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Abstract. The practically important problem of the wave run-up is studied in this article
in the framework of Nonlinear Shallow Water Equations (NSWE). The main novelty
consists in the usage of high order local asymptotic analytical solutions in the vicinity of
the shoreline. Namely, we use the analytical techniques introduced by S. Kovalevskaya

and the analogy with the compressible gas dynamics (i.e. gas outflow problem into the
vacuum). Our run-up algorithm covers all the possible cases of the wave slope on the
shoreline and it incorporates the new analytical information in order to determine the
shoreline motion to higher accuracy. The application of this algorithm is illustrated on
several important practical examples. Finally, the simulation results are compared with
the well-known analytical and experimental predictions.
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1. Introduction

The wave run-up problem has been attracting a lot of attention of the hydrodynamicists,
coastal engineers and applied mathematicians because of its obvious practical importance
for the assessment of inundation maps and mitigation of natural hazards [41]. Most oftenly
this problem has been approached in the context of Nonlinear Shallow Water Equations
(NSWE) which was successfully validated several times [37, 39].

Various linearized theories have been applied to estimate the wave run-up [18]. Perhaps,
the most outstanding method is the widely-known Carrier-Greenspan hodograph transfor-
mation which allows to transform the NSWE into a linear wave equation [13]. Later, this
method was extended to solve also the Boundary Value Problem (BVP) for the NSWE [1].
The general conclusion to which several authors have converged is that the linear theory
is able to predict correctly the maximal wave run-up [38]. However, this technique has at
least one serious shortcoming since it is limited only to constant sloping beaches. Therefore,
the usage of numerical techniques seems to be unavoidable [29].

The first tentatives to simulate numerically the run-up date back to the mid 70’s [27].
Various techniques have been tested ranging from the analytical mappings to a fixed com-
putational domain to the application of moving grids. The most widely employed technique
consists in replacing the dry area by a thin water layer of negligible height (see [25] among
the others). Perhaps, the first modern numerical run-up algorithm was proposed by Hib-

berd & Peregrine (1979) [24].
The run-up algorithm proposed in the present study is based on two ingredients. The

first trick consists in discretizing the fluid domain solely which allows us to use judiciously
the grid points only where they are needed in contrast to shock-capturing schemes where
the whole computational domain (wet ⋃ dry areas) is discretized. The other ingredient
consists in using a high order asymptotic expansion near the moving shoreline point. To
the lowest order these solutions can be identified with the so-called shoreline Riemann
problem [34, 7, 12]. However, our asymptotic solutions are valid not only for flat, but also
for general bottoms. In some particular cases they can provide us with the exact solution
when the latter is a polynomial function in time. This novel analytical tool allows us to
make a zoom on the NSWE solutions structure locally in time in a wider class of physical
situations. This algorithm is completely unknown outside the Russian literature [6], which
justifies the present publication. Moreover, in the present study we focus on the motion
of the shoreline which is used in the run-up algorithm, instead of obtaining the solutions
local in time in the whole domain.

The key idea to derive and apprehend these asymptotics lies in the deep analogy between
the NSWE and the compressible Euler equations for an ideal polytropic gas. Another
similarity consists in the analogy between the wave run-up (wetting/drying) process and the
compressible gas outflow into the vacuum. In this case, the shoreline can be identified with
the vacuum boundary. Consequently, one can hope to transpose the powerful analytical
methods of the compressible gas dynamics [5, 4] to NSWE. This programme will be
accomplished hereinbelow.
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Figure 1. Sketch of the physical domain, where y = −h(x) is the bottom shape,
y = η(x, t) is the free surface and x = x0(t) is the moving shoreline. The
horizontal blue dotted arrow shows the wave propagation direction.

This paper is organized as follows. In Section 2 the governing equations are presented
and some of their basic properties are discussed. The following Section 3 presents a novel
high order asymptotic solution in the vicinity of the shoreline point. The numerical run-up
algorithm based on this solution is described in Section 4 and some numerical results are
presented in Section 5. Finally, the main conclusions and perspectives of this study are
outlined in Section 6.

2. Mathematical model

Consider an ideal and incompressible fluid bounded from below by the absolutely rigid
solid bottom (given by the equation y = −h(x)) and by the free surface on the top (given by
y = η(x, t)). The sketch of the physical domain and the description of the chosen coordinate
system are given on Figure 1. The Cartesian coordinate system xOy is chosen such that
the horizontal axis y = 0 coincides with the mean water level (i.e. the undisturbed position).
The vector g = (0,−g) denotes the gravity acceleration. The fluid domain is bounded on the
right by a sloping beach and x = x0(t) denotes the instantaneous position of the shoreline.

