|X

|z| , ∀X ∈]0, X1[.

Remark 4.25. Since

Iν(z) =

∞∑

k=0

(
z
2

)ν+2k

Γ(k + ν + 1)k!
, |z| <∞, | arg(z)| < π,

α21 =
b−
2a−

(z

2

)−ν−
(
κ−
a−

)−i
(

λ−c−
κ−

)

Γ(1 + ν−)

ν−

and

α22 = i
z

2

(z

2

)−ν−
(
κ−
a−

)−i
(

λ−c−
κ−

)

Γ(1 + ν−)

ν−
.

there is no problem to extend the functions z 7→ α21

√
XIν−(zX) and z 7→ α22

√
XIν−(zX) on R− by

symmetry since these functions have parity properties. We note that the function z 7→ α22

√
XIν−(zX)

is odd. We expected to have this symmetry for large z since, in the massless case (see [13]), the second
component of Jost function from the right is odd.
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4.6 Asymptotics of the Jost functions from the left for large z

As for the Jost functions from the right we can prove that the Jost functions from the left satisfy the
following estimates.

Theorem 4.26. We set

αL(z) =
(z

2

)ν+
(

−κ+
a+

)i
(

λ−c+
κ+

)

Γ(1 − ν+)

and

βL(z) =
(z

2

)µ+
(

−κ+
a+

)−i
(

λ−c+
κ+

)

Γ(1− µ+).

For large z in the complex plane (see remark below), the Jost functions from the left satisfy the following
estimates, uniformly on each compact subset of ]0, A[,

∣
∣
∣
∣

∣
∣
∣
∣
FL1(X,λ, z)− αL(z)

√
A−XI−ν+(z(A−X))

(
1 0
0 1

)∣
∣
∣
∣

∣
∣
∣
∣
= O

(
e|Re(z)|(A−X)

|z|

)

,

∣
∣
∣
∣

∣
∣
∣
∣
FL2(X,λ, z) + iβL(z)

√
A−XIν+(z(A−X))

(
0 1
−1 0

)∣
∣
∣
∣

∣
∣
∣
∣
= O

(
e|Re(z)|(A−X)

|z|

)

,

∣
∣
∣
∣

∣
∣
∣
∣
FL3(X,λ, z) + iβL(z̄)

√
A−XIµ+(z(A−X))

(
0 1
−1 0

)∣
∣
∣
∣

∣
∣
∣
∣
= O

(
e|Re(z)|(A−X)

|z|

)

,

∣
∣
∣
∣

∣
∣
∣
∣
FL4(X,λ, z)− αL(z̄)

√
A−XI−µ+(z(A−X))

(
1 0
0 1

)∣
∣
∣
∣

∣
∣
∣
∣
= O

(
e|Re(z)|(A−X)

|z|

)

.

Remark 4.27. As in the study of the Jost function from the right we have to be careful because the
asymptotics of the modified Bessel functions are given in the whole complex plane except near the axis
R−. However using parity/imparity properties (given by the definition of αL(z) and βL(z)) we can extend
the asymptotics to the whole complex plane.

As a consequence, using the asymptotic (4.58), we can prove the following asymptotics of the Jost
functions from the left for z → +∞, z real.

Theorem 4.28. The Jost functions from the left satisfy the following asymptotics for z → +∞, z real,
uniformly on each compact subset of ]0, A[,

FL1(X,λ, z) =
2−ν+

√
2π

(

−κ+
a+

)i
(λ−c+)

κ+

Γ(1− ν+)z
−i

(λ−c+)

κ+ ez(A−X)

(
1 O

(
1
z

)

O
(
1
z

)
1

)(

1 + O

(
1

z

))

,

FL2(X,λ, z) = −i2
−µ+

√
2π

(

−κ+
a+

)−i
(λ−c+)

κ+

Γ(1− µ+)z
i
(λ−c+)

κ+ ez(A−X)

(
O
(
1
z

)
1

−1 O
(
1
z

)

)(

1 +O

(
1

z

))

,

FL3(X,λ, z) = −i2
−ν+

√
2π

(

−κ+
a+

)i
(λ−c+)

κ+

Γ(1 − ν+)z
−i

(λ−c+)

κ+ ez(A−X)

(
O
(
1
z

)
1

−1 O
(
1
z

)

)(

1 +O

(
1

z

))

,

FL4(X,λ, z) =
2−µ+

√
2π

(

−κ+
a+

)−i
(λ−c+)

κ+

Γ(1− µ+)z
i
(λ−c+)

κ+ ez(A−X)

(
1 O

(
1
z

)

O
(
1
z

)
1

)(

1 +O

(
1

z

))

.

Remark 4.29. Corresponding asymptotics are also true for z → −∞ by parity/imparity.
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4.7 Asymptotics of the matrix of scattering data

We recall that the matrix ÂL(λ, z) is defined by

F̂L(x, λ, z) = F̂R(x, λ, z)ÂL(λ, z),

and, thanks to the equation (3.33) we see that

ÂL(λ, z) = Γ1F̂R(x, λ, z̄)
⋆Γ1F̂L(x, λ, z).

