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Scattering theory for the Dirac equation in Schwarzschild-Anti-de Sitter space-time

We show asymptotic completeness for linear massive Dirac fields on the Schwarzschild-Anti-de Sitter spacetime. The proof is based on a Mourre estimate. We also construct an asymptotic velocity for this field.
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Introduction

The aim of this paper is to show asymptotic completeness for the massive Dirac equation on the Anti-de Sitter Schwarzschild space-time.

When studying a physical system for which the dynamics is described by a Hamiltonian, one of the fundamental properties we want to prove is asymptotic completeness. Roughly speaking, it states that, for large time, our dynamics behave, modulo possible eigenvalues, like the well-understood dynamics described by what we call a free Hamiltonian. The first asymptotic completeness results in General Relativity were obtained by J. Dimock and B. Kay in 1986 and 1987 ( [START_REF] Dimock | Classical and quantum scattering theory for linear scalar fields on the Schwarzschild metric ii[END_REF], [START_REF] Dimock | Scattering for massive scalar fields on Coulomb potentials and Schwarzschild metrics[END_REF], [START_REF] Dimock | Classical and quantum scattering theory for linear scalar fields on the Schwarzschild metric i[END_REF]) for classical and quantum scalar fields. This study was pursued in the 1990's by A. Bachelot for classical fields. He obtains scattering theories for Maxwell fields in 1991 [START_REF] Bachelot | Gravitational scattering of elecromagnetic field by a Schwarzschild black hole[END_REF] and Klein-Gordon fields in 1994 [START_REF] Bachelot | Asymptotic completeness for the Klein-Gordon equation on the Schwarzschild metric[END_REF]. After that, J-P. Nicolas obtained a scattering theory for massless Dirac fields in 1995 [START_REF] Nicolas | Scattering of linear Dirac fields by a spherically symmetric black hole[END_REF] and F. Melnyk obtained a complete scattering for massive charged Dirac fields [START_REF] Melnyk | Scattering on Reissner-Nordström metric for massive charged spin-1 2 fields[END_REF] in 2003. In all these works, the authors used trace class perturbation methods. On the other hand, new techniques, using Mourre estimates, were applied to the wave equation on the Schwarzschild space-time in 1992 by S. De Bièvre, P. Hislop and I.M Sigal [START_REF] De Bièvre | Scattering theory for the wave equation on non-compact manifolds[END_REF]. Using this method, a complete scattering theory for the wave equation on stationary asymptotically flat spacetimes was obtained by D. Häfner in 2001 [START_REF] Häfner | Complétude asymptotique pour l'équation des ondes dans une classe d'espaces-temps stationnaires et asymptotiquement plats[END_REF] and D. Häfner and J-P. Nicolas obtained a scattering theory for massless Dirac fields outside slowly rotating Kerr black holes in 2004 [START_REF] Häfner | Scattering of massless Dirac fields by a Kerr black Hole[END_REF], making use of a positive conserved quantity which exists for the Dirac equation and not for the Klein-Gordon equation. In 2004, T. Daudé obtains a scattering theory for Dirac fields on Reissner-Nordström black holes [START_REF] Daudé | Time-dependent scattering theory for massive charged Dirac fields by a Reissner-Nordström black hole[END_REF] and on Kerr-Newman black holes in [START_REF] Daudé | Time-dependent scattering theory for massive charged Dirac fields by a Kerr-Newman black hole[END_REF]. Using an integral representation for the Dirac propagator, D. Batic gives a new approach to the time-dependent scattering for massive Dirac fields on the Kerr metric in 2007. Recently, V. Georgescu, C. Gérard and D. Häfner obtained an asymptotic completeness result for the Klein-Gordon equation in the De-Sitter Kerr black hole, see [START_REF] Georgescu | Asymptotic completeness for superradiant Klein-Gordon equations and applications to the De Sitter Kerr metric[END_REF]. See also M. Dafermos, G. Holzegel and I. Rodnianski for scattering results for the Einstein equations [START_REF] Dafermos | Scattering theory construction of dynamical vacuum black holes[END_REF] and M. Dafermos, I. Rodnianski and Y. Shlapentokh-Rothman for a scattering theory for the wave equation on Kerr black holes exteriors [START_REF] Dafermos | Scattering theory for the wave equation on Kerr black hole exteriors[END_REF]. One of the principal motivation for all these works is the study of the Hawking effect. That kind of results are needed to give a mathematically rigorous description of the Hawking effect, see [START_REF] Bachelot | The Hawking effect[END_REF] and [START_REF] Häfner | Creation of fermions by rotating charged black holes[END_REF].

In our work, we are concerned with problems that arise from the Anti-de Sitter background. Indeed, the Schwarzschild Anti-de Sitter space-time is a solution of the Einstein vacuum equations with cosmological constant Λ < 0 containing a spherically symmetric black hole. This space-time has a non-trivial causality. In fact, it is not globally hyperbolic, that is to say, Cauchy data defined on a slice {t = constant}×]r SAdS , +∞[×S 2 (where r SAdS correspond to the horizon) do not uniquely determine the evolution of the field in all the space-time. So, first of all, there's a difficulty in defining the dynamic. This is due to the fact that, when studying the geodesics in Boyer-Lindquist coordinates, null geodesics can reach timelike infinity in finite time. This suggests that we will need to put asymptotic conditions as r → +∞ in order to determine the dynamic uniquely. This problem was first studied by Breitenlohner and Freedman ([13], [START_REF] Breitenlohner | Stability in gauged extended supergravity[END_REF]) for scalar fields. They showed that the need to put boundary conditions depends on the comparison between the mass of the field and the cosmological constant and discovered two critical values known as B-F bounds. More recently, A. Bachelot ([8]) showed a similar bound for the Dirac equation in the Anti-de Sitter space-time using a spectral approach. This approach uses the fact that, in an appropriate coordinate system, the equation can be written as i∂tψ = iHmψ with Hm independent of t.

We thus have to construct a self-adjoint extension of Hm. In order to put the right boundary condition, we will understand the asymptotic behavior of the states in the natural domain of Hm. This kind of method was also used by Ishibashi and Wald ([56], [START_REF] Ishibashi | Dynamics in non-globally hyperbolic, static space-times: III. Anti-de Sitter space-time[END_REF]) for integer spin fields.

Using other techniques, there has been some recent advances concerning scalar fields. We first mention the works of G. Holzegel and J. Smulevici who proved, using vectorfield methods, a result of asymptotic stability of the Schwarzschild-AdS space-time with respect to spherically symmetric perturbations thanks to an exponential decay rate of the local energy [START_REF] Holzegel | Stability of Schwarzschild-AdS for the spherically symmetric Einstein-Klein-Gordon system[END_REF]. However, looking at the solutions of the linear wave equation on the Schwarzschild-AdS black hole with arbitrary angular momentum l, resonances with imaginary part e -C l appear (see [START_REF] Gannot | Quasinormal modes for Schwarzschild-ADS black holes: exponential convergence to the real axis[END_REF] for details) and the local energy only decays logarithmically. The same phenomenon appear in the Kerr-AdS space-time, see [START_REF] Holzegel | Decay properties of Klein-Gordon fields on Kerr-AdS spacetimes[END_REF]. Thus Kerr-AdS is supposed to be unstable. In these papers, it was supposed that the Dirichlet boundary condition holds. More recently, G. Holzegel and C.M. Warnick considered other boundary conditions for the wave equation on asymptotically AdS black hole [START_REF] Holzegel | Boundedness and growth for the massive wave equation on asymptotically Anti-de Sitter black holes[END_REF]. This includes some boundary conditions considered in the context of AdS-CFT correspondence. This correspondence was also in mind of A. Bachelot in his paper about the Klein-Gordon equation in the AdS 5 space-time [START_REF] Bachelot | The Klein-Gordon equation in Anti-de Sitter cosmology[END_REF] and of A. Enciso and N. Kamran when they study the Klein-Gordon equation in AdS 5 × Y p,q where Y p,q is a Sasaki-Einstein 5-manifold [START_REF] Enciso | A singular initial-boundary value problem for nonlinear wave equations and holography in asymptotically Anti-de Sitter spaces[END_REF].

We now present our results. We denote the natural domain of Hm by D(Hm) = {φ ∈ H; Hmφ ∈ H} , and we will use l 2 = -3 Λ where Λ < 0 is the cosmological constant. We obtain: Proposition 1.1. For 2ml 1, the operator Hm is self-adjoint on D(Hm).

For the case 2ml < 1, we will put MIT boundary conditions. This defines an operator The Cauchy problem is then well-posed by Stone's theorem. We then turn our attention to the scattering theory. By means of a Mourre estimate, we are able to prove velocity estimates. We then introduce the comparison operator Hc = iγ 0 γ 1 ∂x with domain D (Hc) = {ϕ ∈ Hs,n; Hcϕ ∈ Hs,n, ϕ1 (0) = -ϕ3 (0) , ϕ2 (0) = ϕ4 (0)}. Making use of the velocity estimates, we obtain the following asymptotic completeness result: Theorem 1.3 (Asymptotic completeness). For all m > 0 and all ϕ ∈ H, the limits:
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lim t→∞ e itHc e -itHm ϕ (1.1) lim t→∞ e itHm e -itHc ϕ (1.2)
exist. If we denote these limits by Ωϕ and W ϕ respectively, then we have Ω * = W . We eventually study the asymptotic velocity. We will say that B = s -C∞ -lim n→∞ Bn if, for all J ∈ C∞ (R), we have J (B) = s -lim t→∞ J (Bn) (where C∞ (R) is the set of continuous functions which go to 0 at ±∞). Then, we obtain the following: Theorem 1.4 (Asymptotic velocity for Hm). Let J ∈ C∞ (R) and A = -γ 0 γ 1 x where γ 0 , γ 1 are Dirac matrices. Then, for all m > 0, the limit:

s -lim t→∞ e itHm J A t e -itHm (1.3) exists. Moreover, if J (0) = 1, then s -lim R→∞ s -lim t→∞ e itHm J A Rt e -itHm = 1. (1.4) If we define s -C∞ -lim t→∞ e itHm A t e -itHm =: P + m , (1.5) 
then the self-adjoint operator P + m is densely defined and commute with Hm. The operator P + m is called the asymptotic velocity and is in fact the identity operator.

The paper is organized as follows.

In section 2, we present the Schwarzschild-AdS geometry and, due to the lack of global hyperbolicity, the fact that radial null geodesics go to infinity in finite time. Using the Newman-Penrose formalism, we then obtain the Dirac equation on this space-time and give a spectral formulation of this equation for a coordinate system (t, x, θ, ϕ) where the horizon corresponds to x goes to -∞ and the Anti-de Sitter infinity corresponds to x = 0. We eventually generalize this equation by giving asymptotic behaviors of the potentials and we ensure that the Dirac equation in the Schwarzschild-AdS space-time is part of our generalization. In the rest of the paper, we will work with this generalization.

In section 3, we obtain the self-adjointness of our operator for all m > 0. First, we present the spinoidal spherical harmonics and then we use this tool to decompose our operator (in fact, we diagonalize the Dirac operator on the sphere) which leads us to a 1 + 1 dimensional problem for the operator now denoted H s,n m . Then we study the states in the natural domain D (H s,n m ) = {ϕ ∈ Hs,n|H s,n m ϕ ∈ Hs,n}. The problem is coming from the Anti-de Sitter infinity where the potential behaves badly. Nevertheless, the potential behaves like in the result of A. Bachelot on the Anti-de Sitter space. After a unitary transform we can use his result. In this way, we see that the states behave well when 2ml 1 but it degenerates at 0 when 2ml < 1. When 2ml 1, we prove that our operator is essentially self-adjoint on C ∞ 0 (] -∞, 0[) and, using an elliptic estimate and a Hardy-type inequality, we give a precise description of the domain. In the case 2ml < 1, we need to put a boundary condition to obtain the self-adjointness of our operator. In this paper, we have chosen the MIT boundary condition. This allows us to solve the Cauchy problem. We finally prove the absence of eigenvalues for this operator.

In section 4, we prove a compactness result. We use an approximation of our resolvent, separating the behavior close to the black hole horizon and close to x = 0. We then obtain that f (x) (H s,n m -λ) -1 is compact if f goes to 0 at the horizon and has a finite limit at x = 0.

In section 5, we obtain a Mourre estimate for H s,n m using A = Γ1x, where Γ1 is the matrix diag (1, -1, -1, 1), as conjugate operator.

In section 6, we obtain some propagation estimates. First, making use of the Mourre estimate and of an abstract result about minimal velocity estimates, we prove that the minimal velocity is 1. Then, using a standard observable and a general result which uses Heisenberg derivative to obtain velocity estimates, we prove that the maximal velocity is also 1.

In section 7, we are now able to prove asymptotic completeness for our hamiltonian. This result is first proved for fixed harmonics and then we prove that we can sum over all harmonics. It is proved by making use of the two velocity estimates and a similar reasoning as in the propagation estimates.

In section 8, we first prove the existence of the asymptotic velocity for Hc and then deduce the same result for Hm using the wave operators. We see that the asymptotic velocity operator is the identity.
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The Schwarzschild Anti-de Sitter space-time and the Dirac equation

In this section, we present the Schwarzschild Anti-de Sitter space-time and give the coordinate system that we will work with in the rest of the paper. We quickly study the radial null geodesics and then formulate the Dirac equation as a system of partial differential equations which are derived from the two spinor component expression of this equation by use of the Newman-Penrose formalism. We finally give a generalization of our equation by just considering a potential that have the same asymptotic behavior as in the case of the Schwarzschild Anti-de Sitter space-time.

The Schwarzschild Anti-de Sitter space-time

Let Λ < 0. We define l 2 = -3 Λ . We denote by M the black hole mass. In Boyer-Lindquist coordinates, the Schwarzschild-Anti-de Sitter metric is given by:

g ab = 1 - 2M r + r 2 l 2 dt 2 -1 - 2M r + r 2 l 2 -1 dr 2 -r 2 dθ 2 + sin 2 θdϕ 2 (2.1)
We define

F (r) = 1 -2M r + r 2 l 2 .
We can see that F admits two complex conjugate roots and one real root r = r SAdS . We deduce that the singularities of the metric are at r = 0 and r = r SAdS = p++p-where p± = M l 2 ± M 2 l 4 + l 6 . (See [START_REF] Holzegel | Stability of Schwarzschild-AdS for the spherically symmetric Einstein-Klein-Gordon system[END_REF]) The exterior of the black hole will be the region r r SAdS and our spacetime is then seen as Rt×]r SAdS , +∞[×S 2 . It is well-know that the metric can be extended for r r SAdS by a coordinate change which gives the maximally extended Schwarschild-Anti-de Sitter spacetime. In this paper, we are only interested in the exterior region.

In order to have a better understanding of this geometry, we study the outgoing (respectively ingoing) radial null geodesics (that is to say for which dr dt > 0 (respectively dr dt < 0)). Using the form of the metric we can see that along such geodesics, we have:

dt dr = ±F (r) -1 . (2.2)
We thus introduce a new coordinate r * such that t -r * (respectively t + r * ) is constant along outgoing (respectively ingoing) radial null geodesics. In other words:

dr * dr = F (r) -1 . (2.
3)

The coordinate system (t, r * , θ, ϕ) is called Regge-Wheeler coordinates. r * is given by:

r * (r) =ln (r -r SAdS ) α 1 r 2 + r SAdS r + r 2 SAdS + l 2 -α 1 2 + C arctan 2r + r SAdS (3r 2 SAdS + 4l 2 ) 1 2
.

(2.4)

where:

α1 = r SAdS l 2 3r 2 SAdS + l 2 = 1 2κ ; C = l 2 3r 2 SAdS + 2l 2 (3r 2 SAdS + l 2 ) (3r 2 SAdS + 4l 2 ) 1 2
(2.5)

We obtain limr→r SAdS r * (r) = -∞ and limr→∞ r * (r) = C π 2 . We will consider the coordinate x = r * -C π 2 rather than r * . We thus have:

lim r→r SAdS x (r) = -∞ (2.6) lim r→∞ x (r) = 0. (2.7)
This limit proves that, along radial null geodesic, a particle goes to timelike infinity in finite Boyer-Lindquist time (recall that along these geodesic, t -r * and t + r * are constants). This geometric property will be a major issue in our problem. This implies that our space-time is not globally hyperbolic, so that we cannot use the standard result by Leray about the global existence of solution of hyperbolic equations. A similar situation has been encountered by A.Bachelot in his article [START_REF] Bachelot | The Dirac System On The Anti-De Sitter Universe[END_REF] concerning the Dirac equation on the Anti-de Sitter space-time. We expect to do a similar study concerning the self-adjoint extension.

The Dirac equation on Schwarzschild Anti-de Sitter spacetime

In the two components spinor notation, the Dirac equation takes the following form:

∇ AA ′ φ A = -µχ A ′ ∇ AA ′ χ A ′ = -µφA (2.8)
where

∇ AA ′ is the Levi-Civita connection, φ A is a two-spinor, µ = m √
2 and m 0 is the mass of the field. Thanks to the Newman-Penrose formalism, we can obtain the equation in the form of a system of partial differential equations. In this formalism, we introduce a null tetrad (l a , n a , m a , ma ), that is

lal a = nan a = mam a = ma ma = lam a = nam a = 0, (2.9) 
which is a basis of the complexified of the tangent space. We'll say that the tetrad is normalized if:

lan a = 1 ma ma = -1. (2.10) 
The two vectors l a and n a correspond to the directions along which the light goes to infinity (we can choose l a as an outgoing null vector and n a as an ingoing null vector). The vector m a admits bounded integral curves. The vectors m a and ma will generate rotations. In our case, we will consider:

l a ∂xa = 1 √ 2 F (r) -1 2 (∂t + ∂x) , n a ∂xa = 1 √ 2 F (r) -1 2 (∂t -∂x) m a ∂xa = 1 √ 2r ∂ θ - i sin θ ∂ϕ , ma ∂xa = 1 √ 2r ∂ θ + i sin θ ∂ϕ .
We remark that this tetrad is normalized and since t ± x is constant along null geodesics, the vector l a ∂xa and n a ∂xa are null. Moreover, using the equation of radial null geodesics with λ as our affine parameter, we deduce that dt dr = dt dλ dλ dr = F (r) -1 which gives us an outgoing real null vector. We see as well that m a is linked to rotations. We give the associated dual vectors:

ladx a = 1 √ 2 F (r) 1 2 (dt -dx) , nadx a = 1 √ 2 F (r) 1 2 (dt + dx) madx a = r √ 2 (-dθ + i sin(θ)dϕ) , madx a = r √ 2 (-dθ -i sin(θ)dϕ) .
Using this tetrad, it is then possible to decompose the covariant derivative in directional derivatives along these directions. We introduce the following symbols:

D = l a ∇a, D ′ = n a ∇a, δ = m a ∇a, δ ′ = ma ∇a.
We have twelve spin coefficients that are defined by the following expressions:

κ = m a Dla, ρ = m a δ ′ la, σ = m a δla, τ = m a D ′ la, ǫ = 1 2 (n a Dla + m a D ma) , α = 1 2 n a δ ′ la + m a δ ′ ma , β = 1 2 (n a δla + m a δ ma ) , γ = 1 2 n a D ′ la + m a D ′ ma , π = -ma Dna, λ = -ma δ ′ na, µ = -ma δna, ν = -ma D ′ na,
where κ is the spin coefficient usually denoted κ, since κ is the surface gravity in our convention. We can now give the equation (2.8) as a system of partial differential equations. These equations act on the components of the spinor φ A , χ A ′ in a normalized spinorial basis (o A , ι A ) (that is such that oAι A = 1). To choose our spinorial basis, we use the null tetrad above. Indeed, we can define the spinorial basis (o A , ι A ), uniquely up to an overall sign, using the following conditions:

o A ōA ′ = l a , ι A ῑA ′ = n a , o A ῑA ′ = m a , ι A ōA ′ = ma , oAι A = 1.
The dual basis is

ǫ 0 A = -ιA, ǫ 1 A = oA. Let φ 0 , φ 1 , χ 0 ′ , χ 1 ′ such that φ A = φ 0 o A + φ 1 ι A and χ A ′ = χ 0 ′ o A ′ + χ 1 ′ ι A ′ where (o A ′ , ι A ′ )
is the conjugate basis of (o A , ι A ). In this basis, the components of φA and χ A ′ are respectively:

φ0 = -φ 1 , φ1 = φ 0 , χ 0 ′ = -χ 1 ′ , χ 1 ′ = χ 0 ′ .
We obtain the following system of partial differential equations:

           l a ∂xaφ1 -ma ∂xaφ0 + (ǫ -ρ) φ1 -(π -α) φ0 = m √ 2 χ 1 ′ m a ∂xaφ1 -n a ∂xaφ0 + (β -τ ) φ1 -(µ -γ) φ0 = -m √ 2 χ 0 ′ l a ∂xaχ 0 ′ + m a ∂xaχ 1 ′ + (ǭ -ρ) χ 0 ′ + (π -ᾱ) χ 1 ′ = -m √ 2 φ0 ma ∂xaχ 0 ′ + n a ∂xaχ 1 ′ + β -τ χ 0 ′ + (μ -γ) χ 1 ′ = -m √ 2 φ1.
(2.11) Using the 4-component spinor ψ = φA χ A ′ , we obtain:

∂t + γ 0 γ 1 F (r)∂r + F (r) r + F ′ (r) 4 + F (r) 1 2 r D S 2 + imγ 0 F (r) 1 2 ψ = 0. (2.12)
where m is the mass of the field and D S 2 is the Dirac operator on the sphere. In the coordinate system given by (θ, ϕ) ∈ [0; 2π] × [0; π], we obtain:

D S 2 = γ 0 γ 2 ∂ θ + 1 2 cot θ + γ 0 γ 3 1
sin θ ∂ϕ where singularities appear, but we just have to change our chart in this case. We will now work in these coordinates. Recall that Dirac matrices γ µ , 0 µ 3, unique up to unitary transform, are given by the following relations:

γ 0 * = γ 0 ; γ j * = -γ j , 1 j 3; γ µ γ ν + γ ν γ µ = 2g µν 1, 0 µ, ν 3. (2.13)
In our representation, the matrices take the form:

γ 0 = i 0 σ 0 -σ 0 0 , γ k = i 0 σ k σ k 0 , k = 1, 2, 3 (2.14) 
where the Pauli matrices are given by:

σ 0 = 1 0 0 1 , σ 1 = 1 0 0 -1 , σ 2 = 0 1 1 0 , σ 3 = 0 -i i 0 . (2.15)
We thus obtain:

γ 0 γ 1 = -σ 1 0 0 σ 1 ; γ 0 γ 2 = -σ 2 0 0 σ 2 ; γ 0 γ 3 = -σ 3 0 0 σ 3 . (2.16)
We introduce the matrix:

γ 5 = -iγ 0 γ 1 γ 2 γ 3 (2.17)
which satisfies the relations:

γ 5 γ µ + γ µ γ 5 = 0, 0 µ 3. (2.18)
We make the change of spinor φ(t, x, θ, ϕ) = rF (r) 1 4 ψ(t, r, θ, ϕ) and obtain the following equation:

∂tφ = i iγ 0 γ 1 ∂x + i F (r) 1 2 r D S 2 -mγ 0 F (r) 1 2
φ.

(2.19)

We set:

Hm = iγ 0 γ 1 ∂x + i F (r) 1 2 r D S 2 -mγ 0 F (r) 1 2 .
(2.20)

We introduce the Hilbert space:

H := L 2 ]-∞, 0[ x × S 2 ω , dxdω 4 
(2.21)

Generalization

Let q ∈ R and n ∈ N, and define the spaces T q,n by:

T q,n = f ∈ C ∞ (] -∞; 0[) | ∀α ∈ N, |∂ α x f (x)| e qx , when x → -∞ (-x) n , when x → 0 (2.22)
We consider two smooth functions A0, B0 such that:

A0 = 0 if x -2 1 l if x -1 ; B0 = 0 if x -2 l -x if x -1.
We will consider the following operator:

Hm = Γ 1 Dx + A(x) D S 2 -mγ 0 B(x) (2.23)
where m is the mass of the field and, for two positive numbers ϑ, β:

A -A0 ∈ T ϑ,2 (2.24) 
B -B0 ∈ T β,1 . (2.25) 
We also recall that Γ 1 = -γ 0 γ 1 = diag(1, -1, -1, 1) and Dx = 1 i ∂x. We then check that the Schwarzschild Anti-de Sitter case enters in our abstract model. For x going to -∞, we have:

r -r SAdS = 3r 2 SAdS + l 2 1 2 e -2κC arctan 3r SAdS (3(rSAdS) 2 +4l 2 ) +Cπκ e 2κx -C1e 4κx + o e 4κx F (r) 1 2 = 3r 2 SAdS + l 2 3 4 D 1 2 4 r 1 2
SAdS l e κx + C2e 3κx + o e 3κx , F (r)

1 2 r = 3r 2 SAdS + l 2 3 4 D 1 2 4 r 3 2
SAdS l

e κx + C3e 3κx + o e 3κx
where C1, C2, C3 are constants. Then, for x in a neighbourhood of 0, we have:

r = - l 2 x + 1 3 (x) + o (-x) F (r) 1 2 = - l x - x 6l + o (x) F (r) 1 2 r = 1 l + x 2 2l 3 + o x 2 .
The Schwarzschild Anti-de Sitter model is thus a particular case of our generalized model

with A = F (r) 1 2
r and B = F (r)

1 2 .
3

Study of the hamiltonian

In this section, we first present the spinoidal spherical harmonics. This allows us to reduce our problem to the study of a 1 + 1 dimensional equation with a new hamiltonian denoted H s,n m . We then use the fact that, at AdS infinity, the potential looks like the one considered by A. Bachelot in [START_REF] Bachelot | The Dirac System On The Anti-De Sitter Universe[END_REF]. By means of a unitary transform and a cut-off near AdS infinity, we are able to make use of his result and obtain the asymptotic behavior of the elements in the natural domain of our operator. As in [START_REF] Bachelot | The Dirac System On The Anti-De Sitter Universe[END_REF], the need or not to put a boundary condition is linked to the comparison between the mass of the field and the cosmological constant. For 2ml 1 (where m is the mass of the field and l is linked to the cosmological constant), there's no need to put boundary conditions. When 2ml < 1, we consider the generalized MIT-bag boundary condition in order to determine the dynamic uniquely. We then prove the self-adjointness of our operators. Using an elliptic inequality, we are able to give the domain of our operator for 2ml > 1. Using Stone's theorem, we can solve the Cauchy problem for our equation. At last, we give a proof of the absence of eigenvalue for all m > 0 which will be useful for the propagation estimates.

Description of the domain

The spinoidal spherical harmonics

In the rest of this paper, we will often make use of spinoidal spherical harmonics (we can refer to [START_REF] Bachelot | The Dirac System On The Anti-De Sitter Universe[END_REF] for a more complete presentation of these harmonics) which will permit us to decompose H as follows:

H = (s,n)∈I       L 2 (x, dx) 4 ⊗       T s -1 2 ,n T s 1 2 ,n T s -1 2 ,n T s 1 2 ,n             (3.1) 
where:

I := (s, n); s ∈ N + 1 2 , n ∈ Z + 1 2 , s -|n| ∈ N . (3.2)
These functions satisfy the following relations:

∂ ∂θ + 1 2 tan θ T s ± 1 2 ,n = ± n sin θ T s ± 1 2 ,n -i s + 1 2 T s ∓ 1 2 ,n , (3.3) 
∂ ∂ϕ T s ± 1 2 ,n = -inT s ± 1 2 ,n . (3.4) Since T s 1 2 ,n (s,n)∈I and T s -1 2 ,n (s,n)∈I both span L 2 S 2 , we can decompose f ∈ L 2 (S 2 )
as follows:

f (θ, ϕ) = (s,n)∈I u s ±,n (f )T s ± 1 2 ,n (θ, ϕ), u s ±,n (f ) ∈ C.
Let us introduce the Hilbert spaces W d ± for d ∈ R as the closure of the space:

W ± f :=    f inite u s ±,n T s ± 1 2 ,n ; u s ±,n ∈ C    (3.5)
for the norm

||f || 2 W d ± := (s,n)∈I s + 1 2 2d |u s ±,n (f )| 2 .
Using Plancherel's formula, L 2 S 2 is just W 0 . We give some properties of these spaces (for a more complete presentation, we refer to [START_REF] Bachelot | The Dirac System On The Anti-De Sitter Universe[END_REF]). We have:

d 0 =⇒ W d ± = f ∈ L 2 S 2 ; ||f || W d ± < ∞ , W d ± ′ = W -d ± and C ∞ 0 (]0, π[ θ ×]0, 2π[ϕ) ⊂ W d ± .
We must remark that T s

± 1 2 ,n (θ, 2π) = -T s ± 1 2 ,n (θ, 0) = 0.
Consequently, these functions are not smooth on the sphere S 2 . In correspondence with the decomposition (3.1), we introduce the Hilbert spaces:

W d = W d -× W d + × W d -× W d + (3.6)
equipped with the norm:

Φ 2 W d = 4 j=1 (s,n)∈I s + 1 2 2d u s j,n 2 (3.7) 
where:

Φ (θ, ϕ) = (s,n)∈I       u s 1,n T s -1 2 ,n (θ, ϕ) u s 2,n T s + 1 2 ,n (θ, ϕ) u s 3,n T s -1 2 ,n (θ, ϕ) u s 4,n T s + 1 2 ,n (θ, ϕ)       .

A result due to A.Bachelot

We recall a result obtained by A.Bachelot (see [START_REF] Bachelot | The Dirac System On The Anti-De Sitter Universe[END_REF]). In this article, the hamiltonian considered was:

H B m = iγ 0 B γ 1 B FB(r)∂r + FB (r) r + F ′ B (r) 4 + i FB(r) 1 2 r D S 2 -mγ 0 B FB(r) 1 2 (3.8) in (r, θ, ϕ) coordinates where FB (r) = 1 + r2 l 2 .
Here, m is m 3 Λ with m the mass of the field and -Λ the cosmological constant. Moreover, the space L 2 is defined by 

L 2 := L 2 [0, π 2 [ ζ ×[0, π] θ × [0, 2π[ϕ,
H B m := iγ 0 B γ 1 B ∂ ∂ζ + i sin ζ γ 0 B γ 2 B ∂ ∂θ + 1 2 tan θ + 1 sin θ γ 0 B γ 3 B ∂ ∂ϕ - m cos ζ γ 0 B . (3.9)
where he uses the natural domain:

D(H B m ) := Φ ∈ L 2 ; H B m Φ ∈ L 2 . (3.10)
At last, we recall that the Dirac matrices γ 0 B , γ 1 B , γ 2 B , γ 3 B take the form:

γ 0 B = I 0 0 -I , γ k B = 0 σ k B -σ k B 0 , k = 1, 2, 3 (3.11) 
where the Pauli matrices are given by:

I = 1 0 0 1 , σ 1 B = 1 0 0 -1 , σ 2 B = 0 1 1 0 , σ 3 B = 0 -i i 0
The result is then the following (see Theorem V.1 in [START_REF] Bachelot | The Dirac System On The Anti-De Sitter Universe[END_REF]):

Theorem 3.1. For all Φ ∈ D(H B m ), we have:

Φ ∈ C 0 0, π 2 ζ ; W 1 2 with ||Φ(ζ, .)|| W 1 2 = O( ζ), ζ → 0, (3.12) 
and for m > 0, we have

π 2 0 ||Φ(ζ, .)|| 2 W 1 dζ sin ζ ||HmΦ|| 2 L 2 . (3.13)
For m > 1 2 , we have

||Φ(ζ, .)|| L 2 (S 2 ) = O π 2 -ζ , ζ → π 2 . (3.14) For m = 1 2 , we have ||Φ(ζ, .)|| L 2 (S 2 ) = O ζ - π 2 ln π 2 -ζ , ζ → π 2 . (3.15) 
For 0 < m < 1 2 , there exist functions ψ-∈ W

1 2 -, χ-∈ W 1 2 + , ψ+, χ+ ∈ L 2 (S 2 ) and φ ∈ C 0 [0, π 2 ] ζ ; L 2 (S 2 ; C 4 ) satisfying Φ(ζ, θ, ϕ) = π 2 -ζ -m     ψ-(θ, ϕ) χ-(θ, ϕ) -iψ-(θ, ϕ) iχ-(θ, ϕ)     + π 2 -ζ m     ψ+(θ, ϕ) χ+(θ, ϕ) iψ+(θ, ϕ) -iχ+(θ, ϕ)     + φ(ζ, θ, ϕ), (3.16) ||φ(ζ, .)|| L 2 (S 2 ) = o π 2 -ζ , x → π 2 . (3.17)
Conversely, for all ψ-∈ W

1 2 +m - , χ-∈ W 1 2 +m + , ψ+ ∈ W 1 2 -m - , χ+ ∈ W 1 2 -m + there exists Φ ∈ D(H B m ) satisfying (3.16
) and (3.17). Remark. This result concerning the asymptotic behavior of elements in the domain of the operator H B m is first proved for fixed harmonics (i.e fixed (s, n) ∈ I). In the next sections, we will often make use of the result obtained for fixed harmonics.

The condition on the mass is a consequence of the fact that the states in the natural domain of our operator have to be in L 2 . When the mass is sufficiently large, the term

π 2 -ζ -m in (3.16
) is not in L 2 so it cannot appear in the development of the states near π 2 . In this case, we do not need to put boundary conditions to obtain the self-adjointness of this operator and well-posedness of the Cauchy problem.

Unfortunately, for a mass too small compared to the cosmological constant, we see that the term π 2 -ζ -m in (3.16) is in L 2 which is problematic for the symmetry of our operator. We thus need to put boundary conditions to get rid of this term and solve the Cauchy problem.

Unitary transform of H m

Let us introduce the following domains:

-If 2ml 1:

D(Hm) = {φ ∈ H; Hmφ ∈ H} . (3.18) 
-If 2ml < 1, we consider the operator equipped with the domain whose elements satisfy a generalized MIT-bag condition (where α ∈ R is called the Chiral angle and γ 5 = -iγ 0 γ 1 γ 2 γ 3 (see [START_REF] Bachelot | The Dirac System On The Anti-De Sitter Universe[END_REF])):

D(Hm) = φ ∈ H; Hmφ ∈ H, γ 1 + ie iαγ 5 φ 2 = o √ -x , x → 0 . (3.19)
First, we'll try to remove α in the case 2ml < 1. We introduce the following operator:

H α m = e i α 2 γ 5 Hme -i α 2 γ 5 . (3.20)
Since e iαγ 5 is unitary and e iαγ 5 γ 1 = γ 1 e -iαγ 5 , we see that ϕ ∈ D (Hm) if and only if

e i α 2 γ 5 ϕ ∈ D (H α m )
where:

D (H α m ) = φ ∈ H; H α m φ ∈ H, γ 1 + i φ 2 = o √ -x , x → 0 .
So we can restrict to the case α = 0 which we will do in the following.

We will now modify our hamiltonian in order to exploit the result of A.Bachelot. We introduce a new time variable t = -t (and we will continue to denote by t) which gives:

∂tφ = i (-Hm) φ. (3.21) 
Let:

Hm = γ 5 B P -1 (-Hm)P γ 5 B (3.22) 
where:

P = 1 √ 2 e i π 4 Id Id -iId iId , P * = P -1 = 1 √ 2 e -i π 4 Id iId Id -iId , γ 5 B = 0 Id Id 0 ,
and Id is the identity matrix of order 2. The matrix P satisfies the following relations:

γ 0 = P γ 0 B P -1 ; γ j = -P γ j B P -1 , 1 j 3. (3.23)
where the Dirac matrices are defined by (3.11) and (2.14). The matrix γ 5 B satisfies the same relations as γ 5 in (2.18). We obtain:

Hm = iγ 0 B γ 1 B ∂x + iγ 0 B γ 2 B A(x) ∂ θ + 1 2 cot θ + iγ 0 B γ 3 B A(x) 1 sin θ ∂ϕ -mγ 0 B B(x). (3.24)

Asymptotic behavior of elements of the domain

We introduce the projection Ps,n from H to Hs,n and the operators Hs,n

m = Hm|Hs,n , H s,n,B m = H B m|Hs,n for (s, n) ∈ I. We denote ψs,n = Ps,n(ψ) with components ψ s i,n for i = 1, • • • , 4. Furthermore, the domain of H s,n,B m is given by: -If 2ml 1: D H s,n,B m = ϕs,n ∈ Hs,n; H s,n,B m ϕs,n ∈ Hs,n -If 2ml < 1, we add the condition that γ 1 B + i ϕs,n(x, .) W 0 = o √ -x when x goes to 0.
We then have the:

Lemma 3.2. Let ψ ∈ D Hm and χ ∈ C ∞ 0 (]-2ǫ, 0]) such that χ = 1 on ]-ǫ, 0] with ǫ > 0. Then χψ ∈ D H B m .
Proof. Recall that the operator obtained by A. Bachelot in [START_REF] Bachelot | The Dirac System On The Anti-De Sitter Universe[END_REF] is given by (3.8) where FB (r) = 1 + r 2 l 2 . This operator has the same form as in (2.12). Moreover, when r >> r SAdS , FB and F have the same behavior (F is defined by F (r) = 1 + r 2 l 2 -2M r ). We make the change of variable r → x where dx dr = F (r) -1 and F is defined on ]r SAdS , +∞[. We obtain:

H B m = iγ 0 B γ 1 B g (x) ∂x + iγ 0 B γ 1 B F (r) r + F ′ (r) 4 + 3M 2r 2 + AB (x) D S 2 -mγ 0 B BB (x)
where r is understood as a function of x and: x) when x goes to 0. Since Ps,n(χψ) = χψs,n, we have:

g (x) = 1 + 2M l 4 (-x) 3 + o (-x) 3 , AB (x) = 1 l + 1 2l 3 (-x) 2 + o (-x) 2 BB (x) = l -x + 1 6l (-x) + o (-x) , F (r) r = 1 -x + 2 3l 2 (-x) + o (-x) F ′ (r) = 2 -x - 2 3l 2 (-x) + o (-
H s,n,B m Ps,n(χψ) = g(x) Hs,n m Ps,n(χψ) + iγ 0 B γ 1 B F (r) r + F ′ (r) 4 (1 -g (x)) χψs,n + 3M 2r 2 χψs,n + γ 0 B γ 2 B (AB(x) -g(x)A(x)) s + 1 2 χψs,n -mγ 0 B (BB(x) -g(x)B(x)) χψs,n (3.25) 
Since ψ ∈ D( Hm), g is bounded in a neighborhood of 0 and χ ∈ C ∞ 0 (] -1, 0]x), the first term is in L 2 (x, dx). Using the behavior at 0 of g, the terms AB(x) -g(x)A(x), BB(x) -g(x)B(x)

and F (r) r + F ′ (r) 4
(1 -g (x)) are bounded near 0. We deduce that H s,n,B m Ps,n(χψ) ∈ Hs,n.

In particular, χψs,n ∈ D H s,n,B m . To be able to sum over (s, n), we need to know that s

+ 1 2 2 (χψs,n) 2 L 2 (-1 2 ,0) is summable. Since ψ ∈ D Hm , f = Hmψ admits a decomposition f = (s,n)∈I f s n . We denote f s i,n (i = 1, • • • , 4
) the components of f s n . We obtain four differential equations:

iχψ s 4,n χψ s 3,n ′ + s + 1 2 A (x) χψ s 4,n 2 -B (x) χψ s 4,n χψ s 1,n = χψ s 4,n f s 1,n , -iχψ s 3,n χψ s 4,n ′ + s + 1 2 A (x) χψ s 3,n 2 -B (x) χψ s 3,n χψ s 2,n = χψ s 3,n f s 2,n , iχψ s 2,n χψ s 1,n ′ + s + 1 2 A (x) χψ s 2,n 2 + B (x) χψ s 2,n χψ s 3,n = χψ s 2,n f s 3,n , -iχψ s 1,n χψ s 2,n ′ + s + 1 2 A (x) χψ s 2,n 2 + B (x) χψ s 1,n χψ s 4,n = χψ s 1,n f s 4,n .
where we have multiply by χψ s j,n for j = 1, • • • , 4. Adding these equations and taking the real part, we obtain:

d dx ℑ χψ s 1,n χψ s 2,n + χψ s 3,n χψ s 4,n + s + 1 2 A (x) 4 j=1 χψ s j,n 2 = ℜ χψ s 4,n f s 1,n + χψ s 3,n f s 2,n + χψ s 2,n f s 3,n + χψ s 1,n f s 4,n . (3.26) 
Using that:

lim x→0 ℑ χψ s 1,n χψ s 2,n + χψ s 3,n χψ s 4,n = 0. (3.27)
and that χψ s j,n is 0 at 1 for all j = 1, • • • , 4, we obtain:

s + 1 2 0 -1 2 A (x) 4 j=1 χψ s j,n 2 dx = 0 -1 2 ℜ χψ s 4,n f s 1,n + χψ s 3,n f s 2,n + χψ s 2,n f s 3,n
+χψ s 1,n f s 4,n dx. After some calculations, this gives:

s + 1 2 2 0 -1 2 (2lA (x) -1) 4 j=1 χψ s j,n 2 dx 0 -1 2 4 j=1 l 2 f s j,n 2 dx.
Using the asymptotic behavior of A (see (2.24)), we can prove that 2lA (x) -1 1 on the support of χ (for ǫ sufficiently small). Finally, we obtain:

s + 1 2 2 0 -1 2 4 j=1 χψ s j,n 2 dx l 2 0 -1 2 4 j=1 f s j,n 2 dx (3.28)
and the right hand side is summable because f ∈ H. This gives the lemma.

Q.E.D

We can know apply Theorem 3.1 to χψ and obtain the asymptotic behavior of ψ:

Proposition 3.3. If 2ml > 1, we have: ||ψ(ζ, .)|| L 2 (S 2 ) = O √ -x , x → 0. (3.29) 
If 2ml = 1, we have:

||ψ(x, .)|| L 2 (S 2 ) = O (-x) ln (-x) , x → 0. (3.30) If 0 < 2ml < 1, there exists functions ψ-∈ W 1 2 -, χ-∈ W 1 2
+ , ψ+, χ+ ∈ L 2 (S 2 ) and φ ∈ C 0 ] -∞, 0]x; L 2 (S 2 ; C 4 ) satisfying (3.16) and (3.17) with π 2 -ζ replaced by (-x) l . Conversely, for all ψ-∈ W

1 2 +m - , χ-∈ W 1 2 +m + , ψ+ ∈ W 1 2 -m - , χ+ ∈ W 1 2 -m +
, there exists ψ ∈ D(Hm) satisfying (3.16) and (3.17) with the same replacement as before.

Remark. By restriction to Hs,n, we obtain the same result for s, n fixed. Moreover, if

ϕs,n ∈ D (H s,n m ), then it is in H 1 (] -∞, -c[) for a constant c > 0. We conclude that ϕs,n ∈ C 0 (] -∞, -c[) ∩ L 2 (] -∞, -c[) and: ϕs,n (x, .) W 0 → 0, x → -∞.
(3.31)

Description of the domain

We now give a description of the domain of Hm for fixed (s, n) ∈ I. Recall that Hm and Hm are linked by a unitary transform, so it does not change the norm of the observables. We obtain:

-D (H s,n m ) = {ψs,n ∈ Hs,n; H s,n m ψs,n ∈ Hs,n} , if 2ml 1; (3.32) -D (H s,n m ) =        ψs,n ∈ Hs,n; H s,n m ψs,n ∈ Hs,n, ψs,n = (-x) -ml     ψ s -,n (θ, ϕ) iχ s -,n (θ, ϕ) -ψ s -,n (θ, ϕ) iχ s -,n (θ, ϕ)     +φ s n (x, θ, ϕ) , φ s n (x, ., .) W 0 = o √ -x , if 2ml < 1.
(3.33)

Self-adjointness for fixed harmonic

In this section, s and n are fixed.

The case 2ml 1

Lemma 3.4 (Elliptic estimate). We suppose that 2ml > 1. Then, there exists a constant C > 0 such that, for all ϕ ∈ C ∞ 0 (] -∞, 0[), we have:

-i∂xϕ 2 C H s,n m ϕ 2 + ϕ 2 (3.34)
Proof. We write Dx = -i∂x and Γ 1 = -γ 0 γ 1 . Recall that:

H s,n m = Γ 1 Dx + s + 1 2 A (x) γ 0 γ 2 -mB (x) γ 0 .
We will often denote B P -1 is unitary and commute with Dx and g is bounded near 0, we obtain:

V (x) = s + 1 2 A (x) γ 0 γ 2 -mB (x) γ 0 . Choose a partition of unity χ1, χ2 such that χ1 + χ2 = 1, supp (χ1) ⊂] -∞, -ǫ[ and χ1 = 1 on ] -∞, -2ǫ[, supp (χ2) ⊂ ] -2ǫ,
Dx (χ2ϕ) C m,l,ǫ H s,n m (χ2ϕ) + Cm,l χ2ϕ . (3.35) 
On the other hand, with CV,ǫ constant, we have:

Dx (χ1ϕ) H s,n m (χ1ϕ) + CV,ǫ ϕ .
Since χ1, χ2 commute with V and are bounded as are their derivatives, we obtain:

Dxϕ 2 C H s,n m (χ1ϕ) 2 + H s,n m (χ2ϕ) 2 + C ′ ϕ 2 C H s,n m ϕ 2 + C′ ϕ 2 .
Q.E.D Proposition 3.5. For 2ml 1, the operator Hs,n m is essentially self-adjoint on C ∞ 0 (]-∞, 0[). Moreover, if 2ml > 1, the domain of this operator is given by

H 1 0 (] -∞, 0[).
Proof. Recall that: 

Hs,n m = iγ 0 B γ 1 B ∂x + γ 0 B γ 2 B s + 1 2 A(x) -mγ 0 B B(x)
ψs,n(x, .) L 2 (S 2 ) = O (-x) , x → 0, if 2ml > 1; (3.36) ψs,n(x, .) L 2 (S 2 ) = O x ln (-x) , x → 0, if 2ml = 1; (3.37) ψs,n (x, .) W 0 → 0, x → -∞. (3.38)
Let us prove that Hs,n m is symmetric on its domain. We remark that γ 0 B γ 2 , it remains only the boundary term due to integration by parts. Using (3.37), this gives the symmetry of our operator on its domain.

B * = γ 0 B γ 2 B , γ 0 B γ 1 B * = γ 0 B γ 1 B and γ 0 B * = γ 0 B . So: γ 0 B γ 2 B A (x)
We then use the same trick as in [START_REF] Bachelot | The Dirac System On The Anti-De Sitter Universe[END_REF]. Let us consider a new operator H with the same expression as Hs,n m but defined on We conclude that φ± = 0. This proves that Hs,n m is essentially self-adjoint on C ∞ 0 (]-∞, 0[). For the last part, using the last lemma, we see that, for 2ml > 1, we have:

D(H) = C ∞ 0 (]-∞, 0[). Then H * is
D (H s,n m ) ⊂ H 1 0 (] -∞, 0[).
Indeed, if we take ϕ ∈ D (H s,n m ), it is the limit of a sequence (ϕn) n∈N ∈ (C ∞ 0 ) N for the graph norm. The last lemma gives that ∂xϕn is a Cauchy sequence so that it converges in H 1 0 . A distribution argument gives that this limit is ∂xϕ which is in L 2 by the lemma. Moreover, we have

H s,n m = iγ 0 γ 1 ∂x + γ 0 γ 2 s + 1 2 A (x) -mγ 0 B (x)
with A having the behavior as in (2.24) and B as in (2.25). Using the fact that B and BB have the same behavior when x → 0 and the unitary transform, we can use the proof of Theorem III.4 in [START_REF] Bachelot | The Dirac System On The Anti-De Sitter Universe[END_REF] to prove a Hardy type inequality of the form:

Bχ 2 2 ϕ c ( ϕ + -i∂xϕ ) . (3.40) 
Using the fact that A is bounded, we have a similar estimate for γ 0 γ 2 s + 1 2 A (x)mγ 0 B (x). Thus H 1 0 ⊂ D (H s,n m ). This proves the proposition.

Q.E.D

The case 2ml < 1

Recall that if 0 < 2ml < 1, then, for all ψs,n ∈ D Hs,n m , there exists functions ψ-∈ W x) as x goes to 0 and:

1 2 -, χ-∈ W 1 2 + , ψ+, χ+ ∈ L 2 (S 2 ) and φ ∈ C 0 [0, π 2 ]x; L 2 (S 2 ; C 4 ) such that σ s n (x, θ, ϕ) W 0 = o (-
ψs,n (x, θ, ϕ) = (-x) -ml     ψ s -,n (θ, ϕ) χ s -,n (θ, ϕ) -iψ s -,n (θ, ϕ) iχ s -,n (θ, ϕ)     + (-x) ml     ψ s +,n (θ, ϕ) χ s +,n (θ, ϕ) iψ s +,n (θ, ϕ) -iχ s +,n (θ, ϕ)     + σ s n (x, θ, ϕ), := (-x) -ml Ψ s -,n (θ, ϕ) + (-x) ml Ψ s +,n (θ, ϕ) + σ s n (x, θ, ϕ) (3.41) 
We denote by HMIT s,n the operator Hs,n m with domain:

D( HMIT s,n ) = ψs,n ∈ Hs,n; Hs,n m ψs,n ∈ Hs,n, ψ s +,n = χ s +,n = 0 . (3.42)
which is a consequence of the discussion after proposition V I.2 in [START_REF] Bachelot | The Dirac System On The Anti-De Sitter Universe[END_REF]. We have the: 

φs,n (x, θ, ϕ) = (-x) -ml     φ s -,n (θ, ϕ) ξ s -,n (θ, ϕ) -iφ s -,n (θ, ϕ) iξ s -,n (θ, ϕ)     + ϕ s n (x, θ, ϕ) := (-x) -ml Φ s -,n (θ, ϕ) + ϕ s n ϕs,n L 2 (S 2 ) = o (-x) , x → 0,
and a similar formula for ψs,n with Φ s -,n , ϕ s n replaced by Ψ s -,n , σ s n respectively, we can calculate these boundary values in a neighbourhood of 0 (with the scalar product being the one of L 2 S 2 and we write φs,n (x) for φs,n (x, .)):

φs,n (x) , γ 0 B γ 1 B ψs,n (x) = (-x) -ml Φ s -,n , σ s n (x) + ϕ s n (x) , Ψ s -,n + ϕ s n (x) , σ s n (x) W 0 .
Indeed, γ 0 B γ 1 B arranges the terms such that (-x) -ml Φ s -,n , (-x) -ml Ψ s -,n W 0 = 0. Using the behavior at 0 of ϕ s n , σ s n and at -∞ of φs,n, ψs,n, we deduce that HMIT 

Self-adjointness of Hm

The case 2ml 1

We equip Hm with the domain:

D( Hm) = u ∈ H; Hmu ∈ H =            (s,n)∈I       u s 1,n T s -1 2 ,n u s 2,n T s 1 2 ,n u s 3,n T s -1 2 ,n u s 4,n T s 1 2 ,n       ; ∀(s, n) ∈ I, u s n ∈ L 2 ]-∞, 0[ x , dx , Hs,n m       u s 1,n T s -1 2 ,n u s 2,n T s 1 2 ,n u s 3,n T s -1 2 ,n u s 4,n T s 1 2 ,n       ∈ L 2 , (s,n)∈I ( Hs,n m ± i)       u s 1,n T s -1 2 ,n u s 2,n T s 1 2 ,n u s 3,n T s -1 2 ,n u s 4,n T s 1 2 ,n       2 L 2 < ∞            . (3.44)
We then have: Proposition 3.7. Suppose that 2ml 1. Then the operator Hm is self-adjoint on its domain.

Proof. Hm is symmetric. Indeed, let ϕ, ψ ∈ D Hm . We can decompose ϕ = 

(s,n)∈I Hs,n m ys,n 2 + ys,n 2 = (s,n)∈I ( Hs,n m ± i)ys,n 2 = (s,n)∈I xs,n 2 < ∞.
Consequently, (ys,n) (s,n)∈I is summable and x ∈ Im( Hm ± i) so Im( Hm ± i) = H and Hm is self-adjoint.

Q.E.D

The case 2ml < 1

Let us denote HMIT m the operator Hm with domain: 

D HMIT m =            (s,n)∈I       u s 1,n T s -1 2 ,n u s 2,n T s 1 2 ,n u s 3,n T s -1 2 ,n u s 4,n T s 1 2 ,n       ; ∀(s, n) ∈ I, u s n ∈ L 2 ]-∞, 0[ x , dx , Hs,n m       u s 1,n T s -1 2 ,n u s 2,n T s 1 2 ,n u s 3,n T s -1 2 ,n u s 4,n T s 1 2 ,n       ∈ L 2 , (s,n)∈I ( Hs,n m ± i)       u s 1,n T s -1 2 ,n u s 2,n T s 1 2 ,n u s 3,n T s -1 2 ,n u s 4,n T s 1 2 ,n       2 L 2 < ∞ (s,n)∈I γ 1 B + i       u s 1,n T s -1 2 ,n u s 2,n T s 1 2 ,n u s 3,n T s -1 2 ,n u s 4,n T s 1 2 ,n       2 L 2 = o √ -x , x → 0            ( 
ψj = (s,n)∈I ψ s,n j , ψ = (s,n)∈I ψ s,n , ϕ = (s,n)∈I ϕ s,n , (3.47) 
and we obtain:

ψ s,n j → ψ s,n ; Hs,n,MIT m ψ s,n j → ϕ s,n
in the norm of Hs,n. Thus, ψ s,n ∈ D Hs,n,MIT m since Hs,n,MIT m is closed and ψ s,n admits a decomposition as in (3.33) where:

(s,n)∈I φ s 1,n 2 
W 0 + φ s 2,n 2 
W 0 + φ s 3,n 2 
W 0 + φ s 4,n 2 W 0 = o (-x)
when x goes to 0, using the proof of theorem V.1 in [START_REF] Bachelot | The Dirac System On The Anti-De Sitter Universe[END_REF] and the fact that ϕ is in the natural domain of Hm. Since γ 1 B + i eliminates the terms containing (-x) -ml , we have:

γ 1 B + i ϕ (x, .) 2 L 2 (S 2 ) C (s,n)∈I φ s 1,n 2 
W 0 + φ s 2,n 2 
W 0 + φ s 3,n 2 
W 0 + φ s 4,n 2 W 0 (3.48)
where the last term is o (-x). This proves that the boundary condition is fulfilled and that the operator HMIT m is closed. To prove the self-adjointness of HMIT m , we follow the same argument as in proposition 3.7 where we have to prove that y = Q.E.D

Self-adjointness of H m

Recall that the domain of Hm is:

-If 2ml 1:

D(Hm) = {φ ∈ H; Hmφ ∈ H} . -If 0 < m < 1
2l , we will denote by H M IT m the operator Hm with domain:

D(H M IT m ) = φ ∈ H; Hmφ ∈ H, γ 1 + i φ (x, .) L 2 (S 2 ) = o √ -x , x → 0 .
We obtain the following theorem:

Theorem 3.9.

-For all m ) is self-adjoint.

Proof. Recall that Hm = γ 5 B P -1 (-Hm) P γ 5 B where γ 5 B and P are unitary matrices. Thus Hm = P γ 5 B -Hm γ 5 B P -1 . This is clear that ψ ∈ D (Hm) if and only if

γ 5 B P -1 ψ ∈ D Hm for m 1 2l . Moreover, recall that γ 1 = -P γ 1 B P -1 and γ 1 B γ 5 B = -γ 5 B γ 1 B using (3.23
) and (2.18). We then obtain:

γ 1 + i ψ = γ 1 B + i γ 5 B P -1 ψ .
Thus ψ ∈ D (Hm) if and only if γ 5 B P -1 ψ ∈ D Hm for all m > 0. This shows that Hm is self-adjoint equipped with the convenient domain.

Q.E.D

The Cauchy problem

Using Stone theorem, we obtain:

Theorem 3.10. Let ψ0 ∈ H, there exists a unique solution ψ to the equation:

∂tψ = iHmψ (3.49) such that ψ ∈ C 0 (Rt; H) (3.50)
and satisfying:

ψ (t = 0, .) = ψ0 (.) (3.51) ∀t ∈ R, ψ (t, .) H = ψ0(.) H . (3.52)

Absence of eigenvalues

Proposition 3.11. For all m > 0 , the Dirac operator Hm, defined in (2.23), does not admit any eigenvalues.

Proof. Let us first show the absence of eigenvalues for H s,n m for all m > 0 and all (s, n) ∈ I. Since H s,n m is self-adjoint on its domain, the eigenvalues (if they exist) are all real. So, suppose that there exists λ ∈ R and ϕ ∈ D (H s,n m ) such that H s,n m ϕ = λϕ. We define:

w(x) = e iλγ 0 γ 1 x ϕ(x) such that w ′ (x) = iλγ 0 γ 1 w(x) + e iλγ 0 γ 1 x ϕ ′ (x). But, with V (x) = γ 0 γ 2 A(x) s + 1 2 -mγ 0 B(x), we have: H s,n m ϕ -λϕ = 0 ⇔ iγ 0 γ 1 ϕ ′ (x) = (λ -V (x)) ϕ(x) ⇔ ϕ ′ (x) = iγ 0 γ 1 (V (x) -λ) ϕ(x) So, we obtain: w ′ (x) = iγ 0 γ 1 e iλγ 0 γ 1 x V (x)e -iλγ 0 γ 1 x w(x).
(3.53)

Write: W (x) = iγ 0 γ 1 e iλγ 0 γ 1 x V (x)e -iλγ 0 γ 1 x . Let T ∈] -∞, 0[, we can then solve the preceding equation by: w(x) = e

x T W (t)dt w(T ). As in the remark after proposition 3.3, each component of ϕ goes to 0 at -∞. Consequently,

w(x) → x→-∞ 0.
On the other hand, for all x < 0,

x -∞ |W (t)| dt < ∞ so: lim T →-∞ e x T W (t)dt = e x -∞ W (t)dt
exists and is finished. As a consequence, we have:

lim T →-∞ e x T W (t)dt w(T ) = 0.
We then deduce that w(x) = 0 for all x < 0 so it is the same for ϕ. Consequently, H s,n m admits no eigenvalues. We can now consider Hm. If λ ∈ R is an eigenvalue of Hm then there exists ϕ ∈ D (Hm) such that (Hm -λ) ϕ = 0. Using the decomposition of ϕ in spherical harmonics, if ϕ is non zero, there exists (s, n) ∈ I such that ϕs,n = 0 and ϕs,n satisfies (H s,n m -λ) ϕs,n = 0. This is impossible since H s,n m does not admit eigenvalues. Thus ϕ is identically 0. We deduce that Hm does not admit any eigenvalue for all m > 0.

Q.E.D

Compactness results

The purpose of this section is to prove that, for a well chosen function f , the operator f (x) (H s,n m -z) -1 is compact for all z ∈ ρ (H s,n m ). We will make use of this result for proving Mourre estimates in the following section. The key point here for the Mourre estimate is that f only admits a finite limit at 0. This result is proved by separating our operator in two operators denoted H+ and H-. The operator H+ has a potential which behaves like the one in H s,n m at 0 and is extended so that the potential becomes confining. Hence the resolvent of this operator is itself compact. For H-, we preserve the behavior near the horizon of the black hole and extend it so that it decreases to 0 at 0. By extending the states and the potential, we are thus able to view the resolvent as the restriction of a resolvent on the entire line. For this last resolvent, we are able to use standard results about Hilbert-Schmidt operators.

We now enter into the details. We have:

H s,n m = Γ 1 Dx + (s + 1 2 )A(x)γ 0 γ 2 -mγ 0 B(x). (4.1)
where A and B behave like:

A -A0 ∈ T κ,2 ; B -B0 ∈ T κ,1
with κ, κ > 0. Moreover, Γ 1 = -γ 0 γ 1 where γ 0 γ 1 is given in (2.16). The main result of this section is:

Proposition 4.1. Let f ∈ C (] -∞, 0]) such that f goes to 0 at -∞. Let z ∈ ρ(H s,n m ) where ρ(H s,n m ) is the resolvent set of H s,n m . Then the operator f (x) (H s,n m -z) -1 is compact on H for all m > 0.

Asymptotic operators

Operator H -

Let us first introduce the operator Hc = iγ 0 γ 1 ∂x where γ 0 γ 1 = diag (-1, 1, 1, -1). We can thus prove the: Proposition 4.2. The operator Hc = iγ 0 γ 1 ∂x is self-adjoint on the domain defined by: D (Hc) = {ϕ ∈ Hs,n; Hcϕ ∈ Hs,n, ϕ1 (0) = -ϕ3 (0) , ϕ2 (0) = ϕ4 (0)} Proof. Since D (Hc) ⊂ H 1 (] -∞, 0[) ⊂ C 0 (] -∞; 0[), we can deduce that the elements of D (Hc) go to 0 at -∞ and from the boundary condition, we deduce the symmetry of Hc on D (Hc). The closedness is also proven using the fact that D (Hc) ⊂ C 0 (] -∞; 0[).

On the other hand, since C ∞ 0 (] -∞, 0[) ⊂ D (Hc), we can prove (using distribution) that H * c = Hc on D (H * c ). We then study the default spaces. Let ψ ∈ ker (H * c + i). Since x → e -x is not in L 2 (] -∞, 0[), we obtain:

ker (H * c + i) = vect            e x 0 0 0     ,     0 0 0 e x            ∩ D (H * c ) .
But, if ψ ∈ D (H * c ), then, for all ϕ ∈ D (Hc), we have:

0 = Hcϕ, ψ -ϕ, H * c ψ = lim x→0 -iϕ1 (x) ψ1 (x) + iϕ2 (x) ψ2 (x) +iϕ3 (x) ψ3 (x) -iϕ4 (x) ψ4 (x) .
Choosing ϕ such that ϕ1 (0) = 0, we see that ker (H * c + i) = {0}. The same is true for H * c -i = {0}. This shows that Hc is self-adjoint on D (Hc).

Q.E.D

The components are thus in H 1 (R). We also extend g into g ∈ L 2 (R) 4 in the same way.

Here, we have put Hc for the operator with the same formula as Hc but acting on functions defined on R. Some calculation gives that (Hc -z) ϕ = g if and only if Hc -z φ = g for all z in the resolvent set of Hc.

Let f ∈ C 0 (] -∞, 0]) such that lim x→-∞ f (x) = 0. We consider a sequence (gn) n∈N ∈ L 2 (R * -)
N such that gn ⇀ 0 and we want to prove that f (x) (Hc -z) -1 gn goes to 0 strongly in L 2 . We introduce un = (Hc -z) -1 gn and extend gn and un into gn and ũn as before. Consequently, gn ⇀ 0 in L 2 (R) and ũn = Hc -z -1

gn. We mention here a consequence of theorem IX.29 in [START_REF] Reed | Methods of Modern Mathematical Physics[END_REF] which say that if f, g ∈ L ∞ (R n ) and:

lim |x|→∞ f (x) = 0, lim |ξ|→∞ g (ξ) = 0, then the operator f (x) g (-i∇) is compact. Since x → (x -z) -1 ∈ L ∞ and |x -z| -1 → |x|→∞ 0, we deduce that: f (x) Hc -z -1 gn L 2 (R) → n→∞ 0,
where f is the extension of f by symmetry on R+. Therefore, we have:

1 ]-∞,0[ (x) f(x) Hc -z -1 gn = 1 ]-∞,0[ (x)f (x) ũn = f (x)un = f (x) (Hc -z) -1 gn. So f (x) (Hc -z) -1 gn L 2 (R * -) → n→∞
0 and the operator f (x) (Hc -z) -1 is compact. Since V-goes to 0 at -∞ and 0 and using the identity:

f (x) (H--z) -1 = -f (x) (H--z) -1 V-(x) (Hc -z) -1 + f (x) (Hc -z) -1 , we deduce that (H--z) -1 -(Hc -z) -1 is compact and consequently that f (x) (H--z) -1 is also compact. Q.E.D 4.3 Compactness of (H + -z) -1
Lemma 4.6. The operator (H+ -z) -1 is compact.

Proof. We follow the proof of the compactness result in [START_REF] Bachelot | The Dirac System On The Anti-De Sitter Universe[END_REF]. Let us show that the set:

K = {ϕ ∈ D(H+); ϕ + H+ϕ 1} (4.6) 
is compact. We consider a sequence (ϕn) n∈N ∈ K N . Using the Banach-Alaoglu theorem and distributions, we obtain the existence of a sub-sequence (ϕν) such that:

ϕν ⇀ ν→∞ ϕ; fν =: H+ϕν ⇀ ν→∞ H+ϕ := f.
Let:

W (x) = mB(x) = -ml x + O (x) , f or x b. x 2 ,
f or x a, so that W is smooth on ]a, b[. The equation H+ϕν = fν can be written:

Γ 1 Dx -γ 0 W (x) ϕν = -γ 0 γ 2 s + 1 2 A (x) ϕν + fν .
We denote gν the right hand side of this equation. Then gν is in L 2 (] -∞, 0[) and gν ⇀ g where g is defined by replacing ϕν , fν by ϕ, f respectively. We thus obtain four differential equations:

         ∂x ϕ 1 ν + ϕ 3 ν + W (x) ϕ 1 ν + ϕ 3 ν = i g 1 ν -g 3 ν ∂x ϕ 2 ν -ϕ 4 ν + W (x) ϕ 2 ν -ϕ 4 ν = -i g 2 ν + g 4 ν ∂x ϕ 1 ν -ϕ 3 ν -W (x) ϕ 1 ν -ϕ 3 ν = i g 1 ν + g 3 ν ∂x ϕ 2 ν + ϕ 4 ν -W (x) ϕ 2 ν + ϕ 4 ν = i g 4 ν -g 2 ν (4.7)
For some constants λ j ν , j = 1, • • • , 4, the solutions are:

ϕ 1 ν + ϕ 3 ν (x) = λ 1 ν e -x -1 W (u)du + i x -∞ g 1 ν -g 3 ν e t -1 W (u)du-x -1 W (u)du dt (4.8) ϕ 2 ν -ϕ 4 ν (x) = λ 2 ν e -x -1 W (u)du -i x -∞ g 2 ν + g 4 ν e t -1 W (u)du-x -1 W (u)du dt (4.9) ϕ 1 ν -ϕ 3 ν (x) = λ 3 ν e x -1 W (u)du + i x 0 g 1 ν + g 3 ν e -t -1 W (u)du+ x -1 W (u)du dt (4.10) 
ϕ 2 ν + ϕ 4 ν (x) = λ 4 ν e x -1 W (u)du + i x 0 g 4 ν -g 2 ν e -t -1 W (u)du+ x -1 W (u)du dt (4.11)
Proof of the pointwise convergence of the integral terms.

We have:

x where C1, C2 are positive constants. We thus see that e t -1 W (u)du is square integrable on ] -∞, x[ and that e -t -1 W (u)du is square integrable on ]x, 0[. Consequently, since gν is weakly convergent, we deduce that:

-1 W (u)du =    -ml ln(-x) + x -1 O(u)du , f or x b. x 3 3 -a 3 3 + a -1 W (u)du , f or x a. (4.12) where x -1 O(u 
x -∞ g 1 ν -g 3 ν e t -1 W (u)du-x -1 W (u)du dt → ν→∞ x -∞ g 1 -g 3 e t -1 W (u)du-x -1 W (u)du dt
when ν → ∞. The same is true for the integral with g 1 ν + g 3 ν . Majorations of integral terms by L 2 functions independent of ν.

In the following, we will only treat ϕ 1 ν + ϕ 3 ν and ϕ 1 ν -ϕ 3 ν . The other functions can be treated in the same way. When a x b, the functions are smooth hence integrable. We study the other cases: a) First, using the Cauchy-Schwarz inequality and that g 1 ν + g 3 ν is bounded in L 2 , we obtain:

x 0 g 1 ν + g 3 ν e x t W (u)du dt 2 x 0 e -2 t -1 W (u)du+2 x -1 W (u)du dt (4.13) 
Therefore, we prove that the right hand side is integrable: i) If x b, using the expression of W , the right hand side is integrable since:

0 x e -2 t -1 W (u)du+2 x -1 W (u)du dt e 2C 0 x - 1 x 2ml (-t) 2ml dt = e 2C -x 1 + 2ml .
ii) If x a, we have:

0 x e 2 x t W (u)du dt = (C1) 2 e 2 x 3 3 a x (C2) 2 e -2 t 3 3 dt + 0 a e -2 t -1 W (u)du dt . The function (C1) 2 e 2 x 3 3 0 a e -2 t -1 W (u)du dt is integrable on ] -∞, a] and: a x e -2 t 3 3 dt - 1 2a 2 e -2 a 3 3 + 1 2x 2 e -2 x 3 3 - 1 a 3 a x e -2 t 3 3 dt,
by integration by parts. Choosing a such that 1 + 1 a 3 > 0, we deduce that e 2 x 3 3 a x e -2 t 3 3 dt is integrable on ] -∞, a] and goes to 0 at -∞.

b) Secondly, as above, we study the integrability of

x -∞ e 2 t -1 W (u)du-2 x -1 W (u)du dt: i) If x
b, using the expression of W and separating the integral from -∞ to b and from b to x, we have to study

(-x) 2ml e -2 x -1 T (u)du b -∞ e 2 t -1 W (u)du dt and (-x) 2ml e -2 x -1 T (u)du x b - 1 t 2ml e 2 t -1 T (u)du dt.
The first term is clearly integrable and since e 2 t -1 T (u)du is bounded on [b, 0[, we can perform the second integral to see that it is also integrable.

ii) If x a, since x -∞ 1 t 3 e 2t 3
3 dt 0, by integration by part, we have:

x -∞ e 2 t -1 W (u)du-2 x -1 W (u)du dt C 2 2 C 2 1 1 2x 2 .
This ends the proof of the integrability.

Convergence in L 2 of integral terms. We can use the dominate convergence theorem to obtain:

x 0 g 1 ν + g 3 ν e -t -1 W (u)du+ x -1 W (u)du dt L 2 → ν→∞ x 0 g 1 + g 3 e -t -1 W (u)du+ x -1 W (u)du dt. (4.14) 
and the same for the integral with

g 1 ν -g 3 ν . Study of the sequences λ i ν , i = 1, • • • , 4. a)
Let us study the convergence of λ 3 ν in (4.10) (we can do the same for λ 4 ν ). -If ml < 1 2 , using that e

x -1 W (u)du ∈ L 2 , ϕν ⇀ ϕ and (4.14), the term:

λ 3 ν -λ 3 e x -1 W (u)du 2 L 2 = ϕ 1 ν -ϕ 3 ν - x 0 g 1 ν + g 3 ν e -t -1 W (u)du+ x -1 W (u)du dt , e x -1 W (u)du L 2 - ϕ 1 -ϕ 3 - x 0 g 1 + g 3 e -t -1 W (u)du+ x -1 W (u)du dt , e x -1 W (u)du L 2 goes to 0 as ν → -∞. We deduce that λ 3 ν → ν→∞ λ 3 . -If ml 1 2 , e x -1 W (u)du / ∈ L 2 and λ 3 ν = 0. b) We then study the convergence of λ 1 ν and λ 2 ν . Since ϕ 1 ν + ϕ 3 ν ∈ L 2 , e -x -1 W (u)du / ∈ L 2
and the other terms are in L 2 , we deduce that

λ 1 ν = λ 2 ν = 0 for all ν ∈ N. Convergence in L 2 of the sequences ϕ 1 ν -ϕ 3 ν , ϕ 2 ν + ϕ 4 ν , ϕ 1 ν + ϕ 3 ν , ϕ 2 ν -ϕ 4 ν . Using the dominate convergence theorem, we deduce that ϕ 1 ν -ϕ 3 ν L 2 → ν→∞ ϕ 1 -ϕ 3 .
The same is true for the other functions. Thus, the sequence (ϕn) n∈N admits a converging sub-sequence which proves that K is compact. Consequently, (H+ + i) -1 is compact and so is (H+ -z) -1 for all z ∈ ρ(H+) using a resolvent identity.

Q.E.D

4.4 Proof of proposition 4.1

Proof. Let j-, j+ ∈ C ∞ such that j 2 -+ j 2 + = 1, supp(j-) ⊂] -∞, c[ and supp(j+) ⊂]b, 0[. We define: Q(z) = j-(x) (H--z) -1 j-(x) + j+(x) (H+ -z) -1 j+(x). Since H s,n m -z = H--z on ] -∞, c[ and H s,n m -z = H+ -z on ]b, 0[, we have: (H s,n m -z) Q(z) = 1 -w(z) where: w(z) = -[(H s,n m -z) , j-(x)] (H--z) -1 j-(x) + [(H s,n m -z) , j+(x)] (H+ -z) -1 j+(x) . Since [(H s,n m -z) , j-(x)] = iγ 0 γ 1 j ′ -(x) and [(H s,n m -z) , j+(x)] = iγ 0 γ 1 j ′ + (x) and j ′ -, j ′ +
have compact support, we deduce that w(z) is compact for all z ∈ ρ (H) using the last two sections. Moreover, w : ρ (H) → L L 2 is analytic. Since j ′ -, j ′ + , j-, j+ are bounded, for some constant C > 0, we have:

w(z)ϕ 2 C |ℑz| ϕ 2 ,
for all ϕ ∈ L 2 . We then choose z such that the imaginary part satisfies C |ℑz| < 1. Therefore, 1 -w(z) is invertible. Using the analytic Fredholm theorem, we have that 1 -w(z) is invertible for all z ∈ ρ (H) S where S is a discrete set without accumulation points. For these z, we deduce that:

(H s,n m -z) -1 = Q(z) (1 -w(z)) -1 . (4.15)
Let f be a continuous function going to 0 at -∞ and admitting a finite limit at 0. Then f (x)Q(z) is compact. Thus for z ∈ ρ (H) S, f (x) (H s,n m -z) -1 is compact. Using the analyticity of z → (H s,n m -z) -1 , we obtain the compactness for all z ∈ ρ (H s,n m ).

Q.E.D

5 Mourre estimates

Mourre theory

We recall here some facts about the Mourre theory. Let A be a self-adjoint operator. We say that the pair (A, H) satisfies the Mourre conditions if

D(A) ∩ D(H) is dense in D(H) (5.1)
e itA preserves D(H) for t>0, sup We then have the following lemma (see [ 

Mourre estimate

We will use A = Γx as conjugate operator where Γ = -γ 0 γ 1 = diag (1, -1, -1, 1). The operator A is self-adjoint when equipped with domain D(A) = {ϕ ∈ Hs,n; Aϕ ∈ Hs,n}.

(5.5)

Lemma 5.4. For all m > 0, the pair (H s,n m , A) satisfies the Mourre conditions. Consequently, H s,n m ∈ C 1 (A)

Proof. Let us check (5.1): Case 2ml < 1: 

Let χ be a C ∞ function such that χ = 1 on [-1, 0], supp χ ⊂]-2, 0]. We set χ k (x) = χ x k for all k ∈ N {0}. This implies that supp χ k (x) = 1 on ] -k, 0]. We have χ ′ k (x) = 1 k χ ′ x k so that
H s,n m ϕ -H s,n m χ k ϕ C0 k ϕ + H s,n m ϕ -χ k H s,n m ϕ .
which gives the desired result when k goes to infinity for ϕ ∈ D (H s,n m ). We deduce (5.1). We denote

D (H s,n m ) c = {χ k ϕ; ϕ ∈ D (H s,n m ) , k ∈ N {0}}.
Case 2ml 1:

In this case, C ∞ 0 (] -∞, 0[) is a subset of D (A) ∩ D (H s,n m ) and is dense in D (H s,n m ).
Let us check (5.2): For all t > 0, e itA = diag(e itx , e -itx , e -itx , e itx ).

Let ϕ ∈ D (H s,n m ), then: e itA ϕ ∈ Hs,n.

-H s,n m e itA ϕ = e itA H s,n m ϕ + te itA ϕ. So H s,n m e itA ϕ ∈ Hs,n and sup

|t| 1 H s,n m e itA ϕ < ∞.
We need to check the boundary condition in the case 2ml < 1. We have:

γ 1 + i e itA ϕ(x, .) W 0 =     ie itx ϕ1 + ie -itx ϕ3 ie -itx ϕ2 -ie itx ϕ4 ie itx ϕ1 + ie -itx ϕ3 -ie -itx ϕ2 + ie itx ϕ4     [L 2 (S 2 )] 4 .
Let's consider: ie itx ϕ1 + ie -itx ϕ3 L 2 (S 2 ) when x goes to 0. By Taylor expansion, we must check that -x ϕ1(x, .) L 2 (S 2 ) + ϕ3(x, .)

L 2 (S 2 ) is o (-x) 1 2 . Since ϕ ∈ D (H s,n m ), there exists functions ψ-∈ W 1 2 -, χ-∈ W 1 2
+ and a function φ ∈ C 0 [0, π 2 ]x; L 2 (S 2 ; C 4 ) , such that φ s n (r * , θ, ϕ) W 0 = o (-x) as x → 0, satisfying:

ψs,n = -x -ml     ψ s -,n (θ, ϕ) χ s -,n (θ, ϕ) -iψ s -,n (θ, ϕ) iχ s -,n (θ, ϕ)     + φ s n (r * , θ, ϕ).
We thus obtain:

-x ϕ1(x, .) L 2 (S 2 ) Cs,n (-x) 1-ml -x o (-x) 1 2 
.

Since 1 -ml > 1 2 when ml < 1 2 , we have that -2x ϕ1(x, .) L 2 (S 2 ) = o (-x) Q.E.D

We then have the following:

Proposition 5.5. Recall that A = Γx. Let I ⊂ R be a compact non-empty interval. Then, for all m > 0, we have:

1I (H s,n m ) [H s,n m , iA] 1I (H s,n m ) 1 2 I (H s,n m ) + 1I (H s,n m ) K1I (H s,n m ) (5.7)
where 1I is the characteristic function of I and K is a compact operator.

Proof. We remark that xA(x)

→ x→-∞,0 0, that xB(x) → x→-∞
0 and that xB(x) → x→0 -l using the asymptotic behavior of A and B described in (2.24) and (2.25). We obtain

[H s,n m , iA] Id -(2s + 1) xA(x)γ 2 γ 1 -2mxB(x)γ 1 .
Consider a compact non-empty interval I ⊂ R and Ĩ a compact interval strictly containing

I. Let ς ∈ C ∞ 0
Ĩ such that ς ≡ 1 on I. We have:

ς (H s,n m ) [H s,n m , iA] ς (H s,n m ) ς 2 (H s,n m ) + K. (5.8) 
where K = ς (H s,n m ) -(2s + 1) xA(x)γ 2 γ 1 -2mxB(x)γ 1 ς (H s,n m ) is compact. Indeed, by proposition 4.1 and the use of Helffer-Sjöstrand formula, we see that ς (H s,n m ) multiplied by a good function will be compact. The asymptotic behavior of A and B gives that xA (x) and xB (x) are bounded near 0 and goes to 0 at -∞. This gives the compacity of K. Multiplying both sides by 1I (H s,n m ), this gives the desired result since 1I ς = 1I . Q.E.D

Using the absence of eigenvalues, we deduce the following corollary:

Corollary 5.6. For all m > 0, all λ ∈ R and all 0 < ǫ < 1, there exists a compact non-empty interval I ′ ⊂ R containing λ such that:

1 I ′ (H s,n m ) [H s,n m , iA] 1 I ′ (H s,n m ) (1 -ǫ) 1 2 I ′ (H s,n m ) .
(5.9)

Recall that 1 I ′ is the characteristic function of I ′ .

Proof. We have the Mourre estimate with I such that λ ∈ I. Let I ′ ⊂ I such that λ ∈ I ′ . We can multiply both sides by 1 I ′ (H s,n m ) to obtain the same inequality with I replaced by I ′ . Since λ is not an eigenvalue of H s,n m , 1 I ′ (H s,n m ) tends strongly to 0 when the size of I ′ decreases. Then 1 I ′ (H s,n m ) K1 I ′ (H s,n m ) goes to 0 in the operator norm (K is compact). We can thus choose I ′ sufficiently small such that the desired inequality holds.

Q 

(H) [H, iA] 1∆ (H) c01∆ (H) . Then, for all g ∈ C ∞ 0 (R), supp g ⊂ (-∞, c0) and for f ∈ C ∞ 0 (∆), we have ∞ 1 g A t f (H) e -itH u 2 dt t C u 2 , ∀u ∈ H, s -lim t→∞ g A t f ( 
H) e -itH = 0.

Propagation estimates

We have seen that [H s,n m , iA] admits a bounded extension from D (A)∩D (H s,n m ) to D (H s,n m ). We denote this extension by [H s,n m , iA] 0 . We have:

[H s,n m , iA] 0 , iA = 4 s + 1 2 x 2 A (x) γ 2 γ 0 + mx 2 B (x) γ 0 (6.1)
so [H s,n m , iA] 0 , iA extends to a bounded operator to D (H s,n m ) with values in Hs,n. Using lemma 5.3, we deduce that H ∈ C 2 (A). Using the Mourre estimate and a partition of unity argument, this gives: 

Proposition 6.3. For all m > 0, g ∈ C ∞ 0 (R), supp (g) ⊂ (-∞, 1 -δ) and f ∈ C ∞ 0 (R), we have: ∞ 1 g A t f (H s,n m ) e -itH s,n m u 2 dt t C u 2 , ∀u ∈ Hs,n, (6.2 
s -lim t→∞ g A t f (H s,n m ) e -itH s,n m = n i=1 s -lim t→∞ g A t fi (H s,n m ) e -itH s,n m = 0.
Thanks to a density argument, we obtain the desired limit.

Q.E.D Proposition 6.3 allows us to obtain:

Lemma 6.4. Let J-∈ C ∞ such that supp (J-) ⊂] -∞, 1 -ǫ[ and J-(x) = 1 for all x ∈] -∞, 1 -2ǫ[ and let χ ∈ C ∞ 0 .
Then, for all m > 0, we have:

∞ 1 J- A t χ (H s,n m ) e -itH s,n m u 2 dt t C u 2 , ∀u ∈ Hs,n (6.4 
)

lim t→∞ J- A t e -itH s,n m u = 0, ∀u ∈ Hs,n. (6.5) Proof. 1) Let θ1, θ2 ∈ C ∞ such that supp (θ1) ⊂] -∞, -1 -ǫ 2 [, supp (θ2) ⊂] -1 -ǫ, 1 -ǫ[ and θ1 + θ2 = 1.
Then, using the triangular inequality and the minimal velocity estimate, we only need to prove the integral estimate for θ1J-.

So suppose that K ∈ C ∞ such that supp (K) ⊂] -∞, -1 -ǫ 2 [ and K (x) = 1 for all x ∈] -∞, -1 -ǫ[. We define F (s) = ∞ s K 2 (t) dt and Φ (t) = χ (H s,n m ) F A t χ (H s,n m )
such that Φ is C 1 uniformly bounded. We have:

DΦ (t) = 1 t χ (H s,n m ) A t K 2 A t χ (H s,n m ) + iχ (H s,n m ) H s,n m , F A t χ (H s,n m ) ,
where

H s,n m , F A t = i t K 2 A t + s + 1 2 A (x) F - x t -F x t γ 1 γ 2 -mB (x) F - x t -F x t γ 1 , with F -x t -F x t - 2x t sup y∈[ x t ,-x t ] K 2 (y) - 2x t 1 {x (-1-ǫ 2 )t} ,
where 1 is the characteristic function and sup y∈[ x t ,-x t ] K 2 (y) is thought as a function depending on the variables x and t. We know that for x < 0 and |x| sufficiently large, the functions A and B are exponentially decaying. If we fix T sufficiently large, then, since e x 1 -x 3 for x sufficiently small, for all t T , we have:

A (x) F - x t -F x t C t 2 ζ {x (-1-ǫ 2 )T } .
We can do the same thing with B. We obtain:

-DΦ

(t) = 1 t χ (H s,n m ) 1 - A t K 2 A t χ (H s,n m ) + O t -2 2 + ǫ 2 t χ (H s,n m ) K 2 A t χ (H s,n m ) + O t -2 , since A t -1 -ǫ 2 
on the support of K 2 . By lemma 6.1.1, this shows that:

∞ 1 K A t χ (H s,n m ) e -itH s,n m u 2 dt t C u 2 (6.6)
for all u ∈ Hs,n. This proves the first statement of the lemma.

2) We next set:

Φ (t) = χ (H s,n m ) J 2 - A t χ (H s,n m ) .
So, we have:

DΦ (t) 4ǫ t χ (H s,n m ) J ′ -J- A t χ (H s,n m ) + O t -2
where supp (J ′ -J-) ⊂]1 -2ǫ, 1 -ǫ[ so it is integrable by the minimal velocity estimate. Using lemma 6.1.1 and the integrability in 6.6, this gives

lim t→∞ e itH s,n m χ (H s,n m ) J 2 - A t χ (H s,n m ) e -itH s,n m u = 0, ∀u ∈ Hs,n.
Using the last lemma, we obtain the desired limit by a density argument.

Q.E.D Proposition 6.5. Let g ∈ C ∞ such that supp (g) ⊂]1 + ǫ, ∞[ with ǫ > 0 and such that g (x) = 1 for all x ∈]1 + 2ǫ, ∞[. Let ζ ∈ C ∞ 0 (R).
Then, for all m > 0, we have: Proof of the proposition 6.5. Let J ∈ C ∞ (R) such that supp (J) ⊂ (1 + ǫ, +∞) with ǫ > 0 and J (x) = 1 for all

∞ 1 g A t e -itH
x ∈]1 + 2ǫ, +∞[. Let ζ ∈ C ∞ 0 (R). We define F (s) = s -∞ J 2 (u) du and 
Φ (t) = ζ (H s,n m ) F A t ζ (H s,n m )
so that Φ is C 1 uniformly bounded. As in the last proof, we calculate the Heisenberg derivative of Φ and thanks to the support of J, we obtain:

-DΦ (t) ǫ t ζ (H s,n m ) J 2 A t ζ (H s,n m ) + ζ (H s,n m ) i s + 1 2 A (x) F -x t -F x t γ 2 γ 1 + imB (x) F -x t -F x t γ 1 ζ (H s,n m ) , (6.9) 
and we have:

F -x t -F x t -2x t sup y∈[ x t , -x t ] J 2 (y) 1 {1+ǫ -x t } .
Using the exponential decay of A and B, we obtain:

ζ (H s,n m ) i s + 1 2 A (x) F -x t -F x t γ 2 γ 1 +imB (x) F -x t -F x t γ 1 ζ (H s,n m ) = O e -κ 2 t
(6.10) for t sufficiently large. We deduce that:

∞ 1 J A t e -itH s,n m ζ (H s,n m ) u 2 dt t C u 2 , ∀u ∈ Hs,n. (6.11) 
Next, we use:

Φ (t) = ζ (H s,n m ) J 2 A t ζ (H s,n m ) ,
and obtain:

DΦ (t) = 2 t ζ (H s,n m ) -A t J A t J ′ A t ζ (H s,n m ) + 2 t ζ (H s,n m ) J A t J ′ A t ζ (H s,n m ) + ζ (H s,n m ) i s + 1 2 A (x) J 2 -x t -J 2 x t γ 2 γ 1 +imB (x) J 2 -x t -J 2 x t γ 1 ζ (H s,n m ) .
The first two terms are integrable due to the support of J and (6.11). The last two are also integrable using the support of J. Consequently:

s -lim t→∞ J A t e -itH s,n m ζ (H s,n m )
exists and is zero by (6.11). The proposition follows by density. Q.E.D

7 Asymptotic completeness

Comparison operator

Our comparison operator will be Hc defined by: Hc = iγ 0 γ 1 ∂x (7.1)

where γ 0 γ 1 = diag (-1, 1, 1, -1) and with domain: D (Hc) = {ϕ ∈ Hs,n; Hcϕ ∈ Hs,n, ϕ1 (0) = -ϕ3 (0) , ϕ2 (0) = ϕ4 (0)} (7.2) By proposition 4.2, this is a self-adjoint operator on its domain.

Asymptotic completeness

Recall that A = Γx where Γ = -γ 0 γ 1 . We have: for all ϕ ∈ Hs,n, we have Ω * s,n = Ws,n.

Proof. Let J-, J0, J+ ∈ C ∞ such that J-+ J0 + J+ = 1, the supports of J-, J+ are as in 6.5 and 6.4, and J0 = 1 on ]1 -ǫ, 1 + ǫ[, supp (J0) ⊂]1 -2ǫ, 1 + 2ǫ[ with ǫ > 0. Using proposition 6.5 and lemma 6.4, it suffices to prove that, for all ϕ ∈ Hs,n, the limit:

lim t→∞ e itHc J0
A t e -itH s,n m ϕ exists. We remark that J0 x t = 0 if and only if x (1 -2ǫ) t > 0. Since x < 0, J0 x t = 0, for all t > 0 and x < 0. We thus have:

J0 A t = J0 -x t M0
where M0 = diag (0, 1, 1, 0). We then define:

Φ (t) = χ (Hc) J0 A t χ (H s,n m ) ,
and, denoting V (x) = s + 1 2 A (x) γ 1 γ 2 -mB (x) γ 0 , we have: Using the support of J ′ 0 J0, minimal and maximal velocity estimates, the right hand side is integrable. Hence the limit exists. We can show that the second limit exists in the same way. Finally, for all t > 0 and ϕ, ψ ∈ Hs,n, we have e itHc e -itH s,n m ϕ, ψ = ϕ, e itH s,n m e -itHc ψ which proves the last statement.

DΦ (t
Q.E.D Therefore, we obtain: e itHc e -itH s,n m ϕs,n.

Since limt→∞ e itHc e -itH s,n m ϕs,n = Ωs,nϕs,n exists for all (s, n) ∈ I and e itHc e -itH s,n m is unitary, we deduce, using the dominate convergence theorem, that the limit in the theorem exists. We can do the same for the other limit. The last statement follows as in the last proof.

Q.E.D

8 Asymptotic velocity

Abstract theory

In this section, we follow the appendix B.2 in [START_REF] Derezinski | Scattering Theory of Classical and Quantum N-Particle Systems[END_REF]. We consider a sequence (Bn) n∈N of vectors of self-adjoint operators which commute in a Hilbert space H. More precisely:

Bn = B 1 n , • • • , B m n , B i n , B j n = 0, 0 i, j m, n = 1, 2, • • • .
We have the following proposition: Then there exists a unique vector of self-adjoint operators

B = B 1 , • • • , B m (8.2) 
such that (8.1) is equal to g (B). B is densely defined if, for some g ∈ C∞ (R m ) such that g (0) = 1, we have: then the self-adjoint operator P + c is densely defined and it commutes with Hc. P + c is called the asymptotic velocity. Proof. Let J ∈ C∞ (R) such that J (1) = 0. We can approach J by a sequence (Jn) n∈N of C ∞ 0 (R) functions which are zero in a neighbourhood of 1 in L ∞ . By density, we can suppose that J ∈ C ∞ 0 (R) and J is zero in a neighbourhood of 1. Using minimal and maximal velocity estimates, we obtain:

J P + c = s -lim t→∞ e itHc J
A t e -itHc = 0 (8.8)

Now, if we have J (1) = 0, we can suppose that J ∈ C ∞ 0 (R) is constant, non zero, in a neighbourhood of 1. Then, for all ϕ ∈ H, we have:

J P + c ϕ -J (1) ϕ = s -lim t→∞ e itHc J
A t -J (1) e -itHc ϕ.

Since J (x) -J (1) is zero in a neighbourhood of 1, we obtain J P + c ϕ = J (1) ϕ = 0. This ends the proof.

Q.E.D

The following consequence is immediate: then the self-adjoint operator P + m is densely defined and commutes with Hm. The operator P + m is called the asymptotic velocity.

Proof. We can write e itHm J A t e -itHm = e itHm e itHc e itHc J A t e -itHc e itHc e -itHm

Using uniform boundedness of our operators and introducing Ω and W at the right place, this limit is equal to W J P + c Ω where W, Ω are defined in theorems 7.2. We can use the same argument for the second limit and the existence of P + m follows by the abstract theory and we have:

J P + m = W J P + c Ω (8.12) 
Q.E.D

mProposition 1 . 2 .

 12 with natural domain D H M IT m . Then we obtain: The operator H M IT m is self-adjoint on D H M IT m .

sin θdζdθdϕ 4 where ζ = arctan Λ 3 r 1 4

 31 .. Using a change of spinor and a change of coordinates such that φ(t, ζ, θ, ϕ) = rFB(r) ψ(t, r, θ, ϕ), he obtains:

  0[ and χ2 = 1 on ] -ǫ, 0[. We choose ǫ > 0 sufficiently small so that, if γ 5 B and P are unitary matrices defined as in(3.22),γ 5 P -1 χ2ϕ ∈ D H B m when ϕ ∈ D (H s,n m ) (itis possible by lemma 3.2). Recall that m is the mass of the field and l correspond to the cosmological constant. Using equation III.32 in theorem III.4 of [8], (3.22) and (3.25), we obtain: Dx γ 5 B P -1 χ2ϕ C m,l g (x) H s,n m γ 5 B P -1 χ2ϕ + Cm,l χ2ϕ , where C m,l and Cm,l are constants depending on m and l. Since γ 5

with domain D Hs,n m =

 m ψs,n ∈ Hs,n; Hs,n m ψs,n ∈ Hs,n and if ψs,n ∈ D Hs,n m , then we have:

  Hs,n m with domain D(H * ) included in D Hs,n m . Let φ± ∈ ker (H * ± iId). Then, using the symmetry of Hs,n m and that H * = Hs,n m , we have: 0 = Hs,n m φ±, φ± -φ±, Hs,n m φ± = H * φ±, φ± -φ±, H * φ± = ∓2i φ± 2 Hs,n . (3.39)

⊂D

  Let ψs,n ∈ D( Hs,n,MIT, * m ). Then, since D( Hs,n,MIT, * m ) ⊂ D( Hs,n m ), ψ admits a decomposition, in a neighbourhood of 0, as in (3.41). Moreover, Hs,n,MIT, * m = Hs,n m on D Hs,n,MIT, * m (using distributions). We have: 0 = Hs,n,MIT m φs,n, ψs,n -φs,n, Hs,n,MIT, * m ψs,n = lim x→0 (-x) -ml Φ s -,n , (-x) ml Ψ s +,n , for all φs,n ∈ D Hs,n,MIT m and ψs,n ∈ D Hs,n,MIT, * m . In other words, we have: all φ s -,n , ξ s -,n ∈ C ∞ 0 (Ys,n), we can find φ ∈ D( Hs,n,MIT m ) admitting these components as coordinates. Thus ψ s +,n = χ s +,n = 0. We conclude that D Hs,n,MIT, * m Hs,n,MIT m and that Hs,n,MIT m is self-adjoint on his domain. Q.E.D

  and the same for ψ. Then:Hmϕ, ψ = (s,n)∈IHs,n m ϕs,n, ψs,n = (s,n)∈I ϕs,n, Hs,n m ψs,n = ϕ, Hmψ (3.45) since Hs,n m is symmetric. We can prove that Hm is closed in the same way. Let x = (s,n)∈I xs,n ∈ H. Since Hs,n m is self-adjoint, there exists ys,n ∈ D Hs,n m such that ( Hm ± i)ys,n = ( Hs,n m ± i)ys,n = xs,n. Thus x = (s,n)∈I ( Hm ± i)ys,n = Hm ± i y where y = (s,n)∈I ys,n ∈ D Hm since:

3 . 46 ) 3 . 8 .

 34638 Proposition Suppose that 2ml < 1. Then the operator HMIT m is self-adjoint with domain D HMIT m . Proof. Let us remark that, if the boundary condition is fulfilled for φ ∈ D HMIT m , then it is fulfilled for φs,n ∈ D Hs,n,MIT m . We can now prove, as in the proof of proposition 3.7, that HMIT m is symmetric on its domain. Show that HMIT m is closed will require more effort. Choose a sequence (ψj) j∈N of elements of D HMIT m such that ψj → ψ and HMIT m ψj → ϕ where ψ, ϕ ∈ H and the convergence is understood in the norm of H. Using distributions, we have HMIT m ψ = ϕ ∈ H and we have to show that ψ satisfies the boundary condition. We can write:

  that the boundary condition has to be fulfilled. Since ys,n ∈ D Hs,n,MIT m , we can decompose ys,n as for ϕ s,n just above. A similar argument shows that y satisfies the boundary condition. Thus HMIT m is self-adjoint on D HMIT m .

1 2l,

 1 the operator Hm with domain D (Hm) is self-adjoint. -For all m < 1 2l , the operator H M IT m with domain D(H M IT m

- 1 W- 1 O- 1 WC2e -x 3 3 ,

 1113 )du is bounded on [b; 0[. We obtain: e x (u)du = (-x) -ml e x (u)du = (-x) ml e -x -1 O(u)du , f or x b. f or x a.

|t| 1 HeDefinition 5 . 1 .

 151 itA u < ∞, ∀u ∈ D(H) (5.2) [iH, A] defined as quadratic form on D(H) ∩ D(A) extend to a bounded operator from D(H) into H.(5.3)The Mourre conditions are stronger than C 1 (A) regularity. We recall the definition ofC k (A): We say that H ∈ C k (A) if there exists z ∈ C \ σ(H) such that R ∋ t → e itA (z -H) -1 e -itA(5.4)is C k for the strong topology of L(H).

1 2 .

 2 Since ϕ ∈ D (H s,n m ), this proves that the boundary condition is fulfilled and then (5.2).Let us check (5.3): First, we see that xA(x) and xB(x)are bounded functions on ] -∞, 0[. Let u, v ∈ D (H s,n m ) c in the case 2ml < 1 and u, v ∈ C ∞ 0 (] -∞, 0[) in the case 2ml 1, we have: [H s,n m , iA] (u, v) = u + 2i s + 1 2 xA(x)γ 2 γ 1 u + 2imxB(x)γ 1 u, v .(5.6)This shows that: |[H s,n m , iA] (u, v)| C1 u Hs,n v Hs,n for some constant C1 and consequently, (5.3) is satisfied.

Theorem 7 . 1 (

 71 Asymptotic completeness for fixed harmonics). For all m > 0 and all ϕ ∈ Hs,n, the limits lim t→∞ e itHc e -itH s,

Theorem 7 . 2 (

 72 Asymptotic completeness). For all m > 0 and all ϕ ∈ H, the limits:lim t→∞ e itHc e -itHm ϕ (7.7) lim t→∞ e itHm e -itHc ϕ (7.8) exist. If we denote these limits by Ωϕ and W ϕ respectively, we have Ω * = W . Proof. We can decompose ϕ = (s,n)∈I ϕs,n where ϕs,n ∈ Hs,n and (s,n)∈I ϕs,n 2 Hs,n < ∞. We have: e itHc e -itHm ϕ = (s,n)∈I

Proposition 8 . 1 .

 81 Suppose that, for all g ∈ C∞ (R m ), there exists s -lim n→∞ g (Bn) .(8.1)

Definition 8 . 2 . 8 . 2 5 )

 82825 Under the hypotheses of the preceding proposition, we will write:B = s -C∞ -limn→∞ Asymptotic velocity for H c Theorem 8.3 (Asymptotic velocity for Hc). Let J ∈ C∞ (R). Then the limit: exists and is equal to J (1) 1 where 1 is the identity. Moreover, if J (0) = 1, then

1 .

 1 and the last term goes to J (0)ψ 0 = ψ 0 . So s -lim R→∞ s -lim t→∞ e itHc J A Rt e -itHc =The last part of the theorem follows from the abstract theory. Q.E.DWe can know study the spectrum of P + c : Proposition 8.4. σ P + c = {1}

Corollary 8 . 5 . P + c = 1 8. 3 Theorem 8 . 6 ( 10 )

 85138610 Asymptotic velocity for H m Asymptotic velocity for Hm). Let J ∈ C∞ (R). Then, for all m > 0, the limit:If we define s -C∞ -lim t→∞ e itHm A t e -itHm =: P + m ,(8.11)

  Hs,n = φs,n, γ 0 B B (x) ψs,n Hs,n .

	s + γ 0 B B (x) φs,n, ψs,n Thus, in the calculation of Hs,n 1 2 φs,n, ψs,n m φs,n, ψs,n Hs,n	= φs,n, γ 0 B γ 2 B A (x) s + Hs,n -φs,n, Hs,n m ψs,n Hs,n	1 2	ψs,n	Hs,n	,

  Let φs,n, ψs,n ∈ D( HMIT s,n ). As in the proof of proposition 3.5, when calculating HMIT s,n φs,n, ψs,n

	Proof. Hs,n	-φ, HMIT s,n ψ	Hs,n	,
	only boundary values of φs,n, ψs,n are left. Using that	
	Proposition 3.6. The operator HMIT s,n	is self-adjoint on D HMIT s,n	.

  Suppose that (H, A) satisfies the Mourre conditions. Then H ∈ C 1 (A). We also recall a lemma concerning the C 2 (A) regularity: Lemma 5.3. Suppose that H ∈ C 1 (A) and that the commutator [iA, H] extends to a bounded operator from D(H) into H. We denote [iA, H]0 this extension. If, in addition, the commutator [iA, [iA, H]0] defined as a quadratic form on D(A) ∩ D(H) extends to a bounded operator from D(H) into D(H) * , then H ∈ C 2 (A).

	1, Proposition 5.1.2, Theorem 6.3.4]):
	Lemma 5.2.

  it is bounded. Using these facts, we see that χ k ϕ ∈ D(A)∩D (H s,n m ) if ϕ ∈ D (H s,n m ). We now show that χ k ϕ →

	k→∞ the dominate convergence theorem we have χ k ϕ ϕ for the norm: ϕ H s,n m Hs,n -→ k→∞ ϕ. Moreover, |χ ′ = ϕ H s,n + H s,n m ϕ Hs,n . By k (x)| 1 k C, so:

  .E.D ii) Suppose that B2,i (t) and B1,i (t) are mesurable functions with value in L (H) and that the function Φ satisfies

					n
		| ψ2, DΦ (t) ψ1 |	i=1	B2,i (t) ψ2 B1,i (t) ψ1 ,
	for all ψ1, ψ2 ∈ H, with ∞ 1	B2,i (t) e -itH u	2	dt C1 u 2 , ∀u ∈ H
	and	1	∞	B1,i (t) e -itH u	2	dt C1 u 2 , ∀u ∈ D,
	where D is a dense subset of H. Then the limit
				s -lim t→∞	e itH Φ (t) e -itH
	exists.					
	6.1.2 Abstract minimal velocity estimates

Proposition 6.2. [41, Proposition A.1] Let H ∈ C 1+ǫ (A) for ǫ > 0. Let ∆ be an interval such that 1∆

  )Proof of proposition 6.3. Using the corollary 5.6 where we denote I our interval, we obtain by the abstract velocity estimate. For f ∈ C ∞ 0 (R), we can cover supp (f ) by a finite number of intervals I1, • • • , In where a Mourre estimate holds. Then, we consider a partition of unity subordinate to this cover η1, • • • , ηn and we note fi = ηif for all i = 1, • • • , n. Then:

	for f ∈ C ∞ 0 (I) ∞ 1 g A t	f (H s,n m ) e -itH s,n m u	2 dt t	n i=1	1	∞	g	A t	fi (H s,n m ) e -itH s,n m u	2 dt t
										Cn u 2 , ∀u ∈ Hs,n,
	and:									
	s -lim t→∞	g	A t	e -itH s,n m	= 0.		(6.3)
		1	∞	g	A t		f (H s,n m ) e -itH s,n m u	2 dt t	C u 2 , ∀u ∈ Hs,n,
	s -lim t→∞	g	A t	f (H s,n m ) e -itH s,n m	= 0,

  -(1 -2ǫ) t. Since A, B are exponentially decreasing at -∞, we obtain:

	) =	d dt	Φ (t) + i (HcΦ (t) -Φ (t) H s,n m )	
	=	2 t	χ (Hc)	x t	+ 1 J ′ 0 J0	-x t	M0χ (H s,n m ) -iχ (Hc) J 2 0	-x t	M0V (x) χ (H s,n m ) .
	On the support of J ′ 0 J0, we have x t + 1 -(1 + 2ǫ) t x DΦ (t) 4ǫ t χ (Hc) J ′ 0 J0	2ǫ. Moreover, J0 -x t A t χ (H s,n m ) + O t -2 .	= 0 if and only if

Propagation estimatesIn this section, we first present abstract results about propagation estimates and the minimal velocity estimate. Then, we apply this to prove that our minimal and maximal velocity is 1. This will be useful in the proof of asymptotic completeness.

Now, let us define the operator H-by:

where V-(x) = xId , f or x d γ 0 γ 2 A(x) s + 1 2 -mγ 0 B(x) , f or x c. Remark. Note that the potential of H-equals the potential of H s,n m for x negative and |x| large.

Operator H +

Let us define the operator H+ by:

where

This time, the potential behaves like the potential in H s,n m at 0 and increases at -∞. We then have a confining potential. This type of potential has been encountered in the article of A.Bachelot [START_REF] Bachelot | The Dirac System On The Anti-De Sitter Universe[END_REF]. For proving the self-adjointness of his operator, he uses the method we have recovered for proving the self-adjointness of our operator Hm. We just indicate the differents stages of the proof. We introduce the domain:

if 2ml < 1 and we remove the boundary condition for 2ml 1. In the following proof of compactness of (H+ -z) -1 , we obtain estimates that allow us to prove the symmetry of this operator for ml 1 2 . As before, we can do a unitary transform and obtain a result similar as lemma 3.2. We then obtain the asymptotic behavior of ϕ. This allows us to conclude in the case ml 1 2 . If ml < 1 2 , we introduce the MIT boundary condition and a suitable partition of unity in order to separate the behavior at 0 from the one at -∞. We then obtain: Proposition 4.4. The operator H+ equipped with D (H+) is self-adjoint.

Compactness of

Proof. Let ϕ ∈ D (Hc) and g = (Hc -z) ϕ be defined on ] -∞, 0[. Denote by ϕi and gi, i = 1, • • • , 4, their components. We will extend these functions to R in the following way:

Abstract propagation estimates

We present the abstract theory of propagation estimates. Proofs can be found in [START_REF] Derezinski | Scattering Theory of Classical and Quantum N-Particle Systems[END_REF]. Consider a Hilbert space H and (H, D (H)) a self-adjoint operator on H. Let Φ (t) be a C 1 uniformly bounded function with values in L (H) defined on R + . We define the Heisenberg derivative of Φ by: 

Proof. Recall that A = -γ 0 γ 1 x where -γ 0 γ 1 = diag (1, -1, -1, 1). Thus, for J ∈ C∞ (R), we have

. Moreover, we have Hc = iγ 0 γ 1 ∂x. Let ψ 0 ∈ D (Hc), we wish to solve the equation ∂tψ (t, x) = iHcψ (t, x) , ψ (0, .) = ψ 0 (.) = ψ 0 1 (.) , ψ 0 2 (.) , ψ 0 3 (.) , ψ 0 4 (.) where iHc = diag (1, -1, -1, 1) ∂x. We will prove that the formula:

gives an explicit solution for this problem. Since x < 0 in our case, 1 R + (x -t) = 0 for all t > 0, but we need this term for the group property of this solution.

We first prove that our formula gives a solution of the desired equation. Indeed, for all t > 0, we see that ψ3 (t, 0) = ψ 0 3 (-t) and ψ1 (t, 0) = -ψ 0 3 (-t) since 1 R -(t) = 0 for t > 0. Thus ψ3 (t, 0) = -ψ1 (t, 0). On the other hand, we have ψ2 (t, 0) = ψ 0 2 (-t) and ψ4 (t, 0) = ψ 0 2 (-t) which gives us ψ2 (t, 0) = ψ4 (t, 0). The boundary conditions are thus satisfied. It remains to prove that it satisfies the equation. For the first component of our formula, using the boundary consition and the derivation in the distributional sense, we obtain:

We also have:

For the second and third components, 1 R -(x -t) is constant so its derivative is 0 and we can check that ∂tψ2 (t, x) = -∂xψ2 (t, x) and ∂tψ3 (t, x) = -∂xψ3 (t, x). For the fourth component, we obtain:

We have the same for ∂xψ4 (t, x) so that ∂tψ4 (t, x) = ∂xψ4 (t, x). So ∂tψ (t, x) = iHcψ (t, x) in the sense of distribution. Since ψ 0 ∈ D (Hc), the derivatives are, in fact, well defined in Hs,n and the equality is satisfied in Hs,n. We thus have a solution.

We then turn our attention to the asymptotic velocity. We have:

This last term converges pointwise to J (1) ψ 0 (x) as t → ∞. Since J, 1 R -, 1 R + , 1 R -are bounded and ψ 0 ∈ Hs,n, we can use the dominate convergence theorem to conclude that: