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Toward a multi-objective optimization robust problem, the

variations in design variables and design environment pa-

rameters include the small variations and the large varia-

tions. The former have small effect on the performance func-

tions and/or the constraints, and the latter refer to the ones

that have large effect on the performance functions and/or

the constraints. The robustness of performance functions is

discussed in this paper. A post-optimality sensitivity analysis

technique for multi-objective robust optimization problems

is discussed and two robustness indices are introduced. The

first one considers the robustness of the performance func-

tions to small variations in the design variables and the de-

sign environment parameters. The second robustness index

characterizes the robustness of the performance functions to

large variations in the design environment parameters. It is

based on the ability of a solution to maintain a good Pareto

ranking for different design environment parameters due to

large variations. The robustness of the solutions is treated as

vectors in the robustness function space, which is defined by

the two proposed robustness indices. As a result, the designer

can compare the robustness of all Pareto optimal solutions

and make a decision. Finally, two illustrative examples are

given to highlight the contributions of this paper. The first

example is about a numerical problem, whereas the second

problem deals with the multi-objective robust optimization

design of a floating wind turbine.
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Nomenclature

x design variable vector

p vector of design environment parameters

gk the kth constraint

f performance function vector

F feasible set

P Pareto optimal set

σ standard deviation

µ expected value

IRS robustness index against small variations

IF feasibility index of a solution

IP Pareto optimality index of a solution

h(p) probability density function of p

Irank individual’s ranking

N number of discrete values of design environment param-

eters

IRL robustness index against large variations

PR(P) the most robust solutions amongst the Pareto opti-

mal solutions

P produced power of wind turbine rotor

Fa the thrust force in the partial load region of a wind tur-

bine rotor

γr the root twist angle

γt the tip twist angle

cr the chord length at the root

ct the chord length at the tip

ω rotor rotational speed

rr root radius of the wind turbine



rt tip radius of the wind turbine

b number of blades

ρ air density

vre reference wind speed

HAWT Horizontal Axis Wind Turbine

MOOP Multi-Objective Optimization Problem

MOROP Multi-Objective Robust Optimization Problem

RI Robustness Index

RDP Robust Design Problem

RF-Space Robustness Function Space

DV Design Variable

DEP Design Environment Parameter

PF-Space Performance Function Space

PDF Probability Density Function

BEMT Blade Element Momentum Theory

UD Uniform Distribution

ND Normal Distribution

N/A Not Affected

1 Introduction

Many design optimization problems are Multi-Objective

Optimization Problems (MOOP) and are subject to uncer-

tainties or variations in their parameters. Robustness is a

product’s ability to maintain its performance under the vari-

ations in its parameters. Robust design aims at maximizing

product’s robustness. In other words, it aims at minimiz-

ing the sensitivity of performance to variations without con-

trolling the source of these variations [1]. Sometimes, the

robustness of a product is as important as or even more im-

portant than its performance. So, to focus on the trade-off

between robustness and performance of a product is mean-

ingful. For such problems, namely Multi-Objective Robust

Optimization Problems (MOROP), it is important to obtain

design solutions that are both optimal and robust.

There exist some Robustness Indices (RI) for MOROP

in the literature. In fact, how to account for the variations in

design parameters and how to measure robustness is a widely

discussed problem [2]. Without loss of generality, the de-

sign parameters can be divided into two types, Design Vari-

ables (DVs), which can be controlled by the designer, and

Design Environment Parameters (DEPs), which are uncon-

trollable parameters.

Existing works mainly focus on the small variations

in DVs and DEPs [1, 3–19]. Moreover, some previous

work focused on the variations in the performance function

model [20–23]. Toward MOOP, the designer’s preference is

also a type of variation in MOROP [24–26].

Besides the small variations in DVs and DEPs, there

may be large variations in DEPs in some engineering prob-

lems. For instance, the actual wind speed may vary greatly

in a short time for a wind turbine rotor. In some areas, the

environment temperature can fluctuate greatly between day-

time and night. As a matter of fact, the problem with regard

to large variations in DEPs can be considered as a special

dynamic optimization problem, where the performance func-

tion and/or the constraints change with time [21, 22, 27–30].

One way to distinguish between small variations and

large variations in design parameters is whether they are un-

certain or not [31]. Another way to distinguish between

small and large variations is whether a linearization is rea-

sonable over the range of variations. The distinction between

small and large variations is commonly presented as local

versus global sensitivity analysis in the literature on sensitiv-

ity analysis [32–35]. The concept of large variations has been

discussed in [16, 23, 36, 37] for comparing the difference be-

tween the linear and nonlinear performance functions. Nev-

ertheless, in those discussions with regard to large variations,

most of the existing criteria for MOROP aim at finding a de-

sign solution that gives desirable means, variances, quantiles

or probabilities of violating constraints based on the distribu-

tions of the performance and constraint values with respect

to the variations in the design parameters. Few criteria aim

at finding a solution that maintains a good Pareto ranking for

as many different DEP values in the sample space as possi-

ble. As a matter of fact, the Pareto ranking of a solution may

be dramatically affected due to large variations in DEPs. In

this paper, the distinction between small are large variations

is made based on their effect on the performance functions.

