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Abstract

This paper deals with the dynamic modeling and design optimization of a three Degree-of-Freedom

spherical parallel manipulator. Using the method of Lagrange multipliers, the equation of motion is

derived by considering its motion characteristics, namely, all the components rotating about the center

of rotation. Using the derived dynamic model, a multiobjective optimization problem is formulated to

optimize the structural and geometric parameters of the spherical parallel manipulator. The proposed

approach is illustrated with the design optimization of an unlimited-roll spherical parallel manipulator

with a main objective to minimize the mechanism mass in order to enhance both kinematic and

dynamic performances.

Keywords: Spherical parallel manipulator, dynamic modeling, multiobjective design optimization,

Pareto-front, scatter matrix

1 Introduction

The design of three Degree-of-Freedom (3-DOF) spherical parallel manipulators (SPMs) can consider

many criteria, such as workspace [1, 2, 3], dexterity [4, 5, 6], dynamics [7], singularity avoidance [8],

stiffness [9, 10]. These evaluation criteria can be classified into two groups: one relates to the kinematic

performance while the other relates to the kinetostatic/dynamic performance of the manipulator [11].

Most of the SPMs find their applications as orienting devices, such as camera orienting and medical

instrument alignment [12, 13], therefore, the kinematic aspects, mainly, workspace and dexterity,
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were extensively studied in the literature. On the other hand, the dynamics received less attention.

Staicu [7] used the principle of virtual work to derive the inverse dynamics of the Agile Wrist [10], in

which recursive matrix relations for kinematics and dynamics were established. When the SPMs are

used to build active spherical manipulators, for instance, wrist joint [14], the dynamic characteristics

is of importance in their design and applications.

This work develops a dynamic model with the classical approach of Lagrange multipliers, which

takes all the mobile components into consideration to calculate the power consumption effectively. The

equation of motion for the SPMs is modeled with the motion characteristics, namely, all the bodies

rotating about a fixed point (center of rotation). The derived dynamic model can be used either to

assess the dynamic performance or in the design optimization.

In general, a robot design process has to simultaneously deals with the kinematic and kineto-

static/dynamic aspects, both of which include a number of performance measures that essentially vary

throughout the workspace. This can be effectively achieved by virtue of multiobjective optimization

method. The multiobjective optimization problems of parallel manipulators (PMs) have been reported

in the literature, where various approaches of multiobjective optimization have been applied to different

types of PMs, while considering kinematic, dynamic and static criteria [11, 15, 16, 17, 18]. However,

a systematic approach lacks in the optimum design for this class of SPMs, as the static/dynamic

performance received relatively less attention as mentioned above.

This paper focuses on the dynamic modeling and design optimization of the SPMs. A dynamic

model of the SPM is derived based on the Lagrange equations. Based on the dynamics, together

with the kinematics and stiffness of the manipulator, a multiobjective design optimization method is

proposed for SPMs, aiming to formulate a general approach for the SPMs in the early design stage.

The multi-objective design optimization problem is applied to a 3-DOF unlimited-roll SPM, for which

the Pareto-optimal solutions are obtained with a genetic algorithm.

2 Architecture of SPMs

A general spherical parallel manipulator is shown in Fig. 1. The ith leg consists of three revolute joints,

whose axes are parallel to the unit vectors ui, vi, and wi. All three legs have identical architectures,

defined by angles α1, α2, β and γ, where β and γ define the geometry of two regular pyramids of

the base and mobile platforms. Both the two platforms are assumed rigid. The origin O of the base

coordinate system Fa is located at the center of rotation. The z axis is normal to the bottom surface

of the base pyramid and points upwards, while the y axis is located in the plane spanned by the z

axis and u1 vector.

The SPM under study is a special case of γ = 0 [3], where the pyramids of the base platform is

degenerated to a line segment, as shown in Fig. 2(a). The axes of the three active revolute joints are

coincident with the z axis and it consists only of three curved links connected to its mobile platform.

The links are driven by actuators moving independently on a circular guide via pinion and gear-ring

transmissions, which can replace the serial chains based wrist mechanisms as displayed Fig. 2(b).
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(a) (b)

Figure 1: Architecture of a general SPM: (a) overview, (b) parameterization of the ith leg.

