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Nonlinear forced vibrations of thin structures with tuned
eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal
resonances

Mélodie Monteil · Cyril Touzé · Olivier Thomas ·
Simon Benacchio

Abstract This paper is devoted to the analysis of
nonlinear forced vibrations of two particular three
degrees-of-freedom (dofs) systems exhibiting second-
order internal resonances resulting from a harmonic
tuning of their natural frequencies.

The first model considers three modes with eigen-
frequencies ω1, ω2, and ω3 such that ω3 � 2ω2 � 4ω1,
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thus displaying a 1:2:4 internal resonance. The second
system exhibits a 1:2:2 internal resonance, so that the
frequency relationship reads ω3 � ω2 � 2ω1. Multiple
scales method is used to solve analytically the forced
oscillations for the two models excited on each degree
of freedom at primary resonance. A thorough analyt-
ical study is proposed, with a particular emphasis on
the stability of the solutions. Parametric investigations
allow to get a complete picture of the dynamics of the
two systems. Results are systematically compared to
the classical 1:2 resonance, in order to understand how
the presence of a third oscillator modifies the nonlinear
dynamics and favors the presence of unstable periodic
orbits.

Keywords Internal resonance · Nonlinear
oscillations · Multiple scales

1 Introduction

Nonlinear resonances in the field of nonlinear vibra-
tions have been recognized since a long time as a ma-
jor effect that complexifies the nonlinear dynamics by
creating strong energy exchange between modes (see,
e.g., [23, 24] and references therein). In turn, these
strong couplings increase the number of excited modes
in a given dynamical response, and thus make the
appearance of complex solutions more probable, in-
cluding quasiperiodicity and chaos, following for in-
stance the Ruelle–Takens scenario [30]. Today, these
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general ideas still find applications in the comprehen-
sion of the transition scenario to turbulence in vibrat-
ing plates [36], as well as in the description of wave
turbulence regime, dominated by N-waves nonlinear
interactions [26].

For moderately nonlinear vibrations, internal reso-
nances occur for structures displaying a simple (com-
mensurable) relationship between its eigenfrequen-
cies, in the line of the normal form theory [13, 23, 29,
38]. A particular case is the now well-documented 1:2
resonance relationship, where two eigenfrequencies
(ω1, ω2) are such that ω2 � 2ω1. This second-order
internal resonance involves quadratic nonlinearity, and
is now classical, since the first report of its effect on the
response of a ship system by Froude [10, 22]. Refer-
ences [11, 21, 23, 24, 35] provide a complete picture
of analytical solutions and experimental observations.
Note that we use here the terminology “1:2” resonance
to name that case whereas it is often denoted 2:1 res-
onance in other studies. Complications to the classical
1:2 case have already been considered as it appears in
many physical systems such as strings, cables, plates,
and shells. Lee and Perkins [16] reported a study on
a 1:2:2 resonance occurring in suspended cables be-
tween in-plane and out-of-plane modes, and denoted
that resonance as a 2:1:1 case. In their study, only one
of the two high-frequency modes was excited, and the
coupling with the two other modes was studied. In the
field of nonlinear vibrations of shells, multiple cases
involving different combinations of 1:1 and 1:2 reso-
nances have been found to occur frequently. Chin and
Nayfeh studied the case of a 1:1:2 resonance in a cir-
cular cylindrical shell, where only one of the two low-
frequency modes were excited [8]. Thomas et al. stud-
ied theoretically and experimentally the 1:1:2 reso-
nance occurring in shallow spherical shells, where the
driven mode is the high-frequency one [33, 34]. The
case of a 1:1:1:2 internal resonance occurring in closed
circular cylindrical shells was also tackled by Amabili,
Pellicano, and Vakakis [5, 28]. In that case, only one of
the low-frequency modes was excited, and solutions to
a particular case for the parameter values was analyt-
ically and numerically exhibited. Finally, a 1:2:4 res-
onance has been studied by Nayfeh et al. [25], where
the excitation frequency was selected in the vicinity of
the high-frequency mode.

Our interest is also directed toward the modeling
of musical instruments, where the tuning of eigen-
frequencies is generally searched for, as this prop-
erty sounds better to the ears. Secondly, the particular

sound of some musical instruments can be explained
by some nonlinearities, such that they appear as a case
where nonlinear resonances between numerous eigen-
frequencies should be key to properly understand their
dynamical behavior. The string is obviously the most
common case for string instruments sharing the two
properties of nonlinear vibrations together with com-
mensurable eigenfrequencies; see, e.g., [12, 17, 18,
32]. Nonlinearities are also encountered in reed instru-
ments such as saxophone and clarinette; see, e.g., [27]
and brass instruments (see, e.g., [20]) and references
therein. For percussion instruments, gongs, cymbals,
and steelpans (or steeldrums) are also known for dis-
playing geometric nonlinearity due to the large ampli-
tude vibrations of the main shell structure. In the case
of gongs and cymbals, internal resonances between
eigenfrequencies are known to make easier the tran-
sition to chaos (or wave turbulence) that explains their
particular shimming sound [7, 37]. For steelpans, the
eigenfrequencies are intentionally tuned to give rise to
nonlinear exchanges of energy between those modes
that explains the particular timbre of the instrument
[1–4]. The analytical results presented in this contri-
bution are driven by the common occurrence of 1:2:2
and 1:2:4 resonances in numerous instruments of the
steelpan family [19].

This contribution is thus focused on two internal
resonances involving quadratic nonlinearity, as well
as the presence of three modes: the 1:2:4 case, where
the eigenfrequencies (ω1,ω2,ω3) of the system are
such that ω3 � 2ω2 � 4ω1, and the 1:2:2 case where
ω3 � ω2 � 2ω1. The two cases have been grouped to-
gether so as to highlight the analogies and differences
between them and the more classical 1:2 resonance.
The aim of the present paper is also to fill the gap be-
tween already published result so as to present them in
a unified manner. Although has already been studied
in [25], the excitation frequency was in the vicinity
of the third mode only. Here, the results are comple-
mented by taking into account an excitation frequency
in the vicinity of the first two modes. The results are
generalized and thorough parametric studies in each
case allow one to get a complete picture of the dynam-
ical solutions. For the 1:2:2 case, our results also com-
plement those of Lee and Perkins [16] by considering
all possible excitation frequencies. We also consider
the case where both high-frequency modes are ex-
cited simultaneously, which renders the analysis more
complex as the fundamental solution involves two di-
rectly excited modes. The starting point of this study



is the general equations (under their normal form) of
the considered resonances in order to obtain results
that are not restricted to the particular case of a given
structure but which can be applied to any system. Para-
metric study with important parameters of the problem
(detuning parameters, damping ratios, nonlinear cou-
pling coefficients) is also reported for the two cases.
Only primary resonances are considered, which means
that the case of sub or superharmonic excitations is not
reported.

2 The 1:2:4 resonance

This section is devoted to the analysis of a system
exhibiting a one-two-four (1:2:4) internal resonance,
corresponding to the interaction between three vibra-
tion modes with frequencies ω1, ω2, ω3, such that
ω2 � 2ω1 and ω3 � 4ω1. Harmonically forced vibra-
tions are considered, and the three cases of a forc-
ing frequency Ω being in the vicinity of (i) the high-
frequency Ω ≈ ω3, (ii) the mid-frequency Ω ≈ ω2,
and (iii) the low-frequency Ω ≈ ω1, are studied.

2.1 Equations of motion and multiple scales solution

The dynamical system for the 1:2:4 internal reso-
nance consists of three oscillator equations coupled by
quadratic nonlinear terms. It reads:

q̈1 + ω2
1q1 = ε[α1q1q2 − 2μ1q̇1 + δΩ,ω1F1 cosΩt],

(1a)

q̈2 + ω2
2q2

= ε
[
α2q

2
1 + α3q2q3 − 2μ2q̇2 + δΩ,ω2F2 cosΩt

]
,

(1b)

q̈3 + ω2
3q3 = ε

[
α4q

2
2 − 2μ3q̇3 + δΩ,ω3F3 cosΩt

]
.

(1c)

According to perturbation methods, nonlinear terms
(parameterized by α1,2,3,4), damping terms (modal
damping is assumed via μ1,2,3) and external forcing
(Fk cosΩt with δΩ,ωk

the Kronecker delta symbol
used to distinguish the forced cases) are assumed to be
small as compared to the linear oscillatory part, and
thus are scaled by a bookkeeping device ε � 1.

Only four nonlinear quadratic terms are present.
They correspond to the resonant monoms, and
Eqs. (1a)–(1c) is the normal form of the 1:2:4 internal

resonance [6, 13, 31, 38]. All other possible nonlinear
(quadratic) terms have no importance for the global
dynamics and can be canceled by a nonlinear change
of coordinates. Equivalently, deriving a first-order per-
turbation scheme with other terms (e.g., q2

1 on (1a)),
one would find that these terms do not appear in the
solvability condition.

In order to express the internal resonance relation-
ships, two internal detuning parameters σ1 and σ2 are
introduced as

ω2 = 2ω1 + εσ1, (2a)

ω3 = 2ω2 + εσ2 = 4ω1 + ε(2σ1 + σ2). (2b)

Finally, σ is the external detuning, expressing the fact
that the excitation frequency is selected in the vicinity
of one eigenfrequency ωk , with k = 1,2, or 3:

Ω = ωk + εσ. (3)

System (1a)–(1c) is solved by the multiple scales
method, using several time scales (Tj = εj t ), to the
first order as

qk(t) = qk0(T0, T1) + εqk1(T0, T1) + o
(
ε2), (4)

where T0 = t is a fast time scale and T1 = εt is a slow
time scale.

The ε0-order equations lead to express the
{qk0}k=1,2,3 as

qk0(T0, T1) = ak(T1)

2
exp

[
j
(
ωkT0 + θk(T1)

)] + c.c.,

(5)

where ak are the amplitudes, θk are the phases, c.c.
stands for complex conjugate and j2 = −1.

Introducing (5) into the ε1-order equations leads to
the so-called solvability condition, which can be writ-
ten as a six-dimensional dynamical system by separat-
ing real and imaginary parts:

a′
1 = −μ1a1 + α1a1a2

4ω1
sin(σ1T1 + θ2 − 2θ1)

+ δΩ,ω1

F1

2ω1
sin(σT1 − θ1), (6a)

a1θ
′
1 = −α1a1a2

4ω1
cos(σ1T1 + θ2 − 2θ1)

− δΩ,ω1

F1

2ω1
cos(σT1 − θ1), (6b)



a′
2 = −μ2a2 − α2a

2
1

4ω2
sin(σ1T1 + θ2 − 2θ1)

+ α3a2a3

4ω2
sin(σ2T1 + θ3 − 2θ2)

+ δΩ,ω2

F2

2ω2
sin(σT1 − θ2), (6c)

a2θ
′
2 = −α2a

2
1

4ω2
cos(σ1T1 + θ2 − 2θ1)

− α3a2a3

4ω2
cos(σ2T1 + θ3 − 2θ2)

− δΩ,ω2

F2

2ω2
cos(σT1 − θ2), (6d)

a′
3 = −μ3a3 − α4a

2
2

4ω3
sin(σ2T1 + θ3 − 2θ2)

+ δΩ,ω3

F3

2ω3
sin(σT1 − θ3), (6e)

a3θ
′
3 = −α4a

2
2

4ω3
cos(σ2T1 + θ3 − 2θ2)

− δΩ,ω3

F3

2ω3
cos(σT1 − θ3), (6f)

where (.)′ stands for the derivation with respect to T1.
Then the following variables allow the definition of

an autonomous dynamical system:

γ = σT1 − θk, γ1 = σ1T1 + θ2 − 2θ1,

γ2 = σ2T1 + θ3 − 2θ2,
(7)

with k = 1,2,3 depending on the excited mode.
Introducing Eqs. (7) into the dynamical system

(6a)–(6f), one can obtain the fixed points giving the
oscillatory solutions of this initial dynamical system.
They are exhibited in the next subsections for the three
different cases of excitation frequency.

2.2 High-frequency excitation

We begin with the case where the third oscillator, hav-
ing the highest frequency ω3, is directly driven at its
resonance. Although this case has been analyzed by
Nayfeh et al. [25], it is here reconsidered. Firstly, in
order to point out the similarities between this case
and the two other forcing cases (Ω ≈ ω2, Sect. 2.3 and
Ω ≈ ω1, Sect. 2.4), which were not considered in [25].
Secondly, it enables to highlight how the 1:2 internal
resonance case allows a global understanding of the

1:2:4 case as a cascade of two 1:2 resonances. Thirdly,
a thorough parametric study of the behavior of the so-
lution branches with respect to the physical parameters
is here provided with a focus on the instability of the
fully coupled case, whereas Nayfeh et al. were more
interested in the transition to chaos in [25].

The external detuning is introduced with

Ω = ω3 + εσ. (8)

According to Eqs. (5) and (7), in this high-fre-
quency case, the ε0-order solutions leads to the third
directly excited mode, oscillating at the frequency
Ω � ω3, and the appearance of two subharmonic res-
onant responses for the two other modes, oscillating at
Ω/2 and Ω/4 as

q1(t) = a1 cos

(
Ω

4
t + φ1

)
, (9a)

q2(t) = a2 cos

(
Ω

2
t + φ2

)
, (9b)

q3(t) = a3 cos(Ωt + φ3), (9c)

where φ1 = −(γ + γ2 + 2γ1)/4, φ2 = −(γ + γ2)/2
and φ3 = −γ .

The fixed points of (6a)–(6f) for the high-frequency
excitation are found by replacing (θ1, θ2, θ3) by (γ , γ1,
γ2), according to Eqs. (7), and then by canceling the
time derivatives (a′

1 = γ ′
1 = a′

2 = γ ′
2 = a′

3 = γ ′ = 0),
leading to:

−μ1a1 + α1a1a2

4ω1
sin(γ1) = 0, (10a)

σ1 − α2a
2
1

4ω2a2
cos(γ1) − α3a3

4ω2
cos(γ2)

+ α1a2

2ω1
cos(γ1) = 0, (10b)

−μ2a2 − α2a
2
1

4ω2
sin(γ1) + α3a2a3

4ω2
sin(γ2) = 0, (10c)

σ2 − α4a
2
2

4ω3a3
cos(γ2) + α2a

2
1

2ω2a2
cos(γ1) + α3a3

2ω2
cos(γ2)

− F3

2ω3a3
cos(γ ) = 0, (10d)

−μ3a3 − α4a
2
2

4ω3
sin(γ2) + F3

2ω3
sin(γ ) = 0, (10e)

σ + α4a
2
2

4ω3a3
cos(γ2) + F3

2ω3a3
cos(γ ) = 0. (10f)



From Eqs. (10a)–(10f), one can show that only
three kinds of solutions are possible:

(i) The single-degree-of-freedom solution (sdof),
corresponding to a3 �= 0; a1 = a2 = 0. In this
case, only the directly excited mode participates
to the vibration, without any transfer of energy
neither to a2 nor to a1.

(ii) The partially coupled solution (c1) where a1 = 0,
a2 �= 0 and a3 �= 0. In this case, the two upper
modes are coupled while the first one stays at rest.
It can be noticed that a partially coupled solution
with a1 �= 0, a2 = 0, and a3 �= 0 is not possible,
since imposing a2 = 0 in (12a) leads to a1 = 0.

(iii) The fully coupled solution (c2) where a1 �= 0,
a2 �= 0 and a3 �= 0. The three modes are now cou-
pled and energy has been transferred from a3 to
a2 and a1.

We now investigate the behavior and stability of the
three possible solutions sdof, c1, and c2.

2.2.1 Single-mode solution

From the system (10a)–(10f) simplified with a1 =
a2 = 0, the single degree-of-freedom solution is ob-
tained as

asdof
3 = F3

2ω3

√
σ 2 + μ2

3

. (11)

It corresponds to the classical resonant solution for lin-
ear oscillator with external forcing, displaying a max-
imum response asdof

3 max = F3
2ω3μ3

when σ = 0.
The stability analysis is performed by comput-

ing the Jacobian matrix of the fixed points system
(10a)–(10f) along the sdof solution (i.e., by setting
a1 = a2 = 0), which reads

J =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

−μ1 0 0 0 0 0
0 0 α1

2ω1
cos(γ1)

α3a3
4ω2

sin(γ2) − α3
4ω2

cos(γ2) 0
0 0 −μ2 + α3a3

4ω2
sin(γ2) 0 0 0

0 0 0 −α3a3
2ω2

sin(γ2)
α3

2ω2
cos(γ2) + F3

2ω3a
2
3

cos(γ )
F3

2ω3a3
sin(γ )

0 0 0 0 −μ3 F3
2ω3

cos(γ )

0 0 0 0 − F3
2ω3a

2
3

cos(γ ) − F3
2ω3a3

sin(γ )

⎞

⎟⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

.

The corresponding eigenvalues are

λsdof
1 = 0, (12a)

λsdof
2 = −μ1, (12b)

λsdof
3 = −α3a3

2ω2
sin(γ2), (12c)

λsdof
4 = −μ2 + α3a3

4ω2
sin(γ2), (12d)

λsdof
5,6 = −μ3 ± iσ. (12e)

If all real parts are negative, the corresponding fixed
point is stable, otherwise it is unstable. The two last
eigenvalues λsdof

5,6 correspond to the stability of the sdof
solution with respect to perturbations along (a3, γ ),
i.e., the third, directly excited, oscillator. They have
thus a negative real part since a single dof linear
damped oscillator is stable. The first two eigenvalues

describe the perturbations brought by the first oscilla-
tor. As no direct coupling between oscillators 1 and 3
exists (solutions of the type a2 = 0, a1 �= 0, a3 �= 0 are
not possible), they indicate stability and marginality.
Finally, only one pair of eigenvalues λsdof

3,4 is responsi-
ble for the stability of the sdof solution with respect to
the perturbations brought by the existence of the sec-
ond oscillator. The stability can thus be derived from
the sign of the product λ3λ4, and by determining the
angle sin(γ2) thanks to Eqs. (10d) and (10f). Finally,
the following stability condition for the sdof solution
is obtained as:

asdof
3 ≤ Ia, where Ia = 2ω2

α3

√
4μ2

2 + (σ2 + σ)2.

(13)



Fig. 1 Frequency-response curves of the 1:2:4 internal res-
onance for a high-frequency excitation case (Ω = ω3 + σ ).
Stability behavior of the three kind of solutions: (· · ·) sdof
unstable solution, (�) c1 unstable solution, and (- -) c2 un-
stable solution. (a) Sdof solution and instability limit defined

by Ia . (b) Partially coupled 2:4 solution (c1) with its instabil-
ity limit defined by Ib . (c) Fully coupled 1:2:4 solution (c2)
with its Hopf bifurcation occurring at σHopf = −0.07. Selected
values: ω1 = 1, ω2 = 2.01, ω3 = 4.04, μ1 = 0.01, μ2 = 0.01,
μ3 = 0.01, α1 = 0.011, α2 = 0.1, α3 = 0.1; α4 = 0.1, F3 = 0.8

This stability condition is reported in Fig. 1(a),
where the sdof solution is also represented. Once the
amplitude a3 is larger than Ia , the sdof solution be-
comes unstable. One can notice that this first instabil-
ity is completely equivalent to a simple 1:2 internal
resonance where the higher mode is excited; see, e.g.,
[23, 24, 33]. The instability region is fully character-
ized by its minimum value:

for σ = −σ2, Ia,min = 4ω2μ2

α3
, (14)

as well as by the slope of its asymptotic values

for |σ | → ∞, Ia ≈ 2ω2σ

α3
. (15)

In particular, these two relationships show that in-
creasing α3, and/or decreasing μ2, favor the instability
of the sdof solution.

It can be noticed that the two asymptotes are de-
duced by canceling μ2 in Ia , that leads to Ia =
±2ω2(σ2 + σ)/α3 (see Eq. (13)). The intersection of
these two curves is obtained for σ = −σ2 that is equiv-
alent to Ω = ω3 − εσ2 = 2ω2.

2.2.2 c1 solution: partially coupled 2:4 solution

When asdof
3 becomes unstable, the energy injected into

the system can be transferred to the second oscillator
thanks to the nonlinear coefficient α4 (Eqs. (1a)–(1c)).

The partially coupled solution is deduced from the sys-
tem (10a)–(10f), simplified with a1 = 0. Two new so-
lutions for the amplitudes ac1

3 and ac1
2 are obtained:

(
ac1

2

)2 = 16ω2ω3

α3α4

(

−(μ2μ3 − ν2ν3)

+
√(

F3α3

8ω2ω3

)2

− (ν2μ3 + μ2ν3)2

)

,

ac1
3 = 4ω2

α3

√
μ2

2 + ν2
2 ,

(16)

where ν2 = (σ+σ2)
2 and ν3 = σ .

Once again, this coupled solution is equivalent to
that found for two oscillators presenting a 1:2 internal
resonance, except that here the coupling is between os-
cillators 2 and 3, so that this case may also be called
the partially coupled 2:4 solution. The stability of this
solution with respect to the presence of the first os-
cillator is now deduced from the Jacobian of the sys-
tem (10a)–(10f) with a1 = 0, a2 = ac1

2 , and a3 = ac1
3 .

