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This article presents a finite element reduced order model for the nonlinear vibrations of piezoelectric

layered beams with application to NEMS. In this model, the geometrical nonlinearities are taken into

account through a von Kármán nonlinear strain–displacement relationship. The originality of the finite

element electromechanical formulation is that the system electrical state is fully described by only a

couple of variables per piezoelectric patches, namely the electric charge contained in the electrodes and

the voltage between the electrodes. Due to the geometrical nonlinearity, the piezoelectric actuation

introduces an original parametric excitation term in the equilibrium equation. The reduced-order

formulation of the discretized problem is obtained by expanding the mechanical displacement unknown

vector onto the short-circuit eigenmode basis. A particular attention is paid to the computation of the

unknown nonlinear stiffness coefficients of the reduced-order model. Due to the particular form of the

von Kármán nonlinearities, these coefficients are computed exactly, once for a given geometry, by

prescribing relevant nodal displacements in nonlinear static solutions settings. Finally, the low-order

model is computed with an original purely harmonic-based continuation method. Our numerical tool is

then validated by computing the nonlinear vibrations of a mechanically excited homogeneous beam

supported at both ends referenced in the literature. The more difficult case of the nonlinear oscillations of

a layered nanobridge piezoelectrically actuated is also studied. Interesting vibratory phenomena such as

parametric amplification or patch length dependence of the frequency output response are highlighted in

order to help in the design of these nanodevices.

1. Introduction

Nanoelectromechanical systems or NEMS are systems consist-
ing of integrated electromechanical resonators of nanometer-
scale dimensions [1]. Thanks to the outstanding mechanical
properties of the resonant nanostructure, such as its quality
factor, NEMS response can exceed the quality of electrical signal
from purely electronic devices. Recently, they have been proposed
for use in ultrasensitive mass sensor [2], ultra high frequency
electronic filters [3], bit storage systems [4] and radio-frequency
telecommunication devices [5]. As researchers orient towards
frequencies reaching the GHz, one of the key issue in the
optimization of NEMS becomes the scaling down and the electro-
mechanical efficiency of the actuation and detection process.
Comparing to the more conventionally employed electrostatic
excitations [6] or even the more original self-oscillation of

nanowires in field emission [7,8], NEMS based on piezoelectric
actuation appears to be particularly advantageous due to the
linearity of forcing, their intrinsic integrability, high-efficiency
and low power consumption [9]. While the experimental realiza-
tion of such NEMS with high electromechanical coupling remains
an actual challenge [10], the predictive simulations of the non-
linear oscillations of these piezoelectrically laminated, and gen-
erally prestressed, slender nanostructures is no less a mandatory
step in the future production of these devices.

In the scope of NEMS applications, the present study proposes
a predictive model for nonlinear vibrations of piezoelectric
layered beams. The nonlinear steady-state response is simulated
with an original finite element reduced order model in order to
enable every beam geometrical configurations for a reasonable
computational time. Starting from a nonlinear finite element
formulation of the considered laminated piezoelectric beam, the
discrete problem is expanded on its truncated linear modal basis
resulting in a low-order model. Only the latter needs then to be
solved to compute the periodic beam oscillations either by a
classical time integration method or in our case, by an original
purely harmonic-based continuation tool [11,12].
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www.elsevier.com/locate/finel
www.elsevier.com/locate/finel
dx.doi.org/10.1016/j.finel.2011.08.019
mailto:alazarus@mit.edu
mailto:olivier.thomas@cnam.fr
mailto:jean-francois.deu@cnam.fr
mailto:jean-francois.deu@cnam.fr
dx.doi.org/10.1016/j.finel.2011.08.019


Since first investigations in micro- and nanoelectromechanical
systems have been conducted by experimental physicists, most of
the theoretical models associated with the nonlinear vibrations of
the resonant nanostructures are still heuristic models [13,14].
These approaches, although very convenient for the identification
of electromechanical parameters of the nanosystems, are useless
when dealing with the design or optimization of the resonator as
heuristic models are not predictive.

One possibility to predict the behavior of nonlinear vibrating
systems is the use of analytical models [15,16]. The nonlinear forced
vibration of plates or shallow shells has been investigated in [17,18]
by expanding the displacements of the structure on the linear
natural modes and solving the associated low-order analytical
model with a perturbation method. The case of a piezoelectrically
excited plate at the nanoscale has been treated in [19] where the
analytical steady-state solution is computed thanks to an asymptotic
numerical continuation method. The method of averaging is used in
[6] for determining the nonlinear dynamics of nanomechanical
beam resonators electrostatically excited. Numerous papers, based
on similar analytical methods and dedicated to the modeling of
nonlinear vibration of piezoelectric beams can be found in the
literature. Nonlinear free and forced oscillations of piezoelectric
clamped–clamped microresonators have been studied in [20] and in
[21] when lying in an electrostatic environment. The influence of
imperfections on the nonlinear vibratory behavior of doubly sup-
ported sandwich piezoelectric beam has been treated in [22,23].
Analytical models of piezoelectrically actuated microcantilevers may
be found in [24–26]. All these methods, although predictive and
often relevant suffer a critical drawback: solving analytically the
nonlinear equilibrium equations is only reasonable when dealing
with structures with simple geometries.

A solution to free ourselves from this awkward geometry
dependence is the use of finite element methods. The computa-
tion of large oscillations of homogeneous structures by coupling a
nonlinear finite element analysis with a direct time integration
procedure [27,28] or a harmonic balance method [29,30] is
relatively well known today. The finite element modeling of
nonlinear vibrations of piezoelectric structures is less common
but has been treated in [31] or [32]. However, the vibratory
responses of beams at the nanoscale are characterized by possible
highly anharmonic steady-state response and very long transient
response due to their outstanding quality factors. Consequently,
NEMS are typical applications where the use of classical nonlinear
finite element method lead to non-reasonable computational
time and reduced order models become naturally relevant. Many
reduction techniques for nonlinear dynamics have been devel-
oped by the mechanical engineering community. A finite element
based nonlinear modal reduction may be found in [33] for the
nonlinear vibration of rotating beams and in [34] when coupled
with a temporal continuation method. The well-known proper
orthogonal decomposition techniques are developed in [35] for

random excitation and in [36] for the particular case of electro-
statically actuated MEMS. The reduction on a classical linear
modal basis by determining the nonlinear modal stiffness coeffi-
cients for an arbitrary finite element model is explained in [37,38]
and in [39] for uncertain geometrically nonlinear structures with
stochastic methods. Finally, the enrichment of the linear vibration
modes with their modal derivatives is described in [40,41] and in
[42] for the MEMS nonlinear dynamic analysis.

In this paper, we choose to reduce our nonlinear finite element
model on a linear modal basis following the method presented in
[38]. Several reasons can explain this choice. One advantage of this
method is the physical meaning of the linear eigenmodes which
lead to criteria to select important eigenmodes. Also, this natural
basis seems to be the most relevant to use for non-experienced
computational scientists such as experimental physicists. Numeri-
cally, one needs only to compute the reduced order model once for a
given geometry, the latter being valid for different external loading.
Finally, our work is not limited to the description of the reduction
technique implementation and has also some real practical applica-
tions to discuss the method. We will see in this paper that, even
when dealing with a relatively simple one-dimensional piezoelectric
layered model, questions relative to the choice and truncature of
eigenvectors, or to the meaning of the nonlinear modal stiffness
coefficients, are definitively not obvious and deserve to be treated
for future application of this method.

The present article is divided into five main parts. After the
present introduction, Section 2 exposes the details of a nonlinear
finite element discretization of a laminated elastic beam with
piezoelectric patches. This finite element model originality results
mainly from a von Kármán nonlinear strain–displacement relation-
ship and some relevant electrical assumptions leading to only one
couple of variables per piezoelectric patches [43]. The modal
expansion of the general finite element formulation is explained in
Section 3. Details of the computation of the nonlinear modal
stiffness coefficients as well as description of the original purely
frequential continuation procedure used to compute the reduced
order model are given in this section. In the last sections, we apply
the above method to two numerical examples. In Section 4, we
compute the nonlinear vibration of a simply supported homoge-
neous beam with different numerical methods in order to validate
our approach. In Section 5, we perform the numerical simulations of
a piezoelectric layered nanobeams in real geometrical configura-
tions. We compare the numerical results obtained with our reduced
order model with a classical full nonlinear finite element model.