(a) (b)

Figure 2: (a) 3-DOF unlimited-roll SPM, which is a special case of the general SPM with γ = 0; (b)
its application as spherically actuated joint.
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Figure 3: Orientation representation of the azimuth–tilt–torsion angles.

3 Dynamic Modeling of SPMs

The orientation of the mobile platform (MP) is described by the azimuth–tilt–torsion (φ–θ–σ) an-

gles [19] as displayed in Fig. 3, for which the rotation matrix is expressed as:

Q = Rz(φ)Ry(θ)Rz(σ − φ) (1)

where φ ∈ (−π, π], θ ∈ [0, π), σ ∈ (−π, π].

Under the prescribed coordinate system, unit vector ui is derived as

ui =
[
− sin ηi sin γ cos ηi sin γ − cos γ

]T
(2)

where ηi = 2(i− 1)π/3, i = 1, 2, 3.

Unit vector vi of the axis of the intermediate revolute joint in the ith leg is expressed as:

vi =

−sηisγcα1 + (cηisθi − sηicγcθi)sα1

cηisγcα1 + (sηisθi + cηicγcθi)sα1

−cγcα1 + sγcθisα1

 (3)

Unit vector wi of the top revolute joint in the ith leg, is a function of the orientation of the mobile

platform described as

wi =
[
wix wiy wiz

]T
= Qw∗i (4)
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where w∗i is the unit vector for the axis of the top revolute joint of the ith leg when the mobile

platform (MP) reaches its home configuration, i.e., the MP orientation in the reference frame, which

is given as

w∗i =
[
− sin ηi sinβ cos ηi sinβ cosβ

]T
(5)

3.1 Kinematic Jacobian matrix

The relationship between the angular velocity of the mobile platform ω = [ωx ωy ωz]
T and the input

angle velocity θ̇ = [θ̇1 θ̇2 θ̇3]T is expressed as

Aω = Bθ̇ (6)

with

A =
[
a1 a2 a3

]T
; ai = vi ×wi (7a)

B = diag
[
b1 b2 b3

]
; bi = (ui × vi) ·wi (7b)

where matrices A and B are named the forward and inverse Jacobian matrices of the manipulator,

respectively. The kinematic Jacobian matrix J of the manipulator [1] is obtained as

J = B−1A =
[
j1 j2 j3

]T
; ji = ai/bi (8)

3.2 Inverse dynamic modeling

The motions of the SPM bodies are shown in Fig. 4. The relationship between the angle rates

ϕ̇ = [φ̇ θ̇ σ̇]T and the angular velocity ω is found as [20]:ωxωy
ωz

 =

−sθcφ −sφ sθcφ

−sθsφ cφ sθsφ

1− cθ 0 cθ


φ̇θ̇
σ̇

 or ω = Φϕ̇ (9)

The dynamics of the SPM can be solved by using the Lagrange equations [21] below

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
+ CT

q λ = Qex (10)

where L ≡ T−V is the Lagrangian of the system, including the mobile platform and the three legs, and

q = [θ1, θ2, θ3, φ, θ, σ]T . Moreover, Qex = [τT , 0]T ∈ R6 is the vector of external forces and vector

τ = [τ1, τ2, τ3]T characterizes the actuator torques. Matrix Cq is the system’s constraint Jacobian,

which can be found from the velocity equation (6), namely,

Bθ̇ −Aω =
[
B −AΦ

] [
θ̇T ϕ̇T

]T
= 0 (11)
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Figure 4: The movements of the mobile platform and a single leg.

therefore, the matrix of constraints is found as Cq = [B − AΦ]. Moreover, λ = [λ1, λ2, λ3]T is a

vector of Lagrange multipliers.

3.2.1 Lagrangian of the mobile platform

The local frame (xp, yp, zp) attached to the MP is established with the origin located at point P , i.e.,

the center of mass of the MP. Henceforth, the Lagrangian of the mobile platform is obtained as

Lp = Tp − Vp =
1

2
ωT Ipω −mpR cosβgTp (12)

where Ip denotes the global inertia tensor of the mobile platform, which can be found in Appendix A.

