
HAL Id: hal-01084794
https://hal.science/hal-01084794v1

Submitted on 20 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Determination of the Maximal Singularity-Free
Workspace of 3-DOF Parallel Mechanisms with a

Constructive Geometric Approach
Mohammad-Hadi Farzaneh Kaloorazi, Mehdi Tale Masouleh, Stéphane Caro

To cite this version:
Mohammad-Hadi Farzaneh Kaloorazi, Mehdi Tale Masouleh, Stéphane Caro. Determina-
tion of the Maximal Singularity-Free Workspace of 3-DOF Parallel Mechanisms with a Con-
structive Geometric Approach. Mechanism and Machine Theory, 2015, 84, pp.25 - 36.
�10.1016/j.mechmachtheory.2014.10.003�. �hal-01084794�

https://hal.science/hal-01084794v1
https://hal.archives-ouvertes.fr

Determination of the Maximal Singularity-Free
Workspace of 3-DOF Parallel Mechanisms with a

Constructive Geometric Approach

Mohammad-Hadi Farzaneh Kaloorazia, Mehdi Tale Masouleha, Stéphane Carob

a Human-Robot Interaction Laboratory (TAAR-Lab) Faculty of New Sciences and Technologies,
University of Tehran

bCNRS-IRCCyN, UMR 6597, 1 rue de la Noë, 44321 Nantes, France.

Abstract

This paper proposes a novel approach to obtain the maximal singularity-free re-
gions of planar parallel mechanisms, which is based on a constructive geometric
reasoning. The proposed approach consists of two algorithms. First, the bor-
ders of the singularity-free region associated with an arbitrary starting point of
the moving platform is obtained. Then, the second algorithm finds the center of
the maximal singularity-free circle, which is obtained using the so-called offset
curve algorithm. The procedure is applied to a 3-PRR planar parallel mechanism
as an example and the obtained results illustrate graphically the effectiveness of
the proposed algorithm. The proposed approach can be directly applied to obtain
the maximal singularity-free circle of similar parallel mechanisms, which is not
the case for other approaches proposed in the literature that are limited to a given
parallel mechanism, namely, the 3-RPR planar parallel mechanism. Moreover, as
the main feature of the proposed approach, it can be implemented both in a CAD
system and in a computer algebra system where non-convex and reentrant curves
can be considered.

Keywords:
Parallel mechanisms, Singularity-free workspace, Geometric approach, Offset
curve algorithm

1. Introduction

Parallel Mechanisms (PMs) are robotic mechanical systems composed of one
moving platform and one base connected by at least two serial kinematic chains

Preprint submitted to MMT September 25, 2014

[1, 2, 3]. The last two decades have witnessed a noticeable rise in the number
of publications regarding the kinematic and dynamic analyses of PMs to propose
the most promising design. PMs have their own drawbacks and even a simple
one can lead to a complicated kinematic analysis. In general, when a PM is not
symmetrical, its geometry and kinematic analysis is usually complex.

The singularities of PMs should also be carefully studied as PMs may gain or
lose some DOF, and consequently become uncontrollable, in such configurations
[1]. These configurations can be mathematically related to the singularity of some
Jacobian matrices arisen from the first-order kinematic properties of the mecha-
nism [4]. Designing a PM with a singularity-free workspace is a vital condition
for further analysis, such as path planning and control.

This paper aims at obtaining the Maximal Singularity-Free Circle (MSFC) of
3-DOF planar PMs for a given orientation of their mobile platform. A workspace
in the shape of circle is chosen for the sake of simplicity. However, the developed
algorithm can be used to obtain a maximal singularity-free workspace of any other
shape. It is worth noting that, this study is a first step toward the dimensional
synthesis of PMs for which a desired singularity-free workspace, i.e., MSFC, is
prescribed.

To the best of our knowledge, in the literature, results of the MSFC have been
obtained only for a prescribed center point and this assumption bounds the radius
of the circle and results into a local optimum solution. In this paper, the center
point of the MSFC is not prescribed and is found by using a geometrical reasoning.
It should be noted that the MSFC is readily computed once the center point is
obtained. The proposed approach for obtaining the center point of the MSFC is
based on a novel constructive geometric procedure, which is the main contribution
of the paper.

The first proposed algorithm, called conceptual algorithm (Alg. Conc), presents
a conceptual approach in order to obtain the singularity-free region of PMs, which
could be applied to non-convex singularity locus. Afterwards, practical algorithm
(Alg. Prac) presents a practical method based on Alg. Conc. Moreover, an offset
curve algorithm, Alg. Offs, is adapted for the geometric purpose of this work. Off-
set curve algorithms [5, 6] are geometric constructive tools, which have diverse
engineering applications and have consequently motivated extensive researches
concerning various offset techniques. They play an important role in numeri-
cal control and CAD/CAM applications [5]. To the best of our knowledge, the
problem of MSFC has never been investigated upon a geometric standpoint. The
proposed algorithm, which is inspired from geometric properties associated to the
MSFC, could be implemented either in a computer algebra system or using a CAD