The Jacobian is fully separable. It can be analyzed
in an equivalent manner to the previous discussion in
Sect. 2.2.1.

Within the six eigenvalues, only the first two dic-
tates the stability of the c1 solution with respect to the
fully coupled case where energy is shared between the



three oscillators. They read

λc1
1 = −μ1 + α1a

c1
2

4ω1
sin(γ1), (17a)

λc1
2 = −α1a

c1
2

2ω1
sin(γ1). (17b)

Interestingly, these two eigenvalues depend only on
ac1

2 and not on ac1
3 , so that a simple stability criterion

can be derived as in the previous case, by inspecting
the sign of the product λc1

1 λc1
2 , which gives

ac1
2 ≤ Ib,

where Ib = 2ω1

α1

√

4μ2
1 +

(
σ + σ2 + 2σ1

2

)2

. (18)

Hence, the stability of the c1 solution is only deter-
mined by the values of ac1

2 with a stability limit Ib

having an expression similar to Ia . In the same man-
ner, one can deduce the minimum value of Ib:

for σ = −σ2 − 2σ1, Ib,min = 4ω1μ1

α1
, (19)

as well as its asymptotic behavior for large values of σ :

for |σ | → ∞, Ib ≈ 2ω1σ

α1
. (20)

As in the previous case, the asymptotes are obtained
by canceling μ1 in Ib Eq. (18), with the intersection at
σ = −σ2 − 2σ1 that is Ω = ω3 − ε(σ2 + 2σ1) = 4ω1.

These expressions show how the detuning param-
eter (σ2 + 2σ1), the coupling coefficient α1, and the
damping μ1, influence the stability of the c1 solution
and the possibility to obtain a fully coupled solution.
The stability curve Ib is represented in Fig. 1(b), for
selected values of the parameters. One can remark that
for the c1 solution, ac1

3 takes exactly the value of the
stability region Ia , so that the two curves are the same.
For a certain detuning σ , the value of a2 becomes
larger than Ib . At that point, the c1 solution becomes
unstable in favor of a fully coupled solution. Finally,
one must be aware that the four other eigenvalues that
have not been inspected here, may also have positive
real parts for certain parameter values. This case is
not explicated here as it can be easily recovered from
known results on the 1:2 internal resonance [23, 24].

2.2.3 c2 solution: fully coupled 1:2:4 solution

From the fixed-points equations (10a)–(10f) and with-
out canceling any amplitude, one can derive the solu-
tion for the c2 case. A simple expression is found for
a2 as

ac2
2 = 4ω1

α1

√
ν2

1 + μ2
1,

where ν1 = (σ + σ2 + 2σ1)

4
. (21a)

Defining

χ1
(
ac2

2

) = 16ω1ω2

α1α2
(μ1μ2 − ν1ν2)

+ α4α3

α1α2

ω1

ω3

μ1μ3 + ν1ν3

(μ2
3 + ν2

3)

(
ac2

2

)2
, (21b)

χ2
(
ac2

2

) = 16ω2
2

α2
2

(
μ2

2 + ν2
2

)(
ac2

2

)2 − 1

(μ2
3 + ν2

3)

×
[

α2
3F 2

3

4ω2
3α

2
2

− 2α4α3ω2

α2
2ω3

(μ2μ3 − ν2ν3)

× (
ac2

2

)2 − α2
4α2

3

16ω2
3α

2
2

(
ac2

2

)4
](

ac2
2

)2
, (21c)

one obtains, for a1 and a3:

ac2
1 =

√

−χ1
(
ac2

2

) +
√

χ2
1

(
ac2

2

) − χ2
(
ac2

2

)
, (21d)

ac2
3 = 1

√
μ2

3 + ν2
3

(
F 2

3

4ω2
3

− 2α4α2ω1

α1α3ω3
(μ1μ3 + ν3ν1)

× (
ac2

1

)2 − 2α4ω2

α3ω3
(μ2μ3 − ν2ν3)

(
ac2

2

)2

− α2
4

16ω2
3

(
ac2

2

)4
)1/2

. (21e)

Once again, the value of a2, which drives the in-
stability from the c1 to the c2 case, now takes a value
ac2

2 equal to Ib , in a symmetric manner as a3 for the
transition from sdof to c1. The values of ac2

1 is slaved
to the values of ac2

2 through the complicated functions
χ1(a

c2
2 ) and χ2(a

c2
2 ). Figure 1(c) shows the complete

picture with all solution branches, with a c2 solution
existing in the range σ ∈ [−0.08;−0.02].

The stability of the c2 solution is given by the Ja-
cobian of the system without any simplification and



Fig. 2 Cascade of internal resonances in the 1:2:4 internal
resonance for a high-frequency excitation case (Ω = ω3 + σ ).
(a) Force-response curves. Selected values: σ = 0, ω1 = 1,
ω2 = 2, ω3 = 4, μ1,2 = 0.03, μ3 = 0.04, α1,2,3,4 = 0.1. Cor-

responding frequency-response curves for σ = [−0.55 : 0.55]
and for selected external force: (b) F3 = 0.7, (c) F3 = 0.8,
(d) F3 = 1

by substituting a1, a2, and a3 for ac2
1 , ac2

2 , and ac2
3 .

In that case, no simple analytical solutions are deriv-
able for the eigenvalues (the problem is not separa-
ble anymore), and thus the eigenvalues have to be
followed numerically. In Fig. 1(c), a Hopf bifurca-
tion has been found along the c2 branch, occurring at
σHopf = −0.07. At that point, no stable periodic or-
bits exist anymore for the oscillatory initial problem,
which thus exhibit a quasiperiodic solution.

Figure 2 shows the effects of varying the excitation
amplitude F3 on the response amplitude a1, a2 and a3.
Here, we set σ = σ1 = σ2 = 0. The figure presents the
different steps of this 1:2:4 nonlinear coupling. First,
for small amplitudes, only the sdof solution can exist
and the system is totally stable as shown in Figs. 2(a)

and 2(b). As soon as asdof
3 intersects Ia , the first cou-

pling solutions ac1
3 and ac1

2 can appear and these new
solutions are stable until ac1

2 intersects Ib. One can see
that for σ = 0, when ac2

3 appears, the system is to-
tally unstable and a Hopf bifurcation can exist. The dy-
namics presents a cascade of successive couplings that
evolves here with the amplitude of the external force.
Note that Fig. 2(a) shows that the c2 case is mostly un-
stable so that quasiperiodic solutions are more likely to
occur as soon as the transfer of energy is completed.

2.2.4 Parametric study

Now that the general solutions have been established,
their behavior with respect to parameter variations are



Fig. 3 Frequency-response curves of the 1:2:4 internal res-
onance for a high-frequency excitation case (Ω = ω3 + σ ).
(a) Stable symmetric coupled response when Ib > Ia and
σ1,2 = 0 (selected values: ω1 = 1, ω2 = 2, ω3 = 4, μ1,2,3 =
0.01, α1 = 0.14, α2,3,4 = 0.1, F3 = 0.5). (b) Stable nonsym-

metric coupled response when Ib > Ia and σ1,2 �= 0 (parameters
of (a) except: ω2 = 2.01). (c) Unstable nonsymmetric coupled
response when Ia > Ib and σ1,2 �= 0 (parameters of (a) except:
ω2 = 2.01 and α1 = 0.7)

Fig. 4 1:2:4 internal
resonance.
Frequency-response curves
when Ω = ω3 + σ .
(a) ω1 = 1, ω2 = 2, ω3 = 4,
μ1 = 0.01, μ2 = 0.01,
μ3 = 0.01, α1,3 = 0.5,
α2,4 = 0.1, F3 = 0.5.
(b) Same selected values
except: ω2 = 2.1

illustrated in order to highlight the main dynamical
characteristics of the 1:2:4 resonance.

Figure 3(a) shows a perfectly tuned case where
σ1 = σ2 = 0, which leads to symmetric response with
respect to the axis σ = 0. As noted in the previous sec-
tion, the dynamics of the system excited at its higher
frequency exhibits a cascade of energy from the high-
est (directly excited mode) to the first one, and the
activation of the two steps in the cascade are com-
pletely controlled by the instability limits defined by
a3 < Ia (Eq. (13)) and a2 < Ib (Eq. (18)). One can
observe a stable 1:2:4 (c2) coupled solutions for σ ∈
[−0.03;0.03].

The effect of the detuning is shown in Fig. 3(b)
where σ1 = 0.01 and σ2 = −0.02. The system is not
symmetric and depends on the minimum value of Ia

and Ib , respectively, in σ = −σ2 and σ = −σ2 − 2σ1.

On the left part, for increasing values of σ , when
asdof

3 crosses Ia , a2 is already unstable because of
ac1

2 > Ib which imply that the (c2) coupled solutions
are directly activated. On the contrary, for decreasing
values of σ , the three coupling steps (sdof, c1, c2) are
observed.

Figure 3(c) presents the case of the same detuning,
but for a larger value of α1, implying Ib < Ia , so that
only the c2 coupling can exist. One can observe that
α1 favors instability and leads, in that case, to a Hopf
bifurcation. The c2 branch is completely unstable.

Finally, Fig. 4 shows how the branches are modi-
fied when nonlinear coupling coefficients (α1 and α3)
are increased and motions of a2 and a1 go to larger
amplitudes. In Fig. 4(a), a symmetric case for which
σ1 = σ2 = 0 is selected. Note also that Ib is always
smaller than Ia so that the c2 solution is directly ex-



cited once the sdof solution crosses Ia . Figure 4(b)
shows a more complicated behavior, which is obtained
for an important detuning between the second and the
third oscillator obtained here by selecting ω2 = 2.1. In
that case, Ia crosses the sdof solution near the reso-
nance, as well as for σ � 0.2, far away from the linear
resonance. Then, if Ia,min is small enough, the cou-
pling can be activated as shown on the figure.

As a conclusion on this high-frequency case, one
can notice the important similarities with the 1:2 inter-
nal resonance case. The 1:2:4 case can be interpreted
easily as a cascade of two imbricated 1:2 resonances,
with two stability conditions having a similar expres-
sion. Interestingly, the fully coupled case is found to be
often unstable due to a Hopf bifurcation, so that once
the energy cascade to the first oscillator is achieved,
quasiperiodic solutions are more likely to be observed.
This can have important physical consequences, e.g.,
in the transition to chaotic turbulent behavior [36].