Moreover, g = [0, 0, 9.81]T .

3.2.2 Lagrangian of a single leg

The velocity ψ̇ of the intermediate joint in ith leg is found using the following equation

ω = θ̇iui + ψ̇ivi + ξ̇iwi (13)

To eliminate θ̇i and ξ̇i, dot-multiplying Eqn. (13) on both sides with ui ×wi yields

(ui ×wi) · ω = ψ̇(ui ×wi) · vior ψ̇ = jTψiω =
(ui ×wi)

T

(ui ×wi) · vi
ω (14)

The angular velocity of the distal link in the ith leg in the reference frame (x, y, z) is found as

$i = θ̇iui + ψ̇ivi. Let $li denote the corresponding angular velocity in the local frame (xi, yi, zi),
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we have

$i =
[
eix eiy eiz

]
$li or $i = Ei$li (15)

with

eix =
vi + wi

‖vi + wi‖
, eiy =

vi −wi

‖vi −wi‖
, eiz =

vi ×wi

‖vi ×wi‖
(16)

From Eqn. (15), we have $li = ET
i $i. The Lagrangian of the ith leg is derived as below

Li = Ti − Vi =
1

2
Il1θ̇

2
i +

1

2
$T
i Il2$i −ml1x̄1g

Thi −ml2x̄2g
Teix (17)

where Il1 is the proximal link’s mass moment of inertia about ui, and Il2 is the distal link’s mass

moment of inertia about point O. Moreover, x̄1 and x̄2 indicate the centers of the mass of the

proximal and distal links, respectively, and hi = (ui + vi)/‖ui + vi‖. The details for a curved link can

be found in Appendix A.

Substituting the Lagrangian Lp and Li, i = 1, 2, 3, into Eqn. (10), the terms in the equation of

motion for this dynamic system [21] can be derived. With an external moment vector m, the actuator

torques are expressed as:

τa = τ − J−Tm (18)

This developed dynamic model can effectively compute the active forces/torques as it takes into

account all the mobile components and external forces/moments. Compared to Staicu’s work [7], the

model developed in this work has a more compact form, which takes advantages of the unique feature

of SPMs that involves only rotations. Such a formulation can be easily understood and implemented.

4 Optimization Problem of the SPMs Design

The foregoing derived dynamic model can be applied in the optimization procedure to obtain a design

with optimal dynamic performance. Henceforth, this section formulates a design optimization problem

for the SPMs based on their dynamic modeling. Besides, the kinematic and elastic performances are

also employed to evaluate the SPM design. A predefined workspace is specified as a minimum pointing

cone of 90o opening with 360o full rotation, i.e., θ ∈ [0, θmin], θmin ≥ 45o, {φ, σ} ∈ (−180o, 180o].

4.1 Design variables

Variables α1, α2 and β are part of the geometric parameters of the SPM under study. Moreover, the

radius R of the link midcurve and the side length a of a square cross section of the uniform curved

links are included as design parameters as well. This implies that the curved link does not include

details such as slots that may affect the total mass and structural strength [22]. As a consequence,

the design variables of the optimization problem at hand are:

x = [α1, α2, β, a, R] (19)
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4.2 Objective functions

The mechanism mass influences the dynamic performance, such as inertia, acceleration, etc., hence,

minimizing the mass of moving bodies is one important consideration. The mass mspm of the SPM

includes the mass mp of the platform, the mass ml of the distal links, and the mass ms of the sliding

units (or proximal links). The mass of the revolute joints is not considered for simplification, thus,

the mass function is given as:

mspm = mp + 3ml + 3ms (20)

As a result, the first objective function of the optimization problem is written as:

f1(x) = mspm → min (21)

The dexterity of SPMs is another major concern in the manipulator design. A commonly used

criterion to evaluate this kinematic performance is the global conditioning index (GCI) [4], which

describes the isotropy of the kinematic performance. The GCI is defined over a workspace Ω, which

is calculated through a discrete approach in practice, namely,

GCI =

∫
Ω κ
−1(J)dW∫
Ω dW

or GCI =
1

n

n∑
k=1

1

κk(J)
(22)

where κ(J) is the condition number of the kinematic Jacobian matrix (8) and n = n1 n2 n3 is the

number of the workspace points, n1, n2, n3 being the numbers of discrete points along φ, θ, σ,

respectively. It is known that the higher the GCI, the better the performance. Hereby, the second

objective function of the optimization problem is written as:

f2(x) = 1−GCI = MGCI → min (23)

Henceforth, a modified global conditioning index (MGCI) is introduced for the purpose of optimization.

