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The Context-Freeness Problem is coNP-complete
for Flat Counter Systems?
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1 Univ. Bordeaux & CNRS, LaBRI, UMR 5800, Talence, France
2 Univ. Paris Est & CNRS, LIGM, UMR 8049, Marne-la-Vallée, France

Abstract. Bounded languages have recently proved to be an important
class of languages for the analysis of Turing-powerful models. For instance,
bounded context-free languages are used to under-approximate the behav-
iors of recursive programs. Ginsburg and Spanier have shown in 1966 that
a bounded language L ⊆ a∗1 · · · a∗d is context-free if, and only if, its Parikh
image is a stratifiable semilinear set. However, the question whether a
semilinear set is stratifiable, hereafter called the stratifiability problem,
was left open, and remains so. In this paper, we give a partial answer to
this problem. We focus on semilinear sets that are given as finite systems
of linear inequalities, and we show that stratifiability is coNP-complete in
this case. Then, we apply our techniques to the context-freeness problem
for flat counter systems, that asks whether the trace language of a counter
system intersected with a bounded regular language is context-free. As
main result of the paper, we show that this problem is coNP-complete.

1 Introduction

The class of bounded languages was introduced in 1964 by Ginsburg and Spanier
to study context-free languages [11]. Nowadays, this class plays an important role
in the analysis of Turing-powerful models. Recall that a language is bounded if it
is contained in σ∗1 · · ·σ∗d for some words σ1, . . . , σd. The restriction of a model to
behaviors contained in a bounded language produces a so-called flat model that
is often amenable to automatic verification. Indeed, the reachability sets of such
restrictions are usually computable through acceleration techniques [3,4,8,1,10,2,5].
Following the same approach, bounded languages have recently been used for the
analysis of recursive concurrent systems, and more generally as a way to unify
various recent and promising “bounded verification” techniques [9].

In these applications, the class of semilinear bounded languages is central.
Recall that a semilinear set is a finite union of sets of the form b+Np1+ · · ·+Npk
where b,p1, . . . ,pk are vectors in Nd. Semilinear sets coincide with the sets
definable in Presburger arithmetic [13]. A semilinear bounded language is a
language of the form {σn1

1 · · ·σ
nd

d | (n1, . . . , nd) ∈ S} where σ1, . . . , σd are words
and S is a semilinear set. The class of semilinear bounded languages admits several
characterizations through language acceptors [6,16,9]. From a language-theoretic
? This work was supported by the ANR project ReacHard (ANR-11-BS02-001).



viewpoint, semilinear bounded languages are incomparable with context-free
languages. Indeed, the language {anbncn | n ∈ N} is well-known to be non-
context-free, and, conversely, the language {a, b}∗ is not a bounded language.
However, bounded context-free languages are semilinear bounded languages, by
Parikh’s theorem and closure under inverse morphism of context-free languages.

Ginsburg and Spanier have established in [13,14] a characterization of bounded
context-free languages in terms of semilinear sets satisfying a “stratification”
requirement. We call such semilinear sets stratifiable. The existence of a decision
procedure for determining whether a given semilinear set is stratifiable was
left open in [13,14], and has remained open since then. Rephrased in terms of
languages, this decision problem is equivalent to the question whether a given
semilinear bounded language is context-free. The latter problem is known to be
decidable for some subclasses of semilinear bounded languages, with a notable
example being the trace languages of flat Petri nets. In fact, the context-freeness
problem is decidable for trace languages of arbitrary Petri nets [22,18], and was
recently shown to be ExpSpace-complete for them [19].

Contributions. In this paper, we provide a partial answer to the question whether
a given semilinear set is stratifiable, hereafter called the stratifiability problem.
We focus on semilinear sets that are integral polyhedra, in other words, that are
given as finite systems of linear inequalities. Our contributions are twofold.

As main technical result of the paper, we show that the stratifiability problem
for integral polyhedra is coNP-complete. The proof is decomposed in two steps.
First, we reduce the stratifiability of an integral polyhedron {x ∈ Nd | Ax ≥ b}
to a stratification-like property, called nestedness, that only involves the matrix A.
We then provide a criterion for nestedness, and show how to express this criterion
by a polynomial-size quantifier-free formula in the first-order theory of the rational
numbers with addition and order. This way, we obtain that the stratifiability
problem for integral polyhedra is solvable in coNP. The proof of coNP-hardness
is by reduction from the emptiness problem for integral polyhedra.

Building on this result, we then investigate the context-freeness problem for
flat counter systems, that asks whether the trace language of a counter system
intersected with a bounded regular language is context-free. In our setting,
counter systems are a generalization of Petri nets where transitions are guarded
by integral polyhedra. Such guards can express zero tests, so counter systems
are Turing-powerful since they subsume Minsky machines. By exploiting the
restriction to bounded languages required by flatness, we show that the context-
freeness problem for flat counter systems is coNP-complete, and remains so for
flat Petri nets.