2

user
Barrer

system.
Through this paper, in order to illustrate the proposed approach, as a case

study, the procedure of obtaining the MSFC is applied to a 3-PRR planar PM.
Note that, P stands for an actuated prismatic joint and R stands for a passive
revolute joint. However, it can be extended to all planar 3-DOF PMs presented
in [7]. To the best of our knowledge, 3-RPR and 6-UPS (SPS) PMs have been
widely treated in the literature since they lead respectively to quadratic and cubic
polynomial expressions for their singularity locus which simplifies considerably
the mathematical challenge. There has been an extensive study conducted on
the singularity-free workspace of PMs where most of them are based on compli-
cated numerical approaches and entail some limits. Bonev et al. [8] conducted
an exhaustive study on the singularity locus of planar 3-DOF PMs by resorting to
screw theory. In [9], a method based on the geometrical parameters is proposed
for which the singularity-free workspace of a three-legged PM is obtained. The
search for the maximum singularity-free circle of 3-DOF PMs can be expressed
mathematically as an optimization problem accompanied with a constraint re-
sorted to the Lagrangian multipliers [10]. Jiang and Gosselin [11, 12, 13, 14]
proposed some numerical techniques to find the singularity-free workspace of 3-
DOF PMs. Recently, in [15], upon resorting to particle swarm optimization the
maximum singularity-free circle of a 3-DOF PM was obtained for a prescribed
center point. In [16], Mousavi et al. obtained the maximal singularity-free ellipse
included in the workspace of a 6-UPS PPM, using convex optimization. More-
over, in [17], the problem of closeness to singularity is addressed by formulating
the question in terms of a constrained optimization problem. In [18], an interval-
based method is introduced to obtain the maximal singularity-free sphere, in the
constant-orientation workspace of parallel robots. The approach is applicable for
almost all parallel robots, but in the case of high degree polynomial of singularity,
the procedure leads to a very time consuming computation.

A minor modification in the kinematic arrangement, for instance having a 3-
PRR PM instead of 3-RPR PM, leads to the complexity of the procedure for which
methods reported in [19, 20, 21, 11, 10, 9, 7] are not applicable and fail to provide
satisfactory results. One of the problems in such investigations is the presence
of the square roots in the singularity loci expressions. The proposed algorithm is
split into two parts: (1) the first part deals with the algorithm used to obtain the
subregion of interest for the MSFC, which is presented in two forms; Alg. Conc
in concept and Alg. Prac in practice, and (2) a second algorithm is developed to
obtain the center point of the MSFC for the foregoing subregion obtained from
the first part, called Alg. Offs.

3

user
Barrer

user
Barrer

α3
A3

ρ3

C3

B3

l
l

l

x′
y′

C1≡ O′
ρ1

A1 ≡ Oxyz

x

y

B2

ρ2

α2

A2

C2φ

B1

l1

l2

l3

(a) 3-PRR planar PM [7]. α2 = 2π/3,α3 =
4π/3, l1 = l2 = l3 = 1

H1

H2

H3

H4

H5
...

...
...

...

...

...

...
...

(b) Singularity locus of 3-PRR planar PM for
φ = π/36 and subregions Hi

Figure 1: Presentation of (a) the schematic and (b) the singularity loci of a 3-PRR planar PM.

The remainder of this paper is organized as follows. First, the kinematic prop-
erties of the PM under study, i.e., the 3-PRR PM, is broadly reviewed. The two
proposed algorithms, Alg. Conc and Alg. Prac, are presented and fully described
to the end of obtaining the singularity-free region. Finally, the offset curve algo-
rithm, called Alg. Offs, is introduced and used in order to obtain the center and
radius of the MSFC form singularity-free region.

2. Kinematic Review of a 3-PRR Planar Parallel Mechanism

A 3-PRR planar PM consists of three kinematically identical limbs actuated
by a prismatic joint fixed at the base and followed by two passive R joints, as
depicted in Fig. 1(a). As it can be observed from Fig. 1(a), Oxyz, with i, j and k
as unit vectors, represents the fixed frame and O′x′y′z′ stands for the moving frame.
The pose (position and orientation) of the moving-platform is defined by (x,y,φ)
where p = [x,y]T and φ represent respectively the Cartesian position and the ori-
entation of the moving frame with respect to the fixed frame. Upon resorting to
screw theory [7], the kinematic Jacobian matrix J of the mechanism can be for-

4

user
Texte inséré
the

user
Texte inséré
the

mulated as follows:

J =



l1 r1× l1
l2 r2× l2
l3 r3× l3
0 î
0 ĵ
k̂ 0

 , (1)

in which li, i = 1,2,3, is the unit vector of the line connecting point Bi to point
Ci and ri is the vector connecting the origin of the moving platform to point Ci.
Singular configurations of the mechanism occur when the Jacobian matrix J be-
comes rank deficient [22], i.e., the determinant of the foregoing matrix vanishes,
det(J) = 0. The latter condition leads to a polynomial of degree 20 (20 in y and 16
in x) for a constant-orientation of the moving platform [7]. It is worth noticing that
the latter polynomial corresponds to the eight working modes of the mechanism
and, as reported in [7], it is not possible to find a polynomial expression for a sin-
gle working mode among the eight ones. It should be noted that obtaining such a
polynomial is not an easy task and is beyond the scope of this paper. Skipping the
latter mathematical manipulations, Fig. 1(b) depicts the singularity locus of the
3-PRR planar PM for a constant orientation φ = π/36 of the moving platform.