4.3 Optimization constraints

In this section, the kinematic constraints, condition number of the kinematic Jacobian matrix, elastic

and dynamic performances of the manipulator are considered. Constraining the condition number of

the Jacobian matrix aims to obtain a dexterous workspace free of singularity. Moreover, the constraints

on the link strength and the actuator torque are also considered.

4.3.1 Geometric constraints

According to the determination of the design space reported in [3], the bounds of the parameters α1,

α2 and β subject to the prescribed workspace are stated as:

45o ≤ α1 ≤ 135o, 45o ≤ α2 ≤ 135o, 45o ≤ β ≤ 90o (24)
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Figure 5: One extreme configuration of the sliding units.

In accordance with Fig. 5, the following constraints should be satisfied to avoid any collision,

θij ≥ εθ, ∀θij ∈ {θ12, θ23, θ31} (25a)

R sinα1 ≥ R0 (25b)

where εθ = 10o and R0 = 0.120 m are geometric parameters relative to the size of curved links.

4.3.2 Condition number of the kinematic Jacobian matrix

Minimizing MGCI, i.e., maximizing GCI, cannot prevent the prescribed workspace away from ill-

conditioned configurations. For the design optimization to achieve a dexterous workspace, the mini-

mum of the inverse condition number of the kinematic Jacobian matrix κ−1(J), based on the 2-norm,

should be higher than a prescribed value throughout the workspace, say 0.1, namely,

min(κ−1(J)) ≥ 0.1 (26)

4.3.3 Strength constraints

The strength constraints are to ensure the SPM to produce allowable maximum point-displacement

of the rotation center and angular deflection of the mobile platform subject to a given wrench. The

deflections are computed by

∆x = K−1w; ∆x =
[
∆pT ∆ϕT

]T
, w =

[
0 mT

]T
(27)
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where ∆p = [∆x, ∆y, ∆z]T and ∆ϕ = [∆ϕx, ∆ϕy, ∆ϕz]
T are the translational and rotational dis-

placements, respectively, and K is the Cartesian stiffness matrix given in Appendix B. Let the static

torque of the SPM within the range m = [±mx,max, ±my,max, ±mz,max], the strength constraints can

be written as:

− εp ≤ ∆t ≤ εp, ∀∆t ∈ {∆xk, ∆yk, ∆zk} (28a)

− εr ≤ ∆r ≤ εr, ∀∆r ∈ {∆ϕx, k, ∆ϕy, k, ∆ϕz, k} (28b)

where εp and εr are acceptable translational and rotational errors, respectively, and k = 1, ..., n is the

number of the discrete points defined in Eqn. (22).

It is noted that the model in Eqn. (27) includes only the compliances of curved links. The base and

MP are considered rigid. Moreover, the joint compliance is not addressed in this paper, as revolute

joints are not easily characterized by a generic representative stiffness due to the nonlinear kinematic

joint stiffness upon the specific design. Such an issue could be well addressed through stiffness modeling

researches.

4.3.4 Actuation torque constraints

With an external moment m = [mx, my, mz]
T applied on the MP, in accordance to Eqn. (7(b)), the

actuator torques are redefined as: τa = |τ | + |J−Tm|. At any time, the components of the actuator

torque vector τa should be smaller than the maximum continuous torque Tmax of each actuator. As a

result, the actuation torque constraints can be written as:

max{τa} ≤ Tmax (29)

Henceforth, two alternative trajectories describing the MP orientation:

(1)φ(t) = π cos t, θ(t) =
π

4
, σ(t) =

π

2
cos t (30)

(2)φ(t) =
π

2
cos t, θ(t) =

π

4
, σ(t) = π cos t

are integrated into the optimization procedure implemented with the Matlab/simulink package. The

corresponding angular velocity and acceleration profiles of the mobile platform are shown in Fig. 6.
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Figure 6: The angular velocity and acceleration profiles of the mobile platform: (a) trajectory 1; (b)
trajectory 2.