If we make an additional assumption on the shallowness of the gravity wave propagation
(i.e. the characteristic wavelength is much bigger than the mean water depth) then it
can be shown that the fluid flow is described by the classical Nonlinear Shallow Water
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Equations (NSWE) [16, 34]:

∂v

∂t
+ ∂f(v)

∂x
= S(v, x), x < x0(t), t > 0. (2.1)

The vector v of conservative variables, the flux function f(v) and the source term are
given by the following formulas

v = ( H
Hu
) , f(v) = ( Hu

Hu2 + g

2
H2
) , S(v, x) = ( 0

gHhx

) .
Physically, the variable u(x, t) is the depth-averaged horizontal velocity and H(x, t) =
h(x) + η(x, t) is the total water depth.

Equations (2.1) have to be supplied by appropriate initial and boundary conditions. At
the moment of time t = t0 we assume that we know the fluid state

H(x, t0) = H0(x), u(x, t0) = u0(x), x < x0(t0). (2.2)

On the shoreline the total water depth is known

H(x0(t), t) = 0, ∀t ⩾ 0. (2.3)

In [24] an additional boundary condition on the wet/dry interface has been imposed:

dx0

dt
= u(x0(t), t), ∀t ⩾ 0,

however this condition is a direct consequence of (2.3) and it is not required in the present
study. The computational domain will be bounded from the left at x = 0 where a non-
reflective boundary condition is imposed.

2.1. Properties

Equations (2.1) can be recast in the following non-conservative form

vt + A vx = S(v, x),
where A (v) ∶= df(v)

dv
is the Jacobian matrix. Eigenvalues of the matrix A can be easily

computed

λ± = u ± cs, cs ∶= √gH.

For x < x0(t) the total depth H(x, t) > 0 is necessarily positive and in this case we have
λ+ ≠ λ−. It means that the system (2.1) is hyperbolic in wet areas. On the shoreline
both eigenvalues coincide (λ+ ≡ λ−) and the line x = x0(t) is a characteristic of multiplicity
two. This observation shows the deep similarity between the shallow water flows and the
compressible gas dynamics. In the latter case the separating boundary with the vacuum is
also a multiple characteristic. This analogy will allow us to apply the methods developed for
compressible gas dynamics to compute the local asymptotic solutions in the neighborhood
of the gas/void transition [5].



G. Khakimzyanov et al. 6 / 25

3. Local asymptotic solution

Consider the NSWE system (2.1) in the non-conservative form:

Ht + uHx + Hux = 0, (3.1)

ut + uux + gHx = gh′(x), (3.2)

supplemented with the initial condition (2.2) along with the shoreline boundary condition
(2.3). In the sequel we assume the functions H0(x), u0(x) and h(x) to be analytic.

Depending on the initial data H0(x) there are three distinct possibilities to be analyzed:

Regular wave: H ′
0
(x0(t0)) ≠ 0

Tangent wave: H ′
0
(x0(t0)) = 0

Breaking wave: H ′
0
(x0(t0)) = −∞

No other situations are possibe due to the entropy conditions.

3.1. Regular wave

A regular wave contact with a sloping beach is shown for illustration on Figure 1. By
the Theorem of Kovalevskaya the problem (3.1)-(3.2) has a unique analytic solution in the
form of the following power series

H(x, t) = ∞∑
k=0

Hk(x) (t − t0)k
k!

, u(x, t) = ∞∑
k=0

uk(x) (t − t0)k
k!

. (3.3)

Now we need to determine the coefficients Hk(x), uk(x) of this power series. To do so,
we substitute the representation (3.3) into the k-th derivative in time of the equations
(3.1)-(3.2) and we evaluate the sum at t = t0. In this way the following recurrence formula
can be obtained

Hk+1(x) = − k∑
i=0

Ci
k (H ′iuk−i + Hiu

′
k−i), uk+1(x) = −gH ′k − k∑

i=0

Ci
k u
′
iuk−i,

where Ci
k are the binomial coefficients. Note that the zeroth order terms H0(x), u0(x) are

provided directly by the initial conditions (2.2).
If we assume additionally that the shoreline position is also an analytical function of

time, it can be expanded in the Taylor series in powers of (t − t0)
x0(t) = ∞∑

k=0

x
(k)
0
(t0) (t − t0)k

k!
, x

(k)
0
(t) ∶= dkx0(t)

dtk
. (3.4)

In order to determine the coefficients x(k)(t0) one needs to substitute (3.4) into the shoreline
boundary condition:

H(x0(t), t) ≡ ∞∑
k=0

Hk(x0(t)) (t − t0)k
k!

