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FLUID AND ITS QUASI-SOLITON SOLUTIONS

We consider the high-order monlinear Schrédinger equation derived earlier by Sedletsky
[Ukr. J. Phys. 48(1), 82 (2003)] for the first-harmonic envelope of slowly modulated gravity
waves on the surface of finite-depth irrotational, inviscid, and incompressible fluid with flat
bottom. This equation takes into account the third-order dispersion and cubic nonlinear disper-
sive terms. We rewrite this equation in dimensionless form featuring only one dimensionless
parameter kh, where k is the carrier wavenumber and h is the undisturbed fluid depth. We show
that one-soliton solutions of the classical nonlinear Schrédinger equation are transformed into
quasi-soliton solutions with slowly varying amplitude when the high-order terms are taken into
consideration. These quasi-soliton solutions represent the secondary modulations of gravity
waves.
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1. Introduction

The nonlinear Schrédinger equation (NLSE)

A= —alAX — iagAXX + iao’oﬁoA|A‘2 (11)
arises in describing nonlinear waves in various phys-
ical contexts, such as nonlinear optics [64], plasma
physics [33], nanosized electronics [12], ferromagnet-
ics [10], Bose—Einstein condensates [73], and hydro-
dynamics [15, 44, 66, 69]. Here x is the direction of
wave propagation, 7 is time, A(x, 7) is the complex
first-harmonic envelope of the carrier wave, and the
subscripts next to A denote the partial derivatives.
NLSE takes into account the second-order dispersion
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(term with A,, ) and the phase self-modulation (term
with A|A|?). The coefficients a1, as, and ag, 0,0 take
various values depending on the particular physical
context under consideration.

In the general context of weakly nonlinear disper-
sive waves, this equation was first discussed by Ben-
ney and Newell [5]. In the case of gravity waves prop-
agating on the surface of infinite-depth irrotational,
inviscid, and incompressible fluid, NLSE was first de-
rived by Zakharov [68] using the Hamiltonian formal-
ism and then by Yuen and Lake [66] using the aver-
aged Lagrangian method. The finite-depth NLSE of
form (1.1) was first derived by Hasimoto and Ono [30]
using the multiple scale method and then by Stiassnie
and Shemer [57] from Zakharov’s integral equations.
Noteworthy is also the recent paper by Thomas et
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al. [61] who derived the finite-depth NLSE for water
waves on finite depth with constant vorticity.

Under certain relationship between the parameters,
when
a20a0,0,0 < 0, (1.2)
NLSE admits exact solutions in the form of solitons,
which exist due to the balance of dispersion and non-
linearity and propagate without changing their shape
and and keeping their energy [16]. In this case the
uniform carrier wave is unstable with respect to long-
wave modulations allowing for the formation of en-
velope solitons. This type of instability is known as
the modulational or Benjamin—Feir instability [71] (it
was discovered for the first time in optics by Bespalov
and Talanov [7]). In the case of surface gravity waves
condition (1.2) holds at kh 2 1.363, k being the car-
rier wavenumber and h being the undisturbed fluid
depth. In addition to theoretical predictions, enve-
lope solitons were observed in numerous experiments
performed in water tanks [9,44, 50,51, 55, 60, 66, 67].

At the bifurcation point ag, 9,0 = 0 (kh = 1.363),
when the modulational instability changes to stabil-
ity, NLSE of form (1.1) is not sufficient to describe
the wavetrain evolution since the leading nonlinear
term vanishes. In this case high-order nonlinear and
nonlinear-dispersive terms should be taken into ac-
count. In the case of infinite depth, such a high-order
NLSE (HONLSE) was first derived by Dysthe [19]. Tt
includes the third-order dispersion (A,,,) and cubic
nonlinear dispersive terms (|A[*A,, A®A%, asterisk
denotes the complex conjugate) as well as an addi-
tional nonlinear dispersive term describing the input
of the wave-induced mean flow (some of theses terms
were introduced earlier by Roskes [46] without tak-
ing into cosideration the induced mean flow). This
equation is usually referred to as the fourth-order
HONLSE to emphasize the contrast with the third-
order NLSE. Janssen [34] re-derived Dysthe’s equa-
tion and corrected the sign at one of the nonlinear
dispersive terms. Hogan [31] followed the earlier work
by Stiassnie [56] to derive the similar equation for
deep-water gravity-capillary waves with surface ten-
sion taken into account. Selezov et al. [49] extended
the HONLSE derived by Hogan to the case of non-
linear wavetrain propagation on the interface of two
semi-infinite fluids without taking into account the
induced mean flow. Worthy of mention is also the
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paper by Lukomsky [41] who derived Dysthe’s equa-
tion in a different way. Later Trulsen and Dysthe [62]
extended the equation derived by Dysthe to broader
bandwidth by including the forth- and fifth-order lin-
ear dispersion. Debsarma and Das [14] derived a yet
more general HONLSE that is one order higher than
the equation derived by Trulsen and Dysthe. Gram-
stad and Trulsen [25] derived a set of two coupled
fourth-order HONLSEs capable of describing two in-
teracting wave systems separated in wavelengths or
directions of propagation. Zakharov and Dyachenko
[17, 18, 72] made a conformal mapping of the fluid
domain to the lower half-plane to derive a counter-
part of Dysthe’s equation in new canonical variables
(the so-called compact Dyachenko—Zakharov equa-
tion [21,22]).