4.4 Formulation of the multi-objective design optimization problem

The multi-objective design optimization problem for the SPM is formulated as:

minimize f1(x) = mspm (31)

minimize f2(x) = MGCI

over x = [α1; α2; β; a; R]

subject to g1 : R sinα1 ≥ R0

g2 : θij ≥ εθ, ∀θij ∈ {θ12, θ23, θ31}

g3 : θmin ≥ 45o

g4 : min(κ−1(J)) ≥ 0.1

g5 : −εp ≤ ∆t ≤ εp, ∀∆t ∈ {∆xk, ∆yk, ∆zk}

g6 : −εr ≤ ∆r ≤ εr, ∀∆r ∈ {∆ϕx, k, ∆ϕy, k, ∆ϕz, k}

g7 : max{τa} ≤ Tmax

5 Results and Discussion

5.1 Validation of Dynamic Model

Dynamic simulations were conducted with the developed SPM dynamic model, the obtained results

being compared with those obtained with MSC Adams, utilizing the properties and simulation con-

ditions given in Tables 1 and 2. The corresponding simulation results from the developed model and

the Adams simulation are shown in Fig. 7, which shows a good agreement with each other.
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Table 1: Parameters of the SPM and the initial simulation condition.

α1 [deg] α2 [deg] β [deg] [φ, θ, σ] [rad] [θ̇1, θ̇2, θ̇3] [rad/s] m [Nm]

60 75 75 [0, π/6, 0] [−6, −5, −7] [0.1, 0.1, 0.1]

Table 2: Mass and inertia properties of the SPM model.

Mobile platform Curved link Sliding unit
mp [kg] Ip [10−4 kg m2] ml [kg] Il [10−4 kg m2] ms [kg]

0.332 [3.855 3.855 7.688] 0.107 [1.816 0.081 1.894] 0.123
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Figure 7: Simulation results (solid line stands for Matlab solver, dashed line for Adams): (a) motion
of the mobile platform; (b) actuator torques.
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Table 3: Algorithm parameters of the implemented NSGA-II.

Population Number of Directional crossover Crossover Distribution
size generations probability probability index

40 200 0.5 0.9 20

Table 4: The lower and upper bounds of the design variables.

α1 [deg] α2 [deg] β [deg] a [m] R [m]

xlb 45 45 45 0.005 0.120
xub 135 135 90 0.030 0.300

5.2 Design Optimization

The optimization procedure is applied to the SPM shown in Fig. 2(b). The actuation transmission

mechanism is a combination of RE 35 GB actuator and GP 42 C gearhead from Maxon [23]. The

components are supposed to be made up of steel, and the mobile platform is supposed to be a regular

triangle. The total massms of each slide unit, including the mass of the actuator, gearhead, pinions and

the manufactured components, is equal to ms = 2.1 kg. Henceforth, the actuation stiffness is Ki
act =

106 N·m/rad and the range of the static moment in Eqn. (27) is m = [±10, ±10, ±10] N·m, while

the acceptable translational and rotational errors are εp = 1 mm and εr = 0.0349 rad, respectively.

Moreover, the maximum continuous torque of the actuator is Tmax = 15 Nm and the external moment

applied on the mobile platform and expressed in the base frame along the trajectories defined by

Eqn. (30) is m = [5, 5, 5]T Nm.

The solutions of the previous optimization problem are non-dominated solutions, also called Pareto-

optimal solutions, which stand for solutions for which the corresponding objectives cannot be further

improved without degrading others. Problem (31) is solved by the genetic algorithm NSGA-II [24]

implemented in Matlab, for which the algorithm parameters are given in Table. 3. The lower and

upper bounds of the design variables are shown in Table 4, denoted by xlb and xub, respectively.