2. An elastic beam with piezoelectric patches

This section is devoted to the general formulation of the
nonlinear governing equations of a laminated beam composed
of elastic and piezoelectric layers (Fig. 1). In this one-dimensional
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Fig. 1. Piezoelectric laminated beam.



model, we assume a von Kármán nonlinear strain–displacement
relationships for taking into account the geometric nonlinearities
associated with large amplitude oscillations of nanobeams. Using
the finite element method with the electrical hypotheses of an
elastic structure with piezoelectric patches described in [43], we
are able to express the nonlinear variational formulation in terms
of discrete variables such as the displacements at each nodes and
the electrical potential of each patch.

2.1. Mechanical and electrical field assumptions

The beam is modeled using the classical laminate theory based
on Euler–Bernoulli assumptions (Fig. 2 (left)). We limit our study
to the vibration in the ðx2zÞ plane. The mechanical displacement
field can then be written as

uxðx,z,tÞ ¼ uðx,tÞþzyðx,tÞ, ð1aÞ

uzðx,z,tÞ ¼wðx,tÞ, ð1bÞ

where ux and uz are the axial and transverse displacements; u is
the axial displacement of the center line of the beam, w the
transverse displacement, and y the fiber rotation defined by

y¼�
@w

@x
: ð2Þ

From the von Kármán nonlinear strain–displacement relation-
ships and the above described kinematics, axial strain can be
written as follows:

e1 ¼ eþzk, ð3Þ

where membrane strain e and curvature k are defined by

e¼
@u

@x
þ

1

2

@w

@x

� �2

and k¼� @
2w

@x2
: ð4Þ

Concerning the electrostatic aspects, we consider that the piezo-
electric beams under study satisfy all assumptions expounded in
[43]. In particular, the electric field vector, of components Ek, is
normal to the electrodes and its magnitude is uniform in the
piezoelectric patch p, so that for all pAf1, . . . ,Pg, the only non-
vanishing component of the electric field is

EðpÞ3 ¼�
V ðpÞ

hðpÞ
n3, ð5Þ

where V ðpÞ is the potential difference of the p-th patch and n3 is the
component of the normal unit vector to the surface of the electrodes
(see Fig. 1). In this case, two main coupling can be obtained: a ‘‘33’’
coupling between the transverse electric field and the stress/strain
components in the same direction and a ‘‘31’’ coupling between the
transverse electric field and the membrane stresses/strains (see
Fig. 2 (right)). We recall from [43] that the present hypothesis is
valid as long as the piezoelectric patches are thin, with a constant
thickness, denoted hðpÞ for the p-th patch, smaller than its char-
acteristic longitudinal length. Note that the piezoelectric patch

materials are transverse isotropic and the electric end effects for
the piezoelectric patches are neglected.

2.2. Piezoelectric constitutive equations

Following the hypotheses of [43], the piezoelectric layers of
the laminated beam are poled in the thickness ðz,3Þ-direction with
an electrical field applied parallel to this polarization. As said
above, such a configuration is characterized in particular by the
electromechanical coupling between the axial strain e1 and the
transverse electrical field E3. For sake of simplicity, we assume
the classical plane-stress assumptions of beam theories ðs2 ¼ s3 ¼ 0Þ.
The classical linear piezoelectric constitutive equations are restricted
to the mechanical axial components only and reads:

sk
1 ¼ Yke1�ek

31E3,

Dk
3 ¼ ek

31e1þEk
33E3,

8<
: ð6Þ

where sk
1 and Dk

3 are the axial stress and the transverse electrical
displacement within the k-th layer, Yk is the k-th layer Young’s
modulus in the ð1;2Þ plane at constant electric field, ek

31 is the
piezoelectric constant and Ek

33 is the dielectric permittivity at
constant strain. Note that Eq. (6) is a simple electromechanical
approximation for constitutive behavior of one-dimensional
beams, nevertheless fully sufficient in the scope of this paper.
A more accurate Euler–Bernoulli model of laminated piezoelectric
beam can be found in [44] where the influence of one-dimen-
sional distribution of mechanical stresses and strains is taken
into account through corrected electromechanical constitutive
equations.

2.3. Variational formulation

Considering a particular axial part of the laminated beam
(of length L¼ xþ�x� and with a total of K layers including
P piezoelectric patches as in Fig. 2), the variational formulation
associated with the local equilibrium equation of our electro-
mechanical system is given in [43] and can be expressed in the
following form:

XK

k ¼ 1

Z
Ok
rkð €uxduxþ €uzduzÞ dOþ

XK

k ¼ 1

Z
Ok

Yke1de1 dO

þ
XP

p ¼ 1

V ðpÞ

hðpÞ

Z
OðpÞ

eðpÞ31de1 dO

¼
XK

k ¼ 1

Z
Gk

t

ðtk
xduxþtk

zduzÞ dSþ
XK

k ¼ 1

Z
Ok
ðf k

xduxþ f k
zduzÞ dO, ð7aÞ

�
XP

p ¼ 1

dV ðpÞ

hðpÞ

Z
OðpÞ

eðpÞ31e1 dOþ
XP

p ¼ 1

V ðpÞCðpÞdV ðpÞ ¼
XP

p ¼ 1

Q ðpÞdV ðpÞ, ð7bÞ

where rk and Ok are the mass density and the domain occupied
by the k-th layer and the p-th patch capacitance is

CðpÞ ¼
blðpÞ

hðpÞ
EðpÞ33 ð8Þ

with b and lðpÞ are the width of the beam and the p-th patch
length. Notice that the beam is subjected to surface axial and
transversal forces at the boundaries of each face sublayer (tx

k, tz
k)

and to body ones (fx
k, fz

k). The originality of the formulation is that
the electrical state is fully described by only a couple of discrete
variables per piezoelectric patches, namely the electric charge Q ðpÞ

contained in the electrode and the voltage V ðpÞ between the
electrodes. The electromechanical problem now consists in find-
ing the admissible displacements ui and the P electric charges Q ðpÞ

(pAf1, . . . ,Pg), such that the associated potential differences V ðpÞ
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Fig. 2. Mechanical and electrical assumptions. (Left) Euler–Bernoulli hypothesis.

(Right) ‘‘31’’ piezoelectric effect.



are prescribed, satisfying Eqs. (7a) and (7b) with appropriate
initial conditions.

2.4. Finite element discretization

Using any finite element procedure to discretize the mechanical
part of Eqs. (7a) and (7b) leads to introduce u, the vector of nodal
values of ui. By introducing Q ð1ÞQ ð2Þ . . .Q ðPÞ and V ð1ÞV ð2Þ . . .V ðPÞ, the
electric charges and potential differences of the p-th patch, one
finally obtains the general nonlinear finite element formulation of
the laminated piezoelectric beam:

Mm €uþKmuþf nlðuÞþ
XP

p ¼ 1

½f ðpÞc þK ðpÞc u�V ðpÞ ¼ f e, ð9aÞ

CðpÞV ðpÞ�Q ðpÞ�½f ðpÞc þK ðpÞc u�T u¼ 0 8pAf1 . . . Pg: ð9bÞ

In the above equation, Mm and Km are the mechanical mass and
stiffness matrices, of size N�N, if N is the number of mechanical
unknowns. Due to the assumed von Kármán strain–displacement
relationships, the nonlinear part of the internal energy is repre-
sented by the N-dimensional column vector of nonlinear stiffness
forces f nlðuÞ. f e is the column vector of mechanical forcing, of length
N. All details that lead to matrices Mm, Km, f nlðuÞ and f e are written
in Appendix A. f ðpÞc and K ðpÞc u are the electromechanical coupling
vectors, of size N, that couple the mechanical d.o.f. to the potential
difference of the p-th patch only. In particular, f ðpÞc is the linear
coupling vector found in the formulation of [43] and K ðpÞc is the
N�N electromechanical matrix due to the nonlinear membrane/
flexural coupling of the beam. Because of the von Kármán geome-
trical nonlinearities, a piezoelectric patch may induce some para-
metric excitations in the equilibrium equation (9a) through the
vector K ðpÞc u. For an applied sinusoidal voltage V ðpÞ with a frequency
2o, the nanobeam is likely to oscillate with a fundamental
frequency o (see Section 5). Note that one single patch is generally
discretized by more than one finite element such that f ðpÞc and K ðpÞc

are simply obtained by assembling the elementary vectors f eðpÞ
c of

size (6�1) and elementary matrices KeðpÞ
c of size (6�6), whose

explicit expressions are given in Appendix A.

3. Reduced order model

In this section, a reduced-order formulation of the discretized
problem obtained in Section 2 is introduced, by expanding the
mechanical displacement unknown vector onto the short-circuit
eigenmode basis. The main motivation of choosing this particular
basis is that, beyond the physical meaning of these entities, it can
be computed with a classical elastic mechanical problem, once for
a given configuration. The unknown nonlinear stiffness coeffi-
cients in modal space are found by solving a set of prescribed
displacements problems. Finally, the well-defined low-order
model is recast in a quadratic dimensionless form for computing
the periodic oscillation of our electromechanical system with an
original harmonic-based continuation method.

3.1. Short-circuit normal modes

The system short circuit normal modes are solutions of Eq. (9a)
with V ðpÞ ¼ 0 for all p, f e ¼ 0 and f nlðuÞ ¼ 0. The natural frequencies
oi and mode shapes Ui (each Ui is a column vectors of length N)
are the N eigensolutions of the following problem:

KmU�o2MmU¼ 0, ð10Þ

which depend only on the mechanical properties of the system.

These modes verify the following orthogonality properties:

8ði,jÞ, UT
i MmUj ¼ dij, UT

i KmUj ¼o2
i dij, ð11Þ

where dij is the Kronecker delta and the Fi (i¼ 1, . . . ,N) have been
normalized with respect to the mass matrix:

8i, UT
i MmUi ¼ 1: ð12Þ

One can note that the above equation imposes that the mode
shapes Ui units are kg�1/2 for the elements linked to d.o.f. u and w

and kg�1/2 m�1 for the elements linked to d.o.f. y (see Eq. (A.4) for
the units of Mm).

3.2. Modal expansion of the general problem

The displacement vector is sought as

uðtÞ ¼
XN

i ¼ 1

UiqiðtÞ: ð13Þ

By inserting the above equation in Eqs. (9a) and (9b), multiplying
the first obtained equation by UT

i and using the orthogonality
properties of Eqs. (11), the problem writes, for all iAf1, . . . ,Ng:

€qiþ2xi _qiþo2
i qiþ

XN

j ¼ 1

XN

kZ j

bi
jkqjqkþ

XN

j ¼ 1

XN

kZ j

XN

lZ j

gi
jklqjqkql

þ
XP

p ¼ 1

wðpÞi V ðpÞ þ
XP

p ¼ 1

XN

j ¼ 1

YðpÞij qjV
ðpÞ
¼ Fi, ð14aÞ

CðpÞV ðpÞ�Q ðpÞ�
XN

j ¼ 1

wðpÞj qj�
XN

j ¼ 1

XN

k ¼ 1

YðpÞjk qjqk ¼ 0: ð14bÞ

In Eq. (14a), wðpÞi is the linear electromechanical coupling coefficient
of the i-th mode and the p-th piezoelectric patch, that is defined by

wðpÞi ¼UT
i f ðpÞc 8iAf1 . . .Ng, 8pAf1 . . . Pg ð15Þ

and YðpÞij is the nonlinear electromechanical coefficient introducing
the parametric excitation of the i-th mode, that is defined by

YðpÞij ¼UT
i K ðpÞc Uj, 8i,jAf1 . . .Ng, 8pAf1 . . . Pg: ð16Þ

xi and Fi ¼UT
i f e are respectively the modal viscous damping and

the modal external forcing of the i-th mode. The quadratic and cubic
polynomial stiffnesses of Eq. (14a) result from the modal expansion
of the nonlinear internal forces UT

i f nlðuÞ. Assuming von Kármán
geometrical nonlinearities, these nonlinear internal forces are at
most cubic in u (see Eq. (A.16)) and the governing equation (14a) is
therefore exact.

The initial finite element formulation introduced in Section 2 has
been replaced by the modal formulation of Eq. (14), whose
unknowns are the N modal coordinates qi and the P voltage/charge
pairs ðV ðpÞ,Q ðpÞÞ associated to the P piezoelectric patches. The
reduced order model is then obtained by truncated the modal
equation (14) to a number of M modes where M is generally much
smaller than N. Its major interest, and especially the choice of the
short-circuit eigenmodes as the expansion basis, is that the above
computations of the parameters necessitates only a single modal
analysis of the elastic problem. This operation can thus be done by
any standard finite-elements code. To summarize, in order to obtain
the finite element reduced order model of a given laminated
piezoelectric beam, one has to:

� Compute all matrices and vectors of the initial problem (9),
that is to say Mm, Km, f ðpÞc and K ðpÞc .
� Calculate the M natural frequencies oi under interest in short

circuit as well as the associated mode shapes Ui, by solving the
classical eigenvalues problem (10).



� Apply the matrix products (15) and (16) to obtain wðpÞi and YðpÞij .
� Determine the unknown nonlinear stiffness coefficients bi

jk

and gi
jkl thanks to the following method.

3.3. Computation of nonlinear coefficients

The nonlinear modal stiffness coefficients bi
jk and gi

jkl are
computed with the method explained in [38]. Assuming the
von Kármán relationship (4), the nonlinear stiffness forces f nlðuÞ
written in Appendix A are at most cubic in u and (14) is
consequently exact. The procedure is based on the restoration of
nodal applied forces by relevant prescribing nodal displacements
in nonlinear static solution settings.

To illustrate the technique, one can begin by prescribing the
displacement fields u¼U1a and u¼�U1a where a is an arbitrary
constant scalar. In the modal formulations (13) and (14), this is
equivalent to impose respectively:

q1 ¼ a and qi ¼ 0 8ia1, UT
1f nlðU1aÞ ¼ b1

11a2þg1
111a3, ð17aÞ

q1 ¼�a and qi ¼ 0 8ia1, UT
1f nlð�U1aÞ ¼ b1

11a2�g1
111a3:

ð17bÞ

The expanded nonlinear stiffness forces UT
1f nlðU1aÞ and

UT
1f nlð�U1aÞ can be computed using (A.16) since a is a prescribed

scalar and U1 is known from the classical eigenvalues problem
(10). From then, the coefficients b1

11 and g1
111 can be determined

from the resulting system (17) of two linear equations. Contrarily
to [38], the relation (17) is exact in our case and theoretically
independent on a. However, for numerical purposes, this constant
scalar has to be consistent with the dimension of the finite
element model to avoid bad conditioning. In the following, we
simplify the computations and the explicit expressions by choos-
ing a¼1. By using an analogous manner to determine the
coefficients bi

ii and gi
iii for ia1, one obtains the general formulae

for the nonlinear stiffness coefficients with equal lower indices:

2bi
ii ¼UT

i ðf nlðUiÞþf nlð�UiÞÞ, ð18aÞ

2gi
iii ¼UT

i ðf nlðUiÞ�f nlð�UiÞÞ ð18bÞ

8iAf1 . . .Mg where M is the number of retained eigenvectors.
A similar technique can be employed to determine stiffness
coefficients with two unequal lower indices. Prescribing the
displacement fields in the form u¼ 7Uj7Uk and summing the
computed associated nonlinear stiffness forces f nlðuÞ, one obtains
the relations:

2bi
jk ¼UT

i ðf nlðUjþUkÞþf nlð�Uj�UkÞÞ�2bi
jj�2bi

kk, ð19aÞ

2gi
jjk ¼�UT

i ðf nlð�Uj�UkÞþf nlðUj�UkÞÞþ2bi
jjþ2bi

kk�2gi
kkk, ð19bÞ

2gi
jkk ¼UT

i ðf nlðUjþUkÞþf nlðUj�UkÞÞ�2bi
jj�2bi

kk�2gi
jjj ð19cÞ

8i,j,kAf1 . . .Mg and jok. Note that coefficients of this type
appear only if MZ2. Finally, for cases where the number of
retained eigenvectors is greater than or equal to three ðMZ3Þ,
coefficients with three unequal lower indices may be determined
by prescribing the displacement fields u¼UjþUkþUl and
read

gi
jkl ¼UT

i f nl UjþUkþUl

� �
�bi

jj�b
i
kk�b

i
ll�b

i
jk�b

i
jl�b

i
kl

�gi
jjj�g

i
kkk�g

i
lll�g

i
jjk�g

i
jjl�g

i
kkl�g

i
jkk�g

i
jll�g

i
kll ð20Þ

8i,j,k,lAf1 . . .Mg and joko l. With the nonlinear coefficients (18),
(19) and (20), we have completely defined the upper triangular
form of the nonlinear modal governing equations (14). Their

solutions can be undertaken through a large variety of techniques.
In this paper, we will use an original purely frequential continua-
tion procedure.

Remark. For practical purposes, an important number of coeffi-
cients bi

jk and gi
jkl are equal to zero. For an obvious time

computation issue, it is relevant to discard these negligible terms
from the reduced order model. Numerically, a solution is to sort
out the non-negligible terms by comparing the ratio between the
coefficients and the average of the natural frequencies involved
by the latters (the coefficient gi

jkl involves the natural frequencies
oi, oj, ok and ol).

3.4. Continuation procedure

The nonlinear system of differential equations (14) is solved
with the harmonic-based continuation software MANLAB [45]. This
numerical tool, based on the classical harmonic balance method
(HBM) and asymptotic numerical method (ANM), allowed us to
continue the harmonic contributions of periodic solutions [11]. At
each continuation step, the stability is assessed by computing and
sorting the eigenvalues of the Hill matrix, which is simply the
harmonic state operator of the computed periodic Jacobian of the
dynamical system (14) as explained in [12].

Dealing with structures at the nanoscale and with first-order
derivatives, the first mandatory step in the continuation proce-
dure is to transform the finite element reduced order model (14)
in a dimensionless form. We define L0 as a characteristic length of
the modeled structure and ai as a scalar such that ai ¼maxðUiÞ.
Using T0 ¼ 1=o1 as a characteristic time constant for the mechan-
ical oscillator (14) and by normalizing the eigenvectors Ui such
that U i ¼ aiUi, we define the dimensionless variables

t ¼o1t, u ¼
u

L0
, qi ¼

qi

L0ai
, o i ¼ T0oi, F i ¼

T2
0

L0ai
Fi,

wðpÞi ¼
T2

0

L0ai
wðpÞi , Y

ðpÞ

ij ¼
T2

0aj

ai
YðpÞij ,

b
i

jk ¼ T2
0L0

ajak

ai
bi

jk, gi
jkl ¼ T2

0L2
0

ajakal

ai
gi

jkl: ð21Þ

At this stage, we do not consider the electrical equation (14b)
which may be of interest if the patches are connected to an
external electrical circuit. After simple calculations, the mechan-
ical equilibrium (14a) may be rewritten in the first order dimen-
sionless form of 2M equations (for a sake of clarity, variables
written with our without bars will be considered dimensionless
in the following):

_qi ¼ pi,

_pi ¼�2xioipi�o2
i qi�

XM
j ¼ 1

XM
kZ j

bi
jkqjqk�

XM
j ¼ 1

XM
kZ j

XM
lZk

gi
jklqjqkql

�
XP

p ¼ 1

wðpÞi V ðpÞ�
XP

p ¼ 1

XM
j ¼ 1

YðpÞij qjV
ðpÞ
þFi:

8>>>>>>>><
>>>>>>>>:

ð22Þ

The leading idea of the harmonic-based continuation method
used in [11,12] is to systematically recast the dynamical system
(22) into a quadratic polynomial form. This procedure is fully
explained in [11], which also shows that this quadratic recast can
be applied to a large class of smooth systems with a few algebraic
manipulations and a few additions of auxiliary variables. To
illustrate the technique, we give an example of quadratic recast
when the structure is excited by a mechanical harmonic forcing
f eðtÞ ¼ f 0 cosðotÞ (Section 4) and by several sinusoidal voltages
V ðpÞ ¼ V ðpÞ0 cosðotÞ (Section 5). In that case, the new quadratic



system can be written as follows:

_qi ¼ pi,

_pi ¼ Fi
0 cosðotÞ�2xioipi�o2

i qi�
XP

p ¼ 1

wðpÞi V ðpÞ0 cosðotÞ

�
XP

p ¼ 1

XM
j ¼ 1

YðpÞij qjV
ðpÞ
0 X�

XM
j ¼ 1

XM
kZ j

bi
jkqjqk�

XM
j ¼ 1

XM
kZ j

XM
lZk

gi
jklqjRkl,

0¼ Rkl�qkql,

0¼ cosðotÞ�X,

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð23Þ

where the new unknown vector z¼ ½q1 . . . qL p1 . . . pL R11 R12 . . .

RLL X�T contains the original components of the state vector
½q1 . . . qL p1 . . . pL�

T and some new variables added to get the
quadratic form. A periodic solution of (23), of minimal period
T ¼ 2p=o, is expanded into the Fourier series

z0ðtÞ ¼ z0þ
XH

k ¼ 1

zk
c cosðkotÞþ

XH

k ¼ 1

zk
s sinðkotÞ ¼

XH

k ¼ �H

zk
0eikot : ð24Þ

Using relation (24) in the governing equation (23) leads to an
algebraic nonlinear system of ð2Hþ1Þ � ð2Mþ1þðMþM2

Þ=2Þ
equations. From then, the ANM continuation method enables to
compute the zk

0, k¼�H, . . . ,H for various contiguous values of
control parameter l¼o, detect possible bifurcations and
compute different branches of solutions. To assess the stability
of these solutions, one needs to express the 2M � 2M Jacobian
of the dynamical system (22). To keep the computation efficiency
of the continuation software [12], it is written in the quadratic
form:

JðtÞ ¼
0 I

�K0 �C0

" #
þ

0 0

�KcðtÞ�KLðtÞ 0

" #
þ

0 0

�KQ ðtÞ 0

" #
, ð25Þ

where K0, C0, KcðtÞ, KLðtÞ and KQ ðtÞ are expressed in Appendix B.
In the above definitions, all matrices except J are of size M�M, 0
being filled with zeros and I being the identity matrix. The
quadratic first order dynamical system (23) and its Jacobian
(25) are implemented in the MANLAB opensource software
program [45]. MANLAB is an interactive software program for
the continuation and bifurcation analysis of algebraic systems,
based on ANM continuation. The latest version is programmed in
Matlab using an object-oriented approach enhanced by fortran
acceleration. It has a graphical user interface (GUI), with buttons,
online inputs and graphical windows for generating, displaying
and analyzing the bifurcation diagram and stability of the system.
In the following, the nonlinear vibrations of two supported beams
is treated by solving their finite element reduced order models
with this software.

4. Test example: N.L. vibration of homogeneous beam

In this section, we validate the previous theoretical develop-
ments by computing the nonlinear oscillations of a simply
supported homogeneous beam studied in [29,30]. This example
being relatively simple, we are able to compare the results
obtained with some classical analytical or finite element methods
with our reduced order model.

4.1. System under study

The problem is to determine the nonlinear resonance curve
for the simply supported beam subjected to external mech-
anical forces shown in Fig. 3 (left). The axial displacement is
also prevented at each end. It is assumed a viscous damping
matrix Dm proportional to the mass matrix so that Dm ¼ cMm

where c=2o1 ¼ 0:005 and o1 is the first natural frequency. The
harmonic excitation forces read P1ðtÞ ¼ 13:63EIr=l3 cos lt and
P2ðtÞ ¼ 9:62EIr=l3 cos lt where EI denotes the bending rigidity of
the beam and r¼

ffiffiffiffiffiffiffi
I=A

p
is the radius of gyration. The results, first

computed in [29], are presented in Fig. 3 (right) where the
modulus of non-dimensional amplitude of the first harmonic at
x¼ 0:75L versus the non-dimensional frequency l=o1 is shown.
In this work, the author computed the matrix amplitude equation
of the discretized beam (eight elements) thanks to a Galerkin
method. The resonance curve was obtained with an incremental-
iterative continuation method and the stability was assessed with
Floquet theory. Only the second and third harmonics were taken
into account in the periodic solution but that was sufficient to
qualitatively predict the internal resonance emerging from the
system (visible in Fig. 3 (right) as the small slope).

We model the system of R. Lewandowsky with the method
presented in Sections 2 and 3. In this purely mechanical problem,
the electromechanical finite element formulation (9) reads simply:

Mm €uþDm _uþKmuþf nlðuÞ ¼ f e, ð26Þ

where each matrix has been previously defined. In the following, we
use a rectangular beam with a length l¼1 m, a width b¼0.1 m, a
thickness h¼0.001 m, a Young modulus E¼100 MPa and a density
r¼ 2000 kg=m3.

4.2. Modal basis truncation

The eigenmodes of (26) are computed with the classical
eigenvalue problem (10). Fig. 4 represents the first flexural modes
Uf and axial modes Ua computed with Matlab for a simply
supported beam discretized with 512 elements. The beam being
homogeneous, the classical membrane and bending modes are
totally decoupled.

P1(t)

L/4 L/2 L/4

P2(t)

Fig. 3. Periodic vibration of geometrically nonlinear structures from R. Lewandowski [29]. (Left) Simply supported beam under the excitation forces. (Right) Resonance

curve for c=2o1 ¼ 0:005.



Expanding Eq. (26) on its modal basis ½Uf Ua� leads to the
following purely mechanical reduced order model:

€qiþ2xioi _qiþo2
i qiþ

XM
j ¼ 1

XM
kZ j

bi
jkqjqkþ

XM
j ¼ 1

XM
kZ j

XM
lZk

gi
jklqjqkql ¼ Fi,

ð27Þ

8i,j,k,lAf1 . . .Mg where M is the number of retained eigenvectors.
All terms in Eq. (27) are computed according to Section 3 and
xi ¼ c=2oi.

4.3. Nonlinear vibratory behavior

Following the continuation procedure described in Section 3.4,
we compute the harmonic contributions of each modal coordinates
qi(t) of Eq. (27) from the quadratic dynamical system (23) with

V ðpÞ0 ¼ 0 8p. The stability of the periodic solution is determined
through the quadratic Jacobian (25) with V ðpÞ0 ¼ 0 8p for each
control parameter l. The nonlinear oscillations of the beam are
obtained by reconstructing the displacement vector with the
modal recombination (13). The modulus of the maximal non-
dimensional amplitude w=r of the beam oscillation at x¼ 0:75L

versus the non-dimensional excitation frequency l=o1 is shown in
Fig. 5 ðo1 ¼of 1 ¼ 3:21 Hz is given in Fig. 4). The resonance curve
and its stability have been obtained with the MANLAB continuation
software when keeping the three first flexural modes and six first
axial modes of the beam in the reduced order model. The number
of simulated harmonics in the periodic solution is H¼10. Stable
solutions are plotted with full lines when unstable ones are
characterized by dotted lines.

The resonance curve of Fig. 5 is in good agreement with the
one obtained by R. Lewandowski, the qualitative differences
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between Figs. 5 and 3 (right) being only due to the choice of
plotted amplitudes. The stability regions of the saddle-node
bifurcations are well predicted thanks to our original purely
frequential stability analysis [12]. Besides the T-periodic instabil-
ity regions of solutions with period T ¼ 2p=l predicted by the
Floquet multipliers (inset of Fig. 5), we detect a small quasiper-
iodic instability region leading to a Neimark–Sacker bifurcation
near the internal resonance (point NS in Fig. 5). This instability is
found with both analytical and finite element reduced order
models and was not observed in [29]. The crosses in Fig. 5 are
obtained with a direct integration of the complete finite element
model with 32 elements by mixing a Newmark average accelera-
tion algorithm and a Newton–Raphson method. The continuous
full and dotted blue lines result from the continuation of an
analytical reduced order model with 3 modes and 10 harmonics
which similar formulations can be found in [19] for the nonlinear
vibrations of a MEMS biosensor and in [16,46] for the nonlinear
oscillations of a forced string. As visible, the results obtained by
each method are very close. However, one has to keep in mind
that the analytical model is only applicable because of the simple
geometry of the studied structure and the direct finite element
method do not compute every solutions of the problem (only the
stable ones) since Eq. (26) is numerically integrated from the
appropriately chosen initial condition up to time when the
steady-state is reached. Moreover, the computation time of one
steady-state solution using the direct finite element time integra-
tion method is greater than the time needed for the continuation

of our reduced order models. It is however difficult to emphasize
the amount of time saved with our method in every cases since
the necessary quadratic recast of Section 3.4 mixed with the
harmonic balance method may significantly increase the number
of equations to be solved and the MANLAB 1.0 continuation
software used in this paper had some slowness due to the
object-oriented approach in the Matlab language. In the future
applications, the computation time should not be an issue any-
more since the MANLAB 2.0 version enhanced computation using
fortran acceleration [45].

Figs. 6 and 7 give an insight in the vibratory behavior of the
beam at two critical points. The use of the short-circuit normal
modes of Section 3.1 in our reduced order model is very relevant
in our physical understanding of the problem. In particular, the
bar chart of Fig. 6 shows that the SN1 point of the resonance curve
displays a one-to-three internal resonance, i.e. a nonlinear cou-
pling between the first harmonic of the first flexural mode and the
third harmonic of the second flexural mode. Note that this
complex nonlinear behavior could have been deduced from the
linear analysis of Fig. 4 where of 2 � 3of 1. The SN2 point of the
resonance curve is simply the primary resonance of the first
flexural mode as shown in Fig. 7. Another advantage of this
numerical method is that the convergence, in terms of harmonics
number and modal truncation, can be precisely checked. For
3 flexural modes, 6 axial modes and H¼10 simulated harmonics,
the solution is well converged since the bar graphs of Figs. 6 and 7
show that only the first harmonics of the two first flexural modes
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and the four first axial modes have a significant amplitude in the
excitation frequency range. Note that both flexural modes and
axial modes exist in the periodic oscillations at resonance.

4.4. Finite element and modal convergence

The finite element convergence is investigated in Fig. 8. As a
classical result, the smaller is the considered computed natural
frequency, the faster it converges to the exact analytical solution.
An Euler–Bernoulli beam model with 10 elements is sufficient to
approximate the sixth first natural frequencies at less than 1%
from their exact values. Fig. 8 (right) shows the convergence of
three nonlinear cubic coefficients gi

jkl towards their analytical
counterparts. As in the frequency convergence, the higher is the
mode involved in the coefficient calculation, the slower is the
convergence. But in this case, we need much more finite elements
to compute the nonlinear stiffness coefficients at less than 1%
from their exact values. Moreover, the convergence is not smooth
contrary to the one of Fig. 8 (left). The reason is that the
computation of nonlinear coefficients is based on the restoration
of nodal applied forces (see Section 3.3). The modeling accuracy of
these internal nodal forces depends on the number of elements,
and the same is true for the convergence. As a consequence, the
convergence has a ‘‘sawtooth’’ shape where the period depends
on the considered coefficient. The higher is the mode involved,

the larger is the period and the slower is the convergence. This
awkward finite element dependence is not a real issue in our case
since the computation of the coefficients is made only once and
the number of retained eigenmodes is relatively small. However,
this feature may explain the difficult convergence encountered
when dealing with more complicated two-dimensional or three-
dimensional structures such as in [38].

Fig. 9 shows the influence of modal truncation on the con-
vergence of the resonance curve of the excited beam. As pre-
viously seen in Figs. 6 and 7, the axial modes are present in the
periodic oscillation. Actually, one needs to retain some flexural
modes in the solution to represent the vibratory behavior but it is
also essential to keep sufficient axial modes to correctly model
the flexural/membrane coupling of the system. The chosen
method consists in retaining the first flexural modes and axial
modes of the system up to the convergence. Fig. 9 (left) illustrates
the location of the retained decoupled eigenmodes in the modal
spectrum. In this simple test example, two flexural modes and
four axial modes are sufficient to quantitatively compute the
actual resonance curve of the beam (Fig. 9 (right)).

5. A piezoelectric layered nanobridge

The goal of this section is to predict the nonlinear oscillatory
behavior of the piezoelectric layered nanobridges built by our
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physicist colleagues, from the LAAS laboratory in France, in order
to help in the design of these upcoming devices. The beam is
modeled with the finite element reduced order model explained
in Sections 2 and 3 and validated in Section 4. The piezoelectric
actuation of the slender layered structure lead to original and
interesting vibratory phenomena dependent on the patch length.

5.1. System under study

The scanning electron microscope image of the devices under
study is shown in Fig. 10 (left). The nanobridges are fabricated by
employing stepper UV lithography on silicon on insulator (SOI)
wafers [47]. From then, the technical challenge will be to deposit
several activated electric layers at the nanoscale in order to
piezoelectrically actuated the structure. For the numerical com-
putations, we consider the slightly simplified sketch of the
expected structures shown in Fig. 10 (right). Notably, the layers
composing the piezoelectric patch have the same length and
width and their thicknesses are constant along the patch. In that
case, the patch is defined by only one parameter, its length lp
which is a fraction of the beam length lb. We assume perfectly
clamped boundary conditions and no slidings between each layer.

The mechanical and electrical properties of each layer is given
in Table 1. The length of the beam is lb ¼ 10 mm but the patch
length is not defined yet. Having no electrical external circuit
connected to the patch and no mechanical external forces, the
electromechanical finite element formulation of our model is
simply

Mm €uþKmuþf nlðuÞþ½f cþKcu�V ¼ 0, ð28Þ

where each matrix has been previously defined and with V

prescribed.

5.2. Linear analysis

The eigenmodes of (28) are computed with the classical
eigenvalue problem (10). Contrarily to the test example of
Section 4, this eigenvalue problem is dependent on the patch
length lp. Fig. 11 shows the computed eigenfrequencies as

function of the patch length ratio lp=lb for a beam discretized
with 512 elements. As visible, the influence of the patch geometry
is important and some of the configurations may lead to non-
linear internal resonances if the frequency ratio oi=o1 is close to
an integer value. This parametric linear analysis is a very
convenient way to have a first insight in the intrinsic behavior
of the design nanobridges.

Fig. 12 represents the first ‘‘flexural modes’’ Uf and ‘‘axial
modes’’ Ua computed with Matlab for a laminated nanobridge
with lp=lb ¼ 0:75 discretized with 512 elements. Due to the
presence of layers, the axial and transverse motions are linearly
coupled and it is no more possible to refer to classical membrane
and bending modes such as in Section 4. Since axial contribution
is fundamental to model the flexural/membrane coupling of the
nonlinear oscillations, we need to include some ‘‘axial modes’’ in
the modal response. In this paper, we discriminate between the
modes U by comparing the integral of u(x) and w(x) along the
length of the beam L. If the area below w(x) is superior to the one
below u(x), the mode is a ‘‘flexural mode’’, otherwise, the mode is
an ‘‘axial mode’’. Different visual methods have been tried to sort
the Uf and Ua modes, though always based on the u(x) and w(x)
contributions, but the present method was the most efficient.
Expanding Eq. (28) on its modal basis ½Uf Ua� leads to the
electromechanical reduced order model:
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8iAf1 . . .Mg where M is the number of retained eigenvectors and
for one patch only. All terms in Eq. (29) are computed according
to Section 3 and the modal damping xi and applied voltage V are
fixed in adequacy to the experimental expectations.

5.3. Nonlinear frequency response for lp=lb ¼ 3=4

In order to avoid possible nonlinear internal resonances (see
Fig. 11), we compute the nonlinear vibrations of a nanobridge
with lp=lb ¼ 3=4. We choose a modal damping xi ¼ 0:01�o1=oi

corresponding to a relatively small quality factor Q ¼ 1=2x¼ 50,
and a harmonic applied voltage V ¼ V0 cosðOtÞ with V0 ¼ 5 V.
The nonlinear coefficients are calculated with 512 elements.
Following the continuation procedure described in Section 3.4,
we compute the harmonic contributions of each modal coordi-
nates qi(t) of Eq. (29) and their stability by using Eqs. (23) and (25)
with Fi

0 ¼ 08i (no mechanical external forces). For each control
parameter O, the nonlinear oscillations of the nanobridge can
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Fig. 10. A piezoelectric layered nanobeam. (Left) Scanning electron microscope image of several silicon nanobridges after liberation. Picture courtesy of LAAS, France.

(Right) Sketch of the studied sample.

Table 1
Mechanical and geometrical properties of each layer of the nanobridge [48].

Material Thickness (nm) r (kg m�3) E (GPa) n

Si 340 2500 169 0.3

SiO2 10 2150 70 0.17

Ti 10 4510 110 0.32

Pt 80 21 450 145 0.35

PZT 110 7800 96 0.45
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be obtained by reconstructing the displacement vector with
the modal recombination (13). The nonlinear frequency response
around the first ‘‘flexural mode’’ is shown Fig. 13 when H¼5
harmonics are retained in the solution. The modulus of the
maximal non-dimensional amplitude (amplitude divided by the
silicon thickness hSi) of the beam oscillation at x¼ 0:75lb versus
the non-dimensional excitation frequency O=o1 (o1 ¼of 1 ¼

23:5 MHz is given in Fig. 12) displays a classical resonance curve
of hardening type whatever the number of retained ‘‘axial modes’’.
However, one needs an important number of these ‘‘axial modes’’ to
find a quantitative convergent solution with a correct stability
region. For nw¼6 and nu¼16, the resonance curve is almost
converged in terms of harmonics and tends to the steady-state
response computed with the direct finite element time integration
method used in the previous section (crosses in Fig. 13 (left)). In this
highly layered case, the contribution of what we define as ‘‘axial
modes’’ is not as efficient as in the homogeneous case and we need
much more of these modes to harden the nonlinear resonance curve
to the exact solution. Note that the maximum number of truncated
modes was limited by the computational time of the first version of
the MANLAB software.

The computed extended nonlinear frequency response of the
piezoelectric layered beam is given Figs. 14 and 15. Notably, Fig. 14
represents the modulus of the maximal non-dimensional amplitude
of the nanobridge oscillation at x¼ 0:75L versus the non-dimen-
sional excitation frequency O=o1. An insight of the vibratory
behavior at resonances is shown in Fig. 15. Due to the applied AC
voltage, the system displays some nonlinear hardening resonances
when the excitation frequency is close to the natural frequency of a
‘‘flexural mode’’. At the SN1 point, the beam vibrates mostly on its
first mode with a fundamental frequency O (Fig. 15 (left)). At the
SN3 point, the beam still oscillates with a period 2p=O but mostly
on its second flexural mode (Fig. 15 (right)). Note that these primary
resonances are slightly nonlinear or anharmonic. Several small
secondary resonances can be observed. The second ‘‘flexural mode’’
vibrates with a fundamental frequency 2O around O¼ 1:4o1 when
the secondary resonance of the third ‘‘flexural mode’’ emerges
around O¼ 3o1. Because of our chosen geometrical ratio lp=lb and
the relatively small excitation amplitude, no internal resonances
appear in the system.

As expected in Section 2, Fig. 14 shows that the T-periodic
solution becomes unstable around O¼ 2o1 and bifurcates to a

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency Ω/ω1

A
m

pl
itu

de
 W

/h
S

i a
t 0

.7
5L

Mode 1 externally forced
Mode 1 parametrically forced
Mode 2 externally forced

SN1

SN2

SN3

Fig. 14. Maximum amplitude of the vibratory response of the nanobridge with lp=lb ¼ 3=4 at x¼ 0:75lb for 5 harmonics, 6 ‘‘flexural modes’’ and 16 ‘‘axial modes’’.

0 5 10

−1

0

1

w
/h

S
i

lb

0 1 2

−1

0

1

Time t/T

w
/h

S
i a

t 0
.7

5L

0 5 10
−2

0

2

w
/h

S
i

lb

0 1 2
−2

0

2

Time t/T

w
/h

S
i a

t 0
.7

5L

0 5 10

−0.5

0

0.5

w
/h

S
i

lb

0 1 2

−0.5

0

0.5

Time t/T

w
/h

S
i a

t 0
.7

5L

Fig. 15. Nonlinear vibratory response at resonances of Fig. 14. (Left) At point SN1. (Middle) At point SN2. (Right) At point SN3.



2T-periodic solution. At the SN2 point, the structure vibrates mostly
on its first ‘‘flexural mode’’ with a fundamental frequency O=2,
i.e. a period 2T, as shown in Fig. 15 (middle). Due to the parametric
nature of the excitation, the amplitude of the 2T-periodic steady-
state response exceeds the amplitude of the classic primary
resonances. This original parametric feature has been experimen-
tally investigated and exploited in [49]. Indeed, as the readout of
mechanical motion becomes increasingly difficult as NEMS device
are miniaturized, this parametric amplification (amplitude at SN2
point) can be useful to amplify the output signal in the mechan-
ical domain. Finally, note that, the bifurcated 2T-periodic branch
is numerically continued by adding the O=2 harmonic contribu-
tions in the T-periodic solution. As a consequence, the computa-
tion time becomes longer and due to the continuation software
limitations, this branch has been computed with eight harmonics,
three ‘‘flexural modes’’ and eight ‘‘axial modes’’. This relatively
small modal and frequential truncature may explained the cur-
ious behavior at the maximal value of the 2T-periodic branch.

5.4. Influence of patch length on the frequency response

Fig. 16 shows the nonlinear resonance curve of the doubled
clamped piezoelectric beam with lp=lb ¼ 0:5 for H¼6, nw¼5 and
nu¼15. The modal damping is still xi ¼ 0:01�o1=oi but we apply a
harmonic voltage V ¼ V0 cosðOtÞ with V0 ¼ 2 V. The system displays
a two-to-four internal resonance, i.e. a nonlinear coupling between
the first harmonic of the second ‘‘flexural mode’’ and the fourth
harmonic of the fourth flexural mode. As a consequence, the beam
vibrates mostly on its second flexural mode with a frequency
O�of 2 but there is a non-negligible oscillation on the fourth
flexural mode with a frequency of 4 � 3of 2. Note that this complex
nonlinear behavior could have been deduced from the linear analysis
of Fig. 11 where of 4 � 3of 2. Moreover, for some control parameter
O, the Floquet multipliers tend to leave the unit circle with a non-
zero imaginary part, predicting a Neimark–Sacker bifurcation of the
steady-state solution. This means that during this resonance, a new
frequency could appear in the solution. It is beyond the scope of this
article to seek the new bifurcation branches and solutions. But this
small example shows us an interesting mechanical behavior for the
design of the upcoming devices. We may want to avoid these
primary, parametric and internal resonances for the integrity of the
structures but we may also make the most of these nonlinear
phenomena. Indeed, these piezoelectric nanobridges behave as
electronic high-frequency multipliers where the relation between
the output and output signal is simply defined by the length of the
patch. By playing with several patches, we should be able to realize
even more difficult input–output operations.

6. Conclusions and discussions

An original finite element reduced order model for the
nonlinear vibrations of piezoelectric layered beams has been
presented. In this model, the geometrical nonlinearities are taken
into account through a von Kármán nonlinear strain–displace-
ment relationship. The originality of the finite element electro-
mechanical formulation is that the system electrical state is fully
described by only a couple of variables per piezoelectric patches,
namely the electric charge contained in the electrodes and the
voltage between the electrodes. Due to the geometrical nonli-
nearity, the piezoelectric actuation introduces an original para-
metric excitation term in the equilibrium equation. A reduced-
order formulation of the discretized problem is obtained by
expanding the mechanical displacement unknown vector onto
the short-circuit eigenmode basis. Beyond its physical meaning,
this basis is computed with the classical linear elastic mechanical
problem, only once for a given geometrical configuration.
A particular attention is paid to the computation of the unknown
nonlinear stiffness coefficients of the reduced-order model. Due
to the particular form of the von Kármán nonlinearities, these
coefficients are computed exactly, once for a given geometry, by
prescribing relevant nodal displacements in nonlinear static
solutions settings. Finally, the previously defined low-order
model is recast in a quadratic dimensionless form for computing
the periodic oscillations (and theirs stability) of the electrome-
chanical system with an original harmonic-based continuation
method, particularly well-adapted for the analysis of NEMS
generally characterized by very high quality factor. The presented
method has been validated by computing the nonlinear vibrations
of a mechanically excited homogeneous beam supported at both
ends referenced in the literature. The more difficult case of the
nonlinear oscillations of a layered nanobridge piezoelectrically
actuated has also been studied. Interesting vibratory phenomena
such as parametric amplification or patch length dependence of
the frequency output response have been highlighted in order to
help in the design of these nanodevices.

Although the presented self-sufficient method appears to
be a very promising tool in the design of nonlinear oscillating
beam structures such as piezoelectrically actuated NEMS, further
investigations should be considered to improve the numerical
method. Beyond the time computation inconveniences due to the
employed continuation software version, it should be possible to
accelerate the computation by discarding the negligible nonlinear
modal stiffness coefficients. A simple method has been used for
the moment but this is not sufficient and the term ‘‘negligible’’
needs to become clearer. This problem deserves a deeper
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investigation to develop an efficient automatic numerical method
of sorting. Another important theoretical issue remains the
discrimination between the axial and flexural modes in the case
of layered structures. More generally, a crucial question in the
present reduction method is the choice of normal modes to
include in the reduced order model. For our one-dimensional
models, this modal convergence issue may be relegated to the
background just by keeping an important number of modes in the
solution. When extended the method to two-dimensional or
three-dimensional structures where the coupling between axial
and flexural modes is even more complicated, this modal trun-
cature issue becomes a fundamental question. A future direction
could be the use of modal derivatives or static modes, containing
much beneficial reduction information, to enhance our solution.
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Appendix A. Piezoelectric layered beam finite element
discretization

Details of the layered beam finite element discretization of
Section 2 are specified here, by starting from the variational
formulation of Eqs. (7a) and (7b). In the following, a superscript or
a subscript e refers to elementary quantities. The generalized
displacements are discretized using linear (axial displacement)
and cubic (transverse displacement) shape functions. Thus, axial
and transverse displacements are related to the elementary
d.o.f.’s vector Ue by

ue ¼Nuue and we ¼Nwue, ðA:1Þ

where

ue ¼ ðu1 w1 y1 9 u2 w2 y2Þ
T ,

u1, w1 and y1 (respectively u2, w2 and y2) corresponding to the
first (respectively second) node of the beam element.

In Eq. (A.1), the interpolation vectors are defined as follows:

Nu ¼ ðN1 0 0 9 N2 0 0Þ

and

Nw ¼ ð0 N3 N4 9 0 N5 N6Þ

with, for all xA ½0,Le�, where Le is the elementary length,

N1 ¼ 1�
x

Le
, N2 ¼

x

Le
,

N3 ¼ 1�
x

Le

� �2

1þ
2x

Le

� �
,

N4 ¼ x 1�
x

Le

� �2

, N5 ¼
x2

L2
e

3�
2x

Le

� �
,

N6 ¼
x2

Le

x

Le
�1

� �
:

Note that Eqs. (2), (4) and (A.1) lead to the following expres-
sion of elementary rotation, membrane strain and curvature

ye
¼�N 0wue; ee ¼N 0uueþ1

2ðN
0
wueÞ

2 and ke ¼�N 00wue, ðA:2Þ

where ð�Þ0 ¼ @ð�Þ=@x¼ ð�Þ,x.
The various terms appearing in the variational formulation of

Eqs. (7a) and (7b) are now successively discussed.

The kinetic energy variation is

dT ¼
XN

k ¼ 1

Z
Ok
rkð €uxduxþ €uzduzÞ dO

¼

Z xþ

x�
½I0ð €uduþ €wdwÞþ I1ð €udyþ €yduÞþ I2

€ydy� dx

¼

Z xþ

x�
ðdu dw dyÞ

I0 0 I1

0 I0 0

I1 0 I2

0
B@

1
CA

€u

€w
€y

0
B@

1
CAdx, ðA:3Þ

where the zero, first, and second order moments of inertia are
defined by

½I0,I1,I2� ¼
XN

k ¼ 1

rk½Jk
0,Jk

1,Jk
2�,

with the zero, first and second moment of area of each sublayer
respectively defined by

½Jk
0,Jk

1,Jk
2� ¼ bk

Z zk

zk�1

½1,z,z2� dz¼ bk hk,
z2

k�z2
k�1

2
,
z3

k�z3
k�1

3

" #
,

where bk and hk are the width and the thickness of the beam
k-th layer. Applying the virtual work principle and assuming
the discretized variation of kinetic energy is dT e

¼ dueT Me
m
€ue

, the
elementary mass matrix reads:

Me
m ¼

Z Le

0
ðNT

u NT
w �N 0Tw Þ

I0 0 I1

0 I0 0

I1 0 I2

0
B@

1
CA

Nu

Nw

�N 0w

0
B@

1
CAdx,

whose explicit expression is

Me
m ¼

I0Le

420

140 0 0 70 0 0

0 156 22Le 0 54 �13Le

0 22Le 4L2
e 0 13Le �3L2

e

70 0 0 140 0 0

0 54 13Le 0 156 �22Le

0 �13Le �3L2
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e

2
6666666664

3
7777777775

þ
I1

12

0 6 �Le 0 �6 Le

6 0 0 6 0 0

�Le 0 0 Le 0 0

0 6 Le 0 �6 �Le

�6 0 0 �6 0 0
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2
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3
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þ
I2
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0 36 3Le 0 �36 3Le
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e
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0 �36 �3Le 0 36 �3Le

0 3Le �L2
e 0 �3Le 4L2

e

2
6666666664

3
7777777775
: ðA:4Þ

The mechanical contribution to the internal energy variation is

dU ¼
XN

k ¼ 1

Z
Ok

Yke1de1 dO¼
Z xþ

x�
½AedeþBðkdeþedkÞþDkdk� dx

¼

Z xþ

x�
ðde dkÞ

A B

B D

� �
e

k

� �
dx, ðA:5Þ

where A is the extensional stiffness, D is the bending stiffness, and
B is the bending–extensional coupling stiffness defined as

½A,B,D� ¼
XN

k ¼ 1

Yk
½Jk

0,Jk
1,Jk

2�:



Following Eq. (A.2), the discretized formulation of the variation of
membrane strain and curvature is given by

dee ¼N 0udueþN 0wueN 0wdue, ðA:6Þ

dke ¼�N 00wdue: ðA:7Þ

Replacing de, dk, e and k by their expressions and applying the
virtual work principle to the weak form (A.5) leads to the
discretized variation of the mechanical contribution to the inter-
nal energy variation

dUe ¼ dueT Ke
mueþdueT f e

nlðu
eÞ, ðA:8Þ

where the elementary linear stiffness matrix reads

Ke
m ¼

A

Le

1 0 0 �1 0 0
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ðA:9Þ

and where the explicit expression of the nonlinear internal
elementary forces f e

nlðu
eÞ is given at the end of this Appendix.

Work done by the external mechanical forces

dW ¼
XK

k ¼ 1

Z
Gk

t

ðtk
xduxþtk

zduzÞ dSþ
XK

k ¼ 1

Z
Ok
ðf k
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¼ ½NduþTdw�Mdy�x
þ

x� þ

Z xþ

x�
ðnduþtdw�mdyÞ dx, ðA:10Þ

where Sk is the cross-section area of the layer k and where the
boundary and distributed (i) normal resultant, (ii) shear resultant
and (iii) bending moment are respectively defined by

½N,T,M� ¼
XK

k ¼ 1

Z
Sk

tk
x dS,

Z
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:

The elementary vector of generalized mechanical forces is then

f e
e ¼ ½NNT

uþTNT
wþMN 0Tw �
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0 þ
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whose explicit expression is
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The piezoelectric contributions of the internal energy varia-
tion, related to the inverse effect, is

dUc ¼
XP

p ¼ 1

V ðpÞ

hðpÞ

Z
OðpÞ

eðpÞ31de1 dO¼
XP

p ¼ 1
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" #
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@

1
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where GðpÞ0 and GðpÞ1 are defined by

½GðpÞ0 ,GðpÞ1 � ¼
eðpÞ31

hðpÞ
½JðpÞ0 ,JðpÞ1 �:

Thanks to the virtual work principle, the discretized variation of
the piezoelectric contributions to the internal energy variation
can be written as

dUe
c ¼ dueT f eðpÞ

c þdueT KeðpÞ
c ue ðA:13Þ

leading to the elementary coupling vector
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and elementary coupling matrix

KeðpÞ
c ¼

Z Le
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N 0TwGðpÞ0 N 0w dx¼
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The same vectors and matrices are obtained for the direct effect.
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Appendix B. Quadratic Jacobian of the reduced order model

Details of the quadratic Jacobian of Section 2.4 are specified
here:

JðtÞ ¼
0 I

�K0 �C0

" #
þ

0 0

�KcðtÞ�KLðtÞ 0

" #
þ

0 0

�KQ ðtÞ 0

" #
, ðB:1Þ

K0 ¼

o2
1 � � � 0

^ & ^

0 � � � o2
L

2
64

3
75, C0 ¼ 2

x1o1 � � � 0

^ & ^

0 � � � xLoL

2
64

3
75,

KcðtÞ ¼

XP

p ¼ 1

YðpÞ11V ðpÞ0 X � � �
XP

p ¼ 1

YðpÞ1L V ðpÞ0 X

^ & ^XP

p ¼ 1

YðpÞL1 V ðpÞ0 X � � �
XP

p ¼ 1

YðpÞLL V ðpÞ0 X

2
666666664

3
777777775

,

KLðtÞ ¼

XL

k ¼ 1

B1
1kqk � � �

XL

k ¼ 1

B1
Lkqk

^ & ^XL

k ¼ 1

BL
1kqk � � �

XL

k ¼ 1

BL
Lkqk

2
66666664

3
77777775

with

Bi
jk ¼ bi

kj if j4k,

Bi
jk ¼ bi

jk if jok,

Bi
jk ¼ 2bi

jk if j¼ k,

8>>><
>>>:

KQ ðtÞ ¼

XL

k ¼ 1

XL

lZk

G1
1klqkql � � �

XL

k ¼ 1

XL

lZk

G1
Lklqkql

^ & ^XL

k ¼ 1

XL

lZk

GL
1klqkql � � �

XL

k ¼ 1

XL

lZk

GL
Lklqkql

2
666666664

3
777777775

with

Gi
jkl ¼ 3Gi

jkl if j¼ k¼ l,

Gi
jkk ¼Gi

jkk if jok,

¼Gi
kkj if j4k,

Gi
jjk ¼ 2Gi

jjk if jok,

¼ 2Gi
kjj if jok,

8>>>>>>>>><
>>>>>>>>>:

and

Gi
jkl ¼Gi

jkl if joko l,

¼Gi
jlk if jo lok,

¼Gi
kjl if ko jo l,

¼Gi
klj if ko lo j,

¼Gi
lkj if loko j,

¼Gi
ljk if lo jok:

8>>>>>>>>>>>><
>>>>>>>>>>>>:
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