Original Dysthe’s equation was written for the first-
harmonic envelope of velocity potential rather than
of surface profile. In the case of standard NLSE this
difference in not essential because in that order the
first-harmonic amplitudes of the velocity potential
and surface displacement differ by a dimensional fac-
tor only, which is not true anymore in the HONLSE
case, as discussed by Hogan [32]. Keeping this in
mind, Trulsen et al. [63] rewrote Dysthe’s equation
in terms of the first-harmonic envelope of surface pro-
file while taking into account the linear dispersion to
an arbitrary order.

In the case of finite depth, the effect of induced
mean flow manifests itself in the third order, so that
the NLSE is generally coupled to the equation for the
induced mean flow [6]. However, Davey and Stew-
artson [13] showed that these coupled equations are
equivalent to the single NLSE derived by Hasimoto
and Ono [30]. On the other hand, such an equiva-
lence is not preserved for high-order equations. The
first attempt to derive a HONLSE in the case of fi-
nite depth was made by Johnson [35], but only for
kh = 1.363, when the cubic NLSE term vanishes. The
similar attempt was made by Kakutani and Michihiro
[37] (see also a more formal derivation made later by
Parkes [45]). A general fourth-order HONLSE for the
first-harmonic envelope of surface profile was derived
by Brinch-Nielsen and Jonsson [8] in coupling with
the integral equation for the wave-induced mean flow.
Gramstad and Trulsen [26,27] derived a fourth-order
HONLSE in terms of canonical variables that pre-
serves the Hamiltonian structure of the surface wave
problem.
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Sedletsky [47,48] used the multiple scale technique
to derive a single fourth-order HONLSE for the first-
harmonic envelope of surface profile by introducing
an additional power expansion of the induced mean
flow. This equation is the direct counterpart of Dys-
the’s equation written in terms of the first-harmonic
envelope of surface profile [63] but for the case of fi-
nite depth. Slunyaev [52]| confirmed the results ob-
tained in [48] and extended them to the fifth order.
Grimshaw and Annenkov [29] considered a HONLSE
for water wave packets over variable depth.

The deep-water HONLSE in the form of Dysthe’s
equation was extensively used in numerical simula-
tions of wave evolution [1-3, 11, 20, 23, 40, 53, 54].
However, no such modeling has been performed in
the case of finite depth because of the complexity of
equations as compared to the deep-water limit. The
equation derived in [47, 48] can be used as a good
starting point for the simulations of wave envelope
evolution on finite depth. The aim of this paper is (i)
to rewrite this equation in dimensionless form suit-
able for numerical integration and (ii) to observe the
evolution of NLSE solitons taken as initial waveforms
in the case when the HONLSE terms are taken into
consideration for several values of intermediate depth.

This paper is organized as follows. In Section 2 we
write down the fully nonlinear equations of hydrody-
namics used as the starting point in this study. In
Section 3 we formulate the constraints at which the
fully nonlinear equations can be reduced to HONLSE.
Then we briefly outline the multiple scale technique
used to derive this equation, which is presented in
Section 4. Next we introduce dimensionless coordi-
nate, time, and amplitude to go over to the dimen-
sionless HONLSE. As a result, only one dimension-
less parameter kh appears in the equation. The final
step is to pass to the reference frame moving with
the group speed of the carrier wave. In Section 5 we
present the results of numerical simulations and com-
pare the NLSE and HONLSE solutions. Conclusions
are made in Section 6.

2. Problem formulation

We consider the dynamics of potential two-
dimensional waves on the surface of irrotational, in-
viscid, and incompressible fluid under the influence of
gravity. Waves are assumed to propagate along the
horizontal z-axis, and the direction of the vertical y-

ISSN 2071-0186. Ukr. J. Phys. 2014. Vol. 59, No. 12

y=1(x,1)

y=—h

Fig. 1. Sketch of the physical domain occupied by an ideal
incompressible fluid of finite depth.

axis is selected opposite to the gravity force. The fluid
is assumed to be bounded by a solid flat bed y = —h
at the bottom and a free surface y = n(z, t) at the
top (Fig. 1). The atmospheric pressure is assumed to
be constant on the free surface. Then the evolution
of waves and associated fluid flows is governed by the
following set of equations 24, 58|:

Opp + Py =0, —c0<z<o00, (21)
—h <y <n(z,t);
1
O+ (PI+P)) +gn =0, y=nlxt) (22
N — Py +1:Pr =0,  y=n(z, t); (2.3)
o, =0, y=—h; (2.4)

where ®(z, y, t) is the velocity potential (the veloc-
ity is equal to V®), g is acceleration due to gravity,
t is time. Here (2.1) is the Laplace equation in the
fluid domain, (2.2) is the dynamical boundary con-
dition (the so-called Bernoulli or Cauchy-Lagrange
integral), (2.3) and (2.4) are the kinematic bound-
ary conditions (no fluid crosses the free surface and
the bottom), the indices z, y, ¢ designate the partial
derivatives over the corresponding variables. The po-
sition of the zero level y = 0 is selected such that the
Bernoulli constant (the right-hand side of Eq. (2.2))
is equal to zero.

Consider a modulated wavetrain with carrier fre-
quency w and wavenumber k. In this case a solution
to Egs. (2.1)—(2.4) can be looked for in the form of
Fourier series with variable coefficients:

( (I)T(]J(:;:,y i)t) ) = nioo ( cb;;fj;’y;)t) ) gin(ko—wt)

Nw = O =D, (2.5)

*

where * stands for complex conjugate (here we as-
sume the carrier wave to be symmetric), the functions
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®(x, y, t) and n(z, t) are assumed to be real by defi-
nition. Substituting (2.5) in (2.1)—(2.4) and equating
the coeflicients at the like powers of exp(i(kz — wt)),
one can obtain a system of nonlinear partial dif-
ferential equations for the functions ®,(x, y, t) and
Nn(x, t). Linearization of these equations at n = 1
gives the dispersion relation for gravity waves:
w? = gk tanh(kh). (2.6)
3. Slowly modulated quasi-harmonic
wavetrains and multiple-scale expansions

Generally the system of equations for ®,(x, y, t)
and 7, (z, t) is by no means more simple than orig-
inal equations. It can be simplified when solutions
are looked for in a class of functions with narrow
spectrum, |Ak| < k. In this case the problem
has a formal small parameter p ~ |Ak|/k (quasi-
monochromaticity condition), with @, (z, y, t) and
1n(z, t) being slow functions of « and ¢. Accordingly,
the wave motion can be classified into slow one and
fast one by introducing different time scales and dif-
ferent spatial scales:

T,=u"t, X,=p"z. (3.1)
The derivatives with respect to time and coordinate
are expanded into the following series:

9 X, 9 o X, 0
&:;“an’ %Z;“axn’

the times 7, and coordinates X,, being assumed to
be independent variables.

When there are no resonances between higher har-
monics, the amplitudes of Fourier coefficients de-
crease with increasing number (quasi-harmonicity
condition):

(3.2)

M ~e"A, n>1, ny~e’d, e<l, (3.3)
where

1
m= 5&4(33, t). (3.4)

The parameter € can be regarded as a formal small
parameter related to the smallness of wave amplitude
as compared to the carrier wavelength \ = 27” In this

case the unknown functions @, (x, y, t) and n,(z, t)

4

can be expanded into power series over the formal
parameter e:

D, (z, y, t) ) _ - om (@%m)(x, y, t) > 35
( Mo (, 1) mZ: ™ (x, 1) (39
Multiple-scale expansions (3.2) and (3.5) allow the
functions ®,,(z, y, t) and n,(x, t) to be expressed in
terms of the first harmonic envelope A(z, t), as de-
scribed in detail in [47]. Note that in the procedure
described in [47] it is essential to set € = p.

In practice, the quasi-harmonicity condition can be
written as

k| < 1, (3.6)
and the condition of slow modulation (quasi-
monochromaticity) can be formalized as

el 1 .

’ A <1, (3.7)

which follows from differentiating the function
A(z, t)exp(i(kz — wt)) over z. With these condi-
tions satisfied, the original system of equations (2.1)—
(2.4) can be reduced to one evolution equation for
the first harmonic envelope A(z, t) with the use of
small-amplitude expansions (3.2) and (3.5).

4. High-order nonlinear Schrédinger equation
4.1. Equation derived by Sedletsky

Sedletsky [47, 48] used the above-described multiple-
scale procedure to derive the following HONLSE for
the first-harmonic envelope A(z, t) (Eq. (68) in [47]):

[ 0A LV 0A
i 2 g
det)  ?0(ex)
1 " 82A 2 2
+e (2w FIESE + wkq3|A|° A

Jrj_t,_:Q 71(‘)/// »PA
6 O(ex)3

0A
2
+whQulA] d(ex)

+ wk;Q42A2 86(;4;)) =0 [m/s] (41)

As compared to the standard NLSE, this equation
takes into account additional nonlinear and dispersive
terms of order O(g2). Eq. (4.1) was later re-derived
by Slunyaev [52], who confirmed the symbolic com-
putations presented in [47, 48] and extended them to
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the O(e3) order. Here we restrict our attention to
the original equation (4.1). The parameters of this
equation are given by

w= (gk0)1/2 , o = tanh(kh), (4.2a)
ow w 2kh w 1—o?
YTk T 2k(+sinh(2kh)) 2k(+ o > (4:2b)
0w w 2 2 272 2 2
W = o = 55 (07 = 1) (302 + 1) k*h? — 20 (0" — 1) kh — 0*), (4.2¢)
Pw w .
"o __ _ 2 4 2 313
"= = —as (02 = 1) (150" = 20% 4 3) kR
~30 (0% = 1) (302 + 1) K*A? = 30% (0 — 1) kh — 30° ) (4.2d)
1 2 2 4 2 272
= ——((e* -1 ~1
0 160_4V((a )% (90* — 1002 + 9) k2h
+20 (30° — 230" + 1302 — 0) kh — 0* (70" — 380% - 9) ), (4.2¢)
1 2 5 6 4 2 515
Qui = g5 ((07 = 1)" (80° = 200" — 210% +54) kh
— o (02— 1)" (116° — 990° — 610™ + 70> + 270) k*n*
+20% (6° — 1) (70" — 580° + 380° + 520" — 18107 + 270) k°h*
—20° (30" 4 180° — 1460° — 1720 4 1830° — 270) k*h?
— o (0% = 1090° + 5170 + 2170° + 270) kh + 0° (0° — 400" 4 1930% + 54)) +A, (4.2f)
1 2 5 6 4 2 515
Quz = g5 (= (07 = 1)° (30° + 70" — 110* + 0) k°h
+0 (02— 1)° (116% — 480 + 665" + 802 + 27) k*A*
— 207 (0% — 1) (70"° — 790° + 2820° — 1540 — 0 + 9) k*h®
+20° (30" — 630® + 3140° — 2180 + 190> + 9) k*h?
+ 04 (08 +200° — 1580" — 2807 — 27) kh — 0° (0° — To* +70% - 9) ) - A, (4.2g)
v= (=12 k> =20 (0> + 1) kh + o> (4.2h)

The quantity Vy is the wave group speed. The param-
eter A is the correction introduced by Slunyaev [52]
to the coefficients derived in [47,48]. This correction
is negligible at kh = 1 (see Appendix A), and we
ignore it by keeping A = 0.

ISSN 2071-0186. Ukr. J. Phys. 2014. Vol. 59, No. 12

The free-surface displacement is expressed in terms
of A as

n= 827’]0 + ERe(Aei(kw—wt))
+e?2Re(np 2k wD) L O(?), (4.3)

where Re{-} stands for the real part of a complex-
valued function. Here 1 and 71y are defined as
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oc+2(1—0c2)kh
no = ( ) k| A, (4.4a)
3—o2
= kA2 4.4b
2 853 ( )

The corresponding velocity potential is written as

® = By + £ 2Re (P e*(Fr7h))
+£22Re(®g k=) L O(c?),  (4.5)

where

k((gA@V)A)W

—(y+ h)% Sm}:éfé?kz)h)) ) : (4.6a)
By = 31 (7 1) ONREW ) 4y (4.6b)

1604 cosh(2kh)

The term ®q describes the wave-induced mean flow
and is expressed implicitly in terms of its derivatives

0P wky1, 9 . WY2 0A* 0A

9% _ A A2 404

or " 20v A+ %022 Oz ox )’

(4.7a)

9By 0D
where
= (02 = 1)°kh — o (0® - 5), (4.8a)
vo = (6% = 1) k*h* + 40 (0% — 1) (1302 + 3) k>R

—20%(0® — 1) (30" + 320° — 3)k*h?
+40%(20" — 0® — 5)kh — 30 (0 — 5).  (4.8b)

Functions (4.3) and (4.5) define an approximate so-
lution to the original system of equations (2.1)—(2.4)
in terms of the first-harmonic envelope A, which is
found from Eq. (4.1).

4.2. Dimensionless form

Introduce the following dimensionless time, coordi-
nate, and amplitude:

T = ft,

« and B being the parameters to be determined. The
relationship between the old and new derivatives is

x=kr, u=a leA, (4.9)

o _ 0 00
or ox’ ot or
6

0 LI L L L L L L L

-0.5

11‘1111

-15

€

|

[
TTTT‘TTTT‘TTTT‘TTTT

1111‘1111‘1

_2 v b b b b b b b b b

0.5 1 15 2 25 3 35 4 4.5
kh

o
o

Fig. 2. & in m?/s as a function of h at k¥ = 1 and ¢
9.8m/s2.

Then Eq. (4.1) is transformed to

1
ia (Bur + kVyuy)+a <2w”k2uxx + kaQ3|a|2|u|2u>

] 1
+ 1a(_6W'/’k3uxxx + Wk Qui| o uy |ul?

+wk2Q42|a\2u2u;) =0 [m/s].

Here the indices y and 7 designate the partial deriva-
tives over the corresponding variables. Taking into
account that w” < 0 at all h > 0 (Fig. 2), divide this
equation by w”k?«, so that

. B Vg 1 W2 2
1 (w//kQU’T + w//kuX + iuXX + F|a| q3|u| u
o/ 1wk W 9 5
i (2w + o Quuul
w
+ lal?Quutuy) =0,

and select the values of o and 8 as

1

lof? = —% >0, B=-w'k>0. (4.10)
Thus, Eq. (4.1) takes the following dimensionless
form

. Vg 1 2
1\ Ur — w”kux - §uxx + gslulu
1 (.A.)N,k
+1i <6w”uXXX + Q41ux\u|2 + Q4gu2u;‘<> =0
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Fig. 3. Normalized coefficients of HONLSE as functions of kh.

or, equivalently,

i(uT + alux) — GoUyy + a0’0,0|u|2u + i(—aguXXX
+ alvo,oux\u|2 + ao, o, 1u2u;‘() =0, (4.11a)
which finally yields
Ur = —01Uy — 102Uy + iao,g,o\u|2u
+ (a?»uxxx —a1,0,0uy|ul* — a0,0,1u2u;‘<>, (4.11Db)

where we used the unified notation introduced by
Lukomsky and Gandzha [42]. Here the coeflicients

% 27, 9
al:_w/}qk- :—E(O' +U(1—U )kh) >0,
e L

2 — 27

lw///k
“@= TG

1 2 4 2 313

= 5 ((0*=1) (150" — 20+ 3) K*h*  (4.12)
—30 (0? = 1) (302 + 1) k*A?
— 302 (02—1) kh—303),
@0,0,0 = 43, CL1,0,OEQ41, ao,0,1EQ42»

v = (02 — 1) (302 —l—l) k2h? — 20 (02 — 1) kh — o2

are all real and depend on one dimensionless pa-
rameter kh. Their behavior as functions of kh is

ISSN 2071-0186. Ukr. J. Phys. 2014. Vol. 59, No. 12

shown in Fig. 3. It can be seen that Eq. (4.1)
is valid at kh 2 1, where the coefficients ag, o, 0,
a1,0,0, and ag,o,1 do not diverge. At smaller depths,
the Korteweg—de Vries equation and its generaliza-
tions [36, 39] should be used. On the other hand, at
large kh, the infinite-depth limit (Dysthe’s equation)
should be used. Indeed, the following asymptotics are
easily obtained at kh — oo:

1 1 3 1

They coincide with the corresponding coefficients of
Dysthe’s equation [63], except for the term including
the wave-induced mean flow, which cannot be explic-
itly reconstructed from Eq. (4.11) because of the ad-
ditional power expansion of the wave-induced mean
flow made to derive Eq. (4.1). However, this term
can be reconstructed from the equations generating
Eq. (4.1), at the stage when the wave-induced mean
flow has not been excluded from the equation for A
yet [47]. Taking into account these constraints, we
will restrict our attention to the following range of
intermediate depths:

1 <kh<5. (4.14)

4.3. Moving reference frame

Eq. (4.11) can be rewritten in the form without the
u, term. To this end, let us proceed to the reference
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frame moving with speed a; (dimensionless group
speed):
E=x—aiT, T=r (4.15)
The relationship between the derivatives in new and
old variables is given by the formulas

0 0o oro o
Ox Oxo¢ 0OxoT 0Of

9 _%o6 oro __ 0 0
or  oro¢ ' oror  lo¢ ' oT’
so that

Ur = —laguge + 1iag, 0,0 u|2u

+ ((1311,555 — a17070u§|u\2 — ao, o, 1u2u2>. (4.16)
This is our target equation for numerical simulations.
It possesses the following integral of motion:

oo

To(r) = / (€, 7)[2d€ = const,

— 00

(4.17)

which expresses the conservation of wave action. The
derivation of this conservation law is given in Ap-
pendix C. It allows one to trace the relative numerical
error of simulations:

_ Ho(r) — 1o(0)]
In(0)

Of particular interest is to reveal any relationship
of Eq. (4.16) to other HONLSEs derived in differ-
ent contexts. In Appendix B we consider one such
equation (the Sasa—Satsuma equation) and prove that
Eq. (4.16) cannot be reduced to it at any kh.

Er(Io) (4.18)

4.4. Dimensionless free surface displacement
and velocity potential

The dimensionless free surface displacement is ex-
pressed in terms of u as follows

C=kn=aglul®> + o Re(ueie)
+ 200 Re(u2 6219), (4.19)

2(1—0?)kh
ao:UJr( 0) 7 1

cv _\/E

8

Fig. 4. Ratio between the dimensionless phase and group
speeds as a function of kh.

where
O=kr—wt=x—cr=(+(a1—0)T (4.20)
is the wave phase and
1 402
_ - _ 4.21
¢ |a|2k2 v (4:21)

is the dimensionless phase speed. Figure 4 shows the
ratio of the phase speed ¢ to the group speed a; as a
function of kh. This ratio is equal to unity at kh — 0,
and it is twice as large at kh — oo, in full conformity
with the classical water wave theory [24]. The wave
envelope is written as

= aq|u| + (o + 20) |ul?. (4.22)

[C] envelope

The corresponding dimensionless velocity potential
is expressed as

1 .
p=— J(I) = o + 2Re(g01 ele)
+2Re(p2e??), (4.23)

N 2 i
(800)5 o QUVM + 80212

— a1 (@0)5 5
2+ 1)kh
wlzv@((du+@f+>+aug
20 20

cosh(z + kh) sinh(z + kh)
— o — (F kR —— e |,
cosh(kh) cosh(kh)
_ 3i(0* —1) cosh(2(z + kh))
727 T 1604 cosh(2kh)

(uuz — u*u§) ,

—
B
S
N
3

Il
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Fig. 5. Testing the quasi-harmonicity condition (4.24) for
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Fig. 6. Testing the quasi-monochromaticity condition (4.25)
for kh = 3.

where z = ky is the dimensionless vertical coordinate.
The quasi-harmonicity condition is written as

|ul

— <1, 4.24

< (424)

and the quasi-monochromaticity condition is

’%’ < 1. (4.25)
U

Finally, the original equations of hydrodynamics can
be written in the following dimensionless form:

—00 < £ < 00, (4.26)
—kh < z < (&, 7);

Pee + 022 =0,

2
prt (@) +SC=0, 2=Cle ) (127
Cr—pz+ CE e = 0, z= C<£7 T); (428)
v, =0, z=—kh (4.29)
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5. Numerical simulations

In this section we adopt the split-step Fourier (SSF)
technique described in Appendix D to compute so-
lutions to HONLSE (4.16). To test the accuracy of
our numerical scheme we start from classical NLSE
(1.1) written in terms of coordinate £. At ag, 9,0 < 0
(kh 2 1.363), it has an exact one-soliton solution [69]:

ug exp (ik€ — iQ7)

UET) = (K (e =& — V7))’

(5.1)

Q= (K*—r%) az, V=—2kas, K = |ug| _M7
2&2

ug € C, kK, fo € R.

Here V is the soliton speed, ug is the complex am-
plitude, x and € are the soliton’s wavenumber and
frequency, and &p is the soliton’s initial position.
The amplitude uy and wavenumber  should be se-
lected such that the quasi-harmonicity and quasi-
monochromaticity conditions (4.24), (4.25) hold true.
In practice, these conditions mean that the soliton
amplitude and wavenumber should be small:

lugl < 1, w < 1.

In this study we restrict our attention by the following
choice of parameters:

ug=0.1, k=-K (= Q=0),

€ = 0. (5.2)

Figures 5 and 6 demonstrate that constraints (4.24)
and (4.25) are readily satisfied in this case. Note that
at k < 0 we have V' > 0. In this case solitons move
from left to right with speed exceeding the carrier
group speed.

Figure 7 shows a soliton computed for kh = 3 using
analytical formula (5.1) for the initial moment 7 = 0
and moment 7 = 10000. The same soliton was taken
as the initial condition for the simulation with SSF
technique. The deviation from the exact solution is
seen to be negligible. Indeed, the numerical error
estimated with formula (4.18) is

Er(Ip) = 1.3 x 10719%,
Arms (Uexacts Ucomp) = 1.0 x 1074%,
Er(ly) = 2.3 x 1071%%,
A s (Uesacts Ucomp) = 3.5 x 1072%,

S@| _10000 :

S®1, Z10000 :

9
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Fig. 7. Evolution of one-soliton solution (5.1) to NLSE (1.1) at kh = 3.
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where S and S designate the order of SSF tech-
nique adopted for calculation (see Appendix D) and

- \/ I (ue, )] — lg(€, 7)) de
) = =

Arms(uu g) (T

is the relative r.m.s. deviation between two functions.
Thus, our numerical scheme reproduces the exact
one-soliton solution to NLSE with high accuracy.
Figure 8 shows the evolution of the same one-
soliton waveform taken as the initial condition in
HONLSE (4.16). As compared to the NLSE case, the
wave amplitude is smaller, the pulse width is larger,
and the wave speed is higher. The wave amplitude

10

does not remain constant and exhibits slow oscilla-
tions that can be interpreted as the secondary mod-
ulation of the carrier wave. The amplitude of these
oscillations decreases with time (Fig. 9). Such a so-
lution does not fall under the definition of soliton be-
cause it does not preserve the constant amplitude and
shape during the evolution. On the other hand, it
moves with nearly the constant speed (Fig. 10) and
still possesses the unique property of solitons to ex-
ist over long periods of time without breaking. In
view of this unique property, we call such solutions
quasi-solitons. The term quasi-soliton was introduced
earlier by Zakharov and Kuznetsov [70], but in some-
what different context; then Karpman et al. [38] and

ISSN 2071-0186. Ukr. J. Phys. 2014. Vol. 59, No. 12
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Fig. 9. Variations in the amplitude of the quasi-soliton solu-
tion with distance at kh = 3.
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Fig. 10. Mean wave speed as a function of distance at kh = 3:
solid curve — quasi-soliton, dashed line — NLSE soliton (V =
0.0566).

Slunyaev [53] used it in the same context as in the
present study.

Such a behavior of NLSE solitons in the HONLSE
case was first described by Akylas [3] in the context
of asymptotic modeling and numerical simulations of
Dysthe’s equation in the infinite-depth limit. Growth
in the soliton speed corresponds to the well-known
carrier frequency downshift observed in deep-water
experiments by Su [60] and in simulations of Dysthe’s
equation by Lo and Mei [40]. Dysthe [19] pointed
out that this phenomenon originates due to the wave-
induced mean flow, whose component in the direction
of propagation of the wave causes a local Doppler
shift. Here we proved for the first time that this well-
known phenomenon can be observed on finite depth

ISSN 2071-0186. Ukr. J. Phys. 2014. Vol. 59, No. 12

as well. This result is the main practical achievement
of our study. Figures 11, 12, and 13 demonstrate
that the same quasi-soliton solution and frequency
downshift are observed at a smaller depth, kh = 2.

Finally, the free surface profile reconstructed with
formula (4.19) is shown in Fig. 14 for kh = 3. The di-
mensionless maximum free surface elevation is about
0.046. The case kh = 3 corresponds to wavelengths
twice as large as depth, A = 2h. The typical depth
of the shelf near the north-west shore of the Black
Sea varies from 10 to 100 m. Hence, the wavelength
corresponding to kh = 3 falls within the range from
20 to 200 m, which is quite typical for water waves
observed on the Black Sea. For h = 30 m, we have
A~ 60 mand £ = 0.1 m~!. The corresponding
maximum free surface elevation of the wave shown in
Fig. 14 is about 0.5 m, and the significant wavetrain
width is about 2 km. Thus, quasi-soliton solutions ob-
tained in this study can describe swells propagating
on the relatively calm background on seas with inter-
mediate depths. The typical trough-to-crest height of
such swells is about 1 m.

6. Conclusions

The HONLSE derived earlier by Sedletsky [47] for
the first-harmonic envelope of slowly modulated grav-
ity waves on the surface of finite-depth irrotational,
inviscid, and incompressible fluid with flat bottom
was rewritten in the dimensionless form suitable
for numerical simulations. One-soliton solutions to
NLSE are transformed into quasi-soliton solutions
with slowly varying amplitude when the HONLSE
terms are taken into consideration. These quasi-
solitons represent the secondary modulations of grav-
ity waves. They propagate with nearly constant speed
and possess the unique property of solitons to exist
over long periods of time without breaking. Their
speed was found to be higher than the speed of the
NLSE solitons taken as initial conditions in compu-
tations. This phenomenon was observed earlier both
in experiment and numerical modeling in the case of
deep-water limit [3,60]. It is related to the frequency
downshift originating due to the wave-induced mean
flow [19,40]. The quasi-soliton solutions obtained in
this study describe swells propagating on the rela-
tively calm background on seas with intermediate wa-
ter depth.
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APPENDIX A

On the correction introduced by Slunyaev

Slunyaev [52] re-derived HONLSE (4.1) and introduced a cor-
rection,

— _»1613 ((0* = 1)* (302 + 1)k
a v

—o(0® —1)*(50" — 1802 — 3) k%>
+02(0% = 1)* (62 = 9)kh + o* (02 1) (s — 5) ),

(A1)

12
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Fig. 13. Mean wave speed as a function of distance at kh = 2:
solid curve — quasi-soliton, dashed line — NLSE soliton (V ~
0.0469).
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to the coefficients Q41 = a1,0,0 and Q42 = ao, 0,1 derived ear-
lier by Sedletsky [47]. Actually, this correction was deliberately
ignored by Sedletsky in view of its smallness. Indeed, Fig. 15
proves that A can frankly be ignored at kh 2 1.

APPENDIX B
Relationship to the Sasa—Satsuma equation
Taking into account that (Ju|?)¢ = ugu* + uuf, Eq. (4.16) can

be rewritten in another form:

ur = —iasuge + iao, 0, 0lul?u (B1)
+ (agugee — a1,0,0lul*ug — ao,0,1u ([ul*)¢) ,

a1,0,0 = a1,0,0 — @0,0,1-
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Fig. 15. The effect of correction A on the coefficients a1, 0,0
and ao,0,1-
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Fig. 16. The left- and right-hand-side of Eq. (B2) versus kh.

When

1_
3(—as)ao,0,0 = 531,00, (B2)

2

Eq. (B1) is reduced to the Sasa—Satsuma equation [28], which
possesses an infinite number of integrals of motion and admits
some additional exact multi-soliton solutions in contrast to
HONLSE with arbitrary coefficients [4]. However, it is clearly
shown in Fig. 16 that the above relationship among the param-

ISSN 2071-0186. Ukr. J. Phys. 2014. Vol. 59, No. 12

eters is not satisfied for any kh. Therefore, the Sasa—Satsuma
equation cannot be obtained from Eq. (4.16).

APPENDIX C

Conservation of the wave action

Multiply Eq. (B1) by v* and the conjugate equation by u,

ur = —iagu& + iaO,O,O|u|2u
+(asugee — a1, 0,0lul’ug —ao,0,1u ([ul*)¢), | x u*,
u: = iagugg — iao, o, 0‘“‘2“‘*

+(t13u2§5 — 51,0,0|u|2u2 —ao,0,1u" (\u|2)§), | X u,
and add these two equations:
(u*ur + uul) = —iag (u*u§§ — uu&)
+ a3 (u*u&g + ““2&5)
—a1,0,0 (|u|2u*u5 + |u\2uug) — 2ao, 0, 1|u\2(|u\2)5.
After some algebraic transformations we have

(lul?), = —ia2 ((U*ué)g - (““z)s)
+as ((“*U‘&&)g - (uéuz)g + ("“&)g)

1
— 5 (@1,0,0+2a0,0,1) (Julbe-
In the last term we took into account the following relation
1 1
Jul® (Jul?)e = v (uu™)e = 5 (uutuu®)e = 5(\UI4)g~

Integrating this equation over £ from —oo to oo yields

/(|u|2)7d£:0 & Ig= / |u|?d¢ = const, (C1)

where we used the fact that the function w vanishes at foo
along with its derivatives.

APPENDIX D
Split-step Fourier technique

1. Linear equation

Consider the linear part of HONLSE (4.16):

Ur = —iaguge + azugee, u=u(&, 7). (D1)
Apply the Fourier transform to the function w(§, 7):
oo
A, 7) = 5= [ @ T exp(-in€)dE = Fulu(6 M) (D2)
—oo
The inverse Fourier transform is written as
oo
u(g, ) = / a(k, 7) exp(ir€)dr = F¢ Ak, 7)) (D3)
s
13
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The Fourier transforms of the derivatives of function u(g, 7)
are expressed as

— — —

20, ..., (ung) = (iR)"G.

(ug) = ikt, (uge) = —K-T, (D4)

Hence, linear equation (D1) takes the following form in the
Fourier space:
Ur = (—iag(i,‘c)Q + a3(il€)3) u, (D5)

This ordinary differential equation can easily be integrated,

@ = T exp((iazk? — iazr®)7), (D6)
and the following solution for u(§, 7) is obtained:
o0
U= / Uo exp((ia2f$2 — iagnS)T) exp(ikg)dk. (D7)
— 00

2. Nonlinear equation

Nonlinear equation (4.16) can be split into the linear and non-
linear parts:

ur = —iaguge + iao, o, oulul?

+ (a3u555 — a1,0,0u5|u\2 —ag, o0, 1u2ug) = (ﬁ +N) u,

where
L= - iazagg + agag&c, (DS)
N = ia07070|u\2 7a1,0,0u§u* 7&0’0’1uu2 (Dg)

are the linear and nonlinear operators, respectively. The semi-
discretization in time is performed as follows

u(é: T+ AT) — u(é: T)
AT AT—0

=L+N)ul¢ 1) =

w(e, 7+ AT) R (€, 7) + AT(L+ Nu(é, 7)
e oATERN )y ¢, 7)

)

and the second-order Strang formula for noncommuting oper-
ators [59] is used:

ATLHN) = S(2)(AT)

=exp (%N) exp (ATL) exp (%N), (D10)

=exp <%£> exp (ATN) exp (%5) (D11)

In our computations splitting (D11) proved to be more accu-
rate than (D10). The linear part is integrated exactly using
relation (D7)

eATEu(E, T)

= F M [eAr(tiea i as ) £ (e, )], (D12)
and the nonlinear part is corrected at each step as follows
AN u(g, 7)

_ AT(iao, 0,0lul?=a1, 0, ougu*—ag, o, 1uu2)
=e u(&, 7).