≡ 0.
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After differentiating the last equality k times with respect to t and evaluating it at t = t0
yields

x
(k)
0
(t0) = −Hk(x0(t0)) + Rk

H ′
0
(x0(t0)) ,

where the functions Rk depend recursively on the solution at the preceding orders. First
three expressions of Rk are given below

R1 = 0,

R2 = 2H ′1(x0(t0))x(1)0
(t0) + H ′′0 (x0(t0))(x(1)0

(t0))2,
R3 = 3(H ′1x(2)0

+H ′2x(1)0
) + 3(H ′′0 x(2)0

+H ′′1 x(1)0
)x(1)

0
+ H ′′′0 (x(1)0

)3,
where in the last expression for R3 we omitted the argument x0(t0) for the sake of concise-

ness. All coefficients x
(k)
0
(t0) can be determined in this way since by assumption we are in

a regular situation, i.e. H ′
0
(x0(t0)) ≠ 0. Other cases will be treated below.

In order to determine the shoreline velocity u(x0(t), t) let us introduce a new independent
variable x ∶= x − x0(t) such that a fixed point x ≡ 0 corresponds to the moving shoreline in
the initial coordinates. In new variables (x, t) equations (3.1)-(3.2) read

Ht + (u − ẋ0(t))Hx + Hux = 0, (3.5)

ut + (u − ẋ0(t))ux + gHx = gh′(x + x0), (3.6)

where ẋ0(t) denotes the derivative of the function x0(t) with respect to the time t. These
equations are valid up to the shoreline x = 0. Taking the limit of equation (3.5) as x → 0

and having in mind the boundary condition (2.3), one can easily obtain that

u(x0(t), t) = ẋ0(t), ∀t ⩾ 0. (3.7)

On the other hand, the shoreline position x0(t) was previously found in the form (3.4). By
substituting the representation (3.4) into the relation (3.7), one can easily compute the
shoreline velocity u(x0(t), t) simply by differentiating formally (3.4).

Remark 1. It shows that only one boundary condition has to be imposed in order to
determine completely the shoreline motion ( cf. [24]).

Remark 2. The convergence radius of the series (3.4) cannot exceed the time t = t∗ where
the wave breaking occurs. If it occurs in the interior of the fluid domain x < x0(t), the
wave breaking (or shock formation, i.e. Hx(x, t∗) = −∞) will be treated numerically by the
thoroughly chosen finite volume scheme. On the other hand, if the wave breaking occurs
precisely at the shoreline, it will be treated below in Section 3.3.

Remark 3. By taking the limit of (3.6) as x → 0, we can easily compute the wave slope
at the shoreline

Hx∣x=0 = h′(x0(t)) − 1

g
ut∣x=0 . (3.8)
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Figure 2. Sketch of the physical domain when the wave is coming tangent to the
shoreline i.e. H ′

0
(x0(t0)) = 0.

3.2. Tangent wave

In this case the initial conditions are chosen such that at the initial moment the free
surface geometrically coincides with the tangent drawn at the shoreline. See Figure 2 for
the illustration. Analytically this condition reads H ′

0
(x0(t0)) = 0. It means also that in this

particular case the implicit function theorem cannot be applied to determine the shoreline
position x0(t) from the boundary condition (2.3) as we did in the previous Section 3.1.
Consequently, we will adopt another strategy.

Let us consider a more general problem. We assume that initially the free surface is
touching the shoreline with the order p ⩾ 1, i.e.

H
(i)
0
(x0(t0)) = 0, i = 0, . . . , p and H

(p+1)
0
(x0(t0)) ≠ 0,

where H
(p)
0

denotes p-th derivative. In this case we can seek the function in the form
H(x, t) ∶=Hp(x, t). Then, in new variables the system (3.1)-(3.2) reads

Ht + uHx + 1

p
Hux = 0,

ut + uux + pgHp−1Hx = gh′(x).
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Now, similarly to the previous Section, we introduce a new independent variable x ∶=
x − x0(t) which yields the following system

Ht + (u − ẋ0(t))Hx + 1

p
Hux = 0,

ut + (u − ẋ0(t))ux + pgHp−1Hx = gh′(x + x0),
along with the corresponding transformed initial conditions

H∣t=t0 = p

√
H0(x + x0(t0)), u∣t=t0 = u0(x + x0(t0)).