The small variations in design parameters refer to the ones

that have small effect on the performance functions. The

large variations in design parameters refer to the ones that

have large effect on the performance functions.

Accordingly, a post-optimality sensitivity analysis tech-

nique for multi-objective robust optimization problems is

discussed while considering both small and large variations

in design parameters. Two robustness indices (RI) are also

introduced. The first one characterizes the robustness of

MOOPs against small variations in the design parameters. It

is based on the distributions of the performance function val-

ues with respect to these small variations. The second robust-

ness index characterizes the robustness of MOOPs against

large variations in DEPs. It is based on the solution’s ability

to maintain a good Pareto ranking for as many different de-

sign environments as possible. As a result, the designer can

make a decision based on the robustness of the solutions.

The paper is organized as follows. Section 2 provides

the theoretical background on Multi-Objective Optimization

Problems (MOOPs), Robust Design Problems (RDPs) and

Multi-Objective Robust Optimization Problems (MOROPs).

Two Robustness Indices (RI) and the concept of Robustness

Function Space (RF-Space) are introduced in Section 3. Two

illustrative examples are given in Section 4 to highlight the

contributions of the paper. The first example is about a nu-

merical problem, whereas the second problem deals with the

multi-objective robust optimization design of a floating wind

turbine. Conclusions and future work are presented in Sec-

tion 5.



2 Theoretical Background

2.1 Multi-Objective Optimization Problem

A general formulation of MOOP is given in Eqn. (1):

minimize f(x,p) = [ f1 f2 . . . fm]
T

subject to gk(x,p)≤ 0, k = 1, . . . ,q
xl

l ≤ xl ≤ xu
l , l = 1 . . . ,n

(1)

where f(x,p) = [ f1 f2 . . . fm]
T denotes the m-dimensional

vector of performance functions. x = [x1 x2 . . . xn]
T denotes

the n-dimensional vector of DVs. Note that the nominal val-

ues of DV are controllable, xl
l and xu

l are the lower and upper

bounds of xl respectively. p = [p1 p2 . . . pr]
T denotes the r-

dimensional vector of DEP, which cannot be adjusted by the

designer, and they are uncontrollable parameters. The func-

tions gk(x,p) = [g1 g2 . . . gq]
T are the constraints. A design

that does not violate any constraint is called “feasible”. The

set of feasible solutions is called feasible set and named F .

Since there are some trade-offs amongst the m conflict-

ing objectives, none solution of F can dominate another so-

lution of F . The optimization problem (1) generally has

more than one optimal solutions. Those solutions are defined

as Pareto optimal solutions, which cannot be dominated by

any other feasible solution [26, 38–40]. The set of all Pareto

optimal solutions is called Pareto optimal set and named P .

The Pareto optimal solutions lie on a boundary in the Perfor-

mance Function Space (PF-Space), called Pareto front.

2.2 Robust Design Problem

The concept of robustness is used in many fields such

as engineering, biology, economy, computer science [26,41–

47]. In this paper, the robustness of a product is defined as

follows:

Definition 1. Robustness is a product’s ability to maintain

its performances under conditions of varying parameters.

Robust design, a term originally introduced by Genichi

Taguchi [48], is a way of improving the quality of a prod-

uct by minimizing the effect of variations, without eliminat-

ing the causes themselves. Many researchers refer to robust-

ness [1, 49–56].

Although different expressions are used, their meanings

are similar. In this paper, we define the robust design as fol-

lows:

Definition 2. The design of a product is robust if and only

if the performances of the good under design is as little sen-

sitive as possible to variations and uncertainties.

2.3 Multi-Objective Robust Optimization Problem

A MOROP aims to find out a solution that is feasible,

optimal and robust. To come up with an feasible, optimal

and robust design, the three following scenarios have been

identified.

1. Optimal design and robust design are equally im-

portant: It means that performance functions and ro-

bustness functions are optimized simultaneously. The

designer can use the new performance functions by

adding the effects of robustness, instead of original

performance functions [3, 4, 6, 7, 57]. Moreover, the

robustness functions can be considered as new con-

straints [8,9,14,16,17,58–60] or additional optimization

objectives [15, 61–67].

2. Optimal design is primary and robust design is sec-

ondary: It is one post-optimality approach. The final

solution is selected from the Pareto optimal set based on

the robustness criterion [18, 19, 24, 25, 68–72].

3. Robust design is primary and optimal design is sec-

ondary: The final solution is selected from the most

robust solutions based on the values of the performance

functions [12].

In this paper, the optimal design is supposed to be of

primary importance and the robust design of secondary im-

portance. Although there exist some papers dealing with this

method [18, 19, 24, 25, 68–72], which is also called as post-

optimality sensitivity analysis, the final solution is selected

from the Pareto optimal set based on its robustness. More-

over, in this paper we consider both small variations in design

parameters and large variations in DEPs simultaneously.

3 New Robustness Indices for MOROP

Two Robustness Indices (RI) are introduced in this sec-

tion. Then, the concept of RF-Space is presented and the

solution robustness is defined as a vector in the RF-Space.