3. Algorithms to Obtain the Subregion of the Singularity-free Workspace

As it can be observed from Fig. 1(b), the singularity locus is such that it splits
the workspace of the mechanism into different regions which, in this paper, are
referred to as subregions and called Hi, i = 1, · · · ,n. It should be noted that some
subregions are not mentioned in Fig. 1(b) in order to not overload the figure. This
section is devoted to present a new method to the end of obtaining the boundaries
of the singularity-free subregion, Hi. It is worth noting that the proposed method
could be applied to any kind of complex curve and it does not depend on the
convexity of the subregions. Moreover, the main challenge in finding a subregion
is the determination of the intersection points among different branches of the
singularity curve, which are known as bifurcation points, called B as indicated in
Fig. 2.

In what follows, first a conceptual procedure of the algorithm is represented, in
order to illustrate the process of obtaining the singularity-free subregions, called
Alg. Conc. Then, the actual procedure, which was used to obtain the singularity-
free subregion in practice, is explained and called Alg. Prac. The main advantage

5

of Alg. Prac is that it decreases the evaluation time of the procedure and Alg. Conc
is only represented for the sake of a better understanding.

3.1. Conceptual representation of the algorithm to obtain the singularity-free sub-
region, Alg. Conc

Algorithm 1 represents the pseudo-code of Alg. Conc and the reasoning is
fully described in what follows. The first step to obtain the boundaries of a sub-
region is to specify which subregion among Hi, i = 1, · · · ,n, is of concern. This
can be done by specifying an arbitrary point, P0, lying inside the desired subre-
gion. In practice, this point is the position of the geometric center of the moving
platform in the home configuration of the mechanism. Therefore, the workspace
of the moving platform should be bounded within the subregion of the starting
point, i.e., P0. It is obvious that in order to obtain another subregion, the home
configuration of the moving platform, i.e., starting point, should be located in the
corresponding subregion. If from a starting point in a prescribed subregion, a
singularity-free polygon of another subregion is obtained, then a singularity locus
has been crossed. Therefore, to obtain each singularity-free polygon, we have to
choose the proper starting point, which should be located inside the corresponding
subregion.

6

Algorithm 1 The pseudo-code of the conceptual algorithm to obtain the subregion
of the singularity-free workspace, Alg. Conc. Lines proceeded by % are comments

1: %Input:
det(J) = 0 % The singularity polynomial
P0 % The home position of the geometric center of the moving platform, i.e.,
starting point
ε % The precision of the polygon

2: %Output:
C0 % A polygon representing the corresponding singularity-free subregion,
consists of points, Pi, i = 1, · · · ,n

3: i← 1;
4: P1 = fminsearch(|det(J)|,P0)

% Use “Nelder-Mead” to find a near point on the singularity polynomial, the
search starts from P0

5: while |Pi−P1|> ε do
% continue while the distance between the last two points is larger than the
desired precision, ε

6: C0{i}← Pi
7: i← i+1
8: Ki =cwcircle(Pi,ε)

% Generate a clockwise circle with Pi and ε as the center and radius, respec-
tively

9: R =solve(det(J) = 0,K1)
% Find all intersection points between the circle and the singularity locus

10: Pi = order(R,clockwise,1)
% Save the first item of R with respect to trigonometric order

11: end while

7

The algorithm consists first in finding a point on the singularity locus which
lies on the boundary of the desired subregion, called point P1. The latter can be
done readily by using an unconstrained optimization approach for |det(J)|= 0, as
the objective function, i.e., using direct pattern search, namely the Nelder-Mead
(simplex) method with ε as the simplex parameter [23]. Another alternative is to
use horizontal or vertical projection of P0 on the singularity locus. For example,
the y coordinate of point P0, yP0 , can be used to find all possible x by evaluating
the singularity expression for yP0 . In this case, the point which is the closest one
to P0, will be regarded as P1.

Once the point P1 is obtained from P0, the algorithm starts to search through
the boundary of the subregion to find other points constituting the subregion. To
do so, a line is drawn from P0 to P1 and a trigonometric circle, K1 is plotted, with
P1 and ε as the center point and radius, respectively. The value of ε stands for
the desired precision. The trigonometric circle covers angles between φ = [0,2π)
and can be either clockwise or counter-clockwise. The line, which passes through
points P0 and P1, corresponds to φ = 0. By incrementing the angle φ from 0 to 2π ,
the first intersection point of K1 and the singularity locus will be saved and called
P2, as depicted in Fig. 2. In practice, this can be done by considering the discrete
circle and it will be discussed in section 3.2. with the same direction (clockwise
or counter-clockwise) as the previous circle. The same procedure is repeated for
point Pi, i = 3, . . . ,n, and another trigonometric circle, called K2, will be created
with P2 and ε as the center point and radius, respectively.