Finally, by taking the limit as x→ 0 we obtain the following system of Ordinary Differential
Equations (ODEs), which governs the shoreline position and velocity as functions of time

ẋ0 = u0(t), (3.9)

u̇0 = gh′(x0(t)). (3.10)

The last system has to be completed by appropriate initial conditions. We note that the
first equation (3.9) describes the shoreline kinematics, while the second equation (3.10)
comes from the dynamics.

Remark 4. One can notice that the last ODE (3.10), which governs the shoreline velocity,
can be obtained also from equation (3.8) by remembering that Hx∣x=0 = 0.
Remark 5. The system of ODEs (3.9)-(3.10) is linear and thus, can be solved explicitly
if the bottom function h(x) is linear or quadratic in the vicinity of the shoreline x = x0(t).

3.3. Breaking wave

The case when H ′
0
(x0(t0)) = −∞ corresponds to the wave breaking which takes place

precisely at the shoreline. See Figure 3 for the illustration. In this way, we are coming
naturally to consider a generalized shoreline Riemann problem. Its classical counterpart
was considered earlier in [35, 7]. The generalization consists in considering a generic non-
constant initial state (2.2). The evolution of this initial condition in the space-time domain
is shown schematically on Figure 4. For times t > t0 three distinct domains D1,2,3 can be
considered. These domains are separated by two curves γ0,1 which are defined as:

● γ0 ∶= (x0(t), t) is the shoreline trajectory which separates the dry region from the
fluid domain. So, in other words we can say that H(x, t)∣

γ0

≡ 0. On the other hand,

u(x, t)∣
γ0

is to be determined.● γ1 ∶= (x1(t), t) is the sonic characteristics (a weak discontinuity). The values of the
functions H(x, t) and u(x, t) are known on the sonic characteristics thanks to the
initial conditions:

H(x, t)∣
γ1

= H1(t), u(x, t)∣
γ1

= u1(t). (3.11)

Once the boundaries γ0,1 between the sub-domains Di are drawn, we can describe their
respective content:● D1 is the dry area, i.e. where the total water depth is equal to zero,
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Figure 3. Sketch of the physical domain when the wave breaking takes place on
the shoreline i.e. H ′

0
(x0(t0)) = −∞.

Figure 4. Solution of the Riemann problem after the wave breaking on the shoreline.
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● D2 is the transition zone where the solution has to be computed,● D3 is the unperturbed water state given essentially by the initial conditions.

We note however that the precise location of curves γ0,1 in the (x, t) domain is a part of the
shoreline Riemann problem solution. In the sequel we will assume that the unperturbed
wave, the sonic curve γ1 along with the functions H1(t), u1(t) are known.

In order to construct the solution in the sub-domain D2, we take t and H as independent
variables. Hence, x and u become functions of (t,H). The NSWE (3.1)-(3.2) in new
variables read

xt = u + HuH , (3.12)

xHut − Hu2

H + g = gxHh
′(x). (3.13)

Remark 6. In the new variables the gradients are finite, since on the shoreline we have

xH ≡ ∂x

∂H
= 1

Hx

= 0, at t = t0.

Thus, the fluid flow in D2 is described by solutions of the last system of PDEs (3.12)-
(3.13) with additional conditions posed on boundaries γ0 and γ1. However, since γ1 is a
characteristic boundary of multiplicity two, we have to specify one additional condition on
it in order to construct a unique analytic solution. In variables (t,H) this condition reads:

x(t,H)∣t=t0 ≡ x0(H) = x0(t0). (3.14)

Now we can construct the formal local analytic solution to the system (3.12)-(3.13). As
above, we seek solutions x(t,H) and u(t,H) in the form of power series in t − t0:

x(t,H) = ∞∑
k=0

xk(H) (t − t0)k
k!

, u(t,H) = ∞∑
k=0

uk(H) (t − t0)k
k!

. (3.15)

This solution is valid only in some neighborhood of γ1, where it is expected to be analytic.
The lower order coefficient in the expansion of x(t,H) is given by the additional condition
(3.14). After substituting these expansions into (3.12)-(3.13) and setting t = t0 yields

x1(H) = u0(H) + Hu′0(H), u′0(H) = ± √ g

H
.