The Pareto-front of the optimization problem at hand is shown in Fig. 8. Three Pareto-optimal

solutions named ID-I, ID-II and ID-III on the Pareto-fronts, i.e., two extreme solutions and one

intermediate solution, described in Table 5, are selected for further consideration. The CAD designs of

these three Pareto-optimal solutions are shown in Fig. 9 and the corresponding dynamic simulations are

illustrated in Fig. 10, respectively, from which it is seen that from ID-I to III, the maximum actuating

torque increases. By comparison among the three groups of design variables in Table 5, smaller α1 and

larger α2 yield higher wrench capability under given input torques. Although the design ID-III has

the lowest mass, it has the highest requirements on the actuators. From the kinematic and dynamic

considerations, design ID-I can be selected for further application as an active joint.

Figure 11, obtained with plotmatrix and corrcoef functions in Matlab, illustrates the variational
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Figure 8: The Pareto-front of the multiobjective optimization problem (31).

Table 5: Three Pareto-optimal solutions.

Design Variables Objectives
ID α1 [deg] α2 [deg] β [deg] a [m] R [m] mspm [kg] MGCI min(κ−1(J))

I 47.2 91.7 88.4 0.0120 0.1659 8.882 0.449 0.253
II 51.9 85.0 88.3 0.0113 0.1525 8.394 0.545 0.240
III 63.5 72.2 89.6 0.0119 0.1342 7.962 0.745 0.102

(a) (b) (c)

Figure 9: CAD designs of three Pareto-optimal solutions: (a) ID-I, (b) ID-II, (c) ID-III.
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Figure 10: The dynamic simulation results for the three Pareto-optimal solutions: (a) ID-I; (b) ID-II;
(c) ID-III.
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Figure 11: Scatter matrix for the objective functions and the design variables.

trends as well as the inter-dependency between the objective functions and design variables by means of

a scatter matrix [11, 18]. The lower triangular part of the matrix represents the correlation coefficients

whereas the upper one shows the corresponding scatter plots. The diagonal elements represent the

probability density charts of each variable. The correlation coefficients vary from −1 to 1. Two

variables are strongly dependent when their correlation coefficient is close to −1 or 1 and independent

when the latter is null. Figure 11 shows that:

• mspm and MGCI are strongly dependent as their correlation coefficient is equal to −0.984;

• mspm and MGCI are strongly dependent of the design variables except a as the mass of the

sliding units mainly affects the total mass, thus, a slightly affects mspm;

• Both objective functions are approximately linearly related to variables α1, α2 and R;

• All the variables are strongly dependent of each other except a;

• The results show that β is close to 90o for all Pareto-optimal solutions;

• It is noteworthy that the higher mspm, the lower α1. Conversely, the higher mspm, the higher

α2. Higher R results in higher mspm.
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6 Conclusions

In this paper, the inverse dynamics and geometric synthesis of spherical parallel manipulators were

discussed. Using the classical method of Lagrange multipliers, the equations of motion for the SPMs

were derived. The expressions for the kinetic energy are associated with the characteristics of motion,

namely, all the SPM bodies rotating about the center of rotation. All the moving bodies are taken

into account to describe this dynamic system effectively and clearly. The developed dynamic model

is integrated into the design optimization procedure of the SPMs.

A multiobjective design optimization problem was formulated in order to determine the mechanism

optimum structural and geometric parameters. The objective functions were evaluated based on

the kinematic and kinetostatic/dynamic performances of the manipulators. This approach has been

illustrated with the optimum design of an unlimited-roll spherical parallel manipulator, aiming at

minimizing the mechanism mass and increasing its dexterity. As a result, the Pareto-front was obtained

to show the approximation of the optimal solutions between the various (antagonistic) criteria, subject

to the dependency of the performance. It turns out that the manipulator has the best performance

with β = 90o.

As a matter of fact, the method offers a great flexibility to select any criterion as an objective

function based on requirements. A contribution of the work is the formulation of different kinds of

performances ranging from kinematics, statics to dynamics. All these formulations ease the modeling

and simulation, and can be used for other design optimization tasks in future works.
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Appendix A: Mass Moment of Inertia

The mass moment of inertia of the mobile platform about point O [25] is given by

Ip = mpR
2 cos2 β[p]×[p]T× + QI′pQ

T (A-1)

where mp is the mass, I′p is the inertia tensor in its local frame xpypzp, and [p]× = CPM(p) is the

skew-symmetric matrix, p being the unit vector of zp axis in Fig. 4.

A parameterized curved link with uniform cross-section is shown in Fig. 12, its center of mass

being found as

Rαx̄ = R2

∫ α
2

−α
2

cosϕdϕ or x̄ =
2R

α
sin

α

2
(A-2)

Let the link’s mass be ml, its moment of inertia about point O is found as [25]:

Il = mlx̄
2[i]×[i]T× + EI′lE

T (A-3)

where [i]× = CPM(i), and E = [i j k], i, j, k being the unit vectors of x-, y- and z-axes. Moreover,
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Figure 12: A curved link.

the mass moments of inertia I′l = diag[Lxx Lyy Lzz] in the frame (x, y, z) are expressed as:

Lxx =

∫ α
2

−α
2

(R sinϕ)2 · ml

Rα
·Rdϕ =

1

2
mlR

2

(
1− sinα

α

)
(A-4a)

Lyy =

∫ α
2

−α
2

(R sinϕ− x̄)2 · ml

Rα
·Rdϕ =

1

2
ml

(
R2 sinα

α
− 8Rx̄

α
sin

α

2
+R2 + 2x̄2

)
(A-4b)

Lzz =

∫ α
2

−α
2

[
(R sinϕ)2 + (R cosϕ− x̄)2

]
· ml

Rα
·Rdϕ =

1

2
ml

(
R2 + x̄2 − 4Rx̄

α
sin

α

2

)
(A-4c)

Moreover, the mass moment of inertia about r is derived as

Il = ml

(
x̄ sin

α

2

)2
+

∫ α

0
(R sinϕ)2 · ml

Rα
·Rdϕ =

1

4
mlR

2

[
(1− cosα)2

α2
+ 2− sin 2α

α

]
(A-5)

Appendix B: Cartesian stiffness matrix

With the virtual-spring approach [26], the Cartesian stiffness matrix K of the SPM is found as

K =

3∑
i=1

Ki (B-1)

Here Ki ∈ R6 is the Cartesian stiffness matrix of the ith leg, extracted from the first six-dimensional

block of matrix K′i as below

K′i =

[
Jiθ(K

i
θ)
−1Ji

T

θ Jiq

Jiq
T

02

]−1

(B-2)
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Figure 13: Link deflections and joint displacements of a flexible leg.

with

Jiθ =
[
$̂iA $̂iu1 ... $̂iu12

]
∈ R6×13 (B-3a)

Jiq =
[
$̂iB $̂iC

]
∈ R6×2 (B-3b)

According to Fig. 13, the unit screws are given by

$̂iA =

[
ui

0

]
, $̂iB =

[
vi

0

]
, $̂iC =

[
wi

0

]

$̂iu1 =

[
xi1

bi × xi1

]
, $̂iu2 = $̂iB, $̂iu3 =

[
zi1

bi × zi1

]
, $̂iu4 =

[
0

xi1

]
, $̂iu5 =

[
0

vi

]
, $̂iu6 =

[
0

zi1

]

$̂iu7 =

[
xi2

ci × xi2

]
, $̂iu8 = $̂iC , $̂iu9 =

[
zi2

ci × zi2

]
, $̂iu10 =

[
0

xi2

]
, $̂iu11 =

[
0

wi

]
, $̂iu12 =

[
0

zi2

]
(B-4)

and Ki
θ ∈ R13 describes the stiffness of the actuation and virtual springs, taking the form:

Ki
θ = diag

[
Ki
act Ki

L1
Ki
L2

]
(B-5)

where Ki
act is the ith actuator stiffness, Ki

L1
and Ki

L2
, respectively, are the 6× 6 stiffness matrices of

the proximal and distal curved links in the ith leg, which can be found in [27].