Related Work. The class of semilinear bounded languages was recently char-
acterized through various language acceptors, namely, Parikh automata [6],
reversal-bounded counter machines [16], and multi-head pushdown automata [9].
The class of semilinear sets was shown in [20] to coincide with the finite in-
tersections of stratifiable semilinear sets. It follows that the class of bounded



context-free languages is a generating class for the semilinear bounded languages.
In [17], the stratifiability problem is shown to be equivalent to the existence
of a 0-synchronized n-tape pushdown automaton equivalent to a given n-tape
finite-state automaton whose language is contained in a∗1 × · · · × a∗n. In a recent
paper [18], we proved that the trace language of a Petri net is context-free if, and
only if, it has a context-free intersection with every bounded regular language.
Building on this characterization, we then established in [19] that the context-
freeness problem for Petri nets is ExpSpace-complete, but the complexity was
left open for the subcase of flat Petri nets. Here, we show that the context-freeness
problem for flat Petri nets is coNP-complete. Related to our work is the question
whether a given model is a posteriori flat, in other words, whether the set of all
its behaviors is a bounded language. This question is shown in [7] to be decidable
for the class of complete and deterministic well-structured transition systems.

Outline. The paper is organized as follows. Preliminary notations are given in
Section 2. We recall the definition of stratifiable semilinear sets in Section 3.
The stratifiability problem for integral polyhedra is shown to be decidable in
Section 4, and it is proved to be coNP-complete in Section 5. We then address
the context-freeness problem for flat counter systems, and show in Section 6 that
it is coNP-complete. Section 7 concludes the paper with directions for future
work.

2 Preliminaries

We let N, Z and Q denote the usual sets of nonnegative integers, integers and
rational numbers, respectively. We write N1 for the set of positive integers and
Q≥0 for the set of nonnegative rational numbers. Vectors (of rational numbers),
sets of vectors and matrices are typeset in bold face. The ith component of a
vector v is written v(i). The support of a vector v, written supp(v), is the set
of indices i such that v(i) 6= 0. We let ei denote the ith unit vector, defined by
ei(i) = 1 and ei(j) = 0 for all indices j 6= i.

A partial-order on a set S is a binary relation � on S that is reflexive,
antisymmetric and transitive. As usual, we write s ≺ t when s � t and t 6� s. A
well-partial-order on S is a partial-order � on S such that every infinite sequence
s0, s1, s2, . . . in S contains an increasing pair si � sj with i < j.

3 Stratifiable Semilinear Sets

Building on earlier work with Spanier [13], Ginsburg provides, in his book [14], a
characterization of bounded context-free languages in terms of semilinear sets
satisfying a “stratification” requirement. We call such semilinear sets stratifiable.
The existence of a decision procedure for determining whether a given semilinear
set is stratifiable was left open in [13,14], and has remained open since then. We
provide a partial answer to this problem in Sections 4 and 5. Before that, we



recall in this section the definition of stratifiable semilinear sets, and how they
can be used to characterize bounded context-free languages.

Given a finite set P = {p1, . . . ,pk} of vectors in Nd, we let P ? denote the set
of finite sums of vectors in P , i.e., P ? = Np1 + · · ·+Npk. A linear set is a set of
the form b+ P ? where b is a vector in Nd and P is a finite subset of Nd. The
vector b is called the basis, and the vectors in P are called periods. A semilinear
set is a finite union of linear sets. Recall that semilinear sets coincide with the
sets definable in FO (N, 0, 1,+,≤), also known as Presburger arithmetic [13].

Definition 3.1 ([13,14]). A finite subset P of Nd is stratified if every vector
in P has at most two non-zero components, and it holds that

p(r) 6= 0 ∧ p(t) 6= 0 ∧ q(s) 6= 0 ∧ q(u) 6= 0 ⇒ ¬(r < s < t < u)

for every vectors p, q ∈ P and indices r, s, t, u ∈ {1, . . . , d}.
Example 3.2. The following examples are from [14]. The set {(2, 1, 0), (0, 3, 3)} is
stratified, but the set {(1, 1, 1), (1, 0, 2)} is not stratified, since (1, 1, 1) has three
non-zero components. The set {(3, 0, 0, 2), (0, 1, 5, 0), (4, 7, 0, 0)} is stratified, but
the set {(2, 0, 3, 0), (0, 3, 0, 2)} is not stratified. ut

We call a semilinear set stratifiable when it is a finite union of linear sets,
each with a stratified set of periods. Formally, a semilinear set S is stratifiable if
there exits a finite family {(bi,P i)}i∈I of vectors bi in Nd and finite stratified
subsets P i of Nd such that S =

⋃
i∈I(bi +P ?

i ). The following lemma shows that
stratifiable semilinear sets enjoy nice closure properties.

Lemma 3.3. The class of stratifiable semilinear sets is closed under union,
under projection, under inverse projection, and under intersection with Cartesian
products of intervals.

Proof. These closure properties are easily derived from the definition of stratifiable
semilinear sets. ut

The stratifiability problem asks whether a given semilinear set S is stratifiable.
The decidability of the stratifiability problem was raised in [13,14], and has been
open for nearly fifty years. Stratifiability is linked to the following characterization
of bounded context-free languages.

We consider words over a finite alphabet Σ. Recall that a language L ⊆ Σ∗
is bounded if L ⊆ σ∗1 · · ·σ∗d for some words σ1, . . . , σd in Σ∗. In his book [14],
Ginsburg characterizes which bounded languages are context-free, in terms of
semilinear sets. The reader is referred to [14] for further details.

Theorem 3.4 ([14, p. 162]). Consider a language L ⊆ σ∗1 · · ·σ∗d, where each
σi ∈ Σ∗. Then L is context-free if, and only if, the set of all vectors (n1, . . . , nd)
in Nd such that σn1

1 · · ·σ
nd

d ∈ L is a stratifiable semilinear set.