The same procedure pursues for new points Pi, i = 1, . . .n, and at each step the
first intersection point will be added to a list of points, called C0. The stopping
criterion of the algorithm is that the last obtained point, Pn, should be close enough
to the first member of C0, i.e., P1. From a mathematical point of view, ‖Pn−P1‖<
ε . Finally, C0 is a closed polygon which represents the singularity-free region
corresponding to the reference configuration of the mechanism.

The main feature of this algorithm is its ability to deal properly with the multi-
sectional areas caused by intersections among the singularity curves. Those areas
are presented in Fig. 2, and, as it can be observed, due to the reasoning of the algo-
rithm, these multi-sectional areas have no significant effect on the procedure and
will be automatically circumvented. More precisely, Alg. Conc is able to detect
the correct region when approaching a bifurcation point, B. In Fig. 2, Alg. Conc
is applied in order to find C0 as the singularity-free region. Point P0 could be re-
garded as the position of the geometric center of the moving platform in its home
configuration. By resorting to the Nelder-Mead (simplex) method, with ε = 0.5,
a point P1, close to the singularity locus is obtained. The remaining points, Pi,

8

user
Texte inséré
,

user
Barrer

P0

P1

P2

P1

P2

K1

K2

P3

Pi−1

Pi

Pi+1

B

H1

Figure 2: Result of applying the proposed algorithm to the end of obtaining the singularity-free
region of H1. P0 is the starting point and the the red polygon represents the singularity-free region
H1.

i = 2, . . . ,n, are obtained in lines 5 to 11 of Alg. Conc. Furthermore in Fig. 2,
the procedure is shown in detail and an example involving a bifurcation point is
represented.

3.2. The practical procedure to obtain the singularity-free subregion, Alg. Prac
In this section, Alg. Prac is presented, which for to the majority of purposes

and processes the same as Alg. Conc. The difference here is that Alg. Prac is more
practical and can reach the result in a lower computational time. The first step,
which is to choose a starting point P0 and obtain a near point P1 on the singularity
locus, is exactly the same as in Alg. Conc. In order to illustrate the ability of
Alg. Prac and its application in various singularity expressions, a 3-PRR Planar
PM (PPM) is considered which has a singularity locus as shown in Fig. 3. It should
be noted that, the overall pseudo-code of Alg. Prac is presented in Algorithm 4 and
as it can be observed, there are some subroutines which are shown in upcoming
pseudo-codes, Algorithms 2 and 3. Therefore, in what follows, the necessary
subroutines are first presented with their corresponding pseudo-codes.

Once points P0 and P1 are obtained, the search for point P2 begins. The proce-
dure is illustrated in Fig. 4. The test points lie on a circle of radius ε with point P1
as its center. The first test point is generated at an angle dθ relative to point P0, and
the singularity expression is evaluated. Each subsequent test point is generated

9

l

l

l
B1

B2B3

ρ3

ρ2
ρ1

l1

l2

l3

Oxy

A1

A2

A3

b
b

b
π
3

π
3

π
3

(a) 3-PRR planar PM. l = 1, b = 1 mm.

H1

H2

H3H4

... ...

f (·) = 0

(b) Singularity locus of 3-PRR planar PM for
φ = 0 and subregions Hi

Figure 3: The singularity locus of a 3-PRR PPM, which is of degree 20, and split into different
subregions.

with the same increment dθ , and tested, until the sign of the singularity expres-
sion changes. This can be observed in Fig. 4, in which the sign of the singularity
expression changes between the sixth and seventh test points. Point six is recorded
and used subsequently. The set of test points is called test(i, :) in which i= 1, · · · ,n
and corresponds to Pi, furthermore, “ : ” stands for all indexes. Moreover, test(i, j)
indicates the specific point to be evaluated, j = 1, · · · , 2π

dθ
. Similar to Alg. Conc,

test points in test(i, :) are arranged on a trigonometric circle. The pseudo-code
of the subroutine to obtain the intersection point between the singularity locus
and test(i, :) is presented in Algorithm 2, i.e., CrossPointGeneral, and is
discussed in what follows.

In Algorithm 2, the procedure to generate test points is presented in lines 3 to
6 and 9 to 20, and graphically in Fig. 4. Lines 10 to 20 refer to a special condition
which is discussed in section 3.3. In line 3, vector vi connects Pi−1 to Pi and its
elongation is the reference for trigonometric direction. Considering j = 1, the first
test point corresponding to Pi is generated in line 6, test(i,1). v′i is a vector along
the direction of −vi and of magnitude of ε . In line 7, CrossFound is defined as
a flag variable. CrossFound indicates whether the intersection point is found or
not. Algorithm 2 continues until the nearest intersection point to Pi is obtained
and consequently CrossFound = 1. In line 21, the subroutine evaluates the value
of the singularity expression, f , for the last two points of the test set. If the sign of

10

user
Texte inséré
,

Algorithm 2 Subroutine to obtain the intersection point between test(i, :) and f
for cross points in general, CrossPointGeneral. Lines proceeded by % are
comments