(D13)
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Following Yoshida [65], a more accurate forth-order splitting
can be introduced as well:

SW(AT) = 8P (p1AT) S@ (poAT) SP) (p1AT), (D14)
21/3 1
Po = 51 —1.70, p1 = o1 1.35.

For a more detailed description of the SSF technique, the reader
can refer to [43].
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1. C. I'andorca, FO. B. Cedaeuyvkuti, /1. C. JTymux

HEJIIHIMHE PIBHSHHS IIPEJIHIEPA BUIIIOIO
[IOPSIJIKY JIJIST OBBIJIHOT IOBLJILHO
MOJTYJIBOBAHUX I'PABITAIIMHUX XBUJIb

HA IIOBEPXHI PLIMHU CKIHYEHHOI IVIMBUHU
TA T1IOT'O KBA3ICOJIITOHHI PO3B’SI3KU

Pezmowme

Posrnsuyro nesniniiine piBusinasa Illpesinrepa Buimoro nopsiji-
Ky, BusegeHe panime I0.B. Cemrenprum [YOXK 48(1), 82
(2003)] muist 06BimHOL mEpIIOl rapMOHIKY HOBUIBHO MOZYJIBOBA-
HUX I'PaBiTaliiiHUX XBUJIb Ha IMOBEPXHI OE3BUXPOBOI, HEB’A3KOL
Ta HECTUCJUBOI PiAuHU 31 CKIHYEHHOIO INIMOMHOIO 1 IJIOCKUM
nuoM. lle piBHSIHHS BpaxoBy€ JUCIIEPCII0 TPETHOrO MOPSIKY i
Ky0OiuHi HesiHiIfiHO-UCHEepcilinl nonanku. B maHiit po6ori BoHO
[IPUBEJIEHO 10 GE3PO3MipHOro BUIVISAY, B KoMy dirypye Jim-
e oxuH 6e3po3mMipuuit mapamerp kh, e k — XBHJIbOBE YHUCIIO
Hecydol xBuii, a h — He30ypena ryimbuna pigunun. ITokazamo,
110 IIPM BPaxyBaHHI JOJAHKIB BUIIOrO MOPSIAKY OJHOCOJIITOH-
HI PO3B’A3KHU KJIACHYIHOro HesiHiiiHoro piBuauusa Illpeninrepa
[IEPEeTBOPIOIOTHCA B KBa3iCOJITOHHI PO3B’3KH 3 IMOBLILHO 3MiH-
HOW0 aMIutiTyno10. 1[I KBa3icosiTOHHI PO3B’SI3KU IPEICTaBIISA-
IOTb BTOPHHHI MOAYy/ALil rpaBiTaliffHUX XBUJIb.

U. C. I'anoorca, FO. B. Cedreuyrud, /. C. Jymuz

HEJIVHENHOE YPABHEHUE IIIPEIMHIEPA
BLICIIIETO ITOPSIIKA J1JIs1 OTUBAIOMIEN
MEJIJIEHHO MOJIYJINPOBAHHBIX
TPABUTAIIMOHHLIX BOJIH HA

[IOBEPXHOCTU YKUJIKOCTU KOHEYHO I'JIYBUHBI
U EI'O KBABUCOJIUTOHHLIE PEIIIEHUS

Peszmowme

Paccmorpeno HenmueitHoe ypasHenue lllpeamHrepa BbICuIe-
ro nopsnka, sbienennoe panbiie F0.B. Cemyrenxum [YOZK
48(1), 82 (2003)] mst orubaroreil NepBoi rapMOHUKH MeJ|JIeH-
HO MOZYJIMPOBAHHBIX I'DABUTALMOHHBIX BOJIH Ha IOBEPXHOCTH
6Ge3BUXPEBOli, HEBSA3KON M HECXKHMAEMOW YKHIKOCTH C KOHe-
9HOW TUIyOMHOH WM IUIOCKHM JHOM. DTO ypPaBHEHHE yHUHTHIBA-
€T IWCIIEPCHIO TPETHETO HOPsiiKa M KyOUYecKHue HeIMHEHHO-
JIICIIEPCHOHHBIE claraeMble. B naHHOi pabGoTe OHO IpHBEIEHO
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1. S. Gandzha, Yu. V. Sedletsky, D.S. Dutykh

K Ge3pasmepHoil ¢popme, B KOTOPOi (burypupyer JHUIlIb OIUH
Ge3pa3mepHblil mapamerp kh, rae k — BOJHOBOE YKCJIO HECyIei
BOJIHBI, & h — HEBO3MYyIlleHHas IiyOuHa Kujkoctu. [lokazaHo,
9TO [IPU YYETE CJIAra€MbIX BBICIIETO MOPSIIKA OIHOCOJUTOHHBIE
pellleHus] KJIaCCUYeCKOro HeJimHeiHoro ypasaenus [1Ipenunre-
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pa mpeobpa3yioTcsi B KBa3WCOJIUTOHHBIE PENIEHUSI C ME/JIEH-
HO MEHSIONIEHCS aMIUIUTYA0H. DTH KBa3WCOJIUTOHHBIE DeIle-
HUA NPEACTABIAI0T BTOPUYHBIE MOIYJIAIUN I'PABUTAIITMOHHBIX

BOJIH.
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