After integrating the the second equation with respect to H we obtain the following explicit
representation

x1(H) = u∗ ± 3
√
gH, u0(H) = u∗ ± 2

√
gH,

where u∗ appears as an integration constant. In order to determine it we use the initial
conditions

u∗ = u0 ± 2
√
gH0.

For the configuration depicted on Figure 8 we choose the value with the positive sign

u∗ = u0 + 2
√
gH0.

The quantity u∗ has a precise physical meaning — it is the instantaneous velocity of the
shoreline after the disintegration of the initial discontinuity.
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After differentiating the system (3.12)-(3.13) with respect to time t and setting t = t0
afterwards, we obtain the power series coefficients at the next order

x2(H) = u1(H) + Hu′1, Hu′1(H) − 3

4
u1(H) = −3

4
gh′(x0(t0)).

After solving the second differential equation for u1(H) we obtain the following explicit
formulas

x2(H) = 7

4
u
(1)
1

H
3

4 + gh′(x0(t0)), u1(H) = u
(1)
1

H
3

4 + gh′(x0(t0)),
where u

(1)
1

is another integration constant. After differentiating the system (3.12)-(3.13) k
times with respect to t and evaluating the obtained relations at t = t0 we get

xk+1 = uk(H) + Hu′k(H), Hu′k(H) − 3

4
kuk(H) =

√
H

4g
Pk(H),

where Pk(H) is some function determined recursively at every step k. The integration of
the last differential equation for u′k(H) yields the following recursion formulas

xk+1 = (1 + 3

4
k)H 3

4
ku
(1)
k + Qk(H),

uk(H) = H
3

4
k [u(1)k + 1

2
√
g
∫

t

t0

Pk(H)
H

3

4
k+ 1

2

dH].
Qk(H) is another function of the coefficients obtained on previous steps and u

(1)
k are

integration constants which can be determined from conditions (3.11). Namely, H1(t) is
substituted into the right-hand side of the power series representation of u(t,H) in (3.15),
while u1(t) is substituted into the left-hand side. Expanding both sides of the equality into
a Taylor series in powers of t − t0 and identifying the coefficients in front of equal powers

of t− t0 leads the required relations which allow us to determine integration constants u
(1)
k ,

k ⩾ 1.
From computations made hereinabove we can draw some important conclusions about

the properties of the obtained solutions:● By induction we can show that the functions x(t,H) and u(t,H) have the structure

x(t,H) = x(0)(t) + x1(t,H), u(t,H) = u(0)(t) + u1(t,H),
and the functions x1(t,H) and u1(t,H) have a known behaviour at the shoreline:

lim
H→0

x1(t,H) = 0, lim
H→0

u1(t,H) = 0.

● Functions x(0)(t) and u(0)(t) are analytic.● For practical purposes it is easier to compute functions x(0)(t), u(0)(t) by solving
the following system of ODEs:

ẋ(0) = u0, x(0)(t0) = x0(t0),
u̇(0) = gh′(x(0)), u(0)(t0) = u∗.

(3.16)
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This statement can be checked by expanding the solutions of (3.16) into a formal
series in powers of t − t0 and by identifying the coefficients in front of the equal
powers.● As in the previous case, the last system of ODEs is easily and exactly solvable on
uniformly sloping or parabolic bottoms when h′(x) = const or a linear function of
its argument.

Using the methods described in [4], the following result can be proved

Theorem 1 ([6]). There exists time t2 > t0 such that for ∀t ∈ [t0, t2] the series (3.15)
converge in the whole sub-domain D2. Moreover, on the shoreline we have

xH ∣H=0 = −∞, t0 < ∀t < t2. (3.17)

By transforming condition (3.17) into the physical space, i.e. Hx∣γ0

= 0, we can see that
the last Theorem has an important

Corollary 1. After a wave breaking event taking place exactly on the shoreline, it is the
2nd scenario ( i.e. the wave tangent to the shoreline) which is always realized.

Remark 7. Note the similarity between the systems (3.9), (3.10) and (3.16). The differ-
ence appears at the level of the initial conditions.

To summarize the developments made in this section, we constructed a local solution to
the generalized shoreline Riemann problem. We underline the local nature of the results
presented in this study. All the properties are valid in the vicinity of the shoreline locally
in time. However, these solutions turn out to be very useful in numerical computations,
where the approximate solution is needed only at the next time step tn+1 = tn +∆t, for
some appropriately chosen ∆t > 0.