Finally, a discussion on this new method is presented.

3.1 Robustness Index with regard to the Small Varia-

tions in DVs and DEPs

Fig. 1: The performances of solutions vary around their nom-

inal values in the PF-Space, with regard to small variations

in DVs and DEPs



Figure 1 illustrates the solutions of a simple multi-

objective optimization problem. It has two performance

functions ( f1, f2,), some DVs (x) and DEPs (p). Let us select

solution A, solution B and solution C, which are located on

the Pareto front. When there are small variations in DVs and

DEPs, then their performances varies in the grey area around

their nominal values in the PF-Space, as shown in Fig. 1. Ob-

viously, in the PF-Space, solution B has smaller variations

around its nominal values than solutions A and C. It means

than solution B is more robust than solutions A and C. How-

ever, the size of the grey areas associated with solution A

and solution C are the same, but their shapes are different.

So the comparison between the robustness of solution A and

solution C is not an easy task. Toward the different types

of uncertainties, there are different methods to define RI for

MOOP, such as using the worst case scenario [14–17, 73],

the expectancy measure [2–9, 49, 74], and the probabilistic

threshold method [2, 8, 9].

Fig. 2: The distribution of the ith performance function as a

function of small variations in DVs and DEPs

We select a RI against the small variations in DVs and

DEPs, based on the expectancy measure. A new RI (IRS)

is introduced and is based on the actual variations of per-

formances. Under the small variations in DVs and DEPs,

the actual performances are distributed around the nominal

values. In the PF-Space, the actual performances follow a

multivariate distribution. Here, in order to simplify the index

associated with each performance function, the standard de-

viation σ of the actual performances is used as a measure for

the robustness: the smaller the standard deviation, the more

robust the design. The absolute value of the difference be-

tween the expected value (µ) and the nominal value ( f0) is

also a robustness measure: the smaller the absolute differ-

ence, the more robust the design. Figure 2 shows an exam-

ple, which follows a normal distribution, σ fi and µ fi are the

standard deviation and expected value of the ith performance

function under small uncertainties; fi,0 is the nominal value;

f max
i and f min

i are the maximum and the minimum values of

the ith performance function on the Pareto front, respectively.

Here, we assume that the standard deviation (σ) and the

absolute value of the difference between µ and f0 have the

same importance for the designer. Moreover, we assume that

the robustness of all performance functions has the same im-

portance. The robustness index IRS of a MOOP with respect

to small variations in DVs and DEPs is defined as a scalar.

The robustness of each performance function is also normal-

ized. To normalize the sum of the standard deviation (σ fi )

and the absolute difference (|µ fi − fi,0|), we divide it by the

difference between the two extreme values of the ith perfor-

mance function, namely, f max
i − f min

i . As a result, IRS is de-

fined as follows:

IRS(x) =

√

m

∑
i=1

(

σ fi + |µ fi − fi,0|

f max
i − f min

i

)2

(2)

The smaller IRS, the more robust the design.

Note that even if the variations are small, the constraints

may not be satisfied due to variations. This refers to the ro-

bustness of constraints (reliability). As a matter of fact, the

index IRS is not discussed deeply in this paper. It is just based

on the distributions of the performance function values with

respect to these small variations. To simplify the index, the

reliability with regard to small variations is not considered in

this paper.

3.2 Robustness Index with regard to the Large Varia-

tions in DEPs

Since the DVs are controllable and the DEPs are uncon-

trollable, we assume that there are only large variations in

DEPs. The mapping functions between the DVs and perfor-

mance functions can change a lot due to large variations in

DEPs. For a MOOP while considering large variations in

DEPs, we assume that the initial DEPs are p = p0, the set of

feasible solutions is named F0 and the set of Pareto optimal

solutions is denoted P0. It is noteworthy that those Pareto

optimal solutions are alternative solutions for the designer.

Since large variations in DEPs exist, the DEPs may

change from p0 to pnew. The design environment pa-

rameters p are supposed to take N discrete values:

p1,p2, · · · ,pN . The Probability Density Functions (PDF) of

p are h(p1),h(p2), · · · ,h(pN). The initial DEPs p0 are equal

to the ones having the maximum PDF amongst the N discrete

values. The corresponding feasible sets are F1,F2, · · · ,FN .

A feasible and Pareto optimal solution in P0 may not be

Pareto optimal, and not feasible in the new environments. To

compare the solution’s robustness against large variations in

DEPs, the traditional methods are not applicable. Toward a

MOOP, a definition of the solution’s robustness against large

variations in DEPs is proposed thereafter:

Definition 3. Toward a multi-objective optimization prob-

lem against large variations in DEPs, solution’s robustness

against large variations in DEPs is a measure of its ability

to be optimal in different design environments.

Figure 3 illustrates the solutions of a simple MOOP.

Similarly to Fig. 1, the problem has two objective functions

( f1, f2), some DVs (x) and DEPs (p). p0 is the nominal values

of DEPs. Let us consider Pareto-optimal solutions A and B

as examples. The grey area shows the variations in perfor-

mances of solution A and solution B in the PF-Space, under



Fig. 3: The performances of solutions vary greatly in the PF-

Space due to large variations in DEPs

small variations in DVs and DEPs. As seen before, we can

conclude that solution B is more robust than solution A with

regard to small variations in DVs and DEPs.