1: %Input:
f = |det(J)| The singularity expression
Points Pi, Pi−1 and Pi−2
ε as the precision of polygon
dθ as the precision of search angle

2: %Output:
Point Pi+1 The next intersection point

3: vi = pi−pi−1
4: j = 1
5: v′i =−ε

vi
|vi|

6: test(i,1) = v′i +pi
7: CrossFound = 0
8: while CrossFound == 0 do
9: j = j+1

10: if i > 2 then
11: α = ∠

−−−−−→
Pi−2Pi−1−∠

−−−→
PiPi−1

%—– Close angle —–%
12: if α < π/2 then
13: β = π−α

2
14: test(i, j) = v′i · e jdθ+β +pi

%———————-%
15: else
16: test(i, j) = v′i · e jdθ +pi
17: end if
18: else
19: test(i, j) = v′i · e jdθ +pi
20: end if

%—– Find odd intersection —–%
21: if sign(f (test(i, j))) 6= sign(f (test(i, j−1))) then
22: CrossFound = 1
23: Pi+1 = test(i, j−1)
24: end if

%————————————%
25: if j >= 4 then % Check even intersection
26: CrossPointEven
27: end if
28: end while 11

P0
P1

P2

ε
dθ

te
st
(1
, 3
)

test(1
, 5
)

test(1, 7)

f(·) > 0
f(·) < 0

+

+

+
++

+

−

v1

Figure 4: The generation of test points around a given point on the singularity locus. According
to the singularity expression, each test point has a sign and as it can be observed, the sign is
changed from test(1,6) to test(1,7). Therefore, the last test point having the same sign as P1,
which is test(1,6), is the next point on the boundary of the singularity locus and is called P2. Not
to overload the figure, some details are skipped.

the result changes from a point to another, then it will show that the intersection
has occurred. Therefore, the (j− 1)th test point is the intersection point and is
recorded as Pi+1.

It is preferable to select the (j−1)th point instead of the jth point, because the
jth point has passed the singularity boundaries and therefore choosing it will not
allow us to obtain a singularity-free region. Moreover, throughout this paper, ε

and dθ to are considered to be infinitesimal parameters. Therefore, the function f
can be regarded as strictly uni-vocal around Pi.

In line 26 of subroutine 2, another subroutine entitled CrossPointEven
is applied in order to ensure the functionality of the algorithm while facing the
bifurcation points. As a matter of fact, the change in the sign of evaluated function
f from a test point to another, only happens when f has a single root existing
between the two test points, or in other words, has an odd number of roots. If f has
a self-cross-section, the approach to obtain an intersection point while considering
the last two test points only will degenerate, since the evaluated sign will change
twice between those two test points. Such a bifurcation point can be observed in

12

−
−
−
−
−

−
−

−de
sc
en
t

descent

Pi
Pi−1

B

Figure 5: An even intersection point for which subroutine CrossPointEven, presented in Al-
gorithm 3, evaluates four last test points to indicate whether the descent of the results is changed.
This change illustrates the presence of a bifurcation point B and therefore an even intersection.

Fig. 5. In general, this will happen when f has an even number of roots. In order to
circumvent this problem, subroutine 3, the pseudo-code of CrossPointEven,
is developed in which the last four test points are taken into account.

In Algorithm 3 line 3, if the gradient between (j− 1)th and jth points is not
of the same sign (positive or negative) as for the (j− 3)th and (j− 2)th points,
then a singularity has been crossed. The absolute value of function f decreases
as it approaches a singularity and increases as it moves further away. It should
be noted that, the value of dθ can affect the result. It should be small enough to
satisfy the assumption of being strictly uni-vocal. As the result of this subroutine,
if f has an even number of intersections, then the value of flag CrossFound will
change to 1 and the (j−2)th test point is considered to be Pi+1. Again, we prefer
to select the (j−2)th point because it is surely inside the singularity-free region.

Algorithm 4 represents Alg. Prac to obtain the singularity-free subregion in
practice. As it can be observed, subroutine CrossPointGeneral, which con-

13

Algorithm 3 Subroutine for obtaining the intersection point between test(i, :) and
f for even number of cross points, CrossPointEven. lines proceeded by %
are comments

1: %Input:
f The singularity expression
test(i, j−3 : j) Values of the last four test points

2: %Output:
Pi+1 and CrossFound
%—– Find Even Intersection —–%

3: if sign(f (test(i, j − 3)) − f (test(i, j − 2))) 6= sign(f (test(i, j − 1)) −
f (test(i, j))) then

4: CrossFound = 1
5: Pi+1 = test(i, j−2)
6: end if

%————————————-%

tains CrossPointEven, is used inside Alg. Prac.

3.3. Close angle condition
As it can be seen from Fig 6, there is a special condition which may cause the

algorithm to fail when the angle α between
−−−−−→
Pi−2Pi−1 and

−−−→
PiPi−1 is smaller than

π/2. Consider the case in which the algorithm is about to find Pi+1. If it continues
to search as usual; creating a set of circular test points around Pi starting from
Pi−1, then it will find the wrong Pi+1 somewhere around Pi−2. Therefore, the set
of circular test points should start from a different angle which is:

β =
π−α

2
, α = ∠

−−−−−→
Pi−2Pi−1−∠

−−−→
PiPi−1 (2)

Figure 7 illustrates the solution for the special case. In this figure, the set
of circular test points are started from angle β . Therefore, it is guaranteed that
the next point is found correctly. It is note-worthy to say that the angle α will
never be smaller than π/3. Indeed, if α < π/3, then ‖−−−→PiPi−1‖ < ε . While it is
in conflict with the reasoning of the algorithm, the algorithm will never reach
point Pi because it has already crossed the singularity locus. The pseudo-code to
circumvent the close angle condition is presented in Algorithm 2 at lines 10 to 20.

The singularity-free region in the workspace of a 3-PRR PPM, corresponding
to subregion H1, is presented in Fig. 10. In fact, C0 will be used in the next

14

Algorithm 4 The pseudo-code of the practical algorithm, Alg. Prac, to obtain the
subregion of the singularity-free workspace. Lines proceeded by % are comments.

1: %Input:
det(J) = 0 The singularity loci polynomial
P0 as the reference pose of the moving platform, i.e., starting point
ε as the precision of the polygon
dθ as the precision of the search angle

2: %Output:
A polygon representing the corresponding singularity-free subregion, called
C0, which consists of points, Pi, i = 1, · · · ,n

3: i← 1;
4: P1 = fminsearch(|det(J)|,P0)

% Use “Nelder-Mead” to find a point close to the singularity loci, the search
starts from P0

5: while |Pi−P1|> ε do
% Do while the distance between the last point and P1 is larger than

6: C0{i}← Pi
7: i← i+1
8: CrossPointGeneral
9: Pi

10: end while

section as the singularity-free region in order to obtain the MSFC. As it will be
apparent in the upcoming section, errors due to the iterative approximation of the
singularity-free region C0 will vanish upon applying the offset curve algorithm.

4. Obtaining the MSFC Using Offset Curve Algorithm, Alg. Offs

The whole concept of the offset curve algorithm, is based on two geometric
properties of the MSFC: it should be (a) tangent to the intersection points between
the MSFC and the boundaries of the polygon C0 and (b) its center point should
be equidistant to all the intersection points. For a closed-planar polygon Ck(t), its
offset polygons can be written mathematically as follows [5]:

Ck+1(t)←− Ck(t)±d n(t), k = 1, 2, . . .m (3)

where d is the offset distance and n(t) is the normal vector at point t on the poly-
gon Ck(t). In the problem addressed in this paper, the sign “−” is considered for

15

Pi−1

Pi−2

Pi

α
+

Pi+1

−−−
−

−

Wrong Solution

Figure 6: Case where the search of the next intersection point fails; as the angle α is smaller than
π/2, the wrong Pi+1 point is found somewhere near Pi−2. The correct solution is presented in
Fig. 7.

±, because it is desired to decrease the area of Ck to a point. Having in mind the
two aforementioned properties of the MSFC, the algorithm is organized as fol-
lows. The first step consists in obtaining the tangent and normal to each point t
on the perimeter of the polygon C0. Then each point on the perimeter is moved
inward by a given value, d, in the direction of the line perpendicular to its tangent,
which yields a new polygon, C1.

The distance d can be chosen in two ways: (a) choosing a constant value for
d (b) choosing d as a function of the area of Ck, k = 1, · · · ,m. The first one is
simpler in practice, but it is inaccurate in some cases. The second way can be
formulated as follows:

d(k) =
√

area(k)
area(k−1)d(k−1)

d(0) = |p0−p1|,
(4)

in which area(k) is the area of polygon Ck. In this case, d decreases efficiently

16

Pi−1Pi−2

Pi

α
+

Pi+1

+

+

+

+

+

+

β

Figure 7: The solution which circumvented the problem presented in Fig. 6; the set of circular
test points are started from an initial angle β . Therefore, the next point on the singularity locus is
found correctly in Pi+1.

with respect to the previous area size. In Section 5, examples are given for both
approaches.

The offset curve algorithm moves every single side of the polygon C0 using
Eq. (3). The result is a new polygon, C1, having a smaller area than C0. By the
same token, one can obtain C2, C3, . . . and Cm. The latter procedure will continue
until the area of Cm converges to a small number, area(m) < ε , therefore one
can approximate it with a point, for which the algorithm stops. The approximated
point is called C f . C f is the center of the MSFC. The radius of the circle is simply
computed in one of two ways : (a) for a constant d, as r = m d, where m stands for
the number of applied offsets (b) by using d(k). The pseudo-code of the second
method to obtain the offset curve using variable d is presented in Algorithm 5.

It should be noted that a special situation may arise, which consists in the
cases for which the polygon contains some necks. In such cases, upon pursuing
the offset curve algorithm the polygon will be separated and split into different

17

Algorithm 5 The pseudo-code of the so-called offset curve algorithm, Alg. Offs,
to obtain the center point of the MSFC, using variable distance parameter d. Lines
proceeded by % are comments.