4. Run-up algorithm

Now we can briefly describe the run-up algorithm, since all the ingredients have been

prepared in the previous sections. Let us consider the 1D grid {x(n)j }Nj=1 at time t = tn.

The rightmost node x
(n)
N corresponds to the moving shoreline at every time layer tn, n ⩾ 0.

From the definition of the shoreline we know that H
(n+1)
N ≡ 0. So, we need to determine

the current speed u
(n)
N and the future position x

(n+1)
N of the shoreline. On every time step

we estimate numerically the solution gradient δxH
(n)
N on the shoreline using a simple finite

difference scheme

δxH
(n)
N ∶= H

(n)
N −H(n)N−1

x
(n)
N − x(n)N−1

.

Then, we choose two numbers 0 < δ ≪ ∆. Depending on the value of δxH
(n)
N the following

three scenarii are possible:

(1) δ ⩽ ∣δxH(n)N ∣ ⩽ ∆: we consider that H ′(x0(tn)) ≠ 0 and we have a regular wave. In

order to find the shoreline position x0(t) at the next time step we use a partial
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sum (the first k terms) of the series (3.4). In practice, the number of terms never
exceeds k = 4 since it does not lead to the further increase in the accuracy and the
numerical results are visually indistinguishable.

(2) ∣δxH(n)N ∣ < δ: in this case we assume that H ′(x0(tn)) = 0 and we have a wave

tangent to the bottom at the shoreline. In this case we apply one step of the
favourite Runge–Kutta scheme [9] to the system (3.9)-(3.10) to obtain the next
position of the shoreline.

(3) ∣δxH(n)N ∣ > ∆: in this case we assume that H ′(x0(tn)) = −∞ and we have a wave

breaking event at the shoreline. In this case we also apply one step of a Runge–
Kutta scheme to the system (3.16) to obtain the shoreline position at the next time
step tn+1.

Remark 8. In the coding practice the numbers δ, ∆ are related to the average spatial
discretization step ⟨∆x⟩ in the following way

δ ∶= C1⟨∆x⟩, ∆ ∶= C2⟨∆x⟩ ,
where C1,2 are some constants. In the numerical simulations C1,2 are chosen such that
δ = O(10−3) and ∆ = O(101). So, there are four orders of magnitude between the negligibly
small and practically infinite wave slopes.

5. Numerical results

In numerical simulations presented below we use a predictor-corrector scheme on an
adaptive grid [33]. This scheme is monotonicity preserving 2nd order accurate in space with
the reconstruction which is exact for linear solutions. The CFL condition [15], computed
using the maximal speed of the characteristics λ±, was set to be equal to 0.95 in all the
computations shown below.

The adaptive grid is constructed using the equidistribution method [33]. This algorithm
allows to have higher concentrations of grid points which follow the solution extrema [3]
(wave crests, troughs and near the shoreline, depending on its parametrization). The
motion of grid points will be shown below for the sake of illustration (see Figure 7).

5.1. Run-up on a plane beach

Let us consider the classical problem of a solitary wave run-up onto a plane beach
considered in the PhD thesis of C. Synolakis [36]. The bottom profile is given by the
following function

y = −h(x) = { −d0, 0 ⩽ x < xs,−d0 + (x − xs) tan θ, xs ⩽ x ⩽ ℓ, , ℓ ∶= xs + (h0 + d0) cot θ,
where θ is the bottom slope, d0 is the unperturbed water depth. The sketch of the physical
domain is shown on Figure 5. The parameter h0 is the topography height at x = ℓ, where
the wave tank is bounded by a vertical wall. The domain is always chosen such that the
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Figure 5. Sketch of the physical domain corresponding to our numerical
simulations of a solitary wave run-up onto a plane beach [36].

wave never touches the boundaries of the computational domain (in order to avoid the
influence of boundaries on the numerical results). In the computations presented below,
the parameter h0 varied in the range 0.5÷1.3 depending on the wave amplitude and bottom
slope.

The initial condition was prescribed by the following formulas

η0(x) ∶= a0 sech
2(
√
3a0g

2d0U (x−x0)), H0(x) ∶= h(x) + η0(x), u0(x) ∶= U η0(x)
H0(x) , (5.1)

where a0 is the solitary wave amplitude, x0 is the initial position of the wave crest and

U ∶=√g(d0 + a0) is the wave celerity in the fully nonlinear, weakly dispersive formulation
[31, 23, 19]. In the numerical results shown below we chose x0/d0 ∶= 20 and xs/d0 ∶= 40. A
sample simulation of a wave run-up for a0/d0 = 0.01 and the bottom slope θ = 2.88○ is
shown on Figure 6. The motion of every 10th grid point is represented on Figure 7 in order
to show the work of the adaptive strategy for the grid motion.