On the contrary, it may not be the case if there are large

variations in DEPs. As shown in Fig. 3, in a new environ-

ment, we assume that when the DEPs p change from p0 to

pnew, there are large variations in the PF-Space for all the

solutions. For instance, in the PF-Space, solution A moves

from A0 to Anew, solution B moves from B0 to Bnew. Both so-

lutions have quite large variations in f. Then, the following

question remains: “How can we compare the robustness of

solutions A and B”?.

As shown in Fig. 3, toward solution A, ∆ f S
1,A and ∆ f S

2,A
represent the largest distance of the actual performance func-

tion values and nominal performance function values in f1

and f2 respectively, with regard to the small variations in

DVs and DEPs. ∆ f L
1,A and ∆ f L

2,A represent the largest dis-

tance of the actual performance function values (assuming

only two samples: A0 and Anew) and nominal performance

function values in f1 and f2 respectively, with regard to large

variations in DEPs. If ∆ f L
1,A >> ∆ f S

1,A, ∆ f L
2,A >> ∆ f S

2,A ,

and ∆ f L
1,B >> ∆ f S

1,B, ∆ f L
2,B >> ∆ f S

2,B, we can see that the

caused actual performance function values of both solution

A and solution B are sufficiently far from their nominal ones,

with regard to large variations in DEPs. As a consequence,

we can conclude that the traditional methods, which provide

some results based on the difference between actual perfor-

mance function values and nominal ones, make little sense.

Therefore, the method proposed in this paper aims to com-

pare their relative positions in the PF-Space associated with

the new environment. From Figure 3, we can see that, in the

new environment, p = pnew, solution A is still on the new

Pareto front, which means that it is still one of the best so-

lutions for the designer. Meanwhile, solution B is far away

from the new Pareto front, which means that it is no longer

a good choice for the designer. As a result, we can conclude

that solution A is more robust than solution B with regard to

the large variations in DEPs.

As a result, a RI with regard to large variations in DEPs

is defined thereafter. Toward the discrete probability distri-

bution of DEPs, mathematically, the RI IRL of a solution x is

defined as follows:

IRL(x) = 1− IF(x)
N

∑
1

IP(x,p j)h(p j), (3a)

IF(x) =

{

1, ∀ j = 1,2, · · · ,N,x ∈ F j;

0, ∃ j = 1,2, · · · ,N,x 6∈ F j.
(3b)

IP(x,p j) = 1/Irank(x,p j) (3c)

where IF is the Feasibility Index of the solution; IP is the

Pareto optimality Index of the solution; h(p) is the PDF of

p; Irank(x,p j) is the individual’s ranking in the new environ-

ment where p= p j and amounts to the number of individuals

by which it is dominated amongst the alternative solutions,

plus one [75, 76]. For a better understanding, a simple ex-

ample is shown in Fig. 4. In a new environment, if a solu-

tion is still non dominated by any other solution, then the IP

value will be equal to one for that solution. Otherwise, the

IP value will be lower than one, but greater than zero. Note

that the number of the alternative solutions affects the value.

However, the proposed definition can divide the alternative

solutions into different groups based on their robustness.

Fig. 4: The positions of the Pareto optimal solutions in a new

environment

Note that the index IRL is bounded between zero and one.

On the one hand, if a solution is feasible in all environments



Fig. 5: Each Pareto optimal solution has a corresponding po-

sition in the RF-Space

and cannot be dominated by any other solution in all possible

environments, then IRL = 0. On the other hand, if a solution

is non-feasible in some new environments, then IRL = 1. If

each solution belongs to the set of Pareto optimal solutions

P0, then if it is feasible in all environments and its IRL value

will be greater than or equal to zero and smaller than one.

Note that the individual’s ranking Irank(x,p j) corre-

sponds to a specific value of DEPs: p j, where j = 1,2, · · · ,N.

In case there exist continuous probability distributions of the

DEPs, N becomes infinite and it is difficult to assess the ro-

bustness index IRL for a solution x. However, since the do-

main of the DEPs can be partitioned into many small parts,

we can simplify such a problem by using a discrete probabil-

ity distribution of the DEPs.

Finally, the smaller IRL, the more robust the design with

regard to large variations in DEPs.

3.3 Robustness Function Space

In this paper, we consider not only the RI against small

variations, IRS, but also the RI against large variations, IRL.

The RI of a Pareto-optimal solution is represented as a vec-

tor. The designer can analyze the robustness of Pareto opti-

mal solutions in the Robustness Function Space (RF-Space).

For a better understanding, we take IRS as one dimension of

the RF-Space, another dimension of the RF-Space is IRL, as

shown in Fig. 5.

Thanks to the proposed method, each Pareto optimal

solution has a corresponding position in the RF-Space, as

shown in Fig. 5. If IRS and IRL are not conflicting, then

the designer will be able to select the most robust solution

immediately, namely, the solution that minimizes both IRS

and IRL. If IRS and IRL are two conflicting objectives, then a

new Pareto front in the RF-Space will appear. The Pareto-

robust solutions represent the most robust solutions amongst

the Pareto optimal solutions. The set of Pareto-robust so-

lutions is named PR(P). Finally, the designer can select the

final solution from this set according to his/her requirements.

3.4 Flow chart

Fig. 6: A flow chart illustrating the proposed post-optimality

sensitivity analysis technique

A flow chart is illustrated in Figure 6 for a better under-

standing of the proposed post-optimality sensitivity analysis

technique. The first step is to determine whether the design

environment parameters (DEP) are subject to large variations

or not. The distinction between small and large variations is

made with regard to their effect on the performance func-

tions. The small variations in design parameters refer to the

ones that have a small effect on the performance functions.

The large variations in design parameters refer to the ones

that have large effect on the performance functions. In the

second step, Pareto optimal solutions are obtained for differ-

ent values of DEP. Those different values of DEP are due to

large variations in DEP. In the third step, robustness indices

IRS and IRL are calculated for each solution. The new Pareto

ranking of the obtained Pareto optimal solutions are obtained

in different design environments. Finally, the designer can

make a decision from the obtained Pareto optimal solutions

based on their robustness, namely, based on the values of IRS

and IRL for each solution.

4 Examples

In this section, two illustrative examples are given in or-

der to highlight the contributions of the proposed approach.

The first example is a simple numerical example and the sec-

ond example is a MOROP of a wind turbine blade design, in



which the variations include not only the small variations in

DVs and DEPs, but also large variations in DEPs.

4.1 Numerical illustrative example

The problem is defined in Eqn. (4). There are two per-

formance functions f1 and f2, one design variable x, one de-

sign environment parameter p and one constraint:

minimize f1(x, p) = x+ p/2 (4a)

minimize f2(x, p) = (x− p)2 (4b)

subject to 1 ≤ x ≤ 10 (4c)

f1(x, p)≥ 3 (4d)

x is subject to small variations and the variations in x follow a

uniform distribution and are bounded between −0.1 and 0.1.

p is subject to large variations and can take three possible

values: p = 3, p = 5 and p = 8. The probabilities for p to

take those three values are h(1) = 0.2, h(2) = 0.5 and h(3) =
0.3, respectively. The initial value of p is equal to 5.

Fig. 7: Values of the performance functions f1 and f2 for

p = 3, p = 5 and p = 8, respectively

Figure 7 shows the values of the performance func-

tions f1 and f2 for p = 3, p = 5 and p = 8, respectively,

i.e., in different design environments. For p = 5, let us con-

sider the five Pareto optimal solutions: solution A obtained

for x = 1; solution B obtained for x = 2; solution C obtained

for x = 3; solution D obtained for x = 4 and solution E ob-

tained for x = 5. These solutions form the Pareto front in the

PF-Space and are alternative solutions for the designer. Their

new positions for p = 3 and p = 8 in the PF-Space are shown

in Fig. 7. The vertical line represents the constraint related

to the first performance function. Note that the solutions to

the right of this line are feasible, whereas the solutions to the

left are not feasible.

To assess the robustness index IRS for each alternative

solution, the samples around the nominal values are gener-

ated by Latin Hypercube Sampling (LHS) [77–79]. 1000

samples for each alternative solution are generated with re-

gard to the small variations in DV. Then IRS for each alterna-

tive solution can be assessed with Eqn. (2).

To determine the robustness index IRL associated with

each alternative solution, their new positions should be lo-

cated when p changes from its initial value to its new value.

The results can be found from Fig. 7. When p= 3, solution A

becomes unfeasible, then the index IF defined in Eqn. (3b) is

null for solution A. Solution B and solution C become Pareto

optimal amongst these five solutions. Solution D and Solu-

tion E are dominated by other alternative solutions. When

p = 8, all the alternative solutions are feasible and can not be

dominated by others. Then IRL for each alternative solution

can be calculated with Eqn. (3).

Table 1: Comparison of the alternative solutions with regard

to variations in small variations in DV x and large variations

in DEP p

Solution f1 f2 ∆ f S
1 ∆ f S

2 ∆ f L
1 ∆ f L

2

A 3.5 16 0.05 0.4024 1.5 33

B 4.5 9 0.05 0.3024 1.5 27

C 5.5 4 0.05 0.2024 1.5 21

D 6.5 1 0.05 0.1025 1.5 15

E 7.5 0 0.05 0.0025 1.5 9

Note that all Pareto optimal solutions have sufficiently

large variations in performance functions with regard to large

variations in DEPs. In Tab. 2, f1 and f2 denote the nominal

values of the performance functions for the alternative so-

lutions. ∆ f S
1 and ∆ f S

2 represent the largest distance of the

actual performance function values (1000 samples for each

alternative solution) and nominal performance function val-

ues in f1 and f2 respectively, with regard to the small varia-

tions in DV. ∆ f L
1 and ∆ f L

2 represent the largest distance of the

actual performance function values (3 samples for each alter-

native solution) and nominal performance function values in

f1 and f2 respectively, with regard to large variations in DEP.

If the traditional methods (results based on the difference be-

tween actual performance function values and nominal ones)

are selected to measure the robustness of the alternative so-

lutions, here is the order of the six solutions from the most

robust one to the least robust one: (1) E; (2) D; (3) C; (4) B;

(5) A. Even if solution E is the most robust one, ∆ f L
1,E and

∆ f L
2,E are still quite large. Obviously, ∆ f L

1,E >> ∆ f S
1,E and

∆ f L
2,E >> ∆ f S

2,E , so with regard to large variations in DEPs,



the traditional methods make little sense.

Here is the order of the six solutions from the most ro-

bust one to the least robust one while using the robustness

index IRL defined in Eq. (3a): (1) B; (1) C; (3) D; (4) E;

(5) A. Solution B and solution C are Pareto optimal no mat-

ter the value of DEP p. Therefore, the designer may select

solution B or solution C instead of solution E.

Fig. 8: The positions of the alternative solutions for the nu-

merical example in the RF-Space

Figure 8 illustrates the positions of the alternative solu-

tions in the RF-Space. In this space, one dimension is IRS,

another dimension is IRL. In this example, IRS and IRL are

two conflicting objectives, as shown in Fig. 8. Solutions C,

D, E form a new Pareto front in the RF-Space, which repre-

sents the most robust solutions amongst these five alternative

solutions. For a better understanding, the performance func-

tion values and their RIs are given in Tab. 2. The indices IF

and IP are also given in Tab. 2.

Thanks to the proposed method, the designer can select

the final solution from the new Pareto front in the RF-Space,

according to his/her requirement. For example, if the de-

signer prefers the IRS index, solution E will be selected. If the

designer prefers the IRL index, solution C will be selected.

4.2 Multi-Objective Robust Optimization Design of a

Floating Wind Turbine

4.2.1 Problem Formulation

Figure 9 illustrates a schematic of a floating horizon-

tal wind turbine rotor with two simplified morphing blades.

Each blade can adjust its tip twist angle and root twist angle

according to the reference wind speed [80]. However, it is

difficult to adjust the twist angles at all time. Therefore, the

twist angle is assumed to be adjusted according to the aver-

age wind speed. After setting the tip twist angle (γt ) and root

twist angle (γt ), the twist angles of the other elements are ad-

justed automatically and they are linearly distributed along

the blade.

Fig. 9: Schematic of a floating HAWT rotor with two simpli-

fied morphing blades

The optimization problem at hand has two objective

functions: the produced power P by the wind turbine that

should be maximized and the thrust force Fa that should

be minimized. Moreover, the produced power P should be

higher than 1 kW and lower than 25 kW.

P and Fa are calculated based on the Blade Element

Momentum Theory (BEMT) knowing the design parame-

ters. A simplified morphing blade with a constant profile

type (S809) along the span is used. For more details, the

reader is referred to [80].

To make a good comparison, we take an optimum result

as a reference blade, and its parameters are the initial design

parameters [80]. The sum of the root chord length cr and

the tip chord length ct is supposed to be constant and equal

to 1.095 m. Then the four DVs are: (i) the root twist angle γr;



Table 2: Comparison of five alternative solutions for the numerical example

Solutions f1 f2 IRS IF (x) IP(x, p1) IP(x, p2) IP(x, p3) IRL

A 3.5 16 0.0115 0 1 1 1 1

B 4.5 9 0.0092 1 1 1 1 0

C 5.5 4 0.0072 1 1 1 1 0

D 6.5 1 0.0057 1 0.3333 1 1 0.1333

E 7.5 0 0.0051 1 0.2 1 1 0.16

Table 4: The design environment parameters

DEP Value Noise

number of blades b 2 N/A

tip radius rt (m) 5 ±0.05 ( UD)

root radius rr (m) 1.27 ±0.005 ( UD)

air density ρ (kg/m3) 1.25 ±0.05 ( UD)

reference wind speed vre (m/s) 10 ±4 ( ND)

(ii) the tip twist angle γt ; (iii) the chord length at the root cr;

(iv) the rotor rotational speed ω. The initial values, the lower

and upper bounds of the DVs are given in Tab. 3.

The other design parameters, such as the number of

blades (b), tip radius (rt ), root radius (rr), air density (ρ) and

reference wind speed (vre) are taken as DEPs. Their nominal

values are fixed as shown in Tab. 4.

A MOOP is formulated as follows:

minimize f1(x,p) =−P (5a)

minimize f2(x,p) = Fa (5b)

over x = [γr γt cr ω] (5c)

p = [b rt rr ρ vre] (5d)

subject to 1 kW ≤ P ≤ 25 kW (5e)

0 deg ≤ γr ≤ 35 deg (5f)

−5 deg ≤ γt ≤ 15 deg (5g)

0.595 m ≤ cr ≤ 0.895 m (5h)

40 rpm ≤ ω ≤ 100 rpm (5i)

b = 2; rt = 5 m; rr = 1.27 m; (5j)

ρ = 1.25 kg/m3;vre = 10 m/s (5k)

For HAWTs, the variations in DVs and DEPs are un-

avoidable. Here, we assume that there are noise values in

DVs and DEPs, as shown in Tables 3 and 4. Most of them

are small variations. However, the noise values in refer-

ence wind speed (the performance functions are functionally

dependent on it) is quite large, compared with its nominal

value. The noise values of small variations are supposed to

be Uniform Distribution (UD). The noise values of the refer-

ence wind speed follow a Normal Distribution (ND) and the

corresponding standard deviation is equal to 2 m/s.

4.3 Results Analysis

According to the proposed method, the final solution

comes from the Pareto optimal set. In this paper, the Pareto

optimal solutions are obtained by using the genetic algorithm

(NSGA II [81]). The obtained Pareto front P for this prob-

lem is illustrated in Fig. 10, including 200 alternative solu-

tions.

Fig. 10: The obtained Pareto front for the MOOP of HAWT

design

To assess the robustness index IRS for each alternative

solution, the samples around the nominal values are gener-

ated by Latin Hypercube Sampling (LHS) [77–79]. 1000



Table 3: The design variables

DV Initial Value Minimum Maximum Noise values

root twist angle γr (deg) 22.8 0 35 ±1 ( UD)

tip twist angle γt (deg) 3.61 -5 15 ±0.5 ( UD)

root chord length cr (m) 0.737 0.595 0.895 ±0.005 ( UD)

rotor rotational speed ω (rpm) 72 40 100 ±2 ( UD)

samples for each alternative solution are generated with re-

gard to the small variations in DVs and DEPs. Then IRS for

each alternative solution can be assessed using with Eqn. (2).

To determine the robustness index IRL with regard to

large variations in one DEP for each alternative solution,

the new positions of the alternative solutions should be pre-

sented, when DEPs change from initial values to the new

values. Then the feasibility index and the Pareto optimality

Index of a solution can be determined.

In this problem, the wind speed has a continuous proba-

bility distribution, varying from 6 m/s to 14 m/s. To simplify

the problem, we calculate the probability distribution of the

wind speed, and convert it into a discrete probability distri-

bution problem. Table 5 shows the probability distribution

of the wind speed. The solution having the maximum PDF

amongst the N probabilities is appointed as the initial DEPs

p0, hence p0 = p5 in this problem.

Figure 11 illustrates the positions of the alternative so-

lutions in different design environments. The vertical lines

represent the constraints in the first objective function, i.e.,

the produced power P, then the solutions between the two

lines are feasible. From the results, we can see that some al-

ternative solutions are non-feasible in the new environments.

They are illustrated by red crosses in Fig. 11. The index IF

defined in Eqn. (3b) is null for those solutions. In the new en-

vironment, some alternative solutions are dominated by other

alternative solutions, then their index IP defined in Eqn. (3c)

is lower than one, but greater than zero. Then the IRL for each

alternative solution can be calculated with Eqn. (3a).

Figure 12 illustrates the positions of the alternative so-

lutions in the RF-Space. In this space, one dimension is IRS,

another dimension is IRL. In this example, IRS and IRL are

two conflicting objectives, as shown in Fig. 12. A new Pareto

front in the RF-Space appears, which represents the most ro-

bust solutions amongst the Pareto optimal solutions and de-

noted by PR(P).

For a good understanding of the two proposed robust-

ness indices defined by Eqn. (2) and Eqn. (3a), the six solu-

tions A, B, C, D, E and F are selected. Their corresponding

positions in the PF-Space and the RF-Space are illustrated in

Fig. 10 and Fig. 12. All alternative solutions and the initial

design are shown in Fig. 13. The initial design, solution F,

is plotted in black and the other five solutions are plotted in

yellow.

Solution A has the minimum IRS value in the PR(P). So-

Fig. 12: The positions of the alternative solutions and initial

design in the RF-Space

Fig. 13: Comparison of all alternative solutions and solutions

A, B, C, D, E, F in the Decision space, Performance Function

space and Robustness Function space



Fig. 11: The positions of the alternative solutions in different design environments

Fig. 14: 3D models for the six selected solutions A, B, C, D, E and F



Table 5: Probability distributions of wind speed

p1 p2 p3 p4 p5 (p0) p6 p7 p8 p9

vre [m/s] 6 7 8 9 10 11 12 13 14

h(p) 0.028 0.066 0.124 0.180 0.204 0.180 0.124 0.066 0.028

lution B dominates Solution F in the RF-Space. Solution C

has the minimum IRL value in the P . Solution D can be dom-

inated by many solutions such as Solutions B, C and E in the

RF-Space. Solution E dominates the initial design in the PF-

Space. The 3D models of the six selected solutions and the

values of their DVs are depicted in Fig. 14.

Note that the value of index IP of a solution depends on

its ranking amongst the Pareto optimal solutions. To deter-

mine the index IP of the initial design, i.e., solution F, we

include it into the Pareto optimal set (including 200 alterna-

tive solutions) and rank the 201 individuals to generate its

ranking in different DEPs. The performance function values

and the RIs for these six solutions are given in Tab. 6. For a

better understanding of index IRL, indices IF and IP of these

six solutions are also given in Tab. 6.