Moreover

FR(x, λ, z) = e−iΓ1C−(x)F̂R(x, λ, z) and FL(x, λ, z) = e−iΓ1C−(x)F̂L(x, λ, z),

thus,
ÂL(λ, z) = Γ1FR(x, λ, z̄)

⋆Γ1FL(x, λ, z).

Then, the blocks of the matrix ÂL(λ, z) satisfy for all X ∈]0, A[ the relations







ÂL1(λ, z) = FR1(X,λ, z̄)
⋆FL1(X,λ, z)− FR3(X,λ, z̄)

⋆FL3(X,λ, z),

ÂL2(λ, z) = FR1(X,λ, z̄)
⋆FL2(X,λ, z)− FR3(X,λ, z̄)

⋆FL4(X,λ, z),

ÂL3(λ, z) = −FR2(X,λ, z̄)
⋆FL1(X,λ, z) + FR4(X,λ, z̄)

⋆FL3(X,λ, z),

ÂL4(λ, z) = −FR2(X,λ, z̄)
⋆FL2(X,λ, z) + FR4(X,λ, z̄)

⋆FL4(X,λ, z).

Remark 4.30. We immediatly see, thanks to the symmetries on the asymptotics of the Jost functions,
that for z large enough in the complex plane we have ÂL1(λ, z) ∼ ÂL4(λ, z̄)

⋆ and ÂL2(λ, z) ∼ ÂL3(λ, z̄)
⋆

which are the symmetries true for any z in the massless case studied in [13].

Thanks to Theorems 4.6 and 4.26 and the asymptotics (4.58) we obtain that if we set

α(z) =

(
κ−
a−

)−i
(

λ−c−
κ−

)

(

−κ+
a+

)i
(

λ−c+
κ+

)

Γ(1− µ−)Γ(1 − ν+)
(z

2

)µ−+ν+

and

β(z) =

(
κ−
a−

)−i
(

λ−c−
κ−

)

(

−κ+
a+

)−i
(

λ−c+
κ+

)

Γ(1− µ−)Γ(1− µ+)
(z

2

)µ−+µ+

,

the blocks of the matrix ÂL satisfy the following asymptotics for large z in the complex plane:

∣
∣
∣
∣

∣
∣
∣
∣
ÂL1(λ, z)− α(z)

√

X(A−X)(I−µ−(zX)I−ν+(z(A−X)) + Iν−(zX)Iµ+(z(A−X)))

(
1 0
0 1

)∣
∣
∣
∣

∣
∣
∣
∣

= O

(
e|Re(z)|A

|z|

)

,

∣
∣
∣
∣

∣
∣
∣
∣
ÂL2(λ, z) + iβ(z)

√

X(A−X)(Iν−(zX)I−µ+(z(A−X)) + I−µ−(zX)Iν+(z(A−X)))

(
0 1
−1 0

)∣
∣
∣
∣

∣
∣
∣
∣

= O

(
e|Re(z)|A

|z|

)

,
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∣
∣
∣
∣

∣
∣
∣
∣
ÂL3(λ, z) + iβ(z̄)

√

X(A−X)(Iµ−(zX)I−ν+(z(A−X)) + I−ν−(zX)Iµ+(z(A−X)))

(
0 1
−1 0

)∣
∣
∣
∣

∣
∣
∣
∣

= O

(
e|Re(z)|A

|z|

)

,

∣
∣
∣
∣

∣
∣
∣
∣
ÂL4(λ, z)− α(z̄)

√

X(A−X)(I−ν−(zX)I−µ+(z(A−X)) + Iµ−(zX)Iν+(z(A−X)))

(
1 0
0 1

)∣
∣
∣
∣

∣
∣
∣
∣

= O

(
e|Re(z)|A

|z|

)

.

Now, using the asymptotics of the modified Bessel functions (4.58), we obtain the asymptotics of the
matrix ÂL(λ, z) for large z in the complex plane (we can extend these asymptotics to the half line R−

by parity).

Theorem 4.31. The blocks of the matrix ÂL satisfy the following estimates for large z in the complex
plane:

ÂL1(λ, z) =
1
2π

(

−κ+

a+

)i
(λ−c+)

κ+
(

κ−

a−

)−i
(λ−c−)

κ−
Γ(1− ν+)Γ(1 − µ−)

(
z
2

)i
(

(λ−c−)

κ−
−

(λ−c+)

κ+

)

×
(

ezA + e−zAe
−sg(Im(z))π

(

λ−c+
κ+

−
λ−c−
κ−

)
)(

1 O
(
1
z

)

O
(
1
z

)
1

)
(
1 +O

(
1
z

))
,

ÂL2(λ, z) =
−i
2π

(

−κ+

a+

)−i
(λ−c+)

κ+
(

κ−

a−

)−i
(λ−c−)

κ−
Γ(1− µ+)Γ(1− µ−)

(
z
2

)i
(

(λ−c−)

κ−
+

(λ−c+)

κ+

)

×
(

ezA − e−zAe
sg(Im(z))π

(

λ−c+
κ+

−
λ−c−
κ−

)
)(

O
(
1
z

)
1

−1 O
(
1
z

)

)
(
1 +O

(
1
z

))
,

ÂL3(λ, z) =
−i
2π

(

−κ+

a+

)i
(λ−c+)

κ+
(

κ−

a−

)i
(λ−c−)

κ−
Γ(1 − ν+)Γ(1− ν−)

(
z
2

)−i
(

(λ−c−)

κ−
+

(λ−c+)

κ+

)

×
(

ezA − e−zAe
−sg(Im(z))π

(

λ−c+
κ+

+
λ−c−
κ−

)
)(

O
(
1
z

)
1

−1 O
(
1
z

)

)
(
1 +O

(
1
z

))
,

ÂL4(λ, z) =
1
2π

(

−κ+

a+

)−i
(λ−c+)

κ+
(

κ−

a−

)i
(λ−c−)

κ−
Γ(1− µ+)Γ(1 − ν−)

(
z
2

)−i
(

(λ−c−)

κ−
−

(λ−c+)

κ+

)

×
(

ezA + e−zAe
sg(Im(z))π

(

λ−c+
κ+

−
λ−c−
κ−

)
)(

1 O
(
1
z

)

O
(
1
z

)
1

)
(
1 +O

(
1
z

))
.

Remark 4.32. For large z in R
+ we obtain the analoguous of the asymptotics given in [13], Theorem

4.19, in the massless case.

5 The Complex Angular Momentum method

In this Section, we follow Section 3 of [13] and use the idea of the complex angular momentum method.
First we note that the Jost functions FL(x, λ, z) and FR(x, λ, z) are analytic in the z ∈ C variable. Indeed,
for instance, we recall that,

FR(x, λ, z) = e−iΓ1C−(x)M̂R(x, λ, z)e
iλΓ1x.

Moreover, using series expansion (see (3.44)) we obtain the analyticity of the blocks of M̂R since the
terms of the series are polynomial in the variable z. Thus the Jost functions are also analytic.
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The application z 7→ ÂL(λ, z) is also analytic on the complex plane C. Indeed, by definition

FL(x, λ, z) = FR(x, λ, z)ÂL(λ, z).

and det(FR) = 1. Thus the coefficients of the matrix ÂL(λ, z) are combinations of the components of the
Jost functions. Then, these coefficients are analytic functions of the variable z.

We now prove that the coefficients ÂLi,j of the matrix ÂL (see Section 3.2 for the notation) belong
to the Nevanlinna class when restricted to the half plane Π+ = {z ∈ C, Re(z) > 0}. As an application
we prove the uniqueness results mentionned in Introduction.

Recall first that the Nevanlinna class N(Π+) is defined as the set of all analytic functions f(z) on Π+

that satisfy the estimate

sup
0<r<1

∫ π

−π

ln+
∣
∣
∣
∣
f

(
1− reiϕ

1 + reiϕ

)∣
∣
∣
∣
dϕ <∞,

where ln+(x) = ln(x) if ln(x) ≥ 0 and 0 if ln(x) < 0. We shall use the following result proved in [41].

Lemma 5.1. Let h ∈ H(Π+) be a holomorphic function in Π+ satisfying

|h(z)| ≤ CeARe(z), ∀z ∈ Π+,

where A and C are two constants. Then h ∈ N(Π+).

As a consequence of Lemma 5.1 and Theorem 4.31, we thus get,

Corollary 5.2. For each λ ∈ R fixed, the applications z 7→ ÂLi,j(λ, z)|Π+ belong to N(Π+) for (i, j) ∈
{1, 2, 3, 4}2.

Proof. This is an immediate consequence of Theorem 4.31.

We now recall the following result proved in [41], Theorem 1.3.

Theorem 5.3 ([41], Thm. 1.3). Let h ∈ N(Π+) satisfying h(n) = 0 for all n ∈ L where L ⊂ N⋆ with
∑

n∈L
1
n = ∞. Then h ≡ 0 in N(Π+).

In other words, thanks to Corollary 5.2 and Theorem 5.3, the scattering data ÂLi,j(λ, z) are uniquely
determined as functions of z ∈ C from their values on a subset L of the integers that satisfies the Müntz
condition

∑

n∈L
1
n = ∞. In our proof of the main Theorem we need the following result.

Corollary 5.4. Consider two dS-RN black holes and denote by L̂, R̂ and
˜̂
L,

˜̂
L the corresponding reflection

coefficients. Let L ⊂ N⋆ satisfying
∑

n∈L
1
n = ∞. Assume that the following equality holds

L̂(λ, n) =
˜̂
L(λ, n), ∀n ∈ L (respectively R̂(λ, n) =

˜̂
R(λ, n), ∀n ∈ L).

Then, if we denote by P the set of poles of L̂ (respectively Q the set of poles of R̂) we have,

L̂(λ, z) =
˜̂
L(λ, z), ∀z ∈ C \ P (respectively R̂(λ, z) =

˜̂
R(λ, z), ∀z ∈ C \Q).

Proof. Since the proof is similar, we just show the result for the reflection coefficient L̂. We recall (see
(1.18)) that

L̂(λ, n) = ÂL3(λ, n)ÂL1(λ, n)
−1 = −ÂR4(λ, n)

−1ÂR3(λ, n).
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Thus, thanks to the hypothesis, we immediatly obtain

˜̂
AR4(λ, n)ÂL3(λ, n) = − ˜̂

AR3(λ, n)ÂL1(λ, n), ∀n ∈ L.
Using Corollary 5.2 and Theorem 5.3, we deduce from this equality that

˜̂
AR4(λ, z)ÂL3(λ, z) = − ˜̂

AR3(λ, z)ÂL1(λ, z), ∀z ∈ C.

Finally, for all z ∈ C\P (we note that thanks to the previous equality P = P̃ , where P̃ is the set of poles

of
˜̂
L),

L̂(λ, z) = ÂL3(λ, z)ÂL1(λ, z)
−1 = − ˜̂

AR3(λ, z)
˜̂
AR4(λ, z)

−1 =
˜̂
L(λ, z).

6 Proof of the main Theorem

The aim of this Section is to prove Theorem 1.1. Let us first assume that the assertion (i) is satisfied.
Hence we have to prove the uniqueness of the parameters (M,Q,Λ) of a dS-RN black hole from the
knowledge of the reflection coefficients of the partial scattering operators, L(λ, n), for a fixed energy
λ ∈ R and for all n ∈ L ⊂ N⋆ satisfying the Müntz condition

∑

n∈L
1
n = ∞.

Consider thus two dS-RN black holes with parameters (M,Q,Λ) and (M̃, Q̃, Λ̃) respectively. We shall
denote by a(x), b(x) and c(x) and ã(x), b̃(x) and c̃(x) the corresponding potentials appearing in the
Dirac equation (1.6) (see (2.23)). Recall that they satisfy the hypotheses of the Section 2, (1.8), and the
estimates of Lemma 2.1. We assume that

L(λ, n) = L̃(λ, n), ∀n ∈ L.
Thus (see Proposition 3.1),

L̂(λ, n) =
˜̂
L(λ, n), ∀n ∈ L.

Lemma 6.1. Suppose that

L̂(λ, n) =
˜̂
L(λ, n), ∀n ∈ L.

Then

A :=

∫

R

a(t) dt =

∫

R

ã(t) dt =: Ã.

Proof. We recall that (see (3.36) and (1.18)),

L̂(λ, n) = ÂL3(λ, n)ÂL1(λ, n)
−1

and
ÂL1(λ, n)

⋆ÂL1(λ, n) = I2 + ÂL3(λ, n)
⋆ÂL3(λ, n).

Note that, thanks to their asymptotics given in Theorem 4.31, the blocks ÂLi(λ, n), i ∈ {1, 2, 3, 4}, of the
matrix ÂL(λ, n), are invertible if n is large enough.
Thus, for n large enough,

ÂL1(λ, n)
⋆ = ÂL1(λ, n)

−1 + ÂL3(λ, n)
⋆L̂(λ, n)

= ÂL1(λ, n)
−1 + ÂL3(λ, n)

⋆ ˜̂L(λ, n)

= ÂL1(λ, n)
−1 + ÂL3(λ, n)

⋆
(

(
˜̂
AL3(λ, n)

⋆)−1(
˜̂
AL1(λ, n)

⋆ − ˜̂
AL1(λ, n)

−1)
)

.
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Thus,

(Â⋆
L3)

−1Â⋆
L1 − (Â⋆

L3)
−1Â−1

L1 = (
˜̂
A⋆

L3)
−1 ˜̂A⋆

L1 − (
˜̂
A⋆

L3)
−1 ˜̂
A−1

L1 .

Moreover, the hypothesis implies that,

(L(λ, n)⋆)−1 = (L̃(λ, n)⋆)−1,

i.e.
(Â⋆

L3)
−1Â⋆

L1 = (
˜̂
A⋆

L3)
−1 ˜̂A⋆

L1.

Thus,

(Â⋆
L3)

−1Â−1
L1 = (

˜̂
A⋆

L3)
−1 ˜̂A−1

L1 .

Finally, using the asymptotics given in Theorem 4.31, we obtain that A = Ã.