2.3 Mid-frequency excitation

In this section, the case where the second oscillator
is directly excited is now considered. With respect to
Eq. (3), the external detuning now reads

Ω = ω2 + εσ. (22)

From Eqs. (5) and (7), the subharmonic resonant re-
sponses can be deduced as

q1(t) = a1 cos

(
Ω

2
t + φ1

)
, (23a)

q2(t) = a2 cos(Ωt + φ2), (23b)

q3(t) = a3 cos(2Ωt + φ3), (23c)

where φ1 = −(γ +γ1)/2, φ2 = −γ and φ3 = γ2 −2γ .
New internal detuning parameters ν1, ν2 and ν3 are

introduced as

ω1 = 1

2

(
Ω − ε(σ + σ1)

) = Ω

2
− εν1, (24a)

ω2 = Ω − εσ = Ω − εν2, (24b)

ω3 = 2Ω + ε(σ2 − 2σ) = 2Ω + εν3, (24c)

so that ν1 = 1
2 (σ + σ1), ν2 = σ and ν3 = (σ2 − 2σ).

The fixed points of (6a)–(6f) for the mid-frequency
case, according to Eqs. (7), are obtained as

−μ1a1 + α1a1a2

4ω1
sin(γ1) = 0, (25a)

σ1 − α2a
2
1

4ω2a2
cos(γ1) − α3a3

4ω2
cos(γ2) + α1a2

2ω1
cos(γ1)

− F2

2ω2a2
cos(γ ) = 0, (25b)

−μ2a2 − α2a
2
1

4ω2
sin(γ1) + α3a2a3

4ω2
sin(γ2)

+ F2

2ω2
sin(γ ) = 0, (25c)

σ2 − α4a
2
2

4ω3a3
cos(γ2) + α2a

2
1

2ω2a2
cos(γ1) + α3a3

2ω2
cos(γ2)

+ F2

ω2a2
cos(γ ) = 0, (25d)

−μ3a3 − α4a
2
2

4ω3
sin(γ2) = 0, (25e)

σ + α2a
2
1

4ω2a2
cos(γ1) + α3a3

4ω2
cos(γ2)

+ F2

2ω2a2
cos(γ ) = 0. (25f)

Using Eqs. (25d) and (25e), one can show that let-
ting a3 = 0 implies a2 = 0, which is not possible since
a2 is the amplitude of the directly excited mode. In
fact, when the forcing is in the vicinity of the second
oscillator, the system composed of oscillators 2 and 3
displays a 1:2 resonance (that will be denoted here for
coherence 2:4 resonance) with the forcing on the lower
frequency oscillator. It is known that only coupled so-
lutions exist in that case [24]. Hence, only two kinds
of fixed points exist for the present case:

(i) The partially coupled solution (c1) where a1 = 0,
a

c1
2 �= 0, and a

c1
3 �= 0.

(ii) The fully coupled solution (c2) where a
c2
1 �= 0,

a
c2
2 �= 0, and a

c2
3 �= 0.

The next section investigates the behavior and sta-
bility of these two types of solutions.

2.3.1 c1 solution: partially coupled 2:4 solution

This case is equivalent to a classical 1:2 internal reso-
nance where the excitation frequency is in the vicinity
of the lowest frequency mode. Analytical solutions can
be found, e.g., in [24]. They are recovered here for the



Fig. 5 Frequency-response
curves of the 1:2:4 internal
resonance for a
mid-frequency excitation
case (Ω = ω2 + σ ).
Stability behavior of the
two kind of solutions:
(- · -) c1 unstable solution,
and (- -) c2 unstable
solution. Selected values:
ω1 = 1, ω2 = 1.99, ω3 = 4,
μ1,2,3 = 0.01,
α1,2,3,4 = 0.1, F2 = 0.1

2:4 resonance between oscillators 2 and 3 and read:

(
ac1

2

)2 = 4ω3a
c1
3

α4

√
μ2

3 + ν2
3 ,

(
ac1

3

)3 + 8ω2

α3

(μ2μ3 + ν2ν3)√
μ2

3 + ν2
3

(
ac1

3

)2 + 16ω2
2

α2
3

× (
μ2

2 + ν2
2

)
ac1

3 − α4

α2
3

1

ω3

√
μ2

3 + ν2
3

F2 = 0.

(26)

One can observe that ac1
3 is solution of a third-order

polynomial. Hence, depending on the parameter val-
ues, one can obtain one or three solutions. ac1

2 is slaved
to ac1

3 through a simple relationship.
The novelty in this case consists in assessing the

stability of this 2:4 (c1) solution with respect to per-
turbations brought by the first oscillator in 1:2:4 reso-
nance. The Jacobian matrix of system (25a)–(25f) for
Ω � ω2 and for a1 = 0 is reported in Appendix A.1.
Interestingly, the six eigenvalues are separable. Four
of them drive the 2 : 4 resonance and assess the usual
stability conditions found for the 1:2 case [23, 24, 33].
The last two are related to the presence of the first os-
cillator, and writes

λc1
1 = −μ1 + α1a

c1
2

4ω1
sin(γ1), (27a)

λc1
2 = −α1a

c1
2

2ω1
sin(γ1). (27b)

These two eigenvalues depend only on ac1
2 . Hence,

the stability criterion is studied by the product λc1
1 λc1

2 ,

which gives

ac1
2 ≤ Ia where Ia = 2ω1

α1

√
4μ2

1 + (σ + σ1)2. (28)

One can remark the similarity of that case with the pre-
vious one (see Sect. 2.2). Once again, the stability of
the first solution is completely driven by the position
of a single amplitude (here a2) with respect to a limit
Ia having a similar expression.

As in the previous section, the stability limit Ia is
characterized by its minimum value Ia,min = 4ω1μ1

α1
,

obtained for σ = −σ1 as well as its asymptotic be-
havior for large values of σ , for |σ | → ∞, Ia ≈ 2ω1σ

α1
.

The asymptotes are obtained with μ1 = 0 in Eq. (28)
and the intersection is found for σ = −σ1 (Ω = ω2 −
εσ1 = 2ω1 ).

In this case, σ1, α1, and μ1 are the new influential
parameters on the stability curve, which is represented
in Fig. 5(a) for selected parameters. The instability of
the c1 solution is given by the relative values of ac1

2
and Ia . In the selected case, the c1 solution is unstable
for σ ∈ [−0.028;0.037]. The next subsection gives the
expressions of the solution branches for case c2, when
a1 �= 0.

2.3.2 c2 solution: fully coupled 1:2:4 solution

From the system (25a)–(25f) without any simplifica-
tion, the fully coupled solutions are found to be:

ac2
2 = 4ω1

α1

√
μ2

1 + ν2
1 , (29a)

ac2
3 = α4

4ω3

√
μ2

3 + ν2
3

(
ac2

2

)2
. (29b)



Fig. 6 Frequency-response curves of the 1:2:4 internal reso-
nance for a mid-frequency excitation (Ω = ω2 + σ ). Selected
values: (a) 2:4 internal coupling between a2 and a3. Selected
values: ω1 = 1, ω2 = 2, ω3 = 4, μ1,2,3 = 0.01, α1,2 = 0.1,

α3,4 = 1, F2 = 0.05. (b) Influence of the detuning, activation of
the c2 coupling. Parameters of (a) except ω2 = 2.05, ω3 = 4.01.
(c) c2 coupling in the Hopf bifurcation range. Parameters of (a)
except α1 = 0.11 and F2 = 0.2

Defining

C4 =
(

α2

4ω2a
c2
2

)2

, (29c)

C2 = − 2ω1α2

α1ω2(a
c2
2 )2

[
(ν1ν2 − μ1μ2)

+ α3ω3(a
c2
3 )2

α4ω2(a
c2
2 )2

(ν1ν3 − μ1μ3)

]
, (29d)

C0 = (
μ2

2 + ν2
2

) + 2α3ω3(a
c2
3 )2

α4ω2(a
c2
2 )2

(μ2μ3 + ν2ν3)

+ 2

(
α3ω3(a

c2
3 )2

α4ω2(a
c2
2 )2

)2(
μ2

3 + ν2
3

) −
(

α3a
c2
3

4ω2

)2

−
(

F2

2ω2a
c2
2

)2

, (29e)

ac2
1 is given by the roots of the following equation:

C4
(
ac2

1

)4 + C2
(
ac2

1

)2 + C0 = 0. (29f)

As in the high-frequency case, the value of a2 drives
the instability from the c1 to the c2 case. Once the in-
stability of the c1 solution is obtained, ac2

2 is then equal
to Ia . The value of ac2

3 is slaved to ac2
2 , and finally ac1

1
is obtained from a complicated polynomial expression,
the coefficients of which depends on ac2

2 and ac2
3 .

Figure 5(b) shows the complete solutions for the
mid-frequency case and the transfer of energy from the
directly excited mode to the low-frequency one.

Finally, this case bears resemblance with both a
1:2 internal resonance excited at the lower frequency
(through the c1 2:4 solution), and a 1:2 internal res-
onance excited at the highest frequency (through the
instability region).

The stability of the c2 solution is obtained by the
Jacobian of the system (25a)–(25f) without any sim-
plification and with a1 = ac2

1 , a2 = ac2
2 , and a3 = ac2

3 .
As in the previous case, the eigenvalues have to be fol-
lowed numerically.

2.3.3 Parametric study

The main dynamical characteristics due to selected
values of the parameters are now investigated.

Figure 6(a) presents a perfectly tuned symmetric
case. The amplitude solutions are under the stabil-
ity limit Ia , hence no energy is transferred to the
low-frequency mode; consequently, a1 stays at rest.
The stability computation shows the appearance of a
quasiperiodic regime in the vicinity of σ = 0. Note
that in that case, only the c2 (2:4) solution is present,
so that the stability can be checked by the four eigen-
values of the 2:4 case as reported in Appendix A.1.
The Hopf bifurcation in the vicinity of σ = 0 is classi-
cal and has already been reported in studies on the 1:2
internal resonance, see e.g. [24].

In Fig. 6(b), the stability curve is shifted to the low
frequencies, by detuning the three eigenfrequencies.
The intersection between Ia and a2 leads to the non-
linear coupling between a2 and a1. The c1 solution
is then obtained, and the stability shows that on this



fully coupled branch, a Hopf bifurcation occurs and
quasiperiodic motions are at hand. This remark is con-
sistent with the numerical results obtained in the pre-
vious section, where fully coupled periodic solutions
were found to be often unstable.

Figure 6(c) exhibits a different case where the inter-
section between Ia and a2 is located in the center fre-
quency range. This case is obtained for a large value
of the external forcing (F2 = 0.2). Once again, the c2
solution is partially unstable so that quasiperiodic so-
lutions are still present.

2.4 Low-frequency excitation

Finally, the case of the low-frequency excitation is pre-
sented in this subsection. The external frequency is ex-
pressed as

Ω = ω1 + εσ. (30)

The polar forms (Eq. (5)), are now:

q1(t) = a1 cos(Ωt + φ1), (31a)

q2(t) = a2 cos(2Ωt + φ2), (31b)

q3(t) = a3 cos(4Ωt + φ3), (31c)

where φ1 = −γ et φ2 = γ1 − 2γ and φ3 = γ2 + 2γ −
1 − 4γ .