With regard to the small variations in DVs and DEPs,

each solution has 1000 generated samples in the PF-Space.

Figure 15 shows the samples and the nominal values of these

six solutions. It is apparent that Solution A is the most robust

one amongst the six solutions considering small variations

in DVs and DEPs as the dispersion of the two performance

functions is a minimum with regard to small variations in

DVs and DEPs for this solution. It matches with their posi-

tions in the RF-Space. The robustness indices IRS with regard

to small variations for the five other solutions are given in the

fourth column of Tab. 6. Here is the order of the six solutions

from the most robust one to the least robust one with respect

to IRS: (1) A; (2) B; (3) F; (4) E; (5) C; (6) D.

Table 7: Comparison of six solutions with regard to varia-

tions in DV and DEPs

Solutions −P (kW) Fa (kN) ∆PS ∆FS
a ∆PL ∆FL

a

A -5.32 0.609 0.576 0.0694 6.28 0.416

B -11.5 1.399 0.801 0.110 10.2 0.410

C -14.2 1.799 1.22 0.168 12.5 0.557

D -17.1 2.300 1.08 0.177 13.9 0.493

E -11.8 1.444 0.977 0.120 10.7 0.453

F -11.5 1.455 0.910 0.113 9.57 0.366

With regard to large variations in DEPs, all Pareto op-

timal solutions have sufficiently large variations in perfor-

mance functions. In Tab. 7, −P and Fa represent the nominal

performance function values of the alternative solutions. ∆PS

and ∆FS
a represent the largest distance of the actual perfor-

mance function values (1000 samples for each alternative so-

lution) and nominal performance function values in P and Fa

respectively, with regard to the small variations in DVs and

DEPs. ∆PL and ∆FL
a represent the largest distance of the ac-

tual performance function values (9 samples for each alterna-

tive solution) and nominal performance function values in P

and Fa respectively, with regard to large variations in DEPs.

The results show that ∆PL >> ∆PS and ∆FL
a >> ∆FS

a , so

with regard to large variations in DEPs, the traditional meth-

ods (results based on the difference of actual performance

function values and nominal ones) make little sense. On the

contrary, the method proposed in this paper is relevant. In-

deed, here is the order of the six solutions from the most ro-

bust one to the least robust one based on the IRL index: (1) C;

(1) B; (3) E; (4) D; (5) F; (6) A.

In summary, the designer can select the final solution

from the new Pareto front in the RF-Space, according to

his/her requirement. For example, if the designer prefers the

IRS, solution A should be selected. If the designer prefers the

IRL, solution C should be selected.

5 Conclusions and Future Work

In this paper, a new method for solving Multi-Objective

Robust Optimization Problems (MOROP) has been intro-

duced and two illustrative examples have been given to high-

light the main contributions of the paper. Two Robust-

ness Indices (RI) have been introduced to deal with MO-

ROP where not only small variations in Design Variables

(DVs) and Design Environment Parameters (DEPs) are con-

sidered, but also large variations in DEPs. The first ro-

bustness index, named IRS, characterizes the robustness of

MOOP against small variations in DVs and DEPs. The sec-

ond robustness index, named IRL, characterizes the robust-

ness of Multi-Objective Optimization Problems (MOOP)

against large variations in DEPs. The robustness index IRS

is calculated based on the standard deviations and the differ-

ences between the expected values and nominal values of the

performances. The smaller IRS, the more robust the design.

The robustness index IRL is calculated based on the solution’s

ability to be optimal in different design environments. The

smaller IRL, the more robust the design. To make a trade-



Table 6: Comparison of different solutions

Solutions -P (kW) Fa (kN) IRS IF(x) IP(x,p1) IP(x,p2) IP(x,p3) IP(x,p4) IP(x,p5) IP(x,p6) IP(x,p7) IP(x,p8) IP(x,p9) IRL

A -5.322 0.609 0.0115 0 - - - - - - - - - 1

B -11.5 1.399 0.0208 1 1 1 1 1 1 1/4 1/6 1/10 1/4 0.322

C -14.2 1.799 0.0287 1 1/4 1 1 1/2 1 1 1 1 1 0.111

D -17.1 2.300 0.033 1 1 1 1 1/2 1 1/4 1/11 1/13 1/8 0.437

E -11.8 1.444 0.023 1 1 1 1/2 1/2 1 1 1/7 1/9 1/3 0.338

F -11.5 1.455 0.0219 1 1 1 1/2 1 1/5 1/11 1/13 1/16 1/19 0.601

Fig. 15: The generated samples and the nominal values of these six solutions with regard to small variations in DVs and

DEPs

off between the two proposed robustness indices, a concept

of Robust Function Space (RF-Space) has been introduced.

Then each Pareto optimal solution has a position in the RF-

Space. The designer can select the final solution from the

Pareto optimal set based on its new position in the RF-Space.

However, some problems are still not solved. For instance,

it is not always an easy task to claim whether a variation is

small or large. Moreover, new formulations for IRS and IRL

should be discussed in the future.
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