Hence, we can define the diffeomorphisms h, h̃ :]0, A[→ R as the inverse of the Liouville transforms
g and g̃ in which we use the potentials a(x) and ã(x) respectively. Now, as in [13], we follow a strategy
inspired by [20]. Let us introduce for X ∈]0, A[ the 4× 4 matrix

P (X,λ, z) =

(
P1(X,λ, z) P2(X,λ, z)
P3(X,λ, z) P4(X,λ, z)

)

, Pj(X,λ, z) ∈M2(C), j ∈ {1, 2, 3, 4},

defined by
P (X,λ, z)F̃R(h̃(X), λ, z) = FR(h(X), λ, z).

We first prove that the matrix P (X,λ, z) is constant equal to ±I4 using the Phragmén-Lindelöf’s Theorem
and Liouville’s Theorem thanks to the good estimates on the coefficients of the matrix P (X,λ, z) as well
as their analyticity with respect to z. After that, we obtain two equalities on scalar functions depending
on the potentials and we deduce from the explicit form of the potentials the uniqueness of the parameters
M , Q and Λ.

6.1 Study of the matrix P

We first recall that
FR(x, λ, z) = e−iΓ1C−(x)F̂R(x, λ, z).

Thus,

P (X,λ, z) = FR(h(X), λ, z)F̃R(h̃(X), λ, z)−1

= e−iΓ1C−(h(X))F̂R(x, λ, z)
˜̂
FR(h̃(X), λ, z)−1eiΓ

1C̃−(h̃(X)).

We know (see (3.32)) that
˜̂
FR(h̃(X), λ, z)−1 = Γ1 ˜̂FR(h̃(X), λ, z)⋆Γ1.

Thus,

P (X,λ, z) = e−iΓ1C−(h(X))F̂R(h(X), λ, z)Γ1 ˜̂FR(h̃(X), λ, z)⋆Γ1eiΓ
1C̃−(h̃(X))

= e−iΓ1C−(h(X))

(

F̂R1
˜̂
F ⋆
R1 − F̂R2

˜̂
F ⋆
R2 −F̂R1

˜̂
F ⋆
R3 + F̂R2

˜̂
F ⋆
R4

F̂R3
˜̂
F ⋆
R1 − F̂R4

˜̂
F ⋆
R2 −F̂R3

˜̂
F ⋆
R3 + F̂R4

˜̂
F ⋆
R4

)

eiΓ
1C̃−(h̃(X))

=

(
FR1F̃

⋆
R1 − FR2F̃

⋆
R2 −FR1F̃

⋆
R3 + FR2F̃

⋆
R4

FR3F̃
⋆
R1 − FR4F̃

⋆
R2 −FR3F̃

⋆
R3 + FR4F̃

⋆
R4

)

.
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Lemma 6.2. For all (i, j) ∈ {1, 2, 3, 4}2, the applications z 7→ Pi,j(X,λ, z) are analytic on C and of
exponential type (i.e. that there exist some constants c and C such that |Pi,j(X,λ, z)| ≤ ceC|z|).

Proof. Since the Jost functions are analytic on the whole complex plane, the Lemma is an easy conse-
quence of the previous equality. The fact that the components Pi,j(X,λ, z) are of exponential type is a
consequence of Theorems 4.6, 4.26 and 4.31.

We just study P1 and P2 since the study of P3 and P4 is similar. We know that

P1(X,λ, z) = FR1F̃
⋆
R1 − FR2F̃

⋆
R2

and
P2(X,λ, z) = −FR1F̃

⋆
R3 + FR2F̃

⋆
R4.

We now use

FL(x, λ, z) = FR(x, λ, z)ÂL(λ, z)

=

(
FR1ÂL1 + FR2ÂL3 FR1ÂL2 + FR2ÂL4

FR3ÂL1 + FR4ÂL3 FR3ÂL2 + FR4ÂL4

)

.

Thus, since
FL1 = FR1ÂL1 + FR2ÂL3,

we obtain
FR1 = (FL1 − FR2ÂL3)Â

−1
L1 = FL1Â

−1
L1 − FR2L̂(λ, z)

and, thanks to
FL2 = FR1ÂL2 + FR2ÂL4,

we also obtain
FR2 = (FL2 − FR1ÂL2)Â

−1
L4 = FL2Â

−1
L4 − FR1ÂL2Â

−1
L4 .

Note that, thanks to their asymptotics the matrix ALi and ARi, for i ∈ {1, 2, 3, 4}, are invertible for real
z sufficiently large. Then, for z real large enough,

F̃ ⋆
R2 = (

˜̂
A−1

L4 )
⋆F̃ ⋆

L2 − (
˜̂
A−1

L4 )
⋆ ˜̂
A⋆

L2F̃
⋆
R1.

Moreover, thanks to Equations (3.34) and (3.35),

(
˜̂
A−1

L4 )
⋆ ˜̂
A⋆

L2 = − ˜̂
A−1

R4
˜̂
AR3 =

˜̂
L.

Finally,

P1(X,λ, z) = FR1F̃
⋆
R1 − FR2F̃

⋆
R2

= (FL1Â
−1
L1 − FR2L̂(λ, z))F̃

⋆
R1 − FR2((

˜̂
A−1

L4 )
⋆F̃ ⋆

L2 − ˜̂
L(λ, z)F̃ ⋆

R1)

= FL1Â
−1
L1 F̃

⋆
R1 − FR2(

˜̂
A−1

L4 )
⋆F̃ ⋆

L2 + FR2(
˜̂
L(λ, z)− L̂(λ, z))F̃ ⋆

R1.

Thus, since L̂ and
˜̂
L have no singularities on R, Corollary 5.4 shows that L̂(λ, z) =

˜̂
L(λ, z) for all z ∈ R.

Then, we obtain that for all z ∈ R and for all X ∈]0, A[,

P1(X,λ, z) = FL1Â
−1
L1 F̃

⋆
R1 − FR2(

˜̂
A−1

L4 )
⋆F̃ ⋆

L2. (6.73)
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For P2, we obtain similarly

P2(X,λ, z) = −FL1Â
−1
L1 F̃

⋆
R3 + FR2(

˜̂
A−1

L4 )
⋆F̃ ⋆

L4. (6.74)

Thus, Theorems 4.6, 4.26 and 4.31 (and Section 4.4) show that these applications are bounded on
R and iR. Finally applying the Phragmén-Lindelöf’s Theorem ([6], Theorem 1.4.2) on each quadrant
of the complex plane, we deduce that, z 7→ Pi,j(X,λ, z) is bounded on C. By Liouville’s Theorem, we
thus obtained that the applications z 7→ Pi,j(X,λ, z) are constants on C. Contrary to [13] we can’t
use the evaluation on z = 0 because we don’t have explicit formula for P (X,λ, 0). To obtain that
P (X,λ, z) = ±I4 we use the asymptotics of the Jost functions. First, by definition

P (X,λ)F̃R(h̃(X), λ, z) = FR(h(X), λ, z),

so
P1(X,λ)F̃R1(h̃(X), λ, z) + P2(X,λ)F̃R3(h̃(X), λ, z) = FR1(h(X), λ, z) (6.75)

and
P1(X,λ)F̃R2(h̃(X), λ, z) + P2(X,λ)F̃R4(h̃(X), λ, z) = FR2(h(X), λ, z). (6.76)

Thanks to the Theorem 4.8 we know that for every fixed X ∈]0, A[, for large z, z real,

FR1(h(X), λ, z) =
2−ν−

√
2π

(
κ−
a−

)i
(λ−c−)

κ−

Γ(1− ν−)z
−i

(λ−c−)

κ− ezX
(

1 O
(
1
z

)

O
(
1
z

)
1

)(

1 +O

(
1

z

))

and

FR3(h(X), λ, z) = i
2−ν−

√
2π

(
κ−
a−

)i
(λ−c−)

κ−

Γ(1− ν−)z
−i

(λ−c−)

κ− ezX
(
O
(
1
z

)
1

−1 O
(
1
z

)

)(

1 +O

(
1

z

))

.

Thus, setting

α =
2−ν−

√
2π

(
κ−
a−

)i
(λ−c−)

κ−

Γ(1− ν−) and α̃ =
2−ν̃−

√
2π

(
κ̃−
ã−

)i
(λ−c̃−)

κ̃−

Γ(1− ν̃−),

we obtain, using (6.75) and just keeping the main terms, that for every fixed X ∈]0, A[, for large real z,
(

α̃P1(X,λ)I2 + iα̃P2(X,λ)

(
0 1
−1 0

))

z
i
(

λ−c−
κ−

−
λ−c̃−
κ̃−

)

∼ αI2.

We deduce that

λ− c−
κ−

=
λ− c̃−
κ̃−

, (6.77)

then

ν− = ν̃− and µ̃ = µ. (6.78)

Thus,

α̃ =
2−ν̃−

√
2π

(
κ̃−
ã−

)i
(λ−c̃−)

κ̃−

Γ(1− ν̃−)

= α

(
κ̃−
ã−

a−
κ−

)i
(λ−c̃−)

κ̃−

.
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Then, for all X ∈]0, A[,

(

P1(X,λ) + iP2(X,λ)

(
0 1
−1 0

))(
κ̃−
ã−

a−
κ−

)i
(λ−c−)

κ−

= I2. (6.79)

Similarly, using (6.76), for all X ∈]0, A[,

(

P1(X,λ) + iP2(X,λ)

(
0 1
−1 0

))(
κ̃−
ã−

a−
κ−

)−i
(λ−c−)

κ−

= I2. (6.80)

Thus, using Equations (6.79) and (6.80),

(
κ̃−
ã−

a−
κ−

)−i
(λ−c−)

κ−

=

(
κ̃−
ã−

a−
κ−

)i
(λ−c−)

κ−

= ±1. (6.81)

Finally, using Equations (6.77)-(6.78) and (6.81), the asymptotics of the Jost functions and the fact that
z 7→ P (X,λ, z) is constant, we obtain, thanks to Equations (6.73) and (6.74), that

P1(X,λ, z) = ±I2 and P2(X,λ, z) = 0.

Similarly we show that
P3(X,λ, z) = 0 and P4(X,λ, z) = ±I2.

In addition,

P1(X,λ, z) =

(
κ̃−
ã−

a−
κ−

)−i
(λ−c−)

κ−

I2 = P4(X,λ, z).

Finally, for all z ∈ C and for all X ∈]0, A[,

P (X,λ, z) = ±I4.

6.2 Proof of Theorem 1.1 under the first assumption

We recall that we work with the operator

H = Γ1Dx + za(x)Γ2 + b(x)Γ0 + c(x).

Since we work with the Liouville’s variable X , we introduce the operator

L = a(X)Γ1DX + za(X)Γ2 + b(X)Γ0 + c(X)

where we use the notations a(X) = a(h(X)), b(X) = b(h(X)) and c(X) = c(h(X)). Note that

HF (x, λ, z) = λF (x, λ, z) ⇔ LF (h(X), λ, z) = λF (h(X), λ, z).

Thus, by definition of the Jost functions,

Γ1DX(FR(h(X), λ, z)) =

(

−zΓ2 − b(X)

a(X)
Γ0 − c(X)

a(X)
+

λ

a(X)

)

FR(h(X), λ, z)
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and similarly

Γ1DX(F̃R(h̃(X), λ, z)) =

(

−zΓ2 − b̃(X)

ã(X)
Γ0 − c̃(X)

ã(X)
+

λ

ã(X)

)

F̃R(h̃(X), λ, z).

Moreover, in Section 6.1, we have shown that

FR(h(X), λ, z) = ±F̃R(h̃(X), λ, z), ∀X ∈]0, A[.

Then,

((

b̃(X)

ã(X)
− b(X)

a(X)

)

Γ0 +

(
c̃(X)

ã(X)
− c(X)

a(X)

)

+ λ

(
1

a(X)
− 1

ã(X)

))

FR(h(X), λ, z) = 0, ∀X ∈]0, A[.

Thanks to the definition of the matrix

Γ0 =

(
0 σ
σ⋆ 0

)

with σ =

(
−i 0
0 i

)

,

we easily obtain





((
c̃
ã − c

a

)
+ λ

(
1
a − 1

ã

))
I2

(
b̃
ã − b

a

)

σ
(

b̃
ã − b

a

)

σ⋆
((

c̃
ã − c

a

)
+ λ

(
1
a − 1

ã

))
I2



FR(h(X), λ, z) = 0.

Since the Jost function form the right FR is invertible we deduce that,

c̃− λ

ã
(h̃(X)) =

c− λ

a
(h(X)), ∀X ∈]0, A[ (6.82)

and

b̃

ã
(h̃(X)) =

b

a
(h(X)), ∀X ∈]0, A[. (6.83)

This is the first statement of Theorem 1.1. We now use the explicit form of the potentials. We recall
that, using the notation r = r(h(X)),

a(x) =

√

F (r)

r
, b(x) = m

√

F (r), c(x) =
qQ

r
.

Thus, Equation (6.83) gives us that
r̃(h̃(X)) = r(h(X)).

Moreover, using Equation (6.82),

F (r(h(X)))

(qQ − λr(h(X)))2
=

F̃ (r(h(X)))

(qQ̃− λr(h(X)))2
.

Thus,
F (r)(qQ̃ − λr)2 = F̃ (r)(qQ − λr)2.
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Finally, using the definition of F ,

F (r) = 1− 2M

r
+
Q2

r2
− Λr2

3

and identifying the coefficients of r6, r5 and r3 we obtain respectively

λ2Λ

3
=
λ2Λ̃

3
,

2λqQ̃
Λ

3
= 2λqQ

Λ̃

3

and
2λqQ̃+ 2Mλ2 = 2λqQ+ 2M̃λ2.

If λ 6= 0, these equalities allow us to conclude,

M = M̃, Q = Q̃, Λ = Λ̃.

If λ = 0 (q 6= 0) we have
F (r)Q̃2 = F̃ (r)Q2.

Thus, using the definition of F we easily obtain that

M = M̃, Q2 = Q̃2, Λ = Λ̃.

Then,
F (r) = F̃ (r),

and using (6.82) we thus obtain Q = Q̃.
This conclude the proof of Theorem 1.1. �

6.3 Proof of the main Theorem under the second assumption

The aim of this Section is to prove Theorem 1.1 if the assertion (ii) is satisfied, i.e. to prove the uniqueness
of the parameters (M,Q,Λ) of a dS-RN black hole from the knowledge of the reflection coefficient of the
partial scattering operators, R(λ, n), for a fixed energy λ ∈ R and for all n ∈ L ⊂ N⋆ satisfying the Müntz
condition

∑

n∈L
1
n = ∞. The strategy is exactly the same as the one used previously, the only difference

comes from the fact that the equalities R(λ, n) = R̃(λ, n) do not exactly imply that R̂(λ, n) =
˜̂
R(λ, n).

Consider thus two dS-RN black holes with parameters (M,Q,Λ) and (M̃, Q̃, Λ̃) respectively. We
assume that

R(λ, n) = R̃(λ, n), ∀n ∈ L.
Thus, using the link between the scattering operator S and the scattering matrix Ŝ given in Proposition
3.1 we deduce from this equality that

R̂(λ, n)e−2iβ =
˜̂
R(λ, n)e−2iβ̃ , ∀n ∈ L,

where β is the constant defined in (3.40).
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Lemma 6.3. Suppose that

R̂(λ, n)e−2iβ =
˜̂
R(λ, n)e−2iβ̃ , ∀n ∈ L.

Then

A :=

∫

R

a(t) dt =

∫

R

ã(t) dt =: Ã.

Proof. The proof of this Lemma is strictly the same as the proof of Lemma 6.1. We use the equations
(1.19), (3.34), (3.35) and (3.37) to obtain that

R̂(λ, n) = −ÂL1(λ, n)
−1ÂL2(λ, n)

and
ÂL1(λ, n)ÂL1(λ, n)

⋆ − ÂL2(λ, n)ÂL2(λ, n)
⋆ = I2.

Thus,

ÂL1(λ, n)
⋆ = ÂL1(λ, n)

−1 − R̂(λ, n)ÂL2(λ, n)
⋆

= ÂL1(λ, n)
−1 − e2i(β−β̃) ˜̂R(λ, n)ÂL2(λ, n)

⋆

= ÂL1(λ, n)
−1 + e2i(β−β̃)

(

(
˜̂
AL1(λ, n)

⋆ − ˜̂
AL1(λ, n)

−1)(
˜̂
AL2(λ, n)

⋆)−1
)

ÂL2(λ, n)
⋆.

Then,

Â⋆
L1(Â

⋆
L2)

−1 − Â−1
L1 (Â

⋆
L2)

−1 = e2i(β−β̃)
(
˜̂
A⋆

L1(
˜̂
A⋆

L2)
−1 − ˜̂

A−1
L1 (

˜̂
A⋆

L2)
−1
)

.

Moreover, the hypothesis implies that,

(R̂(λ, n)⋆)−1 = e2i(β−β̃)(
˜̂
R(λ, n)⋆)−1,

i.e.
Â⋆

L1(Â
⋆
L2)

−1 = e2i(β−β̃) ˜̂A⋆
L1(

˜̂
A⋆

L2)
−1.

Thus,

Â−1
L1 (Â

⋆
L2)

−1 = e2i(β−β̃) ˜̂A−1
L1 (

˜̂
A⋆

L2)
−1.

Finally, using the asymptotics given by Theorem 4.31, we obtain that A = Ã.

Hence, as in the previous Subsection, we can introduce, a matrix P (X,λ, z) for X ∈]0, A[. However,

due to the presence of the term e2i(β−β̃), the definition of this matrix is a little bit different (but is the
definition given in the Section 5 of [13] if we set c = β − β̃). Indeed, we define P (X,λ, z) by

P (X,λ, z)F̃R(h̃(X), λ, z) = FR(h(X), λ, z)ei(β−β̃)Γ1

.

The strategy is now exactly the same as the one used previously: we have to prove that the matrix
P (X,λ, z) is constant equal to ±I4. After some calculations we obtain that

P1(X,λ, z) = ei(β−β̃)FR2Â
−1
R2F̃

⋆
L1 − e−i(β−β̃)FL2(

˜̂
A−1

R3)
⋆F̃ ⋆

R1

and
P2(X,λ, z) = −ei(β−β̃)FR2Â

−1
R2F̃

⋆
L3 + e−i(β−β̃)FL2(

˜̂
A−1

R3)
⋆F̃ ⋆

R3.
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Thanks to these equalities and the asymptotics given in Theorems 4.6, 4.26 and 4.31, we can apply the
Phragmén-Lindelöf’s and Liouville’s Theorems to obtain that z 7→ P (X,λ, z) is constant on C. Thus, as
previously, we use the asymptotics of the Jost functions on the real line given by Theorems 4.8, 4.28 and
4.31, to obtain that

P (X,λ, z) = ±I4.
Finally, to finish the proof of Theorem 1.1 in the case (ii) we use the same procedure than the one in
Section 6.2. �
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[10] Daudé T., Gobin D., Nicoleau F., Local inverse scattering results at fixed energy in spherically
symmetric asymptotically hyperbolic manifolds, Preprint, ArXiv:1310.0733, (2013).
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