The internal detunings are defined by

ω1 = Ω − εσ = Ω − εν1, (32a)

ω2 = 2Ω + ε(σ1 − 2σ) = 2Ω + εν2, (32b)

ω3 = 4Ω + ε(2σ1 + σ2 − 4σ) = 4Ω + εν3, (32c)

with ν1 = σ , ν2 = (σ1 −2σ) and ν3 = (σ2 +2σ1 −4σ).
In this case, the fixed points of (6a)–(6f), according

to Eqs. (7), are

−μ1a1 + α1a1a2

4ω1
sin(γ1) + F1

2ω1
sin(γ ) = 0, (33a)

σ1 − α2a
2
1

4ω2a2
cos(γ1) − α3a3

4ω2
cos(γ2) + α1a2

2ω1
cos(γ1)

+ F1

ω1a1
cos(γ ) = 0, (33b)

−μ2a2 − α2a
2
1

4ω2
sin(γ1) + α3a2a3

4ω2
sin(γ2) = 0, (33c)

σ2 − α4a
2
2

4ω3a3
cos(γ2) + α2a

2
1

2ω2a2
cos(γ1)

+ α3a3

2ω2
cos(γ2) = 0, (33d)

−μ3a3 − α4a
2
2

4ω3
sin(γ2) = 0, (33e)

σ + α1a2

4ω1
cos(γ1) + F1

2ω1a1
cos(γ ) = 0. (33f)

Equation (33a) shows that, if a1 = 0, F1 = 0, which
makes no sense in this excitation case. In Eq. (33c),
a2 = 0 implies that a1 = 0, which is not possible as
previously said. With Eq. (33e), one can show that
a3 = 0 leads to a2 = 0. Finally, one can conclude that
the only non trivial solution of system (33a)–(33f) is
the fully coupled one with a1 �= 0, a2 �= 0 and a3 �= 0.

Some combinations of equations of the system
(33a)–(33f) can exhibit analytical solutions for the
three amplitudes a1, a2, and a3. First, combining
Eq. (33e) with (Eq. (33f) + 2(Eq. (33d) − 2Eq. (33f)))
gives a relationship between a2 and a3 as

a2
2 = 4ω3a3

α4

√(
μ2

3 + ν2
3

)
. (34)

Then Eqs. (33a), (33b), (33c), and ((33d) − 2(33c))
gives two expressions of a1, depending of a2 and a3

a2
1(μ2

1 + ν2
1)

= F 2
1

4ω2
1

− α2
1a2

1a2
2

16ω2
1

− 2α1ω2a
2
2

α2ω1
(ν1ν2 + μ1μ2)

+ 2α1α3ω3a
2
3

ω1α2α4
(ν1ν3 − μ1μ3), (35a)

a4
1 = 16ω2

2a
2
2

α2
2

(μ2
2 + ν2

2) + 32ω2ω3α3a
2
3

α4α
2
2

× (μ2μ3 − ν2ν3) + α2
3a2

3a2
2

α2
2

, (35b)

that leads to a2
2 given by the roots of the following

five-order polynomial:

C10a
10
2 +C8a

8
2 +C6a

6
2 +C4a

4
2 +C2a

2
2 +C0 = 0, (36)

where Ck coefficients are defined and reported in Ap-
pendix A.2. Solving this polynomial for each value
of σ gives the fully coupled solutions of this low-
frequency case.

The stability of the low-frequency solutions is ob-
tained by the Jacobian of the system (33a)–(33f) also



Fig. 7 Frequency-response curves of the 1:2:4 internal res-
onance for a low-frequency excitation case (Ω = ω1 + σ ).
(a) Fully coupled solutions with a Hopf bifurcation, (- -) un-
stable solution. Selected values: ω1 = 1, ω2 = 2.01, ω3 = 4,

μ1 = 0.01, μ2 = 0.01, μ3 = 0.01, α1 = 0.1, α2 = 0.1, α3 = 0.1;
α4 = 0.1, F1 = 0.1. (b) Detuning effects. Parameters of (a) ex-
cept: ω2 = 4.1. (c) Parameters of (a) large amplitude of nonlin-
ear coupling. Parameters of (a) except: α2 = 0.5

reported in Appendix A.2. They are numerically cal-
culated for each σ in order to obtain the stability of
the solution branches.

Figure 7 displays three cases for selected values of
parameters. Figure 7(a) shows a simple 1:2:4 internal
resonance in the low-frequency excitation case. One
can observe that the external energy, applied on the
first mode is transferred to the two higher-frequency
one. One can recover the behavior of a 1:2 internal res-
onance [24] with the hysteresis loop between forward
and backward frequency sweeps in term of σ , due to
the unstable branch; and the Hopf bifurcation leading
to a quasiperiodic regime around σ = 0.01.

The effect of the detuning is shown Fig. 7(b) with
σ1 = 0.01 and σ2 = 0.08. One can observe that in-
creasing the value of σ2 shifts the maximum value of
a3 and creates corresponding variations of the ampli-
tudes a1 and a2 at σ = 0.025.

Finally, Fig. 7(c) presents a case of large coupling
between a1 and a2 thanks to a large value of α2, which
consequently increases the range of the Hopf bifurca-
tion for σ ∈ [−0.02;0.02].

2.5 Conclusion on the 1:2:4 resonance

In this section, a detailed analysis of the 1:2:4 internal
resonance has been proposed. The study of the three
excitation cases Ω � ω1, Ω � ω2, and Ω � ω3 are
completed.

As compared to the well-known 1:2 internal reso-
nance, each case presents some particularities due to
the presence of the third oscillator.

In the high-frequency case, because of the pres-
ence of the three oscillators, two stability conditions
have been found that lead to three kind of solutions
(one sdof, one partially coupled, and one fully cou-
pled). The qualitative behavior of this case is in fact a
cascade of two 1:2 internal resonances. On the other
hand, in the mid-frequency case, only two kinds of so-
lutions have been found because the coupling between
the mode directly excited and the high-frequency one
always exists. In this case, the dynamics may be inter-
preted as a superposition of two internal resonances.
Finally, in the low frequency case, only the fully cou-
pled solution can exist, and the energy is always trans-
ferred to the higher modes without any stability con-
dition.

An important result is that, in all the three cases, se-
lected sets of parameters can cause Hopf bifurcations
to occur, so that the three periodic solutions are totally
unstable, giving birth to quasiperiodic regimes.

3 The 1:2:2 resonance

This section is devoted to the analysis of a system ex-
hibiting a one-two-two internal resonance (1:2:2), that
is another combination of two 1:2 internal resonance
as compared to the previous 1:2:4 case. The interac-
tion between three vibration modes with frequencies
ω1, ω2, ω3, such that ω2 � ω3 � 2ω1, is studied. As
previously, harmonically forced vibrations are consid-
ered. Two cases of a forcing frequency Ω being in the
vicinity of (i) the lower frequency Ω ≈ ω1, (ii) the



two higher frequencies Ω ≈ ω2 ≈ ω3, are now intro-
duced.

3.1 Equations of motion and multiple scales solutions

The dynamical system for the 1:2:2 internal reso-
nance consists of three oscillator equations coupled by
quadratic nonlinear terms. It reads

q̈1 + ω2
1q1 = ε

[−2μ1q̇1 − α1q1q2 − α2q1q3

+ δΩ,ω1F1 cos(Ωt)
]
, (37a)

q̈2 + ω2
2q2 = ε

[−2μ2q̇2 − α3q
2
1 + δΩ,ω2F2 cos(Ωt)

]
,

(37b)

q̈3 + ω2
3q3 = ε

[−2μ3q̇3 − α4q
2
1 + δΩ,ω2F3 cos(Ωt)

]
.

(37c)

As in the 1:2:4 internal resonance (Eqs. (1a)–(1c)),
nonlinear terms (α1,2,3,4), damping terms (μ1,2,3) and
external forcing (Fk cosΩt with δΩ,ωk

) are assumed
to be small as compared to the linear oscillatory part
(ε � 1).

Equations (37a)–(37c) is the real normal form of
the system displaying 1:2:2 internal resonance. Hence,
only the resonant monoms have been taken into ac-
count, so that only four coupling coefficients α1,2,3,4

are needed to parameterize the nonlinearity, in an
equivalent manner to the previous 1:2:4 case.

Two internal detuning parameters σ1 and σ2 are in-
troduced as

ω2 = 2ω1 + εσ1, (38a)

ω3 = 2ω1 + εσ2 (38b)

and the external detuning σ is such that

Ω = ωk + εσ. (39)

Finally, angles relationships are introduced as

γ1 = θ2 + σ1T1 − 2θ1,

γ2 = θ3 + σ2T1 − 2θ1, and γ = σT1 − θk,
(40)

where k = 1,2, or 3 depending on the frequency ex-
citation.

As in the previous section, the solvability condi-
tions are obtained with the ε0-order equations. The

modal amplitudes {qk0}k=1,2,3 are expressed as

qk0(T0, T1) = ak(T1)

2
exp

[
j (ωkT0 + θk(T1)

] + c.c.,

(41)

where ak are the amplitudes, θk are the phases, c.c.
stands for complex conjugate, and j2 = −1.

3.2 Low-frequency excitation

The low-frequency excitation, for which Ω =
ω1 + εσ , is first investigated. According to Eqs. (40)
and (41), the 1:2:2 internal resonance, excited on its
lower mode, leads to the first mode oscillating at the
frequency Ω ≈ ω1 and the two upper modes oscillat-
ing at 2Ω ≈ 2ω1 as

q1 = a1 cos(Ωt + φ1), (42a)

q2 = a2 cos(2Ωt + φ2), (42b)

q3 = a3 cos(2Ωt + φ2), (42c)

where φ1 = −γ , φ2 = −2γ + γ1, and φ3 = −2γ + γ2.
The fixed points of the first-order multiple scales

method are the solutions of

−μ1a1 − α1a1a2

4ω1
sin(γ1) − α2a1a3

4ω1
sin(γ2)

+ F1

2ω1
sin(γ ) = 0, (43a)

σ1 + α3a
2
1

4ω2a2
cos(γ1) − α1a2

2ω1
cos(γ1) − α2a3

2ω1
cos(γ2)

+ F1

ω1a1
cos(γ ) = 0, (43b)

−μ2a2 + α3a
2
1

4ω2
sin(γ1) = 0, (43c)

σ2 + α4a
2
1

4ω3a3
cos(γ2) − α1a2

2ω1
cos(γ1) − α2a3

2ω1
cos(γ2)

+ F1

ω1a1
cos(γ ) = 0, (43d)

−μ3a3 + α4a
2
1

4ω3
sin(γ2) = 0, (43e)

σ − α1a2

4ω1
cos(γ1) − α2a3

4ω1
cos(γ2)

+ F1

2ω1a1
cos(γ ) = 0. (43f)



From Eqs. (43a)–(43f), one can remark that only
the case of fully coupled solutions are possible. In-
deed, q1 is the directly excited mode so that a1 �= 0,
and Eqs. (43c) and (43e) imply a2 �= 0 and a3 �= 0.
A solution in terms of the amplitudes (a1, a2, a3)
of each oscillator can be found by selected linear
combination of Eqs. (43a)–(43f). First, Eqs. (43d)
and ((43b) − 2(43f)), and secondly Eqs. (43e) and
((43d) − 2(43f)) give a relationship between a1 and
a2, and between a1 and a3, respectively, as

a1 =
√

4ω2a2

α3Γ2
,

where Γ2 = 1
√

μ2
2 + (σ1 − 2σ)2

,

a1 =
√

4ω3a3

α4Γ3
,

where Γ3 = 1
√

μ2
3 + (σ2 − 2σ)2

.

(44)

This leads to a relationship between a2 and a3 as

a3 = ω2α4Γ3

ω3α3Γ2
a2. (45)

Then Eqs. (43f) and (43a) lead to

4ω2
1

F 2
a2

1

(
σ 2 + μ2

1 + α2
1

16ω2
1

a2
2 + α2

2

16ω2
1

a2
3

+ α1Γ2

2ω1

(
μ1μ2 + σ(σ1 − 2σ)

)
a2

+ α2Γ3

2ω1

(
μ1μ3 + σ(σ2 − 2σ)

)
a3

+ α1α2Γ2Γ3

8ω2
1

(
μ2μ3 + (σ1 − 2σ)

× (σ2 − 2σ)
)
a2a3

)
= 1. (46)

Finally, introducing Eq. (45) in Eq. (46), two third-
order polynomials in terms of a2 and a3 are obtained.
As an example, we can write the polynomial in a2 as

(
1 +

(
ω2α2α4Γ3

ω3α1α3Γ2

)2

+ 2ω2α2α4Γ
2

3

ω3α1α3

× (
μ2μ3 + (σ1 − 2σ)(σ2 − 2σ)

)
)

a3
2

+
(

8ω1Γ2

α1

(
μ1μ2 + σ(σ1 − 2σ)

)

+ 8ω1ω2α2α4Γ
2

3

ω3α
2
1α3Γ2

(
μ1μ3 + σ(σ2 − 2σ)

))
a2

2

+ 16ω2
1

α2
1

(
σ 2 + μ2

1

)
a2 = F 2

1 α3Γ2

ω2α
2
1

. (47)

Hence, the amplitude solutions are deduced from
Eq. (47), which shows that a2 may have one or three
real solutions, depending on the parameters. Once a2

is found, a1 is deduced from Eq. (44) and a3 from
Eq. (45). One can observe that Eqs. (47), (44), and
(45) bear similarities with the solution equations for
the 1:2 resonance case as given, e.g., in [23, 24].

The stability is given by the Jacobian derived from
Eqs. (43a)–(43f). Its analytical expression is given in
Appendix B.1. As no simple analytical expressions for
the eigenvalues can be derived, the stability is checked
numerically.

Figure 8 displays three cases with selected parame-
ters, for small amplitude of external forcing leading to
single, stable branch of solution. Only the two internal
detunings σ1 and σ2 are modified. Figure 8(a) shows
that the energy, which is directly injected on a1, is si-
multaneously transferred to a2 and a3. As all parame-
ters of a2 and a3 are the same, the two corresponding
curves are totally superimposed. In Fig. 8(b), σ1 �= σ2

which implies a2 �= a3, so that the two curves are now
different. Finally, in Fig. 8(c), σ2 is further increased,
such that the maximum value is shifted to a higher fre-
quency as compared to Fig. 8(b). Consequently, the
response for a1 shows now three successive maxima,
a feature that is not observable with a simple 1:2 reso-
nance.

Larger values of the amplitude excitation F1, lead-
ing to ranges where three solutions are possible, are
investigated in Fig. 9. In Fig. 9(a), two regions where
three solutions exist are present. As in the 1:2 case, the
middle amplitude branch is found to be unstable. The
global behavior is very similar to the 1:2 internal res-
onance case, with also a frequency range delimited by
Hopf bifurcations where no stable periodic orbits ex-
ist anymore, so that quasiperiodic motions are at hand.
A peculiarity of the 1:2:2 case is shown in Fig. 9(b).
By playing with the internal detunings (here by in-
creasing σ2 only), one can find in the vicinity of σ = 0
two regions of quasiperiodic solutions, separated by a
stable region (between σ = 0.0058 and σ = 0.029).



Fig. 8 Frequency-response curves of the 1:2:2 internal reso-
nance for a low-frequency excitation (Ω = ω1 + σ ). Fully cou-
pled solutions and variations of internal detunings. (a) Identical
high-frequency modes. Parameters: ω1 = 1, ω2 = ω3 = 2.02,

μ1,2,3 = 0.1, α1,2,3,4 = 0.1, F1 = 0.03. (b) Small value of the
internal detuning between a2 and a3. Parameters of (a) except:
ω3 = 2.03. (c) Larger value of the internal detuning between a2
and a3. Parameters of (a) except: ω3 = 2.05

Fig. 9 Frequency-response
curves of the 1:2:2 internal
resonance for a
low-frequency excitation
(Ω = ω1 + σ ). Variation of
internal detuning when the
solutions present unstable
branches (- -).
(a) Parameters: ω1 = 1,
ω2 = 2.02, ω3 = 2.03,
μ1,2,3 = 0.1, α1,2,3,4 = 0.1,
F1 = 0.1. (b) Parameters
of (a) except: ω3 = 2.06

Once again, similarities with the well-known 1:2
internal resonance are noted. But contrary to the 1:2:4
case, here the two 1:2 internal resonances are totally
nested.

3.3 High-frequency excitation

In this last section, the external forcing is in the vicin-
ity of the two high-frequency modes:

Ω = ω2 + εσ = ω3 + ε(σ + σ1 − σ2). (48)

We also consider the case F2 �= 0 and F3 �= 0, as in
a real experiment, it is almost impossible to enforce
either F2 = 0 or F3 = 0. This leads to subharmonic
resonance responses as

q1 = a1 cos

(
Ω

2
t + φ1

)
, (49a)

q2 = a2 cos(Ωt + φ2), (49b)

q3 = a3 cos(Ωt + φ2), (49c)

where φ1 = −(γ + γ1)/2, φ2 = −γ and φ3 = −γ −
γ1 + γ2.

Including the angle relationships (Eq. 40) in the
multiple scales method, the corresponding fixed points
system reads:

−μ1a1 − α1a1a2

4ω1
sin(γ1) − α2a1a3

4ω1
sin(γ2) = 0,

(50a)

σ1 + α3a
2
1

4ω2a2
cos(γ1) − α1a2

2ω1
cos(γ1) − α2a3

2ω1
cos(γ2)

− F2

2ω2a2
cos(γ ) = 0, (50b)



Fig. 10
Frequency-response curves
of the 1:2:2 internal
resonance for a
high-frequency excitation
case (Ω = ω2 + σ ).
Uncoupled responses: (a) in
a 3D-space (σ , a2, a3).
(b) Projections onto (σ , a2)
and (σ , a3). Selected
values: ω1 = 1, ω2 = 2,
ω3 = 2.05, μ1,2,3 = 0.1,
α1,2,3,4 = 0.1,
F2 = F3 = 0.001

−μ2a2 + α3a
2
1

4ω2
sin(γ1) + F2

2ω2
sin(γ ) = 0, (50c)

σ2 + α4a
2
1

4ω3a3
cos(γ2) − α1a2

2ω1
cos(γ1) − α2a3

2ω1
cos(γ2)

− F3

2ω3a3
cos(γ + γ1 − γ2) = 0, (50d)

−μ3a3 + α4a
2
1

4ω3
sin(γ2) + F3

2ω3
sin(γ + γ1 − γ2) = 0,

(50e)

σ − α3a
2
1

4ω2a2
cos(γ1) + F2

2ω2a2
cos(γ ) = 0. (50f)

System (50a)–(50f) presents six equations for six
unknowns, however, a combination of the angles γ +
γ1 − γ2 appears in Eqs. (50d)–(50e), hence rendering
a complete analytical solution untractable. Note that
this ill-conditioning of the system appears to be intrin-
sic and cannot be eliminated through other relation-
ships on angles. However, this ill-conditioning disap-
pears if one lets either F2 = 0 or F3 = 0; and one
is led to a most simple case for the stability condi-
tion, where a classical 1:2 is recovered. Fortunately,
for our case with F2 �= 0 and F3 �= 0, uncoupled so-
lutions along with their stability analysis lend them-
selves to an analytical investigation given in the next
subsection.

3.3.1 Uncoupled solutions

Analysis of the possible solutions of Eqs. (50a)–(50f)
shows that two types of solutions are possible:

(i) the uncoupled solutions where the directly ex-
cited modes q2 and q3 vibrate and q1 stays at rest
(a1 = 0).

(ii) the coupled solution where a1, a2, and a3 �= 0.

In case (i), combinations of Eqs. (50c) and (50f) and
Eqs. (50e), (50b), and (50d), allow to derive the ex-
pressions of the uncoupled amplitudes a2 and a3 as

alin
2 = F2

2ω2

√
μ2

2 + σ 2
,

alin
3 = F3

2ω3

√
μ2

3 + (σ + σ1 − σ2)2
.

(51)

These solutions are denoted as (alin
2 , alin

3 ) since q1 = 0
in Eqs. (37a)–(37c) implies linear oscillator equations
for q2 and q3. Hence, the solutions found are those of
a linear oscillator equation.

In this high-frequency excitation case, the two
high-frequency modes are simultaneously excited
(Ω ≈ ω2 ≈ ω3). Hence, the fundamental solution,
from which stability has to be computed with respect
to perturbations brought by the presence of the first
oscillator, corresponds to a two-dofs system. This ren-
ders the analysis more complicated than the one led
in all other cases studied in this paper. Consequently,
stability analysis and representations of instability re-
gions are conducted in the space (σ , a2, a3). Fig-
ure 10(a) shows the uncoupled solution in that space.
It consists of a single branch with two peaks corre-
sponding to the linear resonances. Figure 10(b) shows
the two projections of this solution branch on (σ , a2)
and (σ , a3).