Example 3.5. Take Σ = {a, b, c}. The language {anbmcn | n,m ∈ N} is context-
free since the set {(n1, n2, n3) ∈ N3 | n1 = n3} is the linear set P ? where
P = {(1, 0, 1), (0, 1, 0)} is stratified. The language {anbncn | n ∈ N} is known to
be non-context-free. This means the semilinear set N(1, 1, 1) is not stratifiable. ut



4 Decidability of Stratifiability for Integral Polyhedra

In this section, we show that stratifiability is decidable for a subclass of semilinear
sets, namely the sets of integral solutions of finite systems of linear inequalities.
Formally, an integral polyhedron is a set of the form {x ∈ Nd | Ax ≥ b} where
A ∈ Zn×d is a matrix and b ∈ Zd is a vector. Every linear system Ax ≥ b can
be encoded into Presburger arithmetic, so integral polyhedra are semilinear sets.
The stratifiability problem for integral polyhedra asks, given a matrix A ∈ Zn×d
and a vector b ∈ Zd, both encoded in binary, whether the integral polyhedron
{x ∈ Nd | Ax ≥ b} is stratifiable. The remainder of this section reduces this
problem to a decision problem that only involves the matrix A ∈ Zn×d.

First, we show that stratifiability for integral polyhedra can be reduced to the
particular case of homogeneous linear inequalities. Formally, an integral cone is a
set of the form {x ∈ Nd | Ax ≥ 0} where A ∈ Zn×d is a matrix. The following
lemma shows that every integral cone is a linear set, and provides a way to
decompose integral polyhedra into integral cones.

Lemma 4.1 ([21, p. 237]). For every matrix A ∈ Zn×d and every vector
b ∈ Zd, there exists two finite subsets B and P of Nd such that:

{x ∈ Nd | Ax ≥ b} = B + P ? and P ? = {x ∈ Nd | Ax ≥ 0}

We have considered so far integral solutions of finite systems of linear inequal-
ities. To simplify our analysis, we now move from integers to rational numbers.
A cone is a set of the form {x ∈ Qd≥0 | Ax ≥ 0} where A ∈ Zn×d is a matrix.
Given a finite set P = {p1, . . . ,pk} of vectors in Nd, we let P / denote the set of
linear combinations of vectors in P with nonnegative rational coefficients, i.e.,
P / = Q≥0p1 + · · · + Q≥0pk. Put differently, P / is defined as P ? except that
Q≥0pi replaces Npi. Observe that P / = Q≥0P ? for every finite subset P of Nd.
Let us recall the following well-known property.

Property 4.2 (Farkas-Minkowski-Weyl Theorem). A subset X of Qd≥0 is a cone
if, and only if, X = P / for some finite subset P of Nd.

In order to extract the asymptotic directions of an integral polyhedron, we
associate to every finite subset P ⊆ Nd a partial-order vP on Nd defined by
x vP y if y ∈ x+ P ?. Observe that when P = {e1, . . . , ed}, the partial-order
vP coincides with the classical partial order ≤ on Nd, which is known to be a
well-partial-order on Nd = Nd ∩ P /, by Dickson’s lemma. This observation can
be generalized to any finite subset P of Nd, as follows. We refer the reader to
the proof of Lemma 1.2 from [15] for details.

Lemma 4.3 ([15]). The partial-order vP on Nd is a well-partial-order on
Nd ∩ P /, for every finite subset P of Nd.

To show that the stratifiability problem for integral polyhedra is decidable,
we decompose cones into “maximal stratifiable parts”. The formal definition of



these parts requires some additional notations. A binary relation R on {1, . . . , d}
is called nested if it satisfies the two following conditions:

(s, t) ∈ R ⇒ s ≤ t (1)
(r, t) ∈ R ∧ (s, u) ∈ R ⇒ ¬(r < s < t < u) (2)

An example of a nested relation is depicted in Figure 1a. Given a cone X ⊆ Qd≥0
and a nested binary relation R on {1, . . . , d}, we introduce the set XR defined
as follows:

XR =
∑
r∈R

Xr

where, for each pair r = (s, t) of indices satisfying 1 ≤ s ≤ t ≤ d, the set Xr is
given by:

Xr =

x ∈X

∣∣∣∣∣∣ ∧
j 6∈{s,t}

x(j) = 0


Intuitively, the “maximal stratifiable parts” mentioned previously are the sets
XR. The “stratification” property of XR is expressed by the following lemma.

Lemma 4.4. For every cone X ⊆ Qd≥0 and every nested binary relation R on
{1, . . . , d}, it holds that XR = P /

R for some finite stratified subset PR of Nd.

Proof. Consider a cone X = {x ∈ Qd≥0 | Ax ≥ 0} and a nested binary relation
R on {1, . . . , d}. First, notice that Xr is a cone for every r = (s, t) in R. Indeed,
every constraint x(j) = 0 may be expressed as the conjunction of x(j) ≥ 0 and
−x(j) ≥ 0. By adding these inequalities to the matrix A for every j 6∈ {s, t}, we
obtain a matrix witnessing that Xr is a cone. It follows from Property 4.2 that
Xr = P /

r for some finite subset P r ⊆ Nd. Therefore, XR = P /
R where PR is

the finite subset of Nd defined by PR =
⋃
r∈R P r. Since R is nested, we derive

that PR is stratified, which concludes the proof of the lemma. ut

We are now ready to provide a decidable characterization of stratifiable integral
polyhedra. Given a cone X ⊆ Qd≥0, we say that X is nested if X =

⋃
RXR. It

is understood that the union ranges over nested binary relations on {1, . . . , d}.
Observe that each XR is contained in X, since cones are closed under addition.
So nestedness only requires that X is contained in

⋃
RXR. The cone nestedness

problem asks, given a matrix A ∈ Zn×d encoded in binary, whether the cone
{x ∈ Qd≥0 | Ax ≥ 0} is nested.