Synolakis proposed an empirical law to determine the maximal run-up R of a solitary
wave on a plane beach [37]:

R
d0
= 2.831

√
cot θ (a0

d0
) 5

4

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S

. (5.2)

This condition was obtained for non-breaking waves under the additional assumption

a0

d0
> (0.288 tan θ)2. (5.3)
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Figure 6. Space-time plot of the solitary wave run-up with θ = 2.88○ and
a0/d0 = 0.01.

The breking criteria during the wave run-up was given in [37]:
a0

d0
< 0.82 (tan θ) 109 ,

and during the run-down in [30]:
a0

d0
< 0.479 (tan θ) 109 . (5.4)

Please, note that the wave breaking is more likely to happen during the run-down than
during the run-up (since 0.479 < 0.82).

We performed a series of numerical experiments (23 in total) for various values of the
wave amplitude a0/d0 = 0.005 ÷ 0.256 and bottom inclinations θ = 1○ ÷ 15○. All these
experiments are shown with filled (●) or empty (○) circles on Figure 8 depending on whether
they fall (●) into the applicability range of formula (5.2) or not (○). Comparisons with the
analytical prediction (5.2) and experimental data [37] show an excellent agreement with
our numerical results presented on Figure 9. Moreover, these results seem to indicate that
the applicability range of formula (5.2) has been seriously underestimated.

5.2. Run-up on a curvilinear beach

It was explained above that our run-up algorithm becomes particularly simple and ele-
gant for linear or parabolic bottoms (in the vicinity of the shoreline) considered so far. In
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Figure 7. Trajectories of grid points during a solitary wave run-up with
θ = 2.88○ and a0/d0 = 0.01. Only every 10th point is shown for the sake of
clarity. This computation corresponds to the space-time evolution shown on
Figure 6. The black solid line shows the discrete trajectory of the shoreline point

{x(n)
N
}.

order to show the performance of the algorithm in general cases, we consider the following
general bathymetry:

y = −h(x) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−d0 0 ⩽ x ⩽ xs,

h0 − d0
2

+ (h∞ − h0 − d0
2
) tanh(κ(x − ξ)), xs < x ⩽ ℓ, , (5.5)

where d0 is the unperturbed water depth in the leftmost point, h0, h∞ are the topography
heights at x = ℓ and x→∞ correspondingly. Parameters κ, ξ and ℓ are defined as

κ ∶= tan θ

h∞ − h0−d0
2

, ξ ∶= xs + 1

2κ
ln

h∞ + d0
h∞ − h0

, ℓ ∶= 2ξ − xs,

where θ is the maximal bottom slope which is reached at x = ξ. In the computations
presented in this Section we use the values d0 = 1.0, h∞ = 0.15 and h0 = 0.14. Moreover, we
take xs/d0 = 40.0 and the solitary wave is placed initially at x0/d0 = 20.0. The unperturbed
position of the shoreline x0(t0) for the bottom slope (5.5) is

x0(t0) = ξ + 1

2κ
ln(1 + 1 − h0

h∞
), ξ < x0(t0) < ℓ.
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Figure 8. Applicability range of formula (5.2) bounded from below by condition
(5.3) and from above by the wave breaking criterium (5.4). Numerical
experiments which lie in the range of applicability of (5.2) are shown with filled
circles (●). All the others, which are outside, are shown with empty circles (○).

For the sake of comparison we considered also an equivalent linearized bottom profile given
naturally by the secant joining the point (xs,−d0) with (x0(t0),0):

y = −h(x) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−d0 0 ⩽ x ⩽ xs,

x − x0(t0)
x0(t0) − xs

, xs < x ⩽ ℓ . (5.6)

Two profiles of the curvilinear bathymetry given by formula (5.5) along with corresponding
linearized profiles (5.6) are depicted on Figure 10. The numerical values of several bottom
characteristics for various choices of the parameter θ are given in Table 1.