1: %Input:
C0 % The polygon of singularity-free circle
p0, p1
ε % Desired precision

2: %Output:
r, C f % The radius and center point of MSFC

3: d0← |p0−p1|;
4: k← 0
5: area C0← area(C0)
6: while area Ck > 0.01ε do

% Do while the area of the latest polygon is bigger than a desired precision,
for example, 0.01ε

7: k← k+1
8: for i from 2 to n do

% For all points on the polygon apply Eq. (3) and save the results in Ck
9: ti← dk−1 ·perp(pi−pi−1)+

pi+pi−1
2

% perp(·) stands for the perpendicular direction of (·) star
10: Ck{i}← ti
11: end for
12: area Ck← area(Ck)

13: dk←
√

area Ck
area Ck−1

dk−1

14: end while
15: m← k
16: C f ← average(Cm)

% average(·) stands for the middle point of (·)
17: r = ∑

m−1
0 d

18

MSFC

C0C1C2C3

r
d
d

C f

−2 −1.8 −1.6 −.14 −1.2 −1 −0.8 −0.6 −0.4 −0.2

0.8

0.6

0.4

0.2

−0.2

−0.4

−0.6

0

y

x

C4

Figure 8: Using Alg. Conc, the singularity-free region H1 for the mechanism presented in Fig. 1(a)
is obtained, called C0. Then, by applying four times the offset curve algorithm with a constant d
on C0, the area of the last polygon, C4, is smaller than ε . Therefore, C f is the center of MSFC of
radius of r = 4d.

polygons and the algorithm should apply the offset approach for each subregion
and obtain the corresponding MSFC [5, 6]. The MSFC is the largest singularity-
free circle for all the subregions.

It should be noted that the offset curve algorithm is available in Matlab by us-
ing the command bufferm and almost all CAD software provide some functions
based on the offset curve algorithm.

5. Results

Figure 8 represents the resulting MSFC and the singularity locus for the 3-PRR
PM, represented in Fig. 1(a), for a constant-orientation of the moving platform.
Using Alg. Conc, the singularity-free subregion of the mechanism for a prescribed
orientation φ =

π

36
, C0 is obtained. Then by applying the so-called offset curve

algorithm with a constant d, the corresponding MSFC is obtained. In Fig. 8, Ci,
i = 1, · · · ,4, are the new offset polygons, each of them generated by offsetting the
preceding one by a fixed distance d, until it is no longer possible to do so. Point
C f is then computed with the last polygon to become the center of the MSFC and
the corresponding radius can be readily obtained. Moreover, one can generate a

19

x

y

Figure 9: All possible singularity-free circles in the workspace of a 3-PRR PPM using a set of
initial points. The circle having the largest radius is the MSFC.

set of initial points, either random or ordered, to find all possible singularity-free
circles in the workspace of the mechanism. The result of using the set of initial
points is presented in Fig. 9.

In Fig. 10, the MSFC is obtained for two subregions, H1 and H2. In subregion
H1, the initial point is P0 and using Alg. Prac, the singularity-free polygon C0
is obtained. Then using the offset curve algorithm, (Algorithm 5),with variable
offset distance d, the area of Ck, k = 0, · · ·m, converges to a point. This point is
called C f and corresponds to the center of the MSFC for this subregion. The same
procedure is used to find the MSFC in H2. The computation time for computing
C0 and the MSFC with ε = 0.1 and dθ = 1◦, on a ASUS G61 laptop having 4 GB
RAM and Intel Core 2 Duo P7350 2.00 GHz processor, is equal to 1.5 seconds.

6. Conclusion

This paper proposed two new geometric constructive approaches in order to
obtain the singularity-free region and the maximal singularity-free circle of 3-
DOF planar parallel mechanisms. For the singularity-free region, the procedure
consists of two steps, which are mainly based on a geometrical reasoning of the
problem. First, using a new method the boundaries of the singularity-free re-
gion corresponding to the starting point of the moving platform were obtained.

20

P0

P1
d0

C0C1C2

Cf

MSFC H1

H2
MSFC

Cf

Figure 10: The result of applying Alg. Conc and Alg. Offs with variable d. The results are presented
for two subregions, H1 and H2. As it can be observed in H1, the offset distance is a function of
the area of previous singularity-free polygon.

The first step was expressed in two ways; Conceptual Algorithm (Alg. Conc) and
Practical Algorithm (Alg. Prac). To obtain the maximal singularity-free circle us-
ing the so-called offset curve algorithm, the center of the maximal singularity-free
circle in the corresponding region was computed. This step was also introduced
using two approaches; constant offset distance d and variable offset distance d.
Special conditions were taken into account in order to examine the robustness
of the algorithm. As case studies, two architectures of the 3-PRR planar parallel
mechanism were considered. Ongoing works consist in extending the algorithm to
higher DOF PMs and taking into account the workspace boundaries as additional
constraints in the problem, which is a definite asset in practice.

References

[1] J.-P. Merlet, Parallel Robots. Springer, 2006.

21

[2] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer, 2008.

[3] J. Davidson, K. Hunt, and G. Pennock, Robots and Screw Theory: Appli-
cations of Kinematics and Statics to Robotics. Oxford University Press,
2004.

[4] C. Gosselin and J. Angeles, “Singularity Analysis of Closed-Loop Kine-
matic Chains,” IEEE Transactions on Robotics and Automation, vol. 6, no. 3,
pp. 281–290, 1990.

[5] G. Elber, I. Lee, and M. Kim, “Comparing Offset Curve Approximation
Methods,” Computer Graphics and Applications, IEEE, vol. 17, no. 3, pp.
62–71, 1997.

[6] O. Aichholzer, W. Aigner, F. Aurenhammer, T. Hackl, B. Jüttler, E. Pilger-
storfer, and M. Rabl, “Divide-and-conquer for Voronoi diagrams revisited,”
Computational Geometry, vol. 43, no. 8, pp. 688–699, 2010.

[7] Bonev, I. A. , “Geometric Analysis of Parallel Mechanisms,” Ph.D. disserta-
tion, Laval University, Quebec, QC, Canada, October 2002.

[8] Bonev, I. A. and Zlatanov, D. and Gosselin, C. M., “Singularity Analysis of
3-DOF Planar Parallel Mechanisms Via Screw Theory,” Journal of Mechan-
ical Design, vol. 125, p. 573, 2003.

[9] Y. Yang and J. O’Brien, “A Case Study of Planar 3-RPR Parallel Robot
Singularity Free Workspace Design,” International Conference on Mecha-
tronics and Automation (ICMA), pp. 1834–1838, 2007.

[10] H. Li, C. Gosselin, and M. Richard, “Determination of Maximal Singularity-
free Zones in the Workspace of Planar Three-degree-of-freedom Parallel
Mechanisms,” Mechanism and machine theory, vol. 41, no. 10, pp. 1157–
1167, 2006.

[11] L. Jiang, “Singularity-Free Workspace Analysis and Geometric Optimiza-
tion of Parallel Mechanisms,” Ph.D. dissertation, Laval University, Quebec,
QC, Canada, june 2008.

[12] Q. Jiang and C. Gosselin., “Geometric Synthesis of Planar 3-RPR Parallel
Mechanisms for Singularity-free workspace,” Transactions of the Canadian
Society for Mechanical Engineering, vol. 33, no. 4, pp. 667–678, 2009.

22

[13] Q. Jiang and C. M. Gosselin, “The Maximal Singularity-Free Workspace
of Planar 3-RPR Parallel Mechanisms,” in Proceedings of the 2006 Inter-
national Conference on Mechatronics and Automation. IEEE, 2006, pp.
142–146.

[14] L. Jiang and C. Gosselin, “Geometric Optimization of Planar 3-RPR Parallel
Mechanisms,” Transactions of the Canadian Society for Mechanical Engi-
neering, vol. 31, no. 4, pp. 457–468, 2007.

[15] G. Abbasnejad, H. Daniali, and S. Kazemi, “A New Approach to Determine
the Maximal Singularity-free Zone of 3-RPR Planar Parallel Manipulator,”
Robotica, vol. 30, no. 6, pp. 1005–1012, 2012.

[16] M. T. M. Mohsen Ahmadi Mousavi, Amirhossein Karimi, “On the Approx-
imated and Maximal Singularity-Free Workspace of 6-UPS Parallel Mecha-
nisms Using Convex Optimization (accepted),” in IEEE. International Con-
ference on Robotics and Mechatronics (ICRoM), Tehran, Iran, 2013.

[17] P. Voglewede and I. Ebert-Uphoff, “Overarching Framework for Measuring
Closeness to Singularities of Parallel Manipulators,” IEEE Transactions on
Robotics, vol. 21, no. 6, pp. 1037–1045, 2005.

[18] M. Kaloorazi, M. T. Masouleh, and S. Caro, “Interval-analysis-based deter-
mination of the singularity-free workspace of gough-stewart parallel robots,”
in Electrical Engineering (ICEE), 2013 21st Iranian Conference on. IEEE,
2013, pp. 1–6.

[19] S. Caro, N. Binaud, and P. Wenger, “Sensitivity analysis of 3-rpr planar
parallel manipulators,” Journal of Mechanical Design, vol. 131, no. 12, p.
121005, 2009.

[20] N. Binaud, S. Caro, and P. Wenger, “Sensitivity comparison of planar par-
allel manipulators,” Mechanism and Machine Theory, vol. 45, no. 11, pp.
1477–1490, 2010.

[21] S. Caro, D. Chablat, P. Wenger, and J. Angeles, “The isoconditioning loci
of planar three-dof parallel manipulators,” Recent Advances in Integrated
Design and Manufacturing in Mechanical Engineering, pp. 129–138, 2003.

23

[22] C. Gosselin, “Determination of the Workspace of 6-DOF Parallel Manipu-
lators,” ASME Journal of Mechanical Design, vol. 112, no. 3, pp. 331–336,
1990.

[23] S. Rao, Engineering Optimization: Theory and Practice. Wiley, 2009.

24