Theorem 4.5. An integral polyhedron {x ∈ Nd | Ax ≥ b} is stratifiable if, and
only if, it is empty or the cone {x ∈ Qd≥0 | Ax ≥ 0} is nested.

Proof. For brevity, we let S denote the integral polyhedron {x ∈ Nd | Ax ≥ b},
and X denote its associated cone {x ∈ Qd≥0 | Ax ≥ 0}.

We first prove the “if” direction of the theorem. If S is empty then it is trivially
stratifiable. Let us assume that X is nested. According to Lemma 4.1, the integral



polyhedron S can be decomposed into a sum S = B+H where B ⊆ Nd is a finite
set and H is the integral cone {x ∈ Nd | Ax ≥ 0}. Observe that X =

⋃
RXR

since X is nested, and that H ⊆ X by definition. We derive that H can be
decomposed into H =

⋃
RHR where HR = H ∩XR. By Lemma 4.4, there

exists a finite stratified set PR ⊆ Nd such that XR = P /
R. Lemma 4.3 entails

that vPR
is a well-partial-order on Nd ∩XR. It follows that the set of minimal

elements of HR for this well-partial-order is a finite set. Moreover, writing BR

this finite set, we obtain that HR ⊆ BR + P ?
R. We have proved the inclusion

H ⊆
⋃
R(BR + P ?

R). Since the converse inclusion is immediate, the set H is
stratifiable. From S = B +H, we deduce that S is stratifiable.

We now prove the “only if” direction of the theorem. Let us assume that S
is non-empty and stratifiable. Since S is stratifiable, it can be decomposed into⋃
i∈I(bi + P ?

i ) where I is finite, bi ∈ Nd and P i ⊆ Nd is a finite stratified set.
Let us first show that P ?

i ⊆
⋃
RXR. Define Ri to be the set of pairs (s, t),

with 1 ≤ s ≤ t ≤ d, such that p(s) 6= 0 ∧ p(t) 6= 0 for some vector p ∈ P i. It is
readily seen that Ri is a nested binary relation on {1, . . . , d}, since P i is stratified.
Let p ∈ P i. For each n ∈ N, it holds that bi+np ∈ S. Thus, Abi+nAp ≥ b for
every n ∈ N. We deduce that Ap ≥ 0, hence, p ∈X. By definition of Ri, we get
that p ∈XRi

. Since XRi
is closed under addition, we obtain that P ?

i ⊆XRi
.

To prove that X ⊆
⋃
RXR, it is enough to show that Nd ∩X ⊆

⋃
RXR,

since cones are closed under multiplication with nonnegative rational numbers.
Let x ∈ Nd ∩X. Since S is non-empty, there exists s ∈ S. For every n ∈ N,
we have A(s + nx) ≥ b, hence, s + nx ∈ S. By the pigeon-hole principle,
there exists i ∈ I and an infinite set N ⊆ N such that s + nx ∈ bi + P ?

i for
every n ∈ N . Lemma 4.3 entails that vP i

is a well-partial-order on Nd ∩ P /
i .

Since xn = s − bi + nx is in P ?
i ⊆ Nd ∩ P /

i for every n ∈ N, we deduce
that there exists n,m ∈ N such that n < m and xn vP i

xm. It follows that
(m − n)x = xm − xn ∈ P ?

i . Since P ?
i ⊆

⋃
RXR, we obtain that x ∈

⋃
RXR.

We have shown that Nd ∩X ⊆
⋃
RXR, and we conclude that X is nested. ut

Given a cone X = {x ∈ Qd≥0 | Ax ≥ 0}, we may compute from the matrix A
a formula in the theory FO (Q, 0, 1,+,≤) expressing the equality X =

⋃
RXR.

Since this theory is decidable by Fourier-Motzkin quantifier elimination, we obtain
that the cone nestedness problem is decidable. It follows from Theorem 4.5 that
the stratifiability problem for integral polyhedra is decidable. We show, in the
next section, that this problem is coNP-complete.

5 A Criterion for Cone Nestedness Decidable in coNP

We provide, in this section, a criterion for checking whether a given cone is
nested. This criterion leads to a coNP decision procedure for the cone nestedness
problem, and similarly for the stratifiability problem for integral polyhedra. We
also show that the latter upper bound is tight.

To every cone X ⊆ Qd≥0, we associate the set ıX =
⋃
RXR. Recall that X is

non-nested precisely when X 6⊆ıX. We show that non-nestedness of a cone X
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Fig. 1: Decomposition of nested relations and of reducible vectors

can always be witnessed by a vector in X \ıX of a special form. We will need
the following easy facts. An illustration of the first lemma is given in Figure 1a.

Lemma 5.1. Assume that d ≥ 3. A binary relation R on {1, . . . , d} is nested if,
and only if, there exist a pivot p with 1 < p < d and two nested binary relations U
and V on {1, . . . , p} and {p, . . . , d}, respectively, such that R ⊆ {(1, d)} ∪ U ∪ V .

Lemma 5.2. For every x ∈ ıX, there exists a nested binary relation R on3

supp(x) such that x ∈XR.