We performed in total 20 = 5 × 2 × 2 numerical experiments of a solitary wave run-up
(5.1) for five values of the bottom slope θ, two values of the incident wave amplitude
and two shapes of the bottom. All the values of these parameters along with computed
maximal run-ups R/a0 are reported in Table 2. It turns out that maximal run-up in all
cases considered in this study are slightly higher for the curvilinear bottom (5.5). This
result shows one more time that the precise knowledge of the local bathymetric features
is of capital importance for the accurate prediction of the wave run-up. For the sake
of comparison we show on Figure 11 the space-time plots of the free surface elevation
(a0/d0 = 0.02 and θ = 5○) for both bottom profiles. In particular, the curvilinear bottom
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Figure 9. Comparison of maximal run-up values with the experimental data (+)
[37] and the analytical prediction (5.2) (straight solid line). The horizontal
variable S denotes the right hand side of the equation (5.2).

θ ξ x0(t0) ℓ θ̃0 θs θ̃

3 66.25 76.81 92.51 1.35 0.10 1.56

5 55.73 62.05 71.46 2.26 0.17 2.60

7 51.20 55.71 62.41 3.16 0.24 3.64

9 48.69 52.18 57.38 4.08 0.31 4.69

11 47.08 49.93 54.16 5.00 0.38 5.75

Table 1. Dependence of the linearized bottom characteristics on the parameter θ

(curvilinear bottom slope at x = ξ) from formula (5.5). The parameters θ̃0 is the
curvilinear bottom slope at x = x0(t0); θs is the curvilinear bottom slope at x = xs.
The slope of the linearized bottom profile is θ̃.
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Figure 10. Bottom profile given by formula (5.5) (black solid line) for θ = 5○.
Dashed line shows the corresponding linearized bottom profile (5.6).

R/a0
θ0 Curvilinear bottom (5.5) Linearized bottom (5.6)

a0/d0 = 0.01 a0/d0 = 0.02 a0/d0 = 0.01 a0/d0 = 0.02

3○ 5.62 6.34 5.58 6.30

5○ 4.40 5.15 4.37 5.11

7○ 3.71 4.36 3.74 4.42

9○ 3.26 3.90 3.35 3.94

11○ 2.95 3.52 3.07 3.60

Table 2. Dependence of the maximal wave run-up on the bottom slope, incident
wave amplitude and the bottom shape.

induces on Figure 11(a) a higher and much longer first wave along with more pronounced
secondary oscillations.

6. Discussion

The main conclusions and perspectives of this study are outlined below.
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(a) Curvilinear bottom

(b) Linearized bottom

Figure 11. Space-time plots of the free surface evolution for a0/d0 = 0.02 and
θ = 5○ for the curvilinear (a) and corresponding linearized (b) bottom profiles.
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6.1. Conclusions

In this article a novel asymptotic solution to the NSWE is derived. This solution is di-
rectly inspired by analogous problems arising in the Gas Dynamics (e.g. gas outflow into the
vacuum, [5]). So, some methods of compressible fluid mechanics have been transposed to
shallow water flows thanks to the mathematical analogy between the governing equations.
We would like to stress out that our asymptotic solution is valid for general bathyme-
tries in contrast to several other analytical investigations limited exclusively to the sloping
beach case [13, 14]. A new run-up algorithm was proposed based on this deeper analytical
knowledge of NSWE solutions structure in the vicinity of the wet/dry interface transition.
Moreover, this algorithm uses moving grids in order to mesh the fluid domain only which
leads to significant savings in terms of the CPU time. The usage of this algorithm was illus-
trated on several realistic examples. Finally, we note that the proposed run-up algorithm
is particularly simple and elegant for uniformly sloping or parabolic bottoms.

We believe that the methodology presented in this study will be especially important
for higher-order Finite Volumes (FV) or Discontinuous Galerkin (DG) discretizations [11]
where the high accuracy is required throughout the whole domain. The tools developed
here allow to make a mixed numerical/analytical zoom on the shoreline kinematics and
dynamics.

6.2. Perspectives

The first natural extension consists in generalizing the present algorithm to 3D (2DH)
flows on structured [28, 29] or unstructured [22, 17] meshes. Another important question
to be investigated in future studies is the interaction of the proposed run-up algorithm
with terms not considered in the present formulation. For instance, one could think about
the inclusion of the friction effects at the bottom [42, 10, 2] or, even more importantly,
of the non-hydrostatic effects [21, 20, 40, 32]. A special attention might be needed since
Boussinesq-type equations are known to be prone to develop numerical instabilities in
general [26] and particularly in the vicinity of the shoreline [8].
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