Fig. 11 Frequency-response curves of the 1:2:2 internal res-
onance for a high-frequency excitation case (Ω = ω2 + εσ ).
(a) 3D stability surface and intersections clim

2 = Slim ∩ {a3 = 0}

and clim
3 = Slim ∩ {a2 = 0}. (b) 2D stability curves slim

2 and
slim

3 . Unstable solutions (- -). Selected values: ω1 = 1, ω2 = 2,
ω3 = 2.02, μ1,2,3 = 0.1, α1,2,3,4 = 0.1, F2 = F3 = 0.1

3.3.2 Stability limit and coupling range

In order to study the stability of the linear solutions alin
2

and alin
3 , the Jacobian matrix of the fixed points system

is calculated. The analytical expression is given in Ap-
pendix B.2.

The Jacobian is separable in this case and the six
corresponding eigenvalues are easily found to be

λ1,2 = −μ2 ± iσ, (52a)

λ3,4 = −μ3 ± i(σ2 − σ1 − σ), (52b)

λ5 = −μ1 − α1

4ω1
a2 sin(γ1) − α2

4ω1
a3 sin(γ2), (52c)

λ6 = α1

4ω1
a2 sin(γ1) + α2

4ω1
a3 sin(γ2). (52d)

Obviously, the first four eigenvalues dictate the stabil-
ity of the linear uncoupled solutions with respect to
perturbations brought by (a2, a3). They indicate sta-
bility, the last two (λ5, λ6) governing the stability with
respect to the presence of the first oscillator.

With a nontrivial combination of the fixed points
equations (explained in Appendix B.2), one is able to
derive an instability criterion on the amplitudes (a2,a3)
only, which is given via the definition of an instability
surface Slim in (σ, a2, a3):

Slim = {
(σ, a2, a3) | T1 = T2a

2
2 + T3a

2
3

}
(53)

with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T1 = 4ω2
1(4μ2

1 + (σ1 + σ)2),

T2 = α2
1,

T3 = α2
2 + 2α1α2

ω3

ω2

F2

F3

× μ2μ3 + σ(σ + σ1 − σ2)

μ2
2 + σ 2

.

(54)

The stability condition is a surface Slim defined by
a functional relationship of the form f (σ, a2, a3) = 0.
It is represented on Fig. 11(a) in space (σ, a2, a3),
together with the uncoupled branch (alin

2 , alin
3 ). Once

the amplitudes on the fundamental branch are larger
than Slim, then the uncoupled solution becomes unsta-
ble. An analogy with the 1:2 internal resonance can
be derived by defining clim

2 and clim
3 as the intersec-

tions of Slim with either a3 = 0 or a2 = 0: clim
2 =

Slim ∩ {a3 = 0} = √
T1/T2 ; clim

3 = Slim ∩ {a2 = 0} =√
T1/T3; see Fig. 11(a). One can remark that the ex-

pressions for clim
2 is equivalent to the expression of the

instability limit for the 1:2 and 1:2:4 case; see, e.g.,
Eqs. (13) and (18) defining Ia and Ib in Sect. 2.2. For
clim

3 , an equivalent expression is found by imposing
also F2 = 0 so as to recover a 1:2 resonance without
the presence of the second oscillator.

In order to define a simple criterion on alin
2 and alin

3
independently, substituting for Eq. (51) in Eq. (53),
two stability conditions slim

2 and slim
3 can be defined



Fig. 12 Frequency-response curves of the 1:2:2 internal reso-
nance for a high-frequency excitation case (Ω = ω2 +εσ ). Vari-
ation of internal detuning σ2 and stability consequence. Unsta-

ble solutions (- -). (a) 3D representation. (b) Corresponding 2D
representation. Selected parameters: ω1 = 1, ω2 = 2, ω3 = 2.06,
μ1,2,3 = 0.1, α1,2,3,4 = 0.1, F2 = F3 = 0.1

as

slim
2 =

√
T1 − T3(a

lin
3 )2

T2
, and

slim
3 =

√
T1 − T2(a

lin
2 )2

T3
.

(55)

With that respect, one can check the stability for a2

and a3 with a simple scalar condition: a2 is stable if
alin

2 < slim
2 (respectively, a3 is stable if alin

3 < slim
3 ).

This is illustrated on Fig. 11(b) where slim
2 and slim

3 are
represented on two-dimensional projections on (σ, a2)

and (σ, a3), defining easily the unstable region of the
fundamental solution branch. Due to the complicated
functional dependence of T1 and T3 with the parame-
ters, slim

2 and slim
3 may have a complex shape, with at

worst singular points due to a vanishing value for T3.
It is also important to note that, contrary to a simple
1:2 resonance, in this case slim

2 and slim
3 are dependent

on forcing F2 and F3 (via T3).
Figure 12 shows a more complicated case, which

has been obtained by increasing σ2 to 0.06. This leads
to shift the resonance for a3 at a higher frequency as
compared to Fig. 11. One can remark that clim

2 has a
simple expression, which lends it unconcerned with
singularities. On the other hand, the expression of clim

3
encounters singularities in that case due to two vanish-
ing points for T3; see Fig. 12(a). In turn, the shape of
Slim becomes complex as it always have to join clim

2
to clim

3 . In the projections onto the planes (σ, a2) and
(σ, a3), represented in Fig. 12(b), one can see that the
tangled shape of Slim leads to complex behaviors for

slim
2 and slim

3 . Nonetheless, the scalar stability condi-
tion still applies. However, one must take care of the
fact that when T3 < 0, which happens here between
the two singular points, respectively σ = 0.0024 and
σ = 0.0044, the stability for a3 is inversed so as to take
into account the negative sign (it remains unchanged
for a2 as slim

2 is not prone to singularities). This is more
clearly seen on the 3D-plot, Fig. 12(a), where the part
of the branch for σ ∈ [0.023,0.043] lies under Slim,
and is thus stable.

This investigation highlights the complexity
brought by the presence of two oscillators in the high-
frequency as compared to a simple 1:2 internal res-
onance. The instability limit can be changed signifi-
cantly because of the possible complex behavior of T3,
and thus slim

3 . It may lead, as in Fig. 12, to a stable por-
tion of uncoupled solutions in between two unstable
states, a feature that is not possible with a 1:2 reso-
nance.

3.3.3 Coupled solutions

Fully coupled solutions with a1 �= 0, a2 �= 0, and
a3 �= 0 for Eqs. (50a)–(50f) have not been derived, an-
alytical expressions are not at hand. They may be de-
rived from the system through complex trigonomet-
ric manipulations. However, analytical expressions are
convenient when they are simple and prone to physical
interpretations, and here their expressions would cover
pages. Hence, only numerical solutions are shown
here, allowing also to check the stability analysis of
the previous section.



Fig. 13 Numerical
solutions: MANLab
computation. 2D
representation. Unstable
solutions (· · · ). (a) Unstable
linear curves and coupled
solutions. Parameters of
Fig. 11 (σ2 = 0.02).
(b) Multiple frequency
ranges of coupling.
Parameters of Fig. 12
(σ2 = 0.06)

A continuation method is used to find numerically
the periodic orbits of the forced system. Continua-
tion is performed thanks to an Asymptotic-Numerical
Method (ANM) implemented in the software MAN-
LAB [9, 14], and stability is computed via Hill’s
method [15].

Two examples are proposed on Fig. 13, with the
parameters selected for Figs. 11 and 12. In Fig. 13(a)
(parameters of Fig. 11), the stability condition is ver-
ified and the transfer of energy from the uncoupled
to the coupled solution is retrieved. The second case,
displayed on Fig. 13(b), corresponds to the param-
eters of Fig. 12. Once again, the stability analysis
is perfectly retrieved with the appearance of the sta-
ble state in the middle of the frequency range. As
σ2 has been increased, this case resembles a succes-
sion of two 1:2 internal resonance between (q1, q2)

and (q1, q3), with a return to an uncoupled state in
between. Finally, a very narrow interval of unsta-
ble coupled solutions are numerically found around
σ � 0.056, delimited by two Hopf bifurcations. This
frequency range increases for larger values of the
forcing amplitude, so that a broader occurrence of
quasiperiodic solutions is found for higher nonlinear-
ity.

3.4 Conclusion on the 1:2:2 resonance

In this section, a detailed analysis of the 1:2:2 in-
ternal resonance has been proposed. The study of
the two excitation cases Ω � ω1 and Ω � ω2 � ω3

has been done. In the high-frequency case, only the
linear step is analytically solved, but a numerical

method is proposed in order to give the coupled so-
lutions.

Some particularities are exhibited due to the in-
teraction between the two high-frequency modes, but
once again, the global behavior of the 1:2 internal res-
onance has been recovered.

In the low-frequency case, the energy is immedi-
ately and simultaneously transferred from a1 to a2 and
a3. For the high-frequency case, the limit of the sta-
bility can be understood as a surface represented in a
3D-space. Compared to the 1:2:4 internal resonance
(part 1), there is no cascade of energy, but two nested
1:2 resonances.

Finally, contrary to the simple 1:2 internal reso-
nance, the presence of a third oscillator can lead to
Hopf bifurcation with quasiperiodic regime in coupled
solutions even in the high-frequency case of excita-
tion.

4 Conclusion

In this paper, a detailed analysis of two 3-dofs quad-
ratic nonlinear systems presenting internal resonances,
has been proposed. These models are two combina-
tions of the well-known 1:2 internal resonance. Forced
oscillations are considered and the systems are ex-
pressed under their normal form. In each case, an
external forcing is applied on each oscillator equa-
tion.

For the 1:2:4 resonance, it has been shown that it
may be interpreted as a cascade of two 1:2 internal
resonances. When Ω � ω3, two components oscillat-



ing at Ω/2 and Ω/4 are created by the first and sec-
ond oscillators. Energy can be transferred in a two-
stage process, first to the second mode, and finally for
the first one. The two stability conditions for these dif-
ferent regimes have been exhibited and resembles the
stability limit for a classical 1:2 resonance. Finally, it
has been found that the presence of the first oscilla-
tor leads to the occurrence of Hopf bifurcations in the
fully coupled regime so that quasiperiodic responses
are favored. When Ω � ω2, two components are cre-
ated oscillating at Ω/2 and 2Ω . The system can be
analyzed as composed of two 1:2 resonances, both ex-
cited in its lower and its higher frequency at the same
time. The last case (Ω � ω1) leads to two components
oscillating at 2Ω and 4Ω . As in the 1:2 case, there is
no stability limit, the energy is directly transferred to
the two upper frequency modes. As compared to the
1:2 case, it has been found that quasiperiodic regimes
are more easily observed.

The second model, displaying a 1:2:2 resonance,
can be seen as two nested 1:2 internal resonances.
When Ω � ω1, the solutions present a lot of similari-
ties with the 1:2 case. Amplitudes solutions are locally
affected by the third oscillator, however the global be-
havior of a 1:2 resonance is recovered. For the last case
(Ω � 2ω1), a stability condition has been derived and
it has been demonstrated how the shape of the insta-
bility region can become complex for certain param-
eter values. Fully coupled solutions are not analyti-
cally tractable in the case considered so that numerical
solutions have been exhibited, and once again Hopf
bifurcations have been observed on the fully coupled
branches.