Proof (sketch). If x ∈ıX then x =
∑
r∈R xr for some nested binary relation R

on {1, . . . , d} and some vectors xr ∈Xr. We can assume, w.l.o.g., that xr(s) 6= 0
and xr(t) 6= 0 for each pair r = (s, t). Indeed, if xr = 0 then r can be removed
from R, and, otherwise, if xr(s) = 0 or xr(t) = 0 then r can be replaced by (t, t)
or (s, s), respectively. It follows that R is a nested binary relation on supp(x). ut

Consider a coneX ⊆ Qd≥0. Given a pair r = (s, t) of indices with 1 ≤ s ≤ t ≤ d,
we call r-decomposition4 any triple (a,y, z) of vectors in Xr ×X ×X such
that supp(y) ⊆ {s, . . . , p} and supp(z) ⊆ {p, . . . , t} for some pivot p satisfying
s < p < t. Since cones are closed under addition, the vector a+ y + z is in X
for every decomposition (a,y, z). The following lemma shows that membership
in ıX is also preserved by decomposition.

Lemma 5.3. For every r-decomposition (a,y, z), it holds that (a+ y + z) ∈ıX
if y ∈ıX and z ∈ıX.

Proof. Assume that y ∈ıX and z ∈ıX. By Lemma 5.2, there exists two nested
binary relations U on supp(y) and V on supp(z) such that y ∈XU and z ∈XV .
Since (a,y, z) is an r-decomposition, there exists a pivot p with s < p < t,
where r = (s, t), such that supp(y) ⊆ {s, . . . , p} and supp(z) ⊆ {p, . . . , t}. It
follows that the field5 of U and the field of V are contained in {s, . . . , p} and
3 Recall that supp(v) denotes the support of v, i.e, the set of indices i with v(i) 6= 0.
4 This notion is defined relative to a cone X, which is left implicit to reduce clutter.
5 The field of a binary relation is the union of its domain and range.



{p, . . . , t}, respectively. We derive from Lemma 5.1 that the binary relation
R = {(s, t)}∪U ∪ V is nested. Observe that a, y and z are all in XR. Since XR

is closed under addition, we obtain that (a+ y + z) ∈XR, which concludes the
proof of the lemma. ut

We call a vector x ∈X reducible4 when supp(x) has cardinality at most two,
or there exists a pair (s, t) of indices in supp(x), with 1 ≤ s ≤ t ≤ d, and an
(s, t)-decomposition (a,y, z) such that x = a + y + z. The latter condition is
depicted in Figure 1b. Note that this condition entails that supp(x) ⊆ {s, . . . , t}.
A vector x ∈ X is called irreducible4 when it is not reducible. The following
theorem characterizes which cones are nested, in terms of irreducible vectors.
Before that, we illustrate these notions on a few examples.

Example 5.4. Let X and Y be the cones given by X = {x ∈ Q3
≥0 | x(1) = x(3)}

and Y = {x ∈ Q3
≥0 | x(1) = x(2) = x(3)}. The vector (1, 0, 1) is reducible for

both cones, since it contains only two non-zero components. The vector (1, 1, 1)
is reducible for X. This is witnessed by the (1, 3)-decomposition (a,y,y) where
a = (1, 0, 1) and y = (0, 0.5, 0). The same vector (1, 1, 1) is irreducible for Y . ut

Theorem 5.5. A cone is nested if, and only if, it contains no irreducible vector.

Proof. Consider a cone X ⊆ Qd≥0. We first prove the “only if” direction of the
theorem. Assume that X is nested, and let x ∈ X. If supp(x) has cardinality
at most two, then x is trivially reducible. Suppose, on the contrary, that x
contains at least three non-zero components. Since X ⊆ ıX, we obtain from
Lemma 5.2 that there exists a nested binary relation R on supp(x) such that
x ∈ XR. Moreover, R is not empty since x 6= 0. Let F denote the field5 of R,
and define s = minF and t = maxF . Observe that both s and t are in supp(x).
Notice also that t ≥ s+ 2 since x contains at least three non-zero components.
We derive from Lemma 5.1 that there exist a pivot p with s < p < t, a nested
binary relation U on {s, . . . , p} and a nested binary relation V on {p, . . . , t}, such
that R ⊆ {(s, t)}∪U ∪V . We derive that x ∈ (X(s,t)+XU +XV ), which entails
that x is reducible.

Let us now prove the “if” direction of the theorem. Assume that X is not
nested. This means that X 6⊆ ıX. Among the vectors x in X \ıX, pick one
such that supp(x) is minimal for inclusion. Let us show that x is irreducible. By
contradiction, suppose that x is reducible. Observe that supp(x) has cardinality
at least three since x ∈ (X \ıX). Therefore, there exists a pair (s, t) of indices
in supp(x), with 1 ≤ s ≤ t ≤ d, and an (s, t)-decomposition (a,y, z) such that
x = a + y + z. It is readily seen that supp(y) and supp(z) are both strictly
contained in supp(x). By minimality of x, we get that y and z are in ıX. We
derive from Lemma 5.3 that x ∈ıX, which contradicts the assumption that x is
in X \ıX. ut

The previous theorem allows us to reduce the cone nestedness problem to the
question whether a given cone contains only reducible vectors. In the remainder



of this section, we explain how to solve the latter problem in coNP. Consider
a matrix A ∈ Zn×d encoded in binary, and let X = {x ∈ Qd≥0 | Ax ≥ 0}. We
build, in time polynomial in the size of A, a quantifier-free formula6 ρ(x) in
FO (Q, 0, 1,+,≤) that is valid if, and only if, X contains only reducible vectors.
This will entail a coNP upper bound for the cone nestedness problem, since
satisfiability of quantifier-free formulas in FO (Q, 0, 1,+,≤) is solvable in NP (see,
e.g., [21, p. 120]). First, we build a formula ϕ(x), containing quantifiers, whose
models are precisely the vectors in X that are reducible. Let B be the the matrix
in Z(n+d)×d obtained from A by appending the identity matrix to the bottom of
A. Note that X = {x ∈ Qd | Bx ≥ 0}. The formula ϕ(x) is:

Bx ≥ 0 ∧
∨

1≤s≤t≤d

Ñ ∧
i 6∈{s,t}

x(i) = 0

é
∨ (x(s) > 0 ∧ x(t) > 0 ∧ ψB,s,t(x))


where, for each pair (s, t) of indices with 1 ≤ s ≤ t ≤ d, the formula ψB,s,t(x),
given below, expresses that there exists an (s, t)-decomposition (a,y, z) such
that x = a+ y + z. The formula ψB,s,t(x) is:

( ∧
i<s∨ i>t

x(i) = 0

)
∧

t−1∨
p=s+1

∃µ∃ν ∃π



B(µes + νet) ≥ 0

B

Ñ ∑
s≤i<p

x(i)ei − µes + πep

é
≥ 0

B

Ñ∑
p≤i≤t

x(i)ei − πep − νet

é
≥ 0


Here, it is understood that the sub-formula in brackets stands for the conjunction
of the three systems of linear inequalities. It is routinely checked that, for every
vector x ∈ Qd, the formula ϕ(x) holds if, and only if, x is a reducible vector of X.
Notice that each disjunct ∃µ∃ν∃π [· · · ] contains a constant number of quantifiers,
namely three. So, with Fourier-Motzkin quantifier elimination, we can transform,
in polynomial time, each formula ψB,s,t(x) into an equivalent quantifier-free
formula ψ′B,s,t(x). Let ϕ

′(x) denote the formula obtained from the definition
of ϕ(x) by replacing each ψB,s,t(x) by ψ′B,s,t(x). The desired formula ρ(x) is
(Bx ≥ 0)⇒ ϕ′(x). We have shown the following theorem.

Theorem 5.6. The cone nestedness problem is solvable in coNP.

We now have all the necessary ingredients to prove the following corollary,
which is the main technical result of the paper.

Corollary 5.7. The stratifiability problem for integral polyhedra is coNP-complete.

Proof. We start by recalling that the emptiness problem for integral polyhedra
is coNP-complete (see, e.g., [21, p. 245]). This problem asks, given a matrix
6 In this paper, we assume that all integer constants in formulas are encoded in binary.



A ∈ Zn×d and a vector b ∈ Zd, both encoded in binary, whether the integral
polyhedron {x ∈ Nd | Ax ≥ b} is empty.

Let us now prove the corollary. The upper bound follows from Theorem 4.5,
Theorem 5.6, and closure under union of coNP. The lower bound is obtained
by reduction from the emptiness problem for integral polyhedra. First of all, we
observe that by increasing d by 3 and by slightly modifying the pair (A, b), the
emptiness problem for integral polyhedra can be reduced, in linear time, to the
particular case of integral polyhedra X satisfying the following condition:

X = ∅ or {(x(1),x(2),x(3)) | x ∈X} = N(1, 1, 1) (3)

Recall that the linear set N(1, 1, 1) is not stratifiable (see Example 3.5). It follows
from Lemma 3.3 that every integral polyhedron satisfying (3) is empty if, and
only if, it is stratifiable. We have thus reduced, in linear time, the emptiness
problem for integral polyhedra to the stratifiability problem for them. ut

6 Application to Flat Counter Systems

In this section, we investigate the context-freeness problem for flat counter
systems. This problem asks whether the trace language of a given counter system
intersected with a given bounded regular language is context-free. In our setting,
counter systems are a generalization of Petri nets where transitions are guarded
by integral polyhedra. Such guards can express zero tests, so counter systems
subsume Minsky machines and, therefore, are Turing-powerful. We show that the
context-freeness problem for flat counter systems is coNP-complete, and remains
so for flat Petri nets.

We exploit the restriction to bounded languages required by flatness to
reduce the context-freeness problem for flat counter systems to the stratifiability
problem for integral polyhedra. This reduction is performed in two steps. It
is well-known that bounded regular languages are finite unions of languages
of the form w1σ

+
1 · · ·wdσ

+
d [12]. As a first step, we consider a subproblem of

the context-freeness problem for flat counter systems, where the given bounded
regular language is of the form w1σ

+
1 · · ·wdσ

+
d . We provide a reduction of this

subproblem to the stratifiability problem for integral polyhedra. The context-
freeness problem for flat counter systems is then reduced to this subproblem by
providing polynomial bounds on the size of the languages w1σ

+
1 · · ·wdσ

+
d .

A counter system is a formal model manipulating a finite set of counters rang-
ing over the natural numbers. Given a number of counters c ∈ N, a configuration
is a vector x ∈ Nc, and a transition is a triple θ = (A, b,v) where A ∈ Zm×c is a
matrix, and b ∈ Zm and v ∈ Zc are two vectors. Informally, a transition (A, b,v)
represents the guarded translation “Ax ≥ b ; x := x+ v ; x ≥ 0”.

Formally, a counter system is a triple S = 〈c,Θ,xinit〉 where c ∈ N is a number
of counters, Θ ⊆ Zm×c × Zm × Zc is a finite set of transitions, and xinit ∈ Nc is
an initial configuration. The operational semantics of S is given by the labeled



transition relation → ⊆ Nc × Θ × Nc, defined by x
(A,b,v)−−−−−→ y if Ax ≥ b and

y = x + v. A run is a finite, alternating sequence (x0, θ1,x1, . . . , θk,xk) of
configurations and transitions, satisfying xi−1

θi−→ xi for all i. The word θ1 · · · θk
is called the label of the run. We introduce, for every word σ ∈ Θ∗, the binary
relation σ−→ between configurations, defined by x

σ−→ y if there exists a run from
x to y labeled by σ. A trace from a configuration x is the label of some run
that starts with x. We let T (S,x) denote the set of all traces from x. The set
T (S,xinit) of all traces from the initial configuration, shortly written T (S), is
called the trace language of S. The context-freeness problem for counter systems
asks whether the trace language of a given counter system is context-free. This
problem is easily shown to be undecidable, by reduction from the reachability
problem for (deterministic) Minsky machines.

For the subclass of Petri nets, the context-freeness problem was shown to
be decidable by Schwer in [22]. In our settings, a Petri net is a counter system
〈c,Θ,xinit〉 where Θ is a set of transitions of the form (A, b,v) such that A is
the identity matrix. Informally, Petri net transitions are guarded translations
“x ≥ b ; x := x+ v ; x ≥ 0”. In a recent paper [18], we revisited the context-
freeness problem for Petri nets, and gave a simpler proof of decidability based
on bounded regular languages. We showed that the trace language of a Petri
net is context-free if, and only if, it has a context-free intersection with every
bounded regular language. Based on this characterization, the context-freeness
problem for Petri nets was then shown to be ExpSpace-complete [19]. However,
the complexity of the context-freeness problem for flat Petri nets was left open.

This motivates our study of the context-freeness problem for flat counter
systems. Formally, we define this problem as follows:

Input: a counter system S = 〈c,Θ,xinit〉, and a finite-state automaton7 A
recognizing a bounded regular language L(A) ⊆ Θ∗,

Output: whether the language T (S) ∩ L(A) is context-free.

The size of the input is the obvious one, where integers are encoded in binary. In
the sequel, this problem is reduced to a subproblem, called the context-freeness
problem for flat-linear counter systems, which is defined as follows:

Input: a counter system S = 〈c,Θ,xinit〉, and a finite sequence w1, σ1, . . . , wd, σd
of words in Θ∗,

Output: whether the language T (S) ∩ w1σ
+
1 · · ·wdσ

+
d is context-free.

The size of the input is, again, the obvious one, with integers encoded in binary.
The decidability of this last problem requires the following variant of Ginsburg’s
characterization of bounded context-free languages (cf. Theorem 3.4).

7 Recall that a finite-state automaton is a quintuple A = 〈Q, I, F,Σ,→〉 where Q is
a finite set of states, I ⊆ Q and F ⊆ Q are finite sets of initial and final states, Σ
is a finite alphabet, and → ⊆ Q×Σ ×Q is a finite set of transitions. We let L(A)
denote the language recognized by A.



Lemma 6.1. Consider a language L ⊆ w1σ
+
1 · · ·wdσ

+
d , where each wi ∈ Σ∗

and each σi ∈ Σ∗. Then L is context-free if, and only if, the set of all vectors
(n1, . . . , nd) in Nd1 such that w1σ

n1
1 · · ·wdσ

nd

d ∈ L is a stratifiable semilinear set.

The context-freeness problem for flat-linear counter systems is shown to be
decidable in coNP by a polynomial-time reduction to the stratifiability problem
for integral polyhedra, which is solvable in coNP by Corollary 5.7. Let us consider
an input of this problem, namely a counter system S = 〈c,Θ,xinit〉 and a
finite sequence w1, σ1, . . . , wd, σd of words in Θ∗. By Lemma 6.1, the language
L = T (S) ∩ w1σ

+
1 · · ·wdσ

+
d is context-free if, and only if, the following set is

stratifiable:

N = {(n1, . . . , nd) ∈ Nd1 | w1σ
nd
1 · · ·wdσ

nd

d ∈ T (S)}

This set is shown to be an integral polyhedron in Corollary 6.3. This result follows
from the following “acceleration” lemma.

Lemma 6.2. There exists a polynomial-time algorithm that, given a counter
system S = 〈c,Θ,xinit〉 and a word σ ∈ Θ∗, computes a matrix A ∈ Zn×c and
three vectors a, b ∈ Zn and v ∈ Zc such that:

x
σn

−−→ y ⇐⇒ Ax+ na ≥ b ∧ y = x+ nv

for every x,y ∈ Nc and n ∈ N1.

Proof (sketch). By encoding the effect of a word σ ∈ Θ∗ into a single transition,
we deduce the lemma thanks to [2]. The crucial observation is the convexity of
the guard of this transition. ut

Corollary 6.3. There exists a polynomial-time algorithm that, given a counter
system S = 〈c,Θ,xinit〉 and a sequence w1, σ1, . . . , wd, σd of words in Θ∗, com-
putes a matrix A ∈ Zn×d and a vector b ∈ Zn such that:

w1σ
n1
1 · · ·wdσ

nd

d ∈ T (S) ⇐⇒ A(n1, . . . , nd) ≥ b

for every n1, . . . , nd ∈ N1.

Proof. We derive in polynomial time from Lemma 6.2, a tuple (Ai,ai, bi,vi)

such that for every n ∈ N1 and any x,y ∈ Nc we have x
σn
i−−→ y if, and only if,

Aix+ nai ≥ bi and y = x+ nivi. In polynomial time, we compute transitions
θi = (Bi, ci,ui) such that the binary relation wi−→ is equal to θi−→. The word
w1σ

n1
1 · · ·wdσ

nd

d is a trace from xinit with n1, . . . , nd ∈ N1 if, and only if, the
following linear system is satisfiable where yi = xinit +

∑
1≤j<i(uj + njvj) and

xi = yi + ui:
d∧
i=1

Biyi ≥ ci ∧Aixi + niai ≥ bi

Now, just observe that such a linear system can be written as a linear system of
the form A(n1, . . . , nd) ≥ b. ut



We deduce the following theorem.

Theorem 6.4. The context-freeness problem for flat-linear counter systems is
coNP-complete.

Proof. Since the language L is context-free if, and only if, the integral polyhedron
N is stratifiable, it follows from Corollary 5.7 that the context-freeness problem
for flat-linear counter systems is in coNP. The problem is shown to be coNP-hard
by a direct reduction from the stratifiability problem for integral polyhedra,
which is coNP-hard by Corollary 5.7. ut

The context-freeness problem for flat counter systems can be reduced to the
flat-linear case thanks to the following lemma, which provides polynomial bounds
on the decomposition of bounded regular languages into languages of the form
w1σ

+
1 · · ·wdσ

+
d .

Lemma 6.5. Let A be a finite-state automaton. If L(A) is bounded then it is
the union of the languages w1σ

+
1 · · ·wdσ

+
d such that A contains an accepting run

q0
w1−−→ q1

σ1−→ q1 · · · qd−1
wd−−→ qd

σd−→ qd with d+ |w1σ1 · · ·wdσd| ≤ 6|Q|3.

Proof (sketch). The proof is obtained by first proving that |w1σ1|, . . . , |wdσd|
are bounded by |Q|. The lemma follows from the bound d ≤ |Q|2 + 1 with a
pigeon-hole argument. ut

Now, consider an instance (S,A) of the context-freeness problem for flat
counter systems. Recall that L(A) is bounded. We derive from the previous
Lemma that T (S) ∩ L(A) is not context-free if, and only if, there exists an
accepting run q0

w1−−→ q1
σ1−→ q1 · · · qd−1

wd−−→ qd
σd−→ qd in A of polynomial length

such that T (S)∩w1σ
+
1 · · ·wdσ

+
d is not context-free. Since non-context-freeness of

T (S)∩w1σ
+
1 · · ·wdσ

+
d can be checked in NP, we obtain that the context-freeness

problem for flat counter systems is in coNP. A matching lower bound is obtained
by reduction from 3-Sat.

Lemma 6.6. The context-freeness problem for flat Petri nets8 is coNP-hard.

Proof (sketch). Given a 3-Sat formula ϕ, an instance (S,A) of the context-
freeness problem for flat Petri nets is computed in polynomial time in such a way
that the language T (S) ∩ L(A) is non-empty, and in this case not context-free,
if, and only if, the formula ϕ is satisfiable. Since 3-Sat is NP-hard, the context-
freeness problem for flat Petri nets is coNP-hard. ut

We have shown the following theorem, which is the second main result of the
paper.

Theorem 6.7. The context-freeness problem for flat counter systems is coNP-
complete, and remains so for flat Petri nets.
8 The context-freeness problem for flat Petri nets is defined exactly as the context-
freeness problem for flat counter systems except that the input counter system is
required to be a Petri net.



Remark 6.8. Our setting requires a single initial configuration. Let us consider a
variant without any specific initial configuration. An uninitialized counter system
is a pair S = 〈c,Θ〉 where c ∈ N is a number of counters and Θ is a finite set
of transitions. Its trace language is defined by T (S) =

⋃
xinit∈Nc T (S,xinit). The

context-freeness problem for uninitialized flat counter systems is defined exactly
as the context-freeness problem for flat counter systems except that it takes an
uninitialized counter system as input. This problem can be shown to be decidable
by adapting techniques developed in this paper. In fact, just observe that the
set N = {(n1, . . . , nd) ∈ Nd1 | w1σ

n1
1 · · ·wdσ

nd

d ∈ T (S)} can be denoted by a
Presburger formula ϕ(n1, . . . , nd) = ∃xinit A(xinit, n1, . . . , nd) ≥ b for a matrix
A and a vector b that are both computable in polynomial time. Decidability
of the context-freeness problem for uninitialized flat counter systems follows by
quantifier elimination on ϕ. However, the complexity is open. ut

7 Conclusions and Future Work

The decidability of the stratifiability problem for semilinear sets was raised
in [13,14] almost fifty years ago, and is still open. Rephrased in terms of lan-
guages, this decision problem is equivalent to the question whether a given
semilinear bounded language is context-free. In this paper, we have shown that
the stratifiability problem for the subclass of integral polyhedra is coNP-complete.
Building on this result, we have then established that the context-freeness prob-
lem for flat counter systems is coNP-complete, and remains coNP-hard for the
subcase of flat Petri nets.

To solve the stratifiability problem for integral polyhedra, we have reduced
it to the particular case of integral cones. While the latter is in coNP, its exact
complexity is open.
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