A general conclusion that can be drawn out, as
compared to the simple 1:2 resonance, is that the pres-
ence of a third oscillator favors unstable states for fully
coupled regions so that quasiperiodic regimes become
more generic.

Appendix A: Analytical expressions for the 1:2:4 internal resonance

A.1 1:2:4 mid-frequency case

Jacobian matrix of system (25a)–(25f), with a1 = 0:

J =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

−μ1 + α1a2
4ω1

sin(γ1) 0 0

0 −α1a2
2ω1

sin(γ1)
α1

2ω1
cos(γ1) + F2

2ω2a
2
2

cos(γ )

0 0 −μ2 + α3a3
4ω2

sin(γ2)

0 0 − F2
2ω2a

2
2

cos(γ )

0 0 −α4a2
2ω3

sin(γ2)

0 0 − α4a2
2ω3a3

cos(γ2) − F2
ω2a

2
2

cos(γ )

0 0 0
F2

2ω2a2
sin(γ ) − α3

4ω2
cos(γ2)

α3a3
4ω2

sin(γ2)

F2
2ω2

cos(γ )
α3a2
4ω2

sin(γ2)
α3a3a2

4ω2
cos(γ2)

− F2
2ω2a2

sin(γ )
α3

4ω2
cos(γ2) −α3a3

4ω2
sin(γ2)

0 −μ3 −α4a
2
2

4ω3
cos(γ2)

− F2
ω2a2

sin(γ )
α4a

2
2

4ω3a
2
3

cos(γ2) + α3
2ω2

cos(γ2)
α4a

2
2

4ω3a3
sin(γ2) − α3a3

2ω2
sin(γ2)

⎞

⎟⎟
⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

.



A.2 1:2:4 low-frequency case

The coefficients of the five-order polynomial of a2
2 (see Eq. (36)) are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C10 = α2
3α4

1α2
4

163α2
2ω4

1ω
2
3(μ

2
3 + ν2

3)
,

C8 = ω2α3α
4
1α4

27α2
2ω4

1ω3

(μ2μ3 − ν2ν3)

(μ2
3 + ν2

3)
+ α2

3α2
1α2

4

128α2
2ω2

1ω
2
3

(μ2
1 + ν2

1)

(μ2
3 + ν2

3)
− α2

3α2
1α2

4

43α2
2ω2

1ω
2
3

(ν1ν3 − μ1μ3)
2

(μ2
3 + ν2

3)2
,

C6 = ω2
2α

4
1

16α2
2ω4

1

(μ2
2 + ν2

2) + ω2α3α
2
1α4

4α2
2ω2

1ω3

(μ2
1 + ν2

1)(μ2μ3 − ν2ν3)

(μ2
3 + ν2

3)
+ α2

3α2
4

16α2
2ω2

3

(μ2
1 + ν2

1)2

(μ2
3 + ν2

3)

+ α2
1α3α4ω2

2α2
2ω3ω

2
1

(μ1μ2 + ν1ν2)(ν1ν3 − μ1μ3)(
μ2

3 + ν2
3)

,

C4 = 2ω2
2α

2
1

α2
2ω2

1

(
μ2

2 + ν2
2

)(
μ2

1 + ν2
1

) − 4ω2
2α

2
1

α2
2ω2

1

(μ1μ2 + ν1ν2) − F 2
1 α1α3α4

16α2ω3ω
3
1

(ν1ν3 − μ1μ3)

(μ2
3 + ν2

3)

+ 2α3α4ω2

α2
2ω3

(μ2
1 + ν2

1)2(μ2μ3 − ν2ν3)

(μ2
3 + ν2

3)
,

C2 = 16ω2
2

α2
2

(
μ2

1 + ν2
1

)2(
μ2

2 + ν2
2

) + F 2
1 α1ω2

α2ω
3
1

(ν1ν2 + μ1μ2),

C0 = − F 4
1

16ω4
1

.

The Jacobian matrix associated to Eqs. (33a)–(33f) reads

J =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

−μ1 + α1a2
4ω1

sin(γ1)
F1

2ω1
cos(γ ) α1a1a2

4ω1
cos(γ1)

− Q1
2ω1a

2
1

cos(γ ) − F1
2ω1a1

sin(γ ) α1
4ω1

cos(γ1)

−α2a1
2ω2

sin(γ1) 0 −μ2 + α3a3
4ω2

sin(γ2)

− α2a1
2ω2a2

cos(γ1) − F1
ω1a

2
1

cos(γ ) − F1
ω1a1

sin(γ )
α2a

2
1

4ω2a
2
2

cos(γ1) + α1
2ω1

cos(γ1)

0 0 −α4a2
2ω3

sin(γ2)

α2a1
ω2a2

cos(γ1) 0 − α4a2
2ω3a3

cos(γ2) − α2a
2
1

2ω2a
2
2

cos(γ1)

0 0 0

−α1a2
4ω1

sin(γ1) 0 0

−α2a
2
1

4ω2
cos(γ1)

α3a2
4ω2

sin(γ2)
α3a3a2

4ω2
cos(γ2)

α2a
2
1

4ω2a2
sin(γ1) − α1a2

2ω1
sin(γ1) − α3

4ω2
cos(γ2)

α3a3
4ω2

sin(γ2)

0 −μ3 −α4a
2
2

4ω3
cos(γ2)

− α2a
2
1

2ω2a2
sin(γ1)

α4a
2
2

4ω3a
2
3

cos(γ2) + α3
2ω2

cos(γ2)
α4a

2
2

4ω3a3
sin(γ2) − α3a3

2ω2
sin(γ2)

⎞

⎟
⎟⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟⎟
⎠

.



Appendix B: Jacobian matrices for the 1:2:2 internal resonance

B.1 1:2:2 low-frequency case

Jacobian matrix associated to Eqs. (43a)–(43f):

J =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜
⎝

−μ1 − α1a2
4ω1

sin(γ1) − α2a3
4ω1

sin(γ2) −α1a1a2
4ω1

cos(γ1) −α1a1
4ω1

sin(γ1)

α3a1
2ω2a2

cos(γ1) − F1
ω1a

2
1

cos(γ ) −α3a
2
1

4ω2
sin(γ1) + α1a2

2ω1
sin(γ1) − α1

2ω1
cos(γ1) − α3a

2
1

4ω2a
2
2

cos(γ1)

α3a1
2ω2

sin(γ1)
α3a

2
1

4ω2
cos(γ1) −μ2

α4a1
2ω3a3

cos(γ2) − F1
ω1a

2
1

cos(γ ) α1a2
2ω1

sin(γ1) − α1
2ω1

cos(γ1)

α4a1
2ω3

sin(γ2) 0 0

− F1
2ω1a

2
1

cos(γ ) α1a2
4ω1

sin(γ1) − α1
4ω1

cos(γ1)

−α2a1a3
4ω1

cos(γ2) −α2a1
4ω1

sin(γ2)
F1

2ω1
cos(γ )

α2a3
2ω1

sin(γ2) − α2
2ω1

cos(γ2) − F1
ω1a1

sin(γ )

0 0

− α4a
2
1

4ω3a3
sin(γ2) + α2a3

2ω1
sin(γ2) − α2

2ω1
cos(γ2) − α4a

2
1

4ω3a
2
3

cos(γ2) − F1
ω1a1

sin(γ )

α4a
2
1

4ω3
cos(γ2) −μ3 0

α2a3
4ω1

sin(γ2) − α2
4ω1

cos(γ2) − F1
ω1a1

sin(γ )

⎞

⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

.

B.2 1:2:2 high-frequency

Jacobian matrix associated to Eqs. (50a)–(50f):

J =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

−μ1 − α1a2
4ω1

sin(γ1) − α2a3
4ω1

sin(γ2) 0 0

0 α1a2
2ω1

sin(γ1)
F2

2ω2a
2
2

cos(γ ) − α1
2ω1

cos(γ1)

0 0 −μ2

0 α1a2
2ω1

sin(γ1) + F3
2ω3a3

sin(γ + γ1 − γ2) − α1
2ω1

cos(γ1)

0 F3
2ω3

cos(γ + γ1 − γ2) 0

0 0 − F2
2ω2a

2
2

cos(γ )

0 0 0
α2a3
2ω1

sin(γ2) − α2
2ω1

cos(γ2)
F2

2ω2a2
sin(γ )

0 0 F2
2ω2

cos(γ )

α2a3
2ω1

sin(γ2)− F3
2ω3a3

sin(γ +γ1 −γ2)
F3

2ω3a
2
3

cos(γ +γ1 −γ2)− α2
2ω1

cos(γ2)
F3

2ω3a3
sin(γ +γ1 −γ2)

− F3
2ω3

cos(γ + γ1 − γ2) −μ3
F3

2ω3
cos(γ + γ1 − γ2)

0 0 − F2
2ω2a2

sin(γ )

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟
⎠

.



The corresponding eigenvalues are computed as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1,2 = −μ2 ± iσ,

λ3,4 = −μ3 ± i(σ2 − σ1 − σ),

λ5 = −μ1 − α1

4ω1
a2 sin(γ1) − α2

4ω1
a3 sin(γ2),

λ6 = α1

4ω1
a2 sin(γ1) + α2

4ω1
a3 sin(γ2).

(56)

The product λ5λ6 drives the stability of the solution.
Searching for its cancellation points, one can see that
it is equivalent to cancel the following expression:

α1a2 sinγ1 + α2a3 sinγ2 = −4ω1μ1. (57)

From Eqs. (50b) and (50f), another relationship be-
tween γ1 and γ2 is obtained:

α1a2 cosγ1 + α2a3 cosγ2 = 2ω1(σ1 + σ). (58)

The combination of Eqs. (58) and (57) leads to

4ω2
1

(
4μ2

1 + (σ1 + σ)2)

= α2
1a2

2 + α2
2a2

3 + 2α1α2a2a3 cos(γ1 − γ2). (59)

cos(γ1 − γ2) is expressed thanks to Eqs. (50c) and
(50f) as:

cos(γ1 − γ2) = ω3a3

ω2a2

F2

F3

μ2μ3 + σ(σ + σ1 − σ2)

μ2
2 + σ 2

.

(60)

Finally, the stability condition is

Slim = {
(σ, a2, a3)|T1 = T2a

2
2 + T3a

2
3

}
(61)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T1 = 4ω2
1

(
4μ2

1 + (σ1 + σ)2),

T2 = α2
1,

T3 = α2
2 + 2α1α2

ω3

ω2

F2

F3

× μ2μ3 + σ(σ + σ1 − σ2)

μ2
2 + σ 2

.